
Increasing the Instruction Fetch Rate via

Multiple Branch Prediction and a Branch Address Cache

Tse-Yu Yeh, Deborah T. Marr, Yale N. Patt

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor, Michigan 48109

Abstract

High performance computer implementation today is

increasingly directed toward parallelism in the hard-

ware. Superscalar machines, where the hardware can

issue more than one instruction each cycle, are being

adopted by more implementations. As the trend toward

wider issue rates continues, so too must the ability to

fetch more instructions each cycle. Although compilers

can improve the situation by increasing the size of basic

blocks, hardware mechanisms to fetch multiple possibly

non-consecutive basic blocks are also needed. Viable

mechanisms for fetching multiple non-consecutive basic

blocks have not been previously investigated.

We present a mechanism for predicting multiple

branches and fetching multiple non-consecutive basic

blocks each cycle which is both viable and effective. We

measured the effectiveness of the mechanism in terms of

the IPC.f, the number of instructions fetched per clock

for a machine front-end. For one, two, and three basic

blocks, the IPC-f of integer benchmarks went from 3.0

to 4.2 and 4.9, respectively. For floating point bench-

marks, the IPC-f went from from 6.6 to 7.1 and 8.9.

1 Introduction

Recent advances in computer architecture have focused

on increasing the parallelism of the hardware in order

to exploit instruction-level parallelism in the dynamic

instruction stream. As these architectures become in-

creasing y parallel, it is important to fetch more and

more instructions each cycle. This can be done either by

increasing basic block size and fetching the entire block

in a single cycle, or by fetching multiple basic blocks per

cycle. The optimal solution may be to combine both.

The first alternative is being researched and implemen-

ted in today’s advanced compilers. One approach is

to enlarge the basic block into traces [3] or into super-

blocks [11]. Another approach is to exploit predicate

execution to schedule instruction execution along mul-

tiple execution paths [4]. The disadvantage of predicate

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the

title of the publication and its data appaar, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a faa

and/or specific permission.

ICS-7193 Tokyo, Japan

01993 ACM 0-89791 -600-)(1931000710067 . ..S1 .50

execution is that execution bandwidth is wasted on in-

structions whose results are discarded, and instruction

fetch bandwidth is wasted on instructions which will not

be executed.

Here we propose a scheme which allows us to fully

utilize the fetch and execution bandwidth with useful

instructions from a dynamically predicted path.

There are three essential components to providing the

ability to fetch multiple basic blocks each cycle:

● Predicting the branch paths of multiple branches

each cycle.

● Generating fetch addresses for multiple and pos-

eibly non-consecutive basic blocks each cycle.

● Designing an instruction cache with enough band-

width to supply a large number of instructions from

multiple, possibly non-consecutive basic blocks.

This paper provides an integrated solution for these

problems. We introduce a highly accurate branch pre-

diction algorithm capable of making predictions for mul-

tiple branches in a single cycle, a branch address cache

to provide the addresses of the basic blocks to which the

branches direct the instruction flow, and an instruction

cache configuration with a suitably high bandwidth. Al-

though hardware intensive, these solutions are not ex-

cessively so for the coming generation of processor im-

plement ations.

If we can correctly predict two to three branch paths

every cycle and if the average basic block size is five

instructions, then the average fetch size is 10 to 15 in-

structions. Many non-numeric applications today have

an average basic block size of 5 instructions, and floating

point applications tend to be much larger. The ability

to fetch multiple basic blocks per cycle coupled with

compiler technology to increase basic block size can res-

ult in significant performance gains. This paper shows

that just providing the ability to fetch multiple instruc-

tions without specific compiler optimizations already in-

creases the useful instruction fetch capacity of a machine

by 40% and 63% when 2 and 3 basic blocks can be

fetched each cycle, respectively, for integer benchmarks.

For floating point benchmarks, the improvement is 8%
and 3570.

This paper is organized in 6 sections. Section 2 sum-

marizes some related work. Our multiple branch pre-

diction algorithm is based on the Two-level Adaptive

Branch Predictor [6, 7, 10]. The Tw~level Adaptive

67

Branch Predictor achieves an average of 97’Zo accuracy

forasingle branch prediction. Also, an instruction sup-

ply mechanism [9] to do back-to-back branch predictions

and supply up to one basic block per instruction cache

fetch is briefly reviewed.

Section 3 provides anoverview of the multiple basic

block supply mechanism, Section 3.1describes themul-

tiple branch prediction algorithm. Section 3.2 presents

the structure and operation of the branch address cache.

Section 3.3 discusses the instruction cache design is-

sues. Section 4 describes the simulation model, and the

benchmarks used, and Section 5 shows our simulation

results. Finally, Section 6 concludes the paper.

2 Related Work

2.1 Two-level Adaptive Branch Predictor

Yeh and Patt [6, 7, 10] introduced several implementa-

tions of the Two-level Adaptive Branch Predictor, each

with somewhat different cost vs. prediction accuracies.

The average prediction accuracy on the SPEC89 bench-

marks was shown to be 97 percent. One important res-

ult was that each of the different Two-level Adaptive

Branch Prediction schemes can achieve the same accur-

acy by varying its configuration. The following is a brief

overview of a few schemes. The interested reader is re-

ferred to [6, 7, 10] for more details.

The Two-level Adaptive Branch Predictor uses two

structures, a Branch History Register (BHR) and a Pat-

tern History Table (PHT), as shown in Figure 1. The

Branch History Register is used to record the history

of taken and not taken branches. For example, if the

recent history of the branch behavior is: taken twice,

not taken, and taken again, the BHR would contain the

pattern 1101, where 1 indicates taken, and O indicates

not taken.

Pattern ElSkIIY Table (PET)

Sranch Izct-Xy
P.9tim

?=f,;,tR

Figure 1: Basic structure of Two-level Adaptive Branch

Prediction.

