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Clustering

• As execution width increases, bypass latency increases.

• Clustering reduces common-case data forwarding delays.

• Register file partitioned or replicated.
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Demand-Only Broadcast Concept

• Don’t broadcast result within clusters where it is not needed.

• Eliminates 59% register file writes and intra-cluster broadcasts.

• Reduces switching power of bypass network and register file.
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Baseline Processor Overview
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Cluster Contents

• 4 functional units

• Local scheduling window

• Copy of entire physical register file

• Register Write Specialization (Seznec et al.):
Instructions in a cluster can write to a subset of physical register file.
Instructions can read from all subsets.

• 4 write ports per entry (4 functional units per cluster)

• 8 read ports (assumption: 2 sources per instruction)

• Busy-Bit Table (BBT)

• Bypasses for register file and BBT
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Busy-Bit Table

• Used to initialize Ready bit of scheduler
entry.

• One entry per physical register.

• Read at issue time.

• Set during scheduling tag broadcast.

• Cleared when physical register
re-allocated

• One copy per cluster, like register file.
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Demand-Only Broadcast Implementation

• Result only gets broadcast within:

– clusters that contained consumers when its tag was broadcast.

– inter-cluster bypass.

• BBTs indicate which clusters contain consumer instructions.

• BBT entry in each cluster read at time of tag broadcast to check for
consumers.

• Eliminates intra-cluster result broadcasts.
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BBT information

• BBT entry has two bits: Broadcast and
Use.

• {Broadcast, Use} =

• {0,0}: Tag not yet broadcast.
Data will not be broadcast.

• {0,1}: Tag not yet broadcast.
Tag and data will be broadcast.

• {1,0}: Tag was broadcast, but
data was not and will not be broadcast.

• {1,1}: Result available.
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Reading and Writing the BBT

• During tag broadcast:

– Set BC bit.

– Read Use bit to check for consumers.

• During issue:

– Read entries to see if source operands
are available.

– If ({BC, Use} == {1,0}), reset
BC bit and insert copy instruction.

– Set Use bit of destination register.

• Both bits reset when corresponding
physical register is re-allocated.
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Copy Instructions

• Needed when a consumer is issued to a cluster after producer’s tag broad-
cast to that cluster and Use bit is 0.

• Re-broadcast a register value, like MOVE instructions to the same
physical register.

• They take issue, scheduling, and execution bandwidth from regular
instructions.

• It takes 5 cycles to detect and issue the copy instruction to the scheduling
window in the producer cluster.

• Little impact on IPC.
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Example of Inter-Cluster Broadcast

Assumptions: 3-cycle delay between Clusters 0 and 3.
2-cycle delay between tag and data broadcast.

BBT-0 BBT-3
Action BC USE BC USE

Initial State A is in Cluster 0. A X
B
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Example of Inter-Cluster Broadcast

Assumptions: 3-cycle delay between clusters.
2-cycle delay between tag and data broadcast.

BBT-0 BBT-3
Cycle Action BC USE BC USE

Init A is in Cluster 0. A X
B

0 A is selected, broadcasts tag A X X
to cluster 0. B
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Example of Inter-Cluster Broadcast

Assumptions: 3-cycle delay between clusters.
2-cycle delay between tag and data broadcast.

BBT-0 BBT-3
Cycle Action BC USE BC USE

Init A is in Cluster 0. A X
B

0 A is selected, broadcasts tag A X X
to cluster 0. B

3 A’s tag broadcast to Cluster 3. A X X X
Read BBT-3[A].use. B
Block data broadcast (2 cycles later).
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Example of Inter-Cluster Broadcast

Assumptions: 3-cycle delay between clusters.
2-cycle delay between tag and data broadcast.

BBT-0 BBT-3
Cycle Action BC USE BC USE

Init A is in Cluster 0. A X
B

0 A is selected, broadcasts tag A X X
to cluster 0. B

3 A’s tag broadcast to Cluster 3. A X X X
Read BBT-3[A].use. B
Block data broadcast (2 cycles later).

4 B is issued to Cluster 3. A X X X
Read BBT-3[A]. Request Copy. B
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Example of Inter-Cluster Broadcast

Assumptions: 3-cycle delay between clusters.
2-cycle delay between tag and data broadcast.

BBT-0 BBT-3
Cycle Action BC USE BC USE

Init A is in Cluster 0. A X
B

0 A is selected, broadcasts tag A X X
to cluster 0. B

3 A’s tag broadcast to Cluster 3. A X X X
Read BBT-3[A].use. B
Block data broadcast (2 cycles later).

4 B is issued to Cluster 3. A X X X
Read BBT-3[A]. Request Copy. B

9 Copy-A is issued, already awake.
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Example of Inter-Cluster Broadcast

Assumptions: 3-cycle delay between clusters.
2-cycle delay between tag and data broadcast.

