
Demand-Only Broadcast: Reducing Register File and

Bypass Power in Clustered Execution Cores

Mary D. Brown Yale N. Patt

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

{mbrown,patt}@ece.utexas.edu

1



Outline

• Introduction

• Baseline Processor Overview

• Demand-Only Broadcast Implementation

• Related Work

• Experiments and Results

• Conclusion

2



Clustering

• As execution width increases, bypass latency increases.

• Clustering reduces common-case data forwarding delays.

• Register file partitioned or replicated.

FU

FILE
REG

FU

SCHED
WINDOW

FU

FILE
REG

FU

SCHED
WINDOW

fast bypass

FU

FILE
REG

FU

SCHED
WINDOW

fast bypassfast bypass

slow bypass

3



Demand-Only Broadcast Concept

• Don’t broadcast result within clusters where it is not needed.

• Eliminates 59% register file writes and intra-cluster broadcasts.

• Reduces switching power of bypass network and register file.

A

B C

slow bypass

Cluster 0 Cluster 1 Cluster 2 Cluster 3

A, C B

4



Baseline Processor Overview

Blue: local to

register file read,
schedule,

execute

each cluster

ROUTE

C
L

U
ST

E
R

 3

C
L

U
ST

E
R

 0

C
L

U
ST

E
R

 1

C
L

U
ST

E
R

 2

DECODE

FETCH

ISSUE

STEER

RENAME,

bypass
Inter−cluster

9 cycles

15−Stage Pipeline

5



Cluster Contents

• 4 functional units

• Local scheduling window

• Copy of entire physical register file

• Register Write Specialization (Seznec et al.):
Instructions in a cluster can write to a subset of physical register file.
Instructions can read from all subsets.

• 4 write ports per entry (4 functional units per cluster)

• 8 read ports (assumption: 2 sources per instruction)

• Busy-Bit Table (BBT)

• Bypasses for register file and BBT

6



Busy-Bit Table

• Used to initialize Ready bit of scheduler
entry.

• One entry per physical register.

• Read at issue time.

• Set during scheduling tag broadcast.

• Cleared when physical register
re-allocated

• One copy per cluster, like register file.

source

operand

tag

BBT

Ready

Ready

tag

tagentry

scheduler

available?

7



Demand-Only Broadcast Implementation

• Result only gets broadcast within:

– clusters that contained consumers when its tag was broadcast.

– inter-cluster bypass.

• BBTs indicate which clusters contain consumer instructions.

• BBT entry in each cluster read at time of tag broadcast to check for
consumers.

• Eliminates intra-cluster result broadcasts.

8



BBT information

• BBT entry has two bits: Broadcast and
Use.

• {Broadcast, Use} =

• {0,0}: Tag not yet broadcast.
Data will not be broadcast.

• {0,1}: Tag not yet broadcast.
Tag and data will be broadcast.

• {1,0}: Tag was broadcast, but
data was not and will not be broadcast.

• {1,1}: Result available.

scheduler

entry

operand

tag

source

Ready

Ready

BC AND USE
available =

BBT
USEBC

src tag

src tag

9



Reading and Writing the BBT

• During tag broadcast:

– Set BC bit.

– Read Use bit to check for consumers.

• During issue:

– Read entries to see if source operands
are available.

– If ({BC, Use} == {1,0}), reset
BC bit and insert copy instruction.

– Set Use bit of destination register.

• Both bits reset when corresponding
physical register is re-allocated.

BBT
USEBC

tag
operand

source

available =
BC AND USE

BBT
USEBC

destination
tag

if not USE, block

data broadcast

set BC bit

10



Copy Instructions

• Needed when a consumer is issued to a cluster after producer’s tag broad-
cast to that cluster and Use bit is 0.

• Re-broadcast a register value, like MOVE instructions to the same
physical register.

• They take issue, scheduling, and execution bandwidth from regular
instructions.

