
www.bsc.es

Runtime Aware Architectures
Prof. Mateo Valero, UPC

BSC Director

A Computer Architecture Workshop: Visions
for the Future (Celebrating Yale@75)

Austin September 2014

2

3

Approaches to increase single processor performance

Exploit Instruction Level Parallelism (ILP)
– Superscalar processors
– VLIW processors

Exploit Data Level Parallelism (DLP)
– Vector processors
– SIMD extensions

Exploit Thread Level Parallelism (TLP)
– Simultaneous Multi-Threading (SMT) processors
– Chip Multi-Processing (CMP) processors

4

Design of Superscalar Processors

Decoupled from the software stack

Simple interface
Sequential program

ILP

ISA

Programs
“decoupled”

from hardware

Applications

5

Superscalar Processors

Fetch multiple instructions every cycle
Register renaming to eliminate added dependencies
Instructions wait for source operands and functional units
Out-of-Order (OoO) execution, but in order graduation
Predict branches and speculative execution

J.E. Smith and S.Vajapeyam. IEEE Computer. Sept. 1997.

Out-of-Order

F
et

ch

D
ec

od
e

R
en

am
e

In
st

ru
ct

io
n

W
in

do
w

W
ak

eu
p+

se
le

ct

R
eg

is
te

r
fil

e

B
yp

as
s

D
at

a
C

ac
he

R
eg

is
te

r
W

rit
e

C
om

m
it

6

Superscalar Processors (Some UPC Contributions)

Software Trace Cache (ICS’99)
Prophet/Critic Hybrid Branch Prediction (ISCA’04)
Virtual-Physical Registers (HPCA’98)
Two-level Register File (ISCA’00, MICRO’00)
Non Consistent Register File for VLIW (HPCA’95)
Cache Memory with Hybrid Mapping (IASTED87). Later called Victim Cache
Dual Data Cache (ICS95)
Fuzzy Computation (ICS’01, IEEE CAL’02, IEEE Trans. Comput.’05). Currently
known as Approximate Computing ☺

Kilo-Instruction Processors (ISHPC’03, HPCA’06, ISCA’08)
Checkpointing Mechanism for The Memory Consistency Model in
Multiprocessors. Later, people called it Bulk Committ ☺

F
et

ch

D
ec

od
e

R
en

am
e

In
st

ru
ct

io
n

W
in

do
w

W
ak

eu
p+

se
le

ct

R
eg

is
te

r
fil

e

B
yp

as
s

D
at

a
C

ac
he

R
eg

is
te

r
W

rit
e

C
om

m
it

7

Advanced Vector Architectures (Some UPC
Contributions)

Out-of-Order Access to Vectors (ISCA 1992, ISCA 1995)

Command Memory Vector (PACT 1998)

• In-memory computation
Decoupled Vector Architectures (HPCA 1996)

• Cray SX1
Out-of-order Vector Architectures (Micro 1996)

Multithreaded Vector Architectures (HPCA 1997)

SMT Vector Architectures (HICS 1997, IEEE MICRO J. 1997)

Vector register-file organization (PACT 1997)

Vector Microprocessors (ICS 1999, SPAA 2001)

Architectures with Short Vectors (PACT 1997, ICS 1998)

• Tarantula (ISCA 2002), Knights Corner
Vector Architectures for Multimedia (HPCA 2001, Micro 2002)

VLIW vector architectures for multimedia (paper salami)
High-Speed Buffers Routers (Micro 2003, IEEE TC 2006)
Vector Architectures for Data Bases (Micro 2012)

8

Exploiting TLP(Some UPC Contributions)

Simultaneous Multithreading (SMT)
– Benefits of SMT Processors:

• Increase core resource utilization

– Basic pipeline unchanged:
• Few replicated resources, other shared

Some of our contributions:
– Dynamically Controlled Resource Allocation (MICRO 2004)
– Quality of Service (QoS) in SMTs (IEEE TC 2006)
– Runahead Threads for SMTs (HPCA 2008)

F
et

ch

D
ec

od
e

R
en

am
e

In
st

ru
ct

io
n

W
in

do
w

W
ak

eu
p+

se
le

ct

R
eg

is
te

r
fil

e

B
yp

as
s

D
at

a
C

ac
he

R
eg

is
te

r
W

rit
e

C
om

m
itThread 1

Thread N

9

The MultiCore Era

Moore’s Law + Memory Wall + Power Wall

Chip MultiProcessors (CMPs)

UltraSPARC T2 (2007)

Intel Xeon 7100
(2006)

POWER4 (2001)

10

How are the Multicore architectures designed?