BBT-0 BBT-3
Cycle Action BC USE BC USE

Init A is in Cluster 0. A X
B

0 A is selected, broadcasts tag A X X
to cluster 0. B

3 A’s tag broadcast to Cluster 3. A X X X
Read BBT-3[A].use. B
Block data broadcast (2 cycles later).

4 B is issued to Cluster 3. A X X X
Read BBT-3[A]. Request Copy. B

9 Copy-A is issued, already awake.

12 Copy-A broadcasts tag in Cluster 3. A X X X X
B wakes up. B
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Example of Inter-Cluster Broadcast

Assumptions: 3-cycle delay between clusters.
2-cycle delay between tag and data broadcast.

BBT-0 BBT-3
Cycle Action BC USE BC USE

Init A is in Cluster 0. A X
B

0 A is selected, broadcasts tag A X X
to cluster 0. B

3 A’s tag broadcast to Cluster 3. A X X X
Read BBT-3[A].use. B
Block data broadcast (2 cycles later).

4 B is issued to Cluster 3. A X X X
Read BBT-3[A]. Request Copy. B

9 Copy-A is issued, already awake.

12 Copy-A broadcasts tag in Cluster 3. A X X X X
B wakes up. B

13 B is selected and broadcasts its tag A X X X X
to Cluster 3. B X
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Related Work

• Multiscalar Processors (Sohi, Breach, Vijaykumar).

– Compiler breaks program into tasks.

– Only live-outs of tasks forwarded between processing elements.

• Multicluster Architecture (Farkas, Jouppi, Chow).

– Architected registers divided among clusters.

– Difficulty with load balancing.

• Clustered microarchitectures with dynamic steering (Hrishikesh ; Kemp
and Franklin ; Zyuban and Kogge ; Canal, Parcerisa, and González)

– Limited Intra-cluster bandwidth requires arbitration:
inter-cluster buffers or copy instructions
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Partitioned Register File Model (PART)

• Physical register file is partitioned rather than replicated.

• Results only broadcast to local cluster.

• Copy instructions used to send register values to other clusters.

• Copy instructions use rename, issue, scheduling, and execution
bandwidth.

• Need for copy instructions detected during rename stage after steering.

• Rename tables must be larger to contain multiple mappings.

• More scheduling window and register file entries needed.
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Experimental Framework

• Execution-driven simulator executing the Alpha ISA.

• Microarchitecture:

– 15-stage pipeline

– 512-entry window

– 16-wide execution across 4-clusters

• Power model is derived from Wattch
(Brooks, Tiwari, Martonosi, ISCA-27)

• IPC and per-cycle relative power estimates

• SPEC2000 integer benchmarks
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Three Processor Models

• Baseline (BASE)

– Replicated register file

– Results get broadcast to all clusters

• Demand-Only Broadcast (D.O.B.)

– Replicated register file

– Bigger BBT (2 bits per entry vs. 1)

– Logic for inserting copy instructions

• Partitioned Register File (PART)

– Bigger windows (96 entries vs. 64 per cluster)

– Fewer register file entries (224 vs. 512 per cluster)

– Bigger Rename Table (4 entries per architected register vs. 1)

– Fewer ports for the register file, scheduling window, and BBT

– Support for copy instructions
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Breakdown of Relative Power Consumption
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IPC on SPECint2000 Benchmarks
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Summary of Experimental Results

• IPC of D.O.B. model is within 1% of Base, 10% higher than PART.

– PART IPC is lower due to copy instructions.

– PART has 16 times as many copy instructions as D.O.B. model

• Processor power reduced by 10% in Demand-Only Broadcast,
7% in PART.

– Power of directly-affected components reduced by 26% in D.O.B.,
16% in PART.

– Demand-Only Broadcast gets rid of 59% of register file writes and
local data broadcasts.

– PART has less register file and scheduling power, but more rename
power
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Conclusions

• Demand-Only Broadcast prevents unnecessary data broadcasts.

• Eliminates 59% of register file writes in a 4-cluster core.

• Saves switching power.

• Could also be used to reduce the number of register file write ports.

• Higher performance than model with partitioned register file and limited
inter-cluster bandwidth.
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Example of Inter-Cluster Forwarding

• A issued to Cluster 0. B issued to Cluster 3.

• 3 cycle delay between clusters 0 and 3

• 2 cycle delay between tag and data broadcasts

Cycle
0 A’s tag broadcast in cluster 0.

Set BBT-0[A].
2 A’s data broadcast in cluster 0.
3 A’s tag broadcast in cluster 3.

Set BBT-3[A].
4 B’s tag broadcast in cluster 3.

Set BBT-3[B].
5 A’s data broadcast in cluster 3.
6 B’s data broadcast in cluster 3.

CLUSTER 0

A

CLUSTER 3

B

A

B

inter−cluster bypass
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