In addition, for each possible pattern in the BHR, a

pattern history is recorded in the PHT. If the BHR con-

tains k bits to record the history of the last k branches,

then there are 2k possible patterns in the BHR. There-

fore the PHT has 2k entries, each entry containing a

2-bit up-down saturating counter to record the execu-

tion history of the last several times the corresponding

pattern occurred in the BHR. [7] showed that the 2-

bit up-down saturating counter was sufficient in keeping

pattern history to give highly accurate branch predic-

tions. Prediction decision logic interprets the two pat-

tern history bits to make a branch prediction. When the

2-bit up-down saturating counter is used, the prediction

is based on the high-order bit of the counter value.

For example, if the BHR were 4 bits wide, the Pattern

History Table would have 24 = 16 entries. Suppose that

each entry in the Pattern History Table contains 2 bits

with initial value of 01, and that the last two times the

pattern 1101 showed up the BHR, the branch was taken.

Then the 11012-th entry of the Pattern History Table

will contain 11 and the next prediction when the BHR

has the pattern 1101 will be predicted as taken.

Based on the source of the first-level branch history,

Two-level Adaptive Branch Prediction has three classes

of variations: global history schemes, per-address his-

tory schemes, and per-set history schemes. Global his-

tory schemes (also called Correlation Branch Predic-

tion [8]) use a single Global BHR to record the his-

tory of all branches. The pattern in the Global BHR

is used to index into the PHTs. The prediction of a

conditional branch is influenced by the history of other

branches. Per-address history schemes use one BHR

per static branch; therefore, multiple BHRs are used in

the scheme. The prediction of a conditional branch is

influenced by the history of the branch itself. Per-set

history schemes use one BHR to record the history of

a set of adj scent static branches. The prediction of a

conditional branch is influenced by the history of the

branches in the same set, not just the branch itself.

2.2 Instruction Supply

In [9] an instruction supply mechanism was introduced

where up to one basic block per cycle can be fetched by

predicting branch targets in back-t~back cycles. We

summarize a few details of the mechanism in this sec-

tion, but the interested reader is referred to [9] for more

details.

We will use the term fetch address to be the address

used to fetch a sequence of instructions from the instruc-

tion cache. Three things are done at the same time: the

instruction cache access, the branch address cache ac-

cess, and the branch path prediction. The fetch address

is used for both the instruction cache access and the

branch address cache access from which a fall-through

address, target address, and branch type are retrieved.

If the instructions fetched include a branch, those in-

structions up to and including the branch instruction

comprise one basic block. Instructions after the branch

are not issued to the processor until the next branch

prediction is made.

If the fetch address misses in the branch address

cache, then either there is no branch in the sequence

of instructions fetched, or the sequence is being fetched

for the first time. In either case, the fetch address is

increment ed by the fetch size, and the hardware cent in-

ues fetching the next sequential block of instructions. In

the event that a branch instruction is discovered after

the instructions are decoded, the fall-through address,

target address, size, type of branch, and branch path

are recorded in the branch address cache.

68

Ifthe fetch address hitsin the branch address cache,

then we know that there is a branch somewhere in

the sequence of instructions just fetched. Since the in-

formation from the branch address cache is available at

the same time that the instructions are fetched from

the instruction cache, a new fetch address (either the

fall-through address or the taken address) can be de-

termined immediately. The next instruction cache and

branch address cache accesses begin on the next cycle.

3 Fetching Multiple Basic Blocks Each
Cycle

The performance of the mechanism described in [9] and

summarized in Section 2.2 limited the fetch capacity to

one basic block per cycle. Since only one branch path

prediction and only one set of consecutive instructions

could be fetched from the instruction cache per cycle, in-

struction fetch stopped when a branch was encountered.

This was due to the limitation of a single prediction per

cycle and limitations in the instruction cache configur-

ation.

Fetching multiple basic blocks each cycle requires

more a multiple branch prediction algorithm. At the

same time that multiple branch paths are being pre-

dicted, the addresses of the basic blocks following those

branches must be determined. In addition, the in-

struction cache must be able to supply multiple non-

consecutive blocks of instructions in a single cycle. Our

solutions to these issues are:

●

●

●

The Multiple Branch Two-level Adaptive Branch

Predictor which provides highly accurate predic-

tions for multiple branch paths.

The Branch Address Cache (BAC) which is a hard-

ware structure to provide multiple fetch addresses

of the basic blocks following each branch.

An instruction cache with enough bandwidth to

supply a large number of instru~tions from non-

consecutive basic blocks.

For this paper we will describe the mechanisms for

fetching two and three basic blocks each cycle. The

mechanisms described can be easily extended to more

than three branches, but the hardware cost increases

exponentially with each additional basic block.

3.1 The Multiple Branch Two-Level Adaptive

Branch Predictor

The prediction algorithm for a single branch per cycle

described in Section 2.1 can be extended to two branch

predictions per cycle. We will henceforth identify the

first branch as the primary branch, the second branch

as the secondary branch, and the third branch as the

tertiary branch.

The primary basic block is the basic block dynamic-
ally following the primary branch (i.e. the basic block

cent aining a secondary branch). There are two possib-

ilities for the primary basic block: the target and the

fall-through basic blocks of the primary branch. These

will be denoted as T or N, depending on whether the

primary branch was taken or not taken. The second-

ary basic block is the basic block following the second-

ary branch. The secondary basic block can be one of

up to 4 different blocks depending on the direction of

the primary and the secondary branches. These will be

denoted TT, TN, NT, or NN, depending on whether

the primary and secondary branches were taken-taken,

taken-not taken, not taken-taken, or not taken-not

taken, respectively. Finally, the tertiary basic block is

the one following the tertiary branch. The tertiary basic

block can be one of 8 different blocks deDendinz on the

outcome of the primary, secondary, and ~ertiar~ branch

paths, and its denotations are TTT, TTN, TNT, etc.