IBM Power4 (2001)
– 2 cores, ST
– 0.7 MB/core L2,

16MB/core L3 (off-
chip)

– 115W TDP
– 10GB/s mem BW

IBM Power7 (2010)
– 8 cores, SMT4
– 256 KB/core L2

16MB/core L3 (on-
chip)

– 170W TDP
– 100GB/s mem BW

IBM Power8 (2014)
– 12 cores, SMT8
– 512 KB/core L2

8MB/core L3 (on-
chip)

– 250W TDP
– 410GB/s mem BW

11

Challenges of Multi-core Processors Design

Efficient design of future parallel systems challenges:
– Memory Wall
– Power Wall
– Programmability Wall
– Upcoming Reliability Wall
– Wide range of application domains from mobiles up to supercomputers

Many-cores exacerbate the problems derived from the Walls
A tight collaboration between software and hardware is a must

Question: How should we program, use
and design those parallel systems?

12

Living in the programming revolution

Multicores made the interface to leak…

ISA / API

Parallel hardware
with multiple

address spaces
(hierarchy,

transfer), control
flows, …

Applications

Parallel application
logic

+
Platform

specificites

Applications

13

ISA / API

Vision in the programming revolution

Need to decouple again

General purpose

Single address space

Application logic

Arch. independent
Applications

Power to the runtime

PM: High-level, clean, abstract interface

The efforts are
focused on

efficiently using the
underlying hardware

14

ISA / API

The runtime drives the hardware design

Runtime Aware Architectures (RoMoL Project)

Applications

Runtime

PM: High-level, clean, abstract interface

Task based PM
annotated by the user

Data dependencies
detected at runtime

Dynamic scheduling

“Reuse” architectural
ideas under

new constraints

15

Mapping of concepts:
Instructions � Block operations � Full binary
Functional units � Cores � machines
Fetch &decode unit � Core � home machine
Registers (name space) � Main memory � Files
Registers (storage) � Local memory � Files

≅≅≅≅ ≅≅≅≅

ns � 100 useconds � minutes/hours

Computing: a matter of perspective

Grid

Granularity
Stay sequential

Just look at things from a bit further away
Architects do know how to run parallel

16

OmpSs: a sequential program …

void vadd3 (float A[BS], float B[BS],

float C[BS]);

void scale_add (float sum, float A[BS],

float B[BS]);

void accum (float A[BS], float *sum);

for (i=0; i<N; i+=BS) // C=A+B

vadd3 (&A[i], &B[i], &C[i]);

...

for (i=0; i<N; i+=BS) //sum(C[i])

accum (&C[i], &sum);

...

for (i=0; i<N; i+=BS) // B=sum*A

scale_add (sum, &E[i], &B[i]);

...

for (i=0; i<N; i+=BS) // A=C+D

vadd3 (&C[i], &D[i], &A[i]);

...

for (i=0; i<N; i+=BS) // E=G+F

vadd3 (&G[i], &F[i], &E[i]);

17

OmpSs: … taskified …
#pragma css task input(A, B) output(C)
void vadd3 (float A[BS], float B[BS],

float C[BS]);
#pragma css task input(sum, A) inout(B)
void scale_add (float sum, float A[BS],

float B[BS]);
#pragma css task input(A) inout(sum)
void accum (float A[BS], float *sum);

for (i=0; i<N; i+=BS) // C=A+B

vadd3 (&A[i], &B[i], &C[i]);

...

for (i=0; i<N; i+=BS) //sum(C[i])

accum (&C[i], &sum);

...

for (i=0; i<N; i+=BS) // B=sum*A

scale_add (sum, &E[i], &B[i]);

...

for (i=0; i<N; i+=BS) // A=C+D

vadd3 (&C[i], &D[i], &A[i]);

...

for (i=0; i<N; i+=BS) // E=G+F

vadd3 (&G[i], &F[i], &E[i]);

