
1

Uri weiser

Assignment by Yale

“Your vision of the future of computer architecture.

From the man who gave us MMX, refused to kill the

golden goose, and worked for a time in the same box

with Mark McDermott”

2

Situation

Flew 11,482 km to greet Yale 

Have to fight again with Bob

What can I fill-in after this extraordinary speaker?

Defiantly a challenge

3

My moto:

Sailing - wind shift

wind

Buoy

4

a

a

a

Sailing competition
getting first

Boat 1

Boat 2

wind

Buoy

- What is the Strategy of Boat 1?

- What is the Strategy of Boat 2?

My Moto: Do not follow  Invent
5

Uri Weiser
Professor

Technion

Haifa, Israel

Future Architecture Research

Big Data environment
6

Outline

Big Data need  reduction in energy/task

Power/Energy - the opportunities

Heterogeneous systems – past thoughts

Resource allocation in a Heterogeneous system

Efficient computation  reduction of Data

movements

Avoid-the-Valley – past thoughts, deferent perspective

Big Data execution – where should we preform

execution of “Funnel” functions

– The Funnel (MASHPECH)

7

Big Data 

reduction in energy/task

Hadoop/Spark Calls for multiple computing engines

taking care of “ONE TASK”

Computing Centers’ attention was shifted from

Performance toward energy saving

The need for huge amount of processing 

huge consumption of energy

See Google centers…

8

Power/Energy the opportunities

Heterogeneous Systems –Past findings

Resource allocation in a Heterogeneous system - MA

Efficient computation  reduction of Data

movements

Avoid-the-Valley – past thoughts, deferent perspective

Big Data execution – where should we preform

execution of “Funnel” functions

9

Heterogeneous Computing:

Application Specific Accelerators

Performance/power

Apps range

Continue performance trend using Heterogeneous computing to

bypass power and energy hurdles

Accelerators

10

Heterogeneous Computing

P
e

rf
o

rm
an

ce
s/

P
o

w
e

r

General Purpose

Accelerator

11

MultiAmdahl:

Optimization using Lagrange

multipliers
Minimize execution time (T)

under a Area (a) constraint

t2 t3 tnt1

F1(p1) F2(p2) Fn(pn)

12

tj F’j(pj) = ti F’i(pi)

F’= derivation of the accelerator function

pi = Power of the i-th accelerator

ti = Execution time on reference computer

Power/Energy the opportunities

Heterogeneous Systems –Past findings

Resource allocation in a Heterogeneous system

Efficient computation  reduction of Data

movements

Avoid-the-Valley – past thoughts, deferent perspective

Big Data execution – where should we preform

execution of “Funnel” functions

9

Power/Energy the opportunities

Efficient computation  reduction of Data

movements

Avoid-the-Valley – past research  power implications

The Funnel PreProcessing (FPP):

ak’a “In-Place-Computing” =

Compute at the most energy effective place

14

Avoid-the-valley:

Many cores behind a common cache
running many threads

 Three regions: MC Region , the valley, MT Region

Threads

P
e
rf

o
rm

a
n

c
e

M
C

 r
e
g

io
n MT regionThe valley

15

Avoid the Valley
Parameter: Cache Size

0

100

200

300

400

500

600

700

800

900

1000

1100
0

2
5
0
0

5
0
0
0

7
5
0
0

1
0
0
0
0

1
2
5
0
0

1
5
0
0
0

1
7
5
0
0

2
0
0
0
0

2
2
5
0
0

2
5
0
0
0

2
7
5
0
0

3
0
0
0
0

3
2
5
0
0

3
5
0
0
0

3
7
5
0
0

4
0
0
0
0

G
O

P
S

Number Of Threads

Performance for Different Cache Sizes

no cache

16M

32M

64M

128M

perfect $

* At this point: unlimited BW to memory 16

Perf^2/Power

0

1

2

3

4

5

6

7

8

9

10

11

0

100
0

200
0

300
0

400
0

500
0

600
0

700
0

800
0

900
0

100
00

110
00

120
00

130
00

140
00

150
00

160
00

170
00

180
00

190
00

200
00

Number Of Threads

Pe
rf/P

ow
er pure compute

mem inst =1%

mem inst =5%

mem inst =10%

mem inst =20%

mem inst =30%

Performance/Power 1/(Energy Per Instruction)

Perf^2/Power

0

1

2

3

4

5

6

7

8

9

10

11

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

1
1
0
0
0

1
2
0
0
0

1
3
0
0
0

1
4
0
0
0

1
5
0
0
0

1
6
0
0
0

1
7
0
0
0

1
8
0
0
0

1
9
0
0
0

2
0
0
0
0

Number Of Threads

P
e
rf

/P
o

w
e
r pure compute

mem inst =1%

mem inst =5%

mem inst =10%

mem inst =20%

mem inst =30%

17

Number of Threads

P
e

rf
o

rm
a

n
c

e
/p

o
w

e
r

PER/PWR decline!

Input: Unstructured data

Big Data  Data usage message

18

Structuring

Input: Unstructured data

Structured data (aggregation)

A

ML Model creation

Data structuring

C

B

C Model usage @ client

19

Existing Big data:

Data movements

20

CPU

Cache

Memory

IO

Bridge

Memory related:

Reuse distance: >1G access

Cache related:

Reuse distance: >1M access

Cache/Memory are not effective if:

NIC or Disk/SSD

Copy of data

~nJoules/Byte

1. Why used-once data should move all the way to the “BIG” CPU?

2. Why use-once data is copied to memory?

DMA

Initial analysis: Hadoop-grep memory access

• Analysis of memory Hadoop-grep memory

accesses was performed

• Unique addresses have been identifies

• In each pack (10M memory accesses), we counted;
• number of unique addresses that have been single accessed

• number of unique addresses that have been accessed multiple

times

• About 50% of Hadoop-grep memory references

have been single access

21

Big Data
Suggestion: Data movements reduction and free-up resources

22

CPU

Cache

Memory

IO Bridge

NIC or Disk/SSD

Process Read-Once data close-to-IO
(Funnel PreProcessing FPP)

Implications:

Free huge amount of memory for useful

work (think Hadoop/Spark)

Process funnel functions by small

efficient engines

Save Read/Write DRAM energy

Think about Big Data…

FPP

Open issues for research

SW and OS

Co-Processor or

Heterogeneous system

Compatibility

Application awareness

…

23

Summary

The Funnel functions – execute close to the

data source

Free up system’s memory

Reduction of Data movement

Simple energy efficient engines at the front end

Issues

Compatibility issue: Apps, OS,

Amount of energy saving…

….

24

Thank You

25Maldives' islands