• It takes 5 cycles to detect and issue the copy instruction to the scheduling
window in the producer cluster.

• Little impact on IPC.

11



Example of Inter-Cluster Broadcast

Assumptions: 3-cycle delay between Clusters 0 and 3.
2-cycle delay between tag and data broadcast.

BBT-0 BBT-3
Action BC USE BC USE

Initial State A is in Cluster 0. A X
B

12



Example of Inter-Cluster Broadcast

Assumptions: 3-cycle delay between clusters.
2-cycle delay between tag and data broadcast.

BBT-0 BBT-3
Cycle Action BC USE BC USE

Init A is in Cluster 0. A X
B

0 A is selected, broadcasts tag A X X
to cluster 0. B

13



Example of Inter-Cluster Broadcast

Assumptions: 3-cycle delay between clusters.
2-cycle delay between tag and data broadcast.

BBT-0 BBT-3
Cycle Action BC USE BC USE

Init A is in Cluster 0. A X
B

0 A is selected, broadcasts tag A X X
to cluster 0. B

3 A’s tag broadcast to Cluster 3. A X X X
Read BBT-3[A].use. B
Block data broadcast (2 cycles later).

14



Example of Inter-Cluster Broadcast

Assumptions: 3-cycle delay between clusters.
2-cycle delay between tag and data broadcast.

BBT-0 BBT-3
Cycle Action BC USE BC USE

Init A is in Cluster 0. A X
B

0 A is selected, broadcasts tag A X X
to cluster 0. B

3 A’s tag broadcast to Cluster 3. A X X X
Read BBT-3[A].use. B
Block data broadcast (2 cycles later).

4 B is issued to Cluster 3. A X X X
Read BBT-3[A]. Request Copy. B

15



Example of Inter-Cluster Broadcast

Assumptions: 3-cycle delay between clusters.
2-cycle delay between tag and data broadcast.

BBT-0 BBT-3
Cycle Action BC USE BC USE

Init A is in Cluster 0. A X
B

0 A is selected, broadcasts tag A X X
to cluster 0. B

3 A’s tag broadcast to Cluster 3. A X X X
Read BBT-3[A].use. B
Block data broadcast (2 cycles later).

4 B is issued to Cluster 3. A X X X
Read BBT-3[A]. Request Copy. B

9 Copy-A is issued, already awake.

16



Example of Inter-Cluster Broadcast

Assumptions: 3-cycle delay between clusters.
2-cycle delay between tag and data broadcast.

BBT-0 BBT-3
Cycle Action BC USE BC USE

Init A is in Cluster 0. A X
B

0 A is selected, broadcasts tag A X X
to cluster 0. B

3 A’s tag broadcast to Cluster 3. A X X X
Read BBT-3[A].use. B
Block data broadcast (2 cycles later).

4 B is issued to Cluster 3. A X X X
Read BBT-3[A]. Request Copy. B

9 Copy-A is issued, already awake.

12 Copy-A broadcasts tag in Cluster 3. A X X X X
B wakes up. B

17



Example of Inter-Cluster Broadcast

Assumptions: 3-cycle delay between clusters.
2-cycle delay between tag and data broadcast.

BBT-0 BBT-3
Cycle Action BC USE BC USE

Init A is in Cluster 0. A X
B

0 A is selected, broadcasts tag A X X
to cluster 0. B

3 A’s tag broadcast to Cluster 3. A X X X
Read BBT-3[A].use. B
Block data broadcast (2 cycles later).

4 B is issued to Cluster 3. A X X X
Read BBT-3[A]. Request Copy. B

9 Copy-A is issued, already awake.

12 Copy-A broadcasts tag in Cluster 3. A X X X X
B wakes up. B

13 B is selected and broadcasts its tag A X X X X
to Cluster 3. B X

18



Related Work

• Multiscalar Processors (Sohi, Breach, Vijaykumar).

