
M.J. Flynn 1

Yesterday, Today & Tomorrow: a
view of progress in computer

design

Michael Flynn
Stanford Univ. and Maxeler

M.J. Flynn 2

Outline

• Yesterday: a decisive moment in computer
design ’55-56

• Today: creating a similar moment in
parallel processing and programming

Yesterday: The Automation of
design and manufacturing

• A move to minimize the human element in
both design (draftsman, etc) and
production, especially enabled by
transistor logic with automatic component
insertion in printed circuit cards.

• The dawn of design automation

M.J. Flynn 3

M.J. Flynn 4

The old way

M.J. Flynn 5

The SMS system: the end of hand
crafted design

• Developed in ’56, first production ’58, end
of new designs in ’63 (with intro. of SLT)

• Standard design system (ALDs)
• Standard printed cards and circuit families
• Automatic wire wrapped back panel
• Standard frames (large version, had 4 6’

pages, 4 panels/page, 240 cards/panel)
• Spanned small (1401) to very large (7030)

M.J. Flynn 6

ALD: Automated Logic Diagram
type

socket#

pin

Logic fct

M.J. Flynn 7

SMS card

M.J. Flynn 8

The SMS cards and sockets

• Assigned card type to logic, assigned card to socket
and designated pins for wire connection (upon
design completion do a wire wrap routing schedule)

• Limited logic simulation /checking
• Print out updated ALD
• When design completed, provide card deck for

automated back panel wiring, wiring a panel on a
Gardener Denver took less than an hour.

• Bed of nails test to validate wiring, again with card
deck.

9

SMS DA system

M.J. Flynn 10

7090 (ca. 1961)

Today: automating programming
for maximum speedup

• Emulate the production line in program via
static dataflow.

• Prefer most restrictive parallel models, then
less restrictive.

• Support parallelism: multicore for control
flow, dataflow for compute intensive kernels

• Use 2D spatial programming to implement
the dataflow

M.J. Flynn 11

Michael J Flynn

12

Slotnick’s law

 “The parallel approach to computing does require
that some original thinking be done about numerical
analysis and data management in order to secure
efficient use.

 In an environment which has represented the
absence of the need to think as the highest virtue
this is a decided disadvantage.”

 -Daniel Slotnick (1967)

….Speedup in parallel processing is achieved by
programming effort……

13

FPGA emulating dataflow: using a
server with acceleration cards

M.J. Flynn 13

14

Acceleration with Static, Synchronous, Streaming
DFMs

• Create a static DFM (unroll loops, etc.); the goal can
be throughput (compute intensive) or latency
(networking).

• Create a fully synchronous DFM synchronized to
multiple memory channels. The time through the DFM
is always the same.

• Stream computations across the long DFM pipelined
array.

• If silicon area and pin BW allow, create multiple copies
of the DFM (as with SIMD or vector computations).

• Iterate on the DFM aspect ratio to optimize speedup.

14

15

Acceleration with Static, Synchronous, Streaming
DFMs

• Create a fully synchronous data flow machine
synchronized to multiple memory channels, then
stream computations across a long array

FPGA based DFM
Data from node

memory

Computation #1

Results to
memory

Computation #2

Buffer
intermediate results

PCIe accelerator card w memory is DFE (Engine)

15

x

x

+

30

y

 SCSVar x = io.input("x", scsInt(32));

 SCSVar result = x * x + 30;

 io.output("y", result, scsInt(32));

16

 graphic dataflow programming: X2 + 30

 Dataflow: Moving Average

17

SCSVar x = io.input(“x”, scsFloat(7,17));
SCSVar prev = stream.offset(x, -1);
SCSVar next = stream.offset(x, 1);
SCSVar sum = prev + x + next;
SCSVar result = sum / 3;
io.output(“y”, result, scsFloat(7,17));

Y = (Xn-1 + X + Xn+1) / 3

 Dataflow: Choices

18

x

+
1

y

-
1

>
10

SCSVar x = io.input(“x”, scsUInt(24));
SCSVar result = (x>10) ? x+1 : x-1;
io.output(“y”, result, scsUInt(24));

Data flow graph as
generated by compiler

4866 nodes; about 250x100

Each node represents
a line of JAVA code with
area time parameters, so
that the designer can change
the aspect ratio to improve
pin BW, area usage and
speedup

19

• Compiler provides graphic interface (ALD like)
• Nodes are grouped by designer into actions
• Compiler organizes data flow streams and memory

choreography…new data to pins each cycle
• Provides both area and timing information
• Enables cycle accurate simulation of the design.

Since the design is static performance is known
• When the design is complete (with speedup

determined) the place and route is invoked.

As with SMS; it’s the software that counts

20

• 1U Form Factor
• 4x dataflow engines
• 12 Intel Xeon cores
• 192GB DFE RAM
• 192GB CPU RAM
• PCIe Gen2 x8
• MaxRing interconnect
• 3x 3.5” hard drives
• Infiniband

21

MPC-C500, for compute intensive apps

21

Achieved Computational Speedup for the entire
application (not just the kernel) compared to Intel server

RTM with Chevron
VTI 19x and TTI 25x

Sparse Matrix
20-40x

Seismic Trace Processing
24x

Lattice Boltzman
Fluid Flow 30x

Conjugate Gradient Opt 26x Credit 32x and Rates 26x

624

624

22

• Open spatial programming language, an orderly way to
expose parallelism

• Control and Data-flows are decoupled
– Both are fully programmable

• Operations exist in space and by default run in parallel
– Their number is limited only by the available space

• 2D dataflow is programmer’s model, JAVA the syntax
• Could target hardware implementations.

– map on to CPUs (e.g. using OpenMP/MPI)
– GPUs, other accelerators

23

Programming model is available as
OpenSPL http://www.openspl.org/

24

So for HPC, how can dataflow emulation with
FPGAs be better than multi core?

• FPGAs emulate the ideal data flow machine
• Success comes about from their flexibility in matching the

DFG with a synchronous DFM and streaming data through
and shear size > 1 million cells

• Effort and support tools provide significant application
speedup

• With a really effective dedicated dataflow chip there’s
probably 2-3 orders of magnitude improvement possible
in Area x Time x Power.

24

So there’s lots more work to be done

25

	Yesterday, Today & Tomorrow: a view of progress in computer design
	Outline
	Yesterday: The Automation of design and manufacturing
	The old way
	The SMS system: the end of hand crafted design
	ALD: Automated Logic Diagram
	SMS card
	The SMS cards and sockets
	SMS DA system
	7090 (ca. 1961)
	Today: automating programming for maximum speedup
	Slotnick’s law
	Slide Number 13
	Acceleration with Static, Synchronous, Streaming DFMs
	Acceleration with Static, Synchronous, Streaming DFMs
	 graphic dataflow programming: X2 + 30
	 Dataflow: Moving Average
	 Dataflow: Choices
	Slide Number 19
	As with SMS; it’s the software that counts
	MPC-C500, for compute intensive apps
	Achieved Computational Speedup for the entire �application (not just the kernel) compared to Intel server
	Programming model is available as OpenSPL http://www.openspl.org/
	So for HPC, how can dataflow emulation with FPGAs be better than multi core?
	So there’s lots more work to be done

