
Throughput Computing
The Quest for Efficiency and Programmability
Bill Dally | Chief Scientist and SVP, Research NVIDIA | Professor (Research), EE&CS, Stanford

The Exascale Challenge

Sustain 1EFLOPs on a “real” application

Power less than 20MW

The Cellphone Challenge

Deliver 50GFLOPs on mobile applications

Power < 1W

From cell phones to supercomputers we
are Power Limited

Perf/W is Performance

And we need to make it easy to program
both these devices

18,688 NVIDIA Tesla K20X GPUs
27 Petaflops Peak: 90% of Performance from GPUs
17.59 Petaflops Sustained Performance on Linpack

TITAN

Tsubame KFC 4.5GFLOPS/W
#1 on Green500 List

Its not about the FLOPs

16nm chip, 25mm on a side, 200W

DFMA 0.05mm2 10pJ/OP – 2GFLOPs
A chip with 104 FPUs:
500mm2

200W
20TFLOPS

Pack 50,000 of these in racks
1EFLOPS
10MW

Overhead

Locality

How is Power Spent in a CPU?

In-order Embedded OOO Hi-perf

Clock + Control Logic
24%

Data Supply
17%

Instruction Supply
42%

Register File
11%

ALU 6%
Clock + Pins

45%

ALU
4%

Fetch
11%

Rename
10%

Issue
11%

RF
14%

Data
Supply
5%

Dally [2008] (Embedded in-order CPU) Natarajan [2003] (Alpha 21264)

Overhead
980pJ

Payload
Arithmetic

20pJ

4/11/11 Milad Mohammadi 12

ORF ORFORF

LS/BRFP/IntFP/Int

To LD/ST

L0Addr
L1Addr

Net

LM
Bank

0

To LD/ST

LM
Bank

3

RF
L0Addr
L1Addr

Net

RF

Net

Data
Path

L0
I$

Th
re

ad
 P

Cs
Ac

tiv
e

PC
s

Inst

Control
Path

Sc
he

du
ler

64 threads
4 active threads
2 DFMAs (4 FLOPS/clock)
ORF bank: 16 entries (128 Bytes)
L0 I$: 64 instructions (1KByte)
LM Bank: 8KB (32KB total)

Overhead
20pJ

Payload
Arithmetic

20pJ

The Locality Challenge
Data Movement Energy 77pJ/F

0

50

100

150

200

250

0

1

2

3

4

5

6

7

8

9

1K 32K 1M 32M 1G

pJ
/B

pJ

/F
x5

B/
F

B/F

pJ/B

pJ/F x5

Processor Technology 40 nm 10nm

Vdd (nominal) 0.9 V 0.7 V

DFMA energy 50 pJ 7.6 pJ

64b 8 KB SRAM Rd 14 pJ 2.1 pJ

Wire energy (256 bits, 10mm) 310 pJ 174 pJ

Memory Technology 45 nm 16nm

DRAM interface pin bandwidth 4 Gbps 50 Gbps

DRAM interface energy 20-30 pJ/bit 2 pJ/bit

DRAM access energy 8-15 pJ/bit 2.5 pJ/bit

Keckler [Micro 2011], Vogelsang [Micro 2010]

Energy Shopping List

FP Op lower bound
=

4 pJ

Minimize Data Movement

Move Data More Efficiently

● ● ● ● ● ● ● ● ●●●
● ● ● ● ● ●

●●
●

●
●

●

●●

●

●

0.6 0.8 1.0 1.2 1.4 1.6 1.8

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

Maximum Frequency (GHz)

E
n

e
rg

y
 p

e
r

b
it

 p
e
r

m
m

 (
fJ

)

● FSI

LSI (200 mV)

LSI (400 mV)

CDI

SCI

GRS Test Chips

Probe Station

Test Chip #1 on Board

Test Chip #2 fabricated on production GPU

Eye Diagram from Probe

Optimized Circuits
77pJ/F -> 18pJ/F

0

5

10

15

20

25

30

0

1

2

3

4

5

6

7

8

9

1K 32K 1M 32M 1G

pJ
/B

pJ

/F
x5

B/
F

B/F

pJ/B

Simplify Programming

While Improving Locality

Parallel programming is not inherently any
more difficult than serial programming

However, we can make it a lot more difficult

A simple parallel program

!
forall molecule in set { // launch a thread array!
 forall neighbor in molecule.neighbors { // nested!
 forall force in forces { // doubly nested!
 molecule.force = !
 reduce_sum(force(molecule, neighbor))!
 }!
 }!
}!

Why is this easy?

!
forall molecule in set { // launch a thread array!
 forall neighbor in molecule.neighbors { // nested!
 forall force in forces { // doubly nested!
 molecule.force = !
 reduce_sum(force(molecule, neighbor))!
 }!
 }!
}!

No machine details
All parallelism is expressed
Synchronization is semantic (in reduction)

We could make it hard

!
pid = fork() ; // explicitly managing threads!
!
lock(struct.lock) ; // complicated, error-prone synchronization!
// manipulate struct!
unlock(struct.lock) ;!
!
code = send(pid, tag, &msg) ; // partition across nodes!

Programmers, tools, and architecture
Need to play their positions

Programmer

Architecture Tools

!
forall molecule in set { // launch a thread array!
 forall neighbor in molecule.neighbors { //!
 forall force in forces { // doubly nested!
 molecule.force = !
 reduce_sum(force(molecule, neighbor))!
 }!
 }!
}!

Map foralls in time and space
Map molecules across memories
Stage data up/down hierarchy
Select mechanisms

Exposed storage hierarchy
Fast comm/sync/thread mechanisms

Target-
Independent

Source

Mapping
Tools

Target-
Dependent
Executable

Profiling &
Visualization

Mapping
Directives

Autotuned Software
18pJ/F -> 9pJ/F

0

5

10

15

20

25

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1K 32K 1M 32M 1G

pJ
/B

pJ

/F
x5

B/
F

B/F

pJ/B

Conclusion

!   Power-limited: from data centers to cell phones
! Perf/W is Perf

!   Throughput cores
!   Reduce overhead

!   Data movement
!   Circuits: 200 -> 20
!   Optimized software

!   Parallel programming is simple – we can make it hard
!   Target-independent programming – mapping via tools

“Super” Computing
From Super Computers to Super Phones

