From Yale-45 to Yale-90: Let Us Not
Bother the Programmers

Guri Sohi
University of Wisconsin-Madison

Celebrating Yale@75
September 19, 2014



e Where have we come from

* Where are we are likely going



Where From: Hardware

* Primary goal was performance

* Continuing increase in performance
without demands on software

* Lots of “under the hood” innovations in
cores (e.g., Big MF branch predictors)

— Key enabling technique was sequential
appearance and precise exceptions



Where From: Hardware

* Put more on core to achieve certain objective
— Argument is “improve efficiency”
— Multimedia, vectors, 64-bit, etc.
— Incremental cost

"

— Cores have become a “catch al
— Good for all, but not the most efficient for any

e Efficiency became important

— Emergence of more efficient, special-purpose
solutions (e.g., GPUs)



Where From: Software

* Few applications, few customers

* “Shrink Wrap” software: few applications
and lots of customers

* Ubiquitous software: lots of diverse
applications and lots of software



Where From: Software

No worries when everything “under the hood”
Significant challenges with multicore

— Need to parallelize

If biting the bullet, might as well go all the way
— E.g., GPUs

But mostly avoid difficulty and embrace
convenience

— Even if inefficient



Important Lessons

When transistor budgets exceed certain amounts,
the importance of certain techniques decreases,
making room for other techniques

Relative importance of special techniques
diminishes over time

Convenience key to software proliferation
Mass volumes drive end result



Future Academic Research

General-purpose App processing Units (GPAPUSs)
XY-DRAM

4D integration
— Heterogeneity (XY-DRAM)
— Dynamically varying distance between 3D layers

Revisit everything (e.g., cache design and DRAM
scheduling) with 4D integration with GPAPUs



Future

* Primary design goal: energy

 Hardware: use more transistors to save
energy

e Software: keep doing things “under the
hood”



10

Future

Novel uniprocessor cores
Lower energy devices

— prone to errors

Customized computation energy
reducers (a.k.a. accelerators)

— If can use software library, why use on multiple
CPUs? Why not on customized hardware?



Processor Usage

* Have OS core, user core
* Have core that can only run 32/64-bit code

— Specialization for 32-bit operands
* Have core that doesn’t support precise interrupts
 Many other forms of limited functionality cores

— Improve performance
— Reduce energy

11



12

Processor Usage

Steady demultiplexing of what was done on a
general-purpose core

Computation spreading
— OS/user

Separating specific code to accelerators

Other forms of stripping out functionality in
general purpose core

“Mostly general-purpose” core



Hardware Going Forward

* Multiple mostly general-purpose processing cores
— dynamically specialized
* Some “special-purpose” hardware

* For more efficient processing

e Over-provisioning: pool of available (i.e., powered
on) resources might change frequently

— Now called “dark silicon”

* Will need to be transparent to software

13



14

What all is needed?

Develop picks and shovels

What are the mechanisms to ease software
use of diverse hardware?

Are we going to have higher level of
exceptions/restart?

Does the microarchitecture need low level
restart?

— Precise/non-precise core