Figure 2 shows the primary and secondary branches

and the primary and secondary basic blocks for the case

when two mediations are made Der cvcle. If the darker

branch pa;hs are predicted, the ~arke~ basic block boxes

are fetched.

Two BrmGh Prmdloti0m9 P*r CYC1*

Mdz... U..d for P.eOictiOn
LF.ddr: 1

A

~

P,im.ry Branch

S.cmdary Brqmh.. = F

C:l N: I
. . — P,i.ar.. Basic B1OckeLT

I!-&
(2)

t’.,
N.axt .& “T”

Md,... U.od -1-:. m

TJ”udal“ul-s-’+
Figure 2: Identification of the primary and secondary

branches, and the primary and secondary basic blocks.

The multiple branch prediction algorithm introduced

in this paper is modified from the global history schemes

of Two-Level Adaptive Branch Prediction described in

[10] and summarized in Section 2.1. The modified global

history schemes not only make the prediction of the im-

mediately following branch but also extrapolate the pre-

dictions of subsequent branches. The per-address his-

tory and per-set history schemes of Two-Level Adapt-

ive Branch Prediction, on the other hand, require more

complicated BHT accessing logic for making multiple

branch predictions in each cycle because they use may

different branch history to make predictions for differ-

ent branches. In order to simplify the BHT design, we

consider only the global history schemes in this paper.

The first multiple branch prediction variation is

called Multiple Branch Global Two-Level Adaptive

Branch Prediction using a Global Pattern History Table

(MGAg). This scheme uses a global history register of

k bits and a global pattern history table of 2k entries,

each entry containing 2 bits. The k bits in the history

register record the outcome of the last k branches. The

history register is updated speculatively with the pre-

dicted branch outcomes and corrected later in the event
of an incorrect prediction because the prediction accur-

acy is expected to be high. The right-most bit corres-

ponds to the prediction of the most recent branch, and

the leftmost bit corresponds to the prediction of the

oldest branch. As shown in Figure 3, all k bits in the

69

Patt9m Ei*tOry

Global History R*gi8tar
Tablo

k

II 1

Secondary

Prediction

k

Prediction

Figure 3: Algorithm to make 2 branch predictions from

a single branch history register.

history register are used to index into the pattern his-

tory table to make a primary branch prediction. The

2-bit counter value read from the pattern history table

entrv is used to make the mediction.

T: predict the secondar~ branch, the right-most k – 1

branch history bits are used to index into the pattern

history table. k – 1 bits address 2 adjacent entries,

131ZR~_I..00 and BZIR~-1,,01, in the pattern history

table. The primary branch prediction is used to select

one of the entries to make the secondary branch predic-

tion. Finally, the tertiary prediction uses the right-most

k – 2 history register bits to address the pattern history

table and access 4 adjacent entries. The primary and

secondarv rwedictions are used to select one of the 4
w.

entries for the tertiary branch path prediction. This

algorithm allows each of the multiple branch path pre-

dictions to take full advantage of k bits of branch his-

tory. Longer history registers increase the prediction

accuracy, and ss multiple branches are predicted, the

accuracy becomes increasingly important.

The second multiple branch prediction variation

is called Multiple Branch Global Two-Level Adaptive

Branch Prediction using Per-set Pattern History Tables

(MGAs). It differs from the previous scheme in that

there are multiple pattern history tables. The pattern

history tables are associated with the primary branches.

Similar to MGAg, all k bits are used to index into a pat-

tern history table to make a prediction for the primary

branch. The pattern history table is selected bs.sed on

the fetch address corresponding to the primary branch.

The second prediction is made from the same pattern

table since the address of the secondary branch is not

known at the time of the mediction. This scheme at-

tempts to limit the amoun~ of pollution in the ~attern

hist&y tabIes by different bra~ches, but may r&ult in
less accurate secondary and tertiary branch predictions.

The extreme case of the MGAs scheme is when

there is a separate pattern history table associated

with each branch. This scheme is called Multiple

Branch Globat Two-Level Adaptive Branch Prediction

using Per-address Pattern History Tables (MGAp).

The pattern table entries are updated after the branch

instructions are resolved, which could take several

cycles. Therefore the pattern table entries are always

somewhat out-of-date. This is likely to degrade the

accuracy of the multiple branch prediction aIgorithm

more than the accuracy of a single branch prediction al-

gorithm. The reason the branch may take several cycles

to resolve is that it may have to wait for a condition to

be evaluated or an address to be computed which may

take several cycles due to data dependencies.

Since the branch predictions are done at the same

time the instructions are fetched, the determination of

whether there is a branch in a fetch sequence is done

through the Branch Address Cache which is described

in detail in the next section. If the fetch address hits

in the Branch Address Cache, then there is a branch

in the sequence being fetched. Otherwise no branch is

assumed and the instruction fetch mechanism fetches

down the sequential stream.

The branch path predictions made with the Multiple

Branch Two-level Adaptive Branch Predictor are done

at the same time the Branch Address Cache and in-

struction cache are accessed. These branch path pre-

diction bits are used to select the fetch addresses that

are needed for the next cycle from the possible fetch

addresses provided by the Branch Address Cache. For

now, we will merely state that if two predictions are

made, then two fetch addresses are selected. If three

predictions are made, then three fetch addresses are se-

lected.

Multiple predictions might not be made every cycle

for several reasons. The first case is when a basic block

is very large, so the entire instruction cache bandwidth

may be devoted to fetching the basic block. Fetching

the primary basic block has higher priority than fetch-

ing secondary or tertiary basic blocks. Therefore if we

cannot fetch one basic block in its entirety with its in-

struction cache bandwidth quota, then we allow it to

usurp the bandwidth quota from a subsequent block.

