
YALE -75, September 19, 2014. © Per Stenström

Towards Efficient Computing

Per Stenström

Chalmers University of Technology
Sweden

YALE -75, September 19, 2014. © Per Stenström

Congratulations Yale!

…“Ö”…
(…Island ahead…)

YALE -75, September 19, 2014. © Per Stenström

•  Parallelism is ubiquitous but hard to deal with
•  Power is heavily constraining performance growth
•  Moore’s Law is running out of steam

A radical new way of thinking of
compute efficiency is needed

Threats and
Opportunities

YALE -75, September 19, 2014. © Per Stenström

Program

ISA

Problem

Yale’s Transformation Hierarchy

Algorithm

Microarchitecture

Circuits

Electrons

YALE -75, September 19, 2014. © Per Stenström

Program

ISA

Problem

First Revision

Algorithm

Microarchitecture

Circuits

Electrons

“Electrons:
Do my task
efficiently”

“Roger that!”

YALE -75, September 19, 2014. © Per Stenström

Program

ISA

Problem
Second Revision: My Hierarchy

Algorithm

Resource Management

Microarchitecture

Circuits

Electrons

YALE -75, September 19, 2014. © Per Stenström

(My) Vision for Efficient
Computing

•  P1: Parallelism:
–  Programmers: Unlock parallelism and give hints
–  Resource manager: Translate it into higher performance

“under the hood”
•  P2: Power:

–  Programmers: Express quality of service attributes
–  Resource manager: Translate it into more efficient use

of hardware resources “under the hood”
•  P3: Predictability:

–  Programmers: Express deadlines (absolute or “soft”)
–  Resource manager: Manage parallelism predictably

“under the hood”

YALE -75, September 19, 2014. © Per Stenström

Approach –
Interaction Across Layers

ISA

Resource Management

Microarchitecture

YALE -75, September 19, 2014. © Per Stenström

Parallelism Management

YALE -75, September 19, 2014. © Per Stenström

Task-based Dataflow Prog. Models

TaskA

TaskC TaskB

#pragma css task output(a)
void TaskA(float a[M][M]);

#pragma css task input(a)
void TaskB(float a[M][M]);

#pragma css task input(a)
void TaskC(float a[M][M]);

•  Programmer annotations for task dependences
•  Annotations used by run-time for scheduling
•  Dataflow task graph constructed dynamially
Important: Conveys semantic information to run-time for

efficient scheduling

YALE -75, September 19, 2014. © Per Stenström

Possible Optimizations
Dependency annotations allow for optimizations with high
accuracy (like in message passing)

Prefetching

Migratory sharing
optimization

Bulk data transfer

Forwarding

Prod Cons

Output
A[1000]

Input
A[1000]

Prod Cons

Output
A[1000]

Input
A[1000]

Prod Cons

Output
A[1000]

Input
A[1000]

T1 T2

Inout
A[1000]

Inout
A[1000]

YALE -75, September 19, 2014. © Per Stenström

•  Self-invalidation provides significant gains
•  SP+D+I provides added gains

Run-time Guided Cache Coherence

YALE -75, September 19, 2014. © Per Stenström

Other Opportunities
•  Give run-time system the responsibility to manage cache

hierarchy resources just like virtual memory manager or
hypervisor manages memory resources

•  Use data-flow graph notion (explicit or inferred
dynamically) to exploit speculative parallelism with high
success rate

•  Migrating computation rather than data, by exploiting
semantic information about data usage

MECCA is investigating these opportunities

YALE -75, September 19, 2014. © Per Stenström

Power Management What if
•  Users expressed how long time a computation must take?
•  Resource manager could track progress against deadlines?
•  Resource manager could predict the remaining time as a

function of resources?
Opportunities:
•  Controlled throttling of resources
•  Controlled scheduling of computations on heterogeneous

substrates
In general: Considerable room for trading performance for
reduced power consumption

MECCA is investigating these opportunities

YALE -75, September 19, 2014. © Per Stenström

Predictability Management
Context: Real-time applications

Sequential processing: Establishing tight bounds on execution
time (WCET) is fairly well understood

Parallel processing: Unexplored terrain

Another execution
T1

T2

T3

T4

One execution
T1

T2

T3

T4

Time

Deterministic scheduling => New playground for trading
performance for power under strict timing guarantees

MECCA is investigating these opportunities

WCET: max (T1+T2, T3+T4)

YALE -75, September 19, 2014. © Per Stenström

…“Ö”…
(…Island ahead…)

Questions?

