Uri weiser



Assignment by Yale

* “Your vision of the future of computer architecture.
From the man who gave us MMX, refused to kill the
golden goose, and worked for a time in the same box

with Mark McDermott”



Situation

* Flew 11,482 km to greet Yale ©

* Have to fight again with Bob
* What can I fill-in after this extraordinary speaker?
* Defiantly a challenge



My moto:
Sailing - wind shift




Sailing competition
getting first

- What is the Strategy\of\Boat 17?

Boat 1

- What is the Strategy of Boat 2?7 _a4
Boat 2

My Moto: Do not follow = Invent




Big Data environment



Outline

* Big Data need = reduction in energy/task

* Power/Energy - the opportunities

Heterogeneous systems — past thoughts
* Resource allocation in a Heterogeneous system

Efficient computation = reduction of Data
movements
* Avoid-the-Valley — past thoughts, deferent perspective

* Big Data execution —where should we preform
execution of “Funnel” functions




Big Data =»
reduction in energy/task

® Hadoop/Spark Calls for multiple computing engines
taking care of “ONE TASK?”

® Computing Centers’ attention was shifted from
Performance toward energy saving

® The need for huge amount of processing =

huge consumption of energy
®



Power/Energy the opportunities

¢ Heterogeneous Systems —Past findings

® Resource allocation in a Heterogeneous system - MA




Performance/power

a

Accelerators

|

—J |

Continue performance trend using Heterogeneous computing to
bypass power and energy hurdles

Apps'range

10



Heterogeneous Computing

Accelerator

General_Purpose

N\

S
Q
3
(@)
(a1
S~
wv
Q
9
c
(]
=
—
(@)
[t
- -
Q
(a

11



MultiIAmdahl:

€« —>i€ t
1 2
®* Optimization using Lagrange

multipliers

Minimize execution time (T)
under a Area (a) constraint

w
o
2
o
Z
@
@
=]
=
@
=

t Fi(py) =t Fii(p))

F’= derivation accelerator function
p; = Power :
t = time ) - A

12



Power/Energy the opportunities

® Efficient computation =» reduction of Data
movements
® Avoid-the-Valley — past thoughts, deferent perspective

® Big Data execution —where should we preform
execution of “Funnel” functions



Power/Energy the opportunities

Efficient computation =» reduction of Data
movements

* Avoid-the-Valley — past research = power implications
® The Funnel PreProcessing (FPP):

ak’a “In-Place-Computing” =

Compute at the most energy effective place

14



Avoid-the-valley:

Many cores behind a common cache

running many threads

= Three regions: MC Region , the valley, MT Region
DA

&

S lc The valley MT region

e |8

S |

£ [o v

il b=

Threads

15



Avoid the Valley

Parameter: Cache Size

* At this point: un

Performance for Different Cache Sizes

— =
%, —
——

——no cache
— 16M
—32M
— 64M
—128M
— perfect $

m
i
:

2500
5000
7500
10000
12500
5000
17500
27500
30000

o o o
o O O
S mw O
© o W
N N A

S

—
Number Of Thread

limited BW to memory

16



Performance/Power 1/(Energy Per Instruction)

—— pure compute
— meminst =1%
— mem inst =5%
— mem inst =10%
= mem inst =20%
— mem inst =30%

Performance/power

Number of Threads

17



- 4 .

4\' e -

Big Data_?.-D’a,ta usage-me
v . 'ﬁ! p ./‘\’ “f ’ )
AL G R

/ - . 'v

I-~




Structuring KX 87,715 8

oo ou ¥ =
oo
MR TR SAA0U Y

'_'_011@00011101 18 B

_




Existing Big data:
Data movements

Cache/Memory are not effective if:

Cache related:
Reuse distance: >1M access

Memory related:
Reuse distance: >1G access

Copy of data
~nJoules/Byte

NIC or Disk/SSD

1. Why used-once data should move all the way to the “BIG” CPU?
2. Why use-once data is copied to memory?

20



Initial analysis: Hadoop-grep memory access

Analysis of memory Hadoop-grep memory
accesses was performed
Unique addresses have been identifies

In each pack (10M memory accesses), we counted;
« number of unique addresses that have been single accessed

« number of unique addresses that have been accessed multiple
times

About 50% of Hadoop-grep memory references
have been single access

21



Big Data

Suggestion: Data movements reduction and free-up resources

® Process Read-Once data close-to-10
(Funnel PreProcessing FPP)

® Implications:

® Free huge amount of memory for useful
work (think Hadoop/Spark)

® Process funnel functions by small
efficient engines

® sSave Read/Write DRAM energy
® Think about Big Data...

|

—

Memory

FPP

NIC or Disk/SSD

22



Open issues for research

)

SW and OS

® Co-Processor or
® Heterogeneous system

Compatibility
Application awareness

)

)

)

23



Summary

® The Funnel functions — execute close to the

data source

Free up system’s memory
Reduction of Data movement
Simple energy efficient engines at the front end

Issues
* Compatibility issue: Apps, OS,
* Amount of energy saving...

24



Thank You