If a secondary or tertiary basic block’s bandwidth

is usurped, the prediction of the branch in that basic

block is delayed until the cycle when it is actually being

fetched. At that point it becomes the primary branch

and a (different) secondary and tertiary branch may be

predicted along with it.

The other case when multiple branch path predictions

are not made is when the branch is a return instruction.

The return instruction’s predicted target address is ob-

tained from the return address stack. The next branch

is difficult to predict because the return may direct the

instruction stream to any number of locations.

3.2 The Branch Address Cache (BAC) Design

With each of the MGAg, MGAs, and MGAp algorithms,

we use a Branch Address Cache (BAC) to store the ad-

dresses to which the branches may direct the instruction

flow. Recall that with the single basic block instruc-

tion supply algorithm summarized in Section 2.2 the

branch address cache is indexed by the fetch address,

from which two potential fetch addresses are obtained

(one for the target block and one for the fall-through

block). The branch prediction chooses between the two

addresses.

The multiple basic block supply algorithms use a sim-

ilar BAC. The fetch address is used to access the BAC.

This is done in parallel to the instruction cache access.

Although there may be two or three fetch addresses

70

accessing the instruction cache simultaneously, only a

single fetch address is used to accessed the BA C. If only

one basic block is being fetched, that fetch address is
used. If two basic blocks are being fetched simultan-
eously, the second fetch address is used to access the
BAC. If three basic blocks are fetched, the third fetch
address is used.

If the fetch address hits in the BAC, there is a branch
in the sequence of instructions just fetched. The BAC
entry records the branch type (conditional, uncondi-
tional, or return) and the target and fall-through ba-
sic block starting addresses of the primary branch. The
same entry also contains the branch type and fetch ad-
dresses of basic blocks for each of the expected num-
ber of branches we will make predictions for, and all
the known potential fetch addresses of their targets. If
the number of basic blocks predicted and fetched per
cycle is limited to 2, we get 6 fetch addresses; 2 for
the ‘two primary basic block addresses, and 4 for the
four possible secondary bssic blocks. If the basic block
prediction and fetch limit is 3, we get 14 possible fetch
addresses; 2 for the primary basic blocks, 4 for the sec-

ondary, and 8 for the tertiary basic blocks.
Each entry in a 512-entry, 4-way set associative

Branch Address Cache which supports two branch pre-
dictions per cycle has the following fields: TAG, P.valid,
P-type, Taddr, Naddr, ST_valid, STAype, TTaddr,
TNaddr, SN_valid, SN_type, NTaddr, NNaddr where
each field contains:

●

●

●

●

TAG field — The 23 high-order bits of the primary
fetch address. A “ BAC Hit” occurs if the tag
matches with the upper address bits of the current
fetch address and the primary branch is valid.

valid bits — The valid bits for the corresponding
branch entries. P refers to the primary branch,
ST refers to the secondary branch if the primary
branch is taken, and SN is the secondary branch if
the primary branch is not taken.

type fields — The branch type of the correspond-
ing branch. The type can be conditional, uncondi-
tional, or return. Each type field consists of 2 bits.

addr fields — The address of the corresDondin$z ba-
sic block. Each address field consists o; 30 bit;.

A BAC supporting two branch predictions per cycle
would have a total of 212 bits per entry. A BAC sup-
porting three branches would have an additional eight
address fields and four additional valid bits for the four
possible tertiary branches, making each entry 464 bits
wide. We are investigating several possible ways of re-
ducing the number of fields needed per entry, such as
storing only the addresses of more likely-taken path(s).

When a fetch address misses in the BAC, a large basic
block is assumed and the entire instruction cache band-
width is devoted to fetching sequential instructions. If
a branch is discovered once the instructions are decoded
and the branch is predicted taken or is an unconditional
branch, the prefetched instructions after the branch are
discarded. The address of the fall-through and target

addresses are calculated in the cycle after decode. The

branch is then allocated a primary branch entry in the
BAC. The higher order bits of the fetch address are
entered in the tag field, the primary branch valid bit
is set, the secondary (and tertiary) branch valid bits
are cleared, and primary fall-through and target ad-
dresses are entered. If the branch is an indirect branch,
however, the target address is not calculated until the
operands are ready, and the valid bit is not set until
that time.

The branch will also be entered as a secondary branch
in the BAC entry of the previous branch if

●

●

●

the previous fetch address had a valid primary
branch entry in the BAC but did not predict a sec-
ondary branch and

the bssic block of the previous fetch address was not
oversized (i.e. there was enough instruction cache
bandwidth for another basic block fetch) and

the previous branch was not a return.

3.3 The Instruction Cache

The ability of the instruction cache to provide enough
instructions becomes critical when multiple possibly
non-consecutive basic blocks are fetched each cycle. The
instruction cache must have high bandwidth, low miss
rate, and the ability to fetch from multiple addresses in
parallel.

To satisfy the high bandwidth requirement, the cache
must either have a large number of banks, or have wide
banks. Also, due to off-chip bandwidth and pin limita-

tions, the instruction cache should be on-chip.
The ability to fetch from multiple addresses in parallel

implies a cache with either interleaved or multi-ported
banks, or both. With interleaved banks, each independ-
ently addressable, multiple fetch addresses can access
the instruction cache simultaneously provided that their
accesses are not to the same bank. If there is a bank
conflict, priority is given to the earlier (relative to the
dynamic instruction stream) fetch address. Therefore it
is important to have enough banks to make the probab-
ilityy of bank conflicts low.

A multi-ported cache eliminates the bank conflict
problem. For example, a dual-ported cache allows the
simultaneous access of two fetch addresses, and a tri-
ported cache allows the simultaneous access of three
fetch addresses. Unfortunately, multi-ported memories
are expensive in terms of semiconductor chip area.

