A Computer Architecture Workshop: Visions for the Future Celebrating Yale@75

September 19th, 2014

Trevor Mudge The University of Michigan, Ann Arbor

Visions for the Future?

- We need to think out-of-the-box
- Get back to the basics of computing
- Do something radical
- Get rid of the von Neumann straight jacket
- Our abstractions don't expose the basic logical fabic
- I propose the following: Let's take a leaf from toys—LEGO
- There's a solution that's been with us a long time....
- It's a basic building block that digital systems can be constructed from
- No –not a NAND gate
- It has a higher level of abstraction

The Universal Logic Module—ULM

Fig. 1. General form of the ULM with interconnected external terminals.

Golden Age—Dennard Scaling Worked

- About every 2 years we got:
- 2× area
- 40% increase in frequency
- 50% reduction in power
- No change in power density

Turn of the Century

- Cracks appeared
- First crack: frequency scaling became a problem
 - Vdd got stuck & power density started to creep up
 - Clock frequency could no longer be a selling point
 - Core count was the new metric

Later:

- Each new tech node no longer showed power and frequency scaling
- Node numbers became symbolic names —still followed the $1/\sqrt{2} \times$ sequence
- Only area shrank with new nodes

What About Cost?

Two Views

Intel

Everyone else

 cost per transistor reached a minimum at 28 nm

Where Does That Leave Us

- No "new" technology that looks promising
 - Cheap
 - Reliable
 - Support density
- Can't see much beyond 7 years
 - But where's the capital investment?
- From a computer architect's viewpoint
- Fast complex cores have been explored
- Multiple cores are being explore
 - Unlikely to reach large numbers except for data centers / HPC
- Application domain specific architectures look promising
 - Gpu led the way
 - Only so many applications that warrant specialization

Some Opportunities

- Memory—new interesting technologies
 - 3D monolithic FLASH
 - Various NV-memory technologies
- Advanced packaging
 - 3D die stacking
 - Interposers
- Longer time horizon
- 3D monolithic ICs
 —see FLASH

ITEM	TARGET
Burst Length	2, 4
Stack Density	1GByte per stack (2Gbit per slice)
Channel / Slice	2
Banks / Channel	8
IO / Channel	128
Prefetch / Channel	32B (128x2bit)
Channels / Stack	8
Total TSV Data IO Width	1024
Clock Speed	500MHz
Peak Read BW / Stack	128 GB/s
Page Size	2KB
Data Parity	1 bit / 32 bit
DRAM Core Voltage	1.2V
Logic Buffer IO Voltage	1.2V

High Bandwidth Memory