1 2 3 4

13 14 15 16

5 6 87

17

9

18

10

19

11

20

12

Color/number: order of task instantiation
Some antidependences covered by flow dependences not drawn

Write

18

Decouple
how we write
form
how it is executed

OmpSs: … and executed in a data-flow model
#pragma css task input(A, B) output(C)
void vadd3 (float A[BS], float B[BS],

float C[BS]);
#pragma css task input(sum, A) inout(B)
void scale_add (float sum, float A[BS],

float B[BS]);
#pragma css task input(A) inout(sum)
void accum (float A[BS], float *sum);

1 1 1 2

2 2 2 3

2 3 54

7

6

8

6

7

6

8

7

for (i=0; i<N; i+=BS) // C=A+B

vadd3 (&A[i], &B[i], &C[i]);

...

for (i=0; i<N; i+=BS) //sum(C[i])

accum (&C[i], &sum);

...

for (i=0; i<N; i+=BS) // B=sum*A

scale_add (sum, &E[i], &B[i]);

...

for (i=0; i<N; i+=BS) // A=C+D

vadd3 (&C[i], &D[i], &A[i]);

...

for (i=0; i<N; i+=BS) // E=G+F

vadd3 (&G[i], &F[i], &E[i]);

Write

Execute

Color/number: a possible order of task execution

19

OmpSs: the potential of data access information

Flat global address space seen by
programmer

Flexibility to dynamically traverse
dataflow graph “optimizing”

– Concurrency. Critical path
– Memory access: data transfers performed

by run time

Opportunities for automatic
– Prefetch
– Reuse
– Eliminate antidependences (rename)
– Replication management

• Coherency/consistency handled by the
runtime

• Layout changes

Resilience
Wall

Program. Wall

Power Wall

Heterogeneity of tasks and
Hardware
– Critical path exploitation

Accelerators
– Numerical, data bases,

proteomics, big data

Runtime Aware Architectures (RAA)

20

Task-based check-pointing
Algorithmic-based fault tolerance

Memory Wall Efficient data movement
– Overlap communication and computation
– Latency aware interconnection network

Re-design memory hierarchy
– Hybrid (cache + local memory)
– Non-volatile memory, 3D stacking
– Simplified coherence protocols,

non-coherent islands of cores

Exploitation of data locality:
– Reuse, prefetching, in-memory

computation

Hardware acceleration of the
runtime system
– Task dependency graph

management
Load balancing and scheduling
– Asynchrony and critical path

exploitation

21

Programmability
Wall

Resilience Wall

Memory Wall Power Wall

Bringing the Superscalar vision to the Multicore level
Superscalar World

Out-of-Order, Kilo-Instruction
Processor, Distant Parallelism
Branch Predictor, Speculation
Fuzzy Computation
Dual Data Cache, Sack for VLIW
Register Renaming, Virtual Regs
Cache Reuse, Prefetching, Victim C.
In-memory Computation
Accelerators, Different ISA’s, SMT
Critical Path Exploitation
Resilience

Multicore World
Task-based, Data-flow Graph,
Dynamic Parallelism
Tasks Output Prediction,
Speculation
Hybrid Memory Hierarchy, NVM
Late Task Memory Allocation
Data Reuse, Prefetching
In-memory FU’s
Heterogeneity of Tasks and HW
Task-criticality
Resilience
Load Balancing and Scheduling
Interconnection Network
Data Movement

22

Conclusions

Things are changing very quickly… but many lessons learned
in the past decades can be useful nowadays
The design of future multicore/parallel systems has to
dramatically change
– Hardware-Software co-design

Runtime has to drive the design of future multicores
Runtime Aware Architectures will allow
– Efficient management of parallelism and energy
– Improve memory management and reduce data movements
– Increase reliability

Ensure continued performance improvements, once more
Riding on Moore's Law (RoMoL)

23

Riding on Moore’s Law (RoMoL, http://www.bsc.es/romol)
– ERC Advanced Grant: 5-year project 2013 – 2018.

Our team:
– CS Department @ BSC
– PI: Project Coordinators:

– Staff Researchers: Staff:

– Students:

Open for collaborations!

RoMoL Team

www.bsc.es

Thank you !