It is critical for the instruction cache miss rate to be
low. Each instruction cache miss stalls the fetch se-
quence. Since multiple basic blocks can be fetched each
cycle, the opportunity cost can be (up to) the num-
ber of cycles it takes to service the miss multiplied
by the number of instructions we could have fetched
during those idle fetch cycles. Also, since more in-

structions are fetched each cycle, there are fewer cycles
between instruction cache misses. Therefore more time

is spent waiting for instruction cache misses to be sat-
isfied. Commonly used ways to minimize instruction
cache miss rates are to increase the associativity, to in-
crease the size of the cache, and to prefetch instructions.

71

We chose several cache configurations which gave us
reasonably high bandwidth, the ability to fetch mul-
tiple addresses in parallel, and a relatively low miss
rate. Most of our simulations were done with a 32K
cache which was 2-way set associative with 8 interleaved
single-ported banks, each bank having a line size of 16
bytes. Each fetch address can access two banks so that
we guarantee between 5 and 8 instructions per fetch ad-
dress (due to basic block alignment). This configuration
and several others were compared in Section 5.

4 Simulation Methodology

4.1 Simulation Environment

We used a trace-driven simulator to evaluate the per-
formance of a machine front-end which implements the
Multiple Branch Two-level Adaptive Branch Predictor,
a 512-entry 4-way set associative Branch Address Cache
(BAC), and a high-bandwidth instruction cache. Unless
otherwise specified, the instruction cache configuration
used was 32K bytes, 2-way set associative, 8-way inter-
leaved, single-ported, and with a line size of 16 bytes (4
instructions).

For the multiple basic block mechanisms, we can fetch
two cache lines (a maximum of 8 instructions) per basic
block fetch address because most basic blocks contain
4 to 8 instructions. In order to do a fair comparison,
we allow the single basic block prediction and fetch al-
gorithm to fetch up to 4 cache lines. The maximum
number of instructions issued, passed to the back-end
of the machine, is constrained to 16 instructions per
cycle.

The benchmarks written in C were compiled with the
Motorola Apogee C compiler for the Motorola 88100
instruction set and the ones written in Fortran where
compiled with the Green Hill Fortran compiler. A Mo-
torola 88100 instruction level simulator generated the
instruction traces. The first 50 million instructions from
each trace were used rather than the entire trace due to
simulation time constraints.

Nine benchmarks were selected from the SPEC89
benchmark suite. These included 4 integer and 5 float-
ing point benchmarks. The integer benchmarks are ii,

gee, eqntott, and espresso. The floating point bench-
marks are doduc, fpppp, matrix300, spice2g6, and tomc-

atv. The figures included in the result section have the
abbreviations listed in Table 1 for the various bench-
marks. Table 1 also shows the average basic block size
of the first 50 million instructions of each benchmark.

The MGAg, MGAs, and MGAp are parameterized
according to the history register length and the number
of Pattern History Tables. These parameters will be
given as: HhPp, where h is the number of bits in the
Global History Register, and p is the number of pattern
history tables.

4.2 Performance Metric

Since the simulator only models the front end of a ma-
chine, we use a new metric, IPCJ, to evaluate the
performance of an instruction fetch mechanism. IPCf
stands for the number of effective instructions fetched

Benchmark I Abbreviation Average Basic Block Size
eqntot t I eq I 4.76
espresso es 3.41
gcc gc 4.94
li li 4.14
doduc dd 10.46
fpppp fp 57.01
matrix300 mt 28.20
spice2g6 5P 5.36
tomcat v tc 26.33

Table 1: Benchmark list and their average basic block
size.

per cycle by an instruction fetch mechanism. To derive
IPCf, we assume the machine stalls or wastes cycles
for various reasons from the instruction fetch mechan-
ism but not from the rest of the machine, so the in-
structions issued can be executed without stalling the
machine front end. Moreover, only effective instructions
are counted; instructions fetched down the incorrectly
predicted paths are not counted. The machine front end
could waste cycles due to the following reasons:

●

b

●

Instruction cache misses

Incorrect branch predictions which include incor-
rect branch path predictions and incorrect fetch ad-
dress predictions

Branch Address Cache misses on taken branches

Since we do not simulate the rest of the machine, the
exact mispredicted branch penalty is approximated. A

6 cycle mispredicted branch penalty is assumed; there-
fore, the instructions following an incorrectly-predicted
branch will not be fetched until 6 cycles after the branch
is fetched. The I-cache miss penalty is assumed to be
10 cycles. We also show how the machine performance
changes as the branch misprediction penalty and I-cache
miss penalty are varied.

5 Simulation Results

5.1 Effect on Prediction Accuracy and IPCX of

History Register Length

Figure 4 shows how the prediction accuracy changes as
we increase the number of bits in the global history re-
gister of the MGAg scheme for two branch predictions

per cycle. The prediction accuracy is the number of
correctly predicted branches over the total number of
branches in the dynamic instruction stream. Longer
branch histories give better prediction accuracy which
is reflected in the rising curves. The hardware cost goes
up exponentially with the number of history bits due
to the number of pattern history table (PHT) entries
required.

The prediction accuracies varied between 91.5 and
98.4% for a branch history register (BHR) length of 14
bits, and between 93.5 and 98.7% for a history register
length of 16 bits. The knees of the curves for most
benchmarks are reached at a BHR length of 14bits.

72

P2cdition Am2mcy vs. Histwy Segisla fangtb
1, 1

~::!::::,:,,..*_._... ..~:%==+=

0.95 -

0.9 -

w+-

fo -+--
I / ml -0--- I

0.8v ~p.. ...
tc .+-. 1

0.75~ I
7 8 9 10 13 14 15 16

Hisl; ‘LgisJ2L@

Figure 4: Variation of the size of the global branch his-
tory register.

We used a 14-bit BHR length for the other experiments
reported in this paper. A 14-bit BHR length means that
a PHT has 214 x 2 bits, or 32K bits.