– Compiler breaks program into tasks.

– Only live-outs of tasks forwarded between processing elements.

• Multicluster Architecture (Farkas, Jouppi, Chow).

– Architected registers divided among clusters.

– Difficulty with load balancing.

• Clustered microarchitectures with dynamic steering (Hrishikesh ; Kemp
and Franklin ; Zyuban and Kogge ; Canal, Parcerisa, and González)

– Limited Intra-cluster bandwidth requires arbitration:
inter-cluster buffers or copy instructions

19



Partitioned Register File Model (PART)

• Physical register file is partitioned rather than replicated.

• Results only broadcast to local cluster.

• Copy instructions used to send register values to other clusters.

• Copy instructions use rename, issue, scheduling, and execution
bandwidth.

• Need for copy instructions detected during rename stage after steering.

• Rename tables must be larger to contain multiple mappings.

• More scheduling window and register file entries needed.

20



Experimental Framework

• Execution-driven simulator executing the Alpha ISA.

• Microarchitecture:

– 15-stage pipeline

– 512-entry window

– 16-wide execution across 4-clusters

• Power model is derived from Wattch
(Brooks, Tiwari, Martonosi, ISCA-27)

• IPC and per-cycle relative power estimates

• SPEC2000 integer benchmarks

21



Three Processor Models

• Baseline (BASE)

– Replicated register file

– Results get broadcast to all clusters

• Demand-Only Broadcast (D.O.B.)

– Replicated register file

– Bigger BBT (2 bits per entry vs. 1)

– Logic for inserting copy instructions

• Partitioned Register File (PART)

– Bigger windows (96 entries vs. 64 per cluster)

– Fewer register file entries (224 vs. 512 per cluster)

– Bigger Rename Table (4 entries per architected register vs. 1)

– Fewer ports for the register file, scheduling window, and BBT

– Support for copy instructions

22



Breakdown of Relative Power Consumption

gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolf
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

R
el

at
iv

e 
P

er
-C

yc
le

 P
ow

er
 

other (top)
Rename
PRF Read
Copy Insertion
BBT 
Sched. Window
Intra-Cluster Broadcast
Inter-Cluster Broadcast (bottom)

Models left to right: BASE, DOB, PART

23



IPC on SPECint2000 Benchmarks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

IP
C

BASE 
DOB
PART 

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

Models left to right: BASE, DOB, PART

24



Summary of Experimental Results

• IPC of D.O.B. model is within 1% of Base, 10% higher than PART.

– PART IPC is lower due to copy instructions.

– PART has 16 times as many copy instructions as D.O.B. model

• Processor power reduced by 10% in Demand-Only Broadcast,
7% in PART.

– Power of directly-affected components reduced by 26% in D.O.B.,
16% in PART.

– Demand-Only Broadcast gets rid of 59% of register file writes and
local data broadcasts.

– PART has less register file and scheduling power, but more rename
power

25



Conclusions

• Demand-Only Broadcast prevents unnecessary data broadcasts.

• Eliminates 59% of register file writes in a 4-cluster core.

• Saves switching power.

• Could also be used to reduce the number of register file write ports.

• Higher performance than model with partitioned register file and limited
inter-cluster bandwidth.

26



Example of Inter-Cluster Forwarding

• A issued to Cluster 0. B issued to Cluster 3.

• 3 cycle delay between clusters 0 and 3

• 2 cycle delay between tag and data broadcasts

Cycle
0 A’s tag broadcast in cluster 0.

Set BBT-0[A].
2 A’s data broadcast in cluster 0.
3 A’s tag broadcast in cluster 3.

Set BBT-3[A].
4 B’s tag broadcast in cluster 3.

Set BBT-3[B].
5 A’s data broadcast in cluster 3.
6 B’s data broadcast in cluster 3.

CLUSTER 0

A

CLUSTER 3

B

A

B

inter−cluster bypass

27