5.2 Tradeoff between the Number of Pat-

tern History Tables and History Register

Length

We simulated several MGAg, MGAs, and MGAP con-
figurations to determine how the performance accuracy
changes with the number of PHTs for two branch pre-
dictions per cycle. Figure 5 for integer benchmarks and
Figure 6 for floating point benchmarks show the IPC_f
for 1 to 512 PHTs. Each configuration shown has the
same hardware cost, which was achieved by decreasing
the number of entries in each PHT as the number of
PHTs is increased. Since the entries in the PHTs are
addressed by the BHR, the BHR length is reduced when
we decrease the number of entries in each PHT.

The PHT used to make the predictions is determined
by the primary branch address. The experiments shown

in Figures 5 and 6 used the branch address starting at

PredctionAccuracyVS.NumberofF%tlcmHiskxYTables

0.98 -

0.96 -

0.94

0.92 -

0.9

[

=1-a-
gc +

0.88 li-

0.86 ‘w

H14PI H13P2H12P4H11P8 HIOP16 H9P32 H8P64 R7P12SH@236H3P312
Hismry Regis2eI L.cngm. Pattern History TallcNumOcz

Figure 5: Variation of the number of the PHTs with the
ha~dware cost held constant, for integer benchmarks.

bit 10 to select a PHT. This allows branches within the
same 256-instruction block in the static code to map to
the same PHT.

The prediction accuracies shown in Figures 5 and 6
tend to be higher for configurations with one to eight
pattern history tables, then decreases when the number
of pattern history tables is increased beyond 8. Longer
branch history helps to increase the prediction accuracy.
Increasing the number of PHTs reduces the interference
between branches, but since the second branch is pre-

dicted using the PHT of the first branch, the probability
of mapping two branches predicted together into differ-
ent PHTs is higher when more PHTs are used.

0.9s

t !

'''''*''*'===''*='''''''~*::::::::!*::!!!:!::$:-;;;;~*..........*::::::::.
.....

0.96
.

..%

-+--..........--...
,“,:::+...... 1

0.94 ~+ ““-*... .
.... ‘+..*

....
.....

0.92 -
. ..

. “*...
.

“.”’-+

0.9 . (M .+-.
@ .+...

““”%,.
ml

0.88 -
,..

w “*””. ...

12 .*-.
.. .

0.861 4
I I

H14P1H13P2H12P4HIWE HIOP16H9P32H8P64H7P12SR?236H3P312
HislmyS@2crL.engti,P2111xuHiatmyTalk Numbn

Figure 6: Variation of the number of the PHTs with the
hardware cost held constant, for jioating point bench-
marks.

5.3 Number of Branch Predictions per Cycle

Figure 7 shows the IPC-f increase with the number of
branch predictions per cycle. The number of opportun-
ities for multiple branch prediction is quite high despite
the greater likelihood of bank conflicts in the instruction
cache when three basic blocks are fetched.

Wnbu of Wmdl Pwdclm-11P*1 CydO

16 13mwqckl

•1 #w-2

Tot lntq-gcii~dd fpmtqtc

AV9 Avg Avg

Bencbmsrk

Figure 7: Instructions per cycle when 1, 2, and 3
branches are predicted each cycle.

The average IPCJ when one basic block is predicted
and fetched per cycle is 3.0, and 6.6 for integer and float-
ing point benchmarks, respectively. Two predictions per

73

cycle increaaes this to 4.2 for integer and 7.1 for float-
ing point. Three predictions per cycle increases IPCJ
further to 4.9 for integer and 8.9 for floating point.

For the one and two predictions per cycle experiments
we allowed a maximum of 16 instructions to be fetched
from the instruction cache per cycle. For the three pre-
dictions per cycle experiments we increased the instruc-
tion cache bandwidth to 24 instruction in order to ac-
commodate the 3 fetch addresses. To cap the number
of instructions issued, we constrained the issue width
to 16 instructions for all three cases. The larger in-

struction cache bandwidth allows more instructions to
be fetched per cycle, which affects the performance of
floating point programs more than integer programs be-
cause of the high branch prediction accuracy and large
basic block size of floating point benchmarks. This ef-
fect results in the significant floating point performance
increase when going from two to three predictions per
cycle.

fpppp does not show significant performance increase
when going from one to two to three predictions per
cycle due to the repeated execution of an extremely long
sequential code segment which causes the instruction
cache to thrash. The instruction cache miss penalty
dominates its performance.

Integer programs show noticeable performance in-
crease except for gcc which is dominated by incorrect
branch predictions.

Figure 8 shows the IPF, instructions per fetch, for
the benchmarks as the number of branch predictions
and basic block fetches of 1, 2, and 3 per cycle. An
efficient instruction fetch mechanism should attain an
IPCJ as close to the IPF as possible. The discrepancy
between IPF and IPCf is due to the branch mispredic-
tion penalty, BAC misses, and instruction cache miss
penalty.

MM 01&ti PrwJclOm P9r 0.S9

16

12

&

-1

4

0
7’?1 Int q ●s 9C II m

Avg Avg Avg

Benchmark

Figure 8: Instructions per fetch
branches are predicted each cycle.

dd fP ml w tC

when 1, 2, and 3

5.4 Branch Prediction Efficiency

The multiple branch prediction utilization when 2 basic

blocks can be predicted and fetched each cycle is shown

in Table 2, where we counted the percentage of cycles

when zero, one, and two branches were predicted. Zero
branches are predicted if we are fetching a long sequen-
tial segment of code, or if the fetch address misses in

E
Bench-
mark

eq
es
gc
Ii
dd
fp
mt

8P
tc

No One Prediction Two
Prediction Oversized IR eturn Predictions

0.0839 0.1231 0.0272 0.7528
0.0364 I 0.1125 I 0.0145

I
0.8317

0.1843 0.3634 0.0522 0.3840
0.0939 0.2518 I 0.1213 I 0.5244
0.3335 I 0.2580 0.0602 0.3364
0.7415 0.1909 0.0120 0.0550
0.3386 0.3335 0.0042 0.3236
0.2145 0.2142 0.1613 0.4081
0.5893 0.3337 0.0006 0.0751

Table 2: Branch prediction utilization of an instruction
fetch mechanism which is able to provide fetch addresses
of two bazic blocks in each cycle.

the Branch Address Cache, and a branch is found in
the sequence of instructions after the instructions are
decoded. Fpppp has a high percentage of cycles with
no predictions due to the extremely long sequential code
segment which is repeatedly executed. The percentage
of cycles when zero predictions were done per cycle is
10% per cycle for integer and 44% for floating point.

Only a single branch is predicted when the primary
branch is a return, or the primary basic block is large
(oversized) in which case the instruction fetch band-
width of the secondary bazic block is usurped. About
24% of the simzle basic block fetches are due to over-
sized basic blocks, and about 5% are due to the primary
branch being a return. Two branch predictions are
made and two basic blocks are fetched 62% of the time
for integer and 24% of the time for floating point bench-
marks.

Table 3 shows the percentage of fetches that cause
the machine front-end to stall. The machine front-end

st ails only due to instruction cache misses, mispredicted
branches, and branch decode penalties.

F
ench-

mark

eq
es
gc
li
dd
fp
mt

SP
tc
T

Delay Delay
0.8924 0.0004
0.9207 0.0063
0.7674 0.0708
0.8753 0.0202
0.8678 0.0110
0.6357 0.0003
0.6805 0.0000
0.9706 0.0068
0.9905 I 0.0006

Incorrect
Branch

Prediction
0.0679
0.0565
0.0980
0.0645
0.0452
0.0091
0.0065
0.0150
0.0085

Miss
O.0001
0.0001
0.0288
0.0060
0.0632
0.3508
0.0001
0.0034
0.0001

Bank

conflict
0.0392
0.0164
0.0351
0.0340
0.0128
0.0041
0.3129
0.0042
0.0003

Table 3: Percentage of fetches causing the instruction
fetch mechanism to stall.

NoDelay cause no stalls in instruction fetching.
Bank.Conflicts to the same cache line do not stall in-
st ruct ion fetch, but conflicts to different cache lines
within the same bank do stall instruction fetch. There-
fore 84 to 90% of the fetches do not cause any instruc-
tion fetch stall. If a taken branch is not detected in
a fetched instruction sequence (via a Branch Address -

74

!-Lwl-L5
Line Fetch

Size Size
16 2
16 2
16 2
16 2
32 1
16 2

Table 4: Instruction cache configurations,

Cache miss), a branch decode penalty is taken. Branch
Decode penalties occur in approximately 2.4% and 0.4%
of the fetch cycles for integer and floating point bench-
marks, respectively. An incorrect branch path predic-
tion requires a full branch penalty to be incurred. This
happens about 7.2% and 1,7% of the time for integer
and floating point.

5.5 Instruction Cache Configuration

We simulated six instruction cache configurations with
various numbers of read ports, degrees of interleaving,
set associativities, and line sizes. These configurations
are listed in Table 4. Configuration O was used for most
of our experiments. Fetch size refers to the number of

cache lines each fetch address can access.
Figures 9 and 10 show the performance with the vari-

ous instruction cache configurations. Gcc and fpppp

were chosen because they have more significant instruc-
tion cache miss rates. Each curve represents a different
cache size. More read ports and more banks reduce
bank conflicts but result in only a minimal perform-
ance increase. Higher set associativity significant y im-
proves performance. However, fpppp actually has bet-
ter performance with either direct-mapped or 4-way set
associative caches due to the large sequential code seg-
ment. 32-byte line size degrades the performance a little
because some bandwidth is wasted due to basic block
alignment.

Canparbn of mtious instruction caclw schema for C-cc
4

gc, 32K I-cache -

3.5
KC, 16KI-CacfIC -+--

gc, 8K I-Cack -*---
gc, 4K I-cache *

3 -
gc, 2K I-Cac3x -*---

-!

k2 ;*.*"..........

1.5 ,

.-v--.’ ‘

7

1 .—..—.

0.5
t i

ol J
cmng 0 Cmmg 1 camg 2 Cmng 3 ccimg 4 Cmmg 5

Imwuclim Cache COnliEIUaUm

Figure 9: Machine performance of various instruction
cache configurations on gee.

Coqadam of wdcus iwmdon tack schemesfof Fppw
4.5, t

3hA?El
u. 2s L .I

Iid, - _+.—.—.-—-+—.—_+._.
i

I1.5=
+

1 .— ---s======4
0.5

1 i
01 I

Cdig o Cm fig 1 Cmfig 2 Coofig 3 Calfig 4 Cmfig 5
Insllllctim cache Con6gllratim

Figure 10: Machine performance of various instruction
cache configurations on fpppp.

5.6 Effect of Branch Misprediction Penalty

To investigate the effect of branch misprediction pen-
alt y on machine performance, we varied the time to
resolve a branch from 4 cycles to 12 cycles. Floating
point programs have flatter curves because they con-
tain fewer branches and the prediction accuracy of those
branches is higher. The performance degradation when
the branch resolution time is increased from 4 cycles to
12 cycles is less than 10%. Integer programs have about
20%- to 30% performance degr~da~on~

Sffed of Branch Mixediclion Rnally on fPC_f
14

q+
,2f..._.............. ei+

i
.

“4 5 6
Brawh f&ec& Rml; (Cycle$

Figure 11: Effect of branch misprediction
m~chine performance.

5.7 Effect of Instruction Cache Miss

11 12

penalty on

Penalty

We varied the instruction cache miss penalty from 4
cycles to 12 cycles. Configuration O of Table 4 is used.
Among the nine benchmarks, fpppp, doduc, and gcc
have lower cache hit rates, ss listed in the legend of Fig-
ure 12. When the instruction cache miss penalty is in-
creased from 4 cycles to 12 cycles, Dodw’s performance
degrades by about 2070. Fpppp’s performance degrades

by about 50’%0. The other benchmarks showed minimal

75

Y
!4

Sffrd of I-Cache M= Rudy on PC-f
I f

I
,2 .

.+--.----------=’$J##---

g% h = 0:9870-
M,h=O.9976 *

1000M.=.~BM*.....-
~. b= O.8990 -+.-.

n&h=l.tXJfX3 *.-
8 Sp,h=o.gl!xilf

lc, h-1.oM3 ---- 1

2

t

01 J
4 5 6 10 11

I-G& Miss fLalIy (&ka)
12

Figure 12: Effect of instruction cache miss penalty on
machine performance.

performance degradation due to their low instruction
cache miss rates.

6 Conclusion

The trend towards increasingly complex and parallel
hardware mechanisms to extract instruction level paral-
lelism from sequential code is advancing at an acceler-
ated rate. Much research has gone into compiler tech-
nology to increase basic block size in order to fetch more
and more instructions at a time. Increasing basic block
size is not enough, however. We propose in this paper
a hardware mechanism to fetch multiple basic blocks
simultaneously.

We demonstrate in this DaDer the viabilitv of such
schemes by identifying the ~hr~e essential pro~lems and
presenting solutions to each of these. The Multiple
Branch Two-level Adaptive Branch Predictor provides
the capability of predicting multiple branches each
cycle, the Branch Address Cache supplies the starting
addresses of basic blocks following the multiple pre-
dicted branches, and an instruction cache with inter-
leaved banks provides sufficient bandwidth for fetching
multiple non-consecutive basic blocks without the hard-
ware cost of multide read Dorts.

In addition, we ~ave pre~ented simulation results in-
dicating that significant performance improvements can
be achieved even without specific compiler optimiza-
tion. When going from one to two to three branch
predictions and basic block fetches per cycle, we saw

the IPCf (instructions fetched per cycle for a machine
front-end) improve from 3.0 to 4.2 and 4.9, respectively
for integer benchmarks. For floating point benchmarks,
the IPC-f went from 6.6 to 7.1 and 8.9. These improve-
ments were achieved bv movidim? the hardware mechan-
isms to predict and fe{ck multiple basic blocks without
specific compiler optimizations.

Acknowledgement

This paper is one result of our ongoing research in
high performance computer implementation at the Uni-

versity of Michigan. The support of our industrial part-

ners: Intel, Motorola, NCR, HaL, Hewlett-Packard, and
Scientific and Engineering Software is greatly appreci-
ated. In addition, we wish to gratefully acknowledge
the other members of our HPS research group for the
stimulating environment they provide, and in particu-
lar, for their comments and suggestions on this work.
We are particularly grateful to Intel and Motorola for
technical and financial support, and to NCR for the gift
of an NCR 3550, which is a useful compute server in
much of our work.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

J.E. Smith, “A Study of Branch Prediction Strategies”,
Proceedings of the 8th International Symposium on

Computer Architecture, (May 1981), pp.135-148.

J. Lee and A. J. Smith, “Branch Prediction Strategies
and Branch Target Buffer Design”, IEEE Computer,
(Jan. 1984), pp.6-22.

R. Colwell, R. Nix, J. O’Donnell, D. Papworth, and P.

Rodman, “A VLIW Architecture for a Trace Schedul-
ing Compiler,” Proc of the Z?nd Intl Conf on Architec-
tural Support for Programming Languages and Operat-

ing Systems, (Oct. 1987), pp. 180-192.

B.R. Rau, D. Yen, W. Yen, and R. Towle, “The Cy-
dra 5 Departmental Supercomputer - Design Philo-
sophies, Decisions, and Trade-o ffs,” IEEE Computer,
(Jan. 1989), pp. 12-35.

M. Butler, T-Y Yeh, Y.N. Patt, M. Alsup, H. Scales,
and M. Shebanow, “Instruction Level Parallelism is

Greater Than Two”, Proceedings of the 18th Inter-
national Symposium on Computer Architecture, (May

1991), pp. 276-286.

T-Y Yeh and Y.N. Patt, “Two-Level Adaptive Branch

Prediction”, The 2~th ACM/IEEE Intl Sym and Wk-
shop on Microarchitecture , (Nov. 1991), pp. 51-61.

T-Y Yeh and Y.N. Patt “Alternative Implementations
of Two-Level Adaptive Branch Prediction,” Proceed-
ings of the 19th International Symposium on Computer

Architecture, (May 1992), pp. 124-134.

S-T Pan, K. So, and J.T. Rahmeh, “Improving the
Accuracy of Dynamic Branch Prediction Using Branch

Correlation,” Proceedings of the 5th International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, (Oct. 1992), pp. 76-84.

T-Y Yeh and Y.N. Patt “A comprehensive Instruction
Fetch Mechanism for a Processor Supporting Specu-
lative Execution,” Proc of the 25th International Sym-
posium on Microarchitecture, (Dec. 1992), pp. 129-139.

T-Y Yeh and Y.N. Patt “A Comparison of Dynamic

Branch Predictors that use Two Levels of Branch His-

tory,” Proceedings of the 20th International Symposium

on Computer Architecture, (May 1993).

W. Hwu, S. Mahlke, W. Chen, P. Chang, N. Warter,

R. Bringmann, R. Ouellete, R. Hank, T. Kiyohara,

G. Haab, J. Helm, and D. Lavery, “The superblock: An
effective technique for VLIW and superscalar compila-
tion,” The Journal of Supercomputing, January 1993.

76

