Partitioned First-Level Cache Design for Clustered
Microarchitectures

Paul Racunas
The University of Michigan
Ann Arbor, Michigan 48109-2122

racunas@eecs.umich.edu

ABSTRACT

The high clock frequencies of modern superscalar proces-
sors make the wire delay incurred in moving data across the
processor chip a significant concern. As frequencies continue
to increase, it will become more difficult for a centralized
first level data cache to supply the timely data bandwidth
required by superscalar processors.

This paper presents a complete solution for the par-
titioning of the first level of the memory hierarchy. The
first level data cache is split into several independent parti-
tions, which are arbitrarily distributable across the proces-
sor die. After being decoded, memory instructions are sent
to the reservation stations of the functional unit adjacent
to the cache partition that they are most likely to access.
The partition assignments for both static instructions and
cache data are dynamically changed to adapt to data access
patterns. A data cache line is permitted to reside in only
one partition at a time, allowing each store to update only
a single partition, and allowing the partitioning and sim-
plification of the memory disambiguation logic. The par-
titioned cache achieves a reduction in cache access latency
through a combination of reduced wire delay and reduced
cache array size. A partitioned cache with eight 8KB direct-
mapped partitions maintains a hit rate greater than that of
a 32KB direct-mapped cache. A machine utilizing the par-
titioned cache outperforms a machine with a conventional
64KB direct-mapped cache by 4.5% and a machine with a
64KB 8-way set-associative cache by 7.0%, when cache la-
tencies estimated through the use of the CACTI cache sim-
ulation tool are taken into account.

Categories and Subject Descriptors

C.1.1 [Processor Architectures|: Single Data Stream Ar-
chitectures; B.3.m [Memory Structure]: Miscellaneous

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICS 03, June 23-26, 2003, San Francisco, California, USA.

Copyright 2003 ACM 1-58113-733-8/03/0006 ...$5.00.

Yale N. Patt
The University of Texas at Austin
Austin, Texas 78712-1084

patt@ece.utexas.edu

General Terms

Performance, Design

Keywords

clustered microarchitecture, partitioned cache

1. INTRODUCTION

As clock speeds and microprocessor complexity con-
tinue to increase, additional pressure is placed on the mem-
ory system to supply more data in a timely fashion. This has
led to a concerted research effort to reduce the latency and
increase the bandwidth of the memory subsystem. Nowhere
are the latency and bandwidth requirements more demand-
ing than at the first level of the cache hierarchy. At a
time when superscalar processors are beginning to segment
functionality into separate clusters [8, 9, 7, 14], designing
a centralized low latency first level cache is becoming more
and more difficult.

This paper proposes the use of data partitioning to pro-
vide a distributable, scalable, fast-access, high-bandwidth,
first-level caching structure. The partitioning framework
consists of several independent cache arrays placed adjacent
to their respective load units. These partitions communicate
data with each other only through the second-level data
cache. After passing through the decode and rename stages,
memory instructions are sent to the reservation stations
adjacent to the cache partition most likely to contain their
data.

Initially, static loads are assigned to partitions on a round-
robin basis. Each miss by a static load will fetch a cache line
into its partition, and the data cache line will be assigned to
the partition that requested it. As the static loads request
their working set, the set of data used by each static load will
either be gradually moved into the load’s local partition, or
the subsequent instances of the static load will be re-assigned
to the partition in which their data resides. A set of two-
bit counters injects enough hysteresis into the transitions
to keep the instructions and data from repeatedly adjust-
ing their assignment between partitions. A load balancing
scheme monitors the number of misses to each partition,
and changes the parameters of the partitioning algorithm
to reassign instructions and data cache lines away from an
individual partition with an abnormally high miss rate.

Employing the partitioning scheme results in several
performance benefits. First and foremost is reduction in
cache access latency due to both reduction in the wire delay



between the functional units and the cache array and reduc-
tion in the cache array access time itself. Secondly, the band-
width of the first level caching structure is increased, both to
the load units and to the second level data cache, since each
partition can provide data and receive fills independently.
Third, since most stores impact only the local partition, the
memory disambiguation logic need only compare the locally
pending loads and stores to detect memory dependencies.
Fourth, the partitioned cache is entirely compatible with
previously published methods for increasing effective set-
associativity or cache bandwidth without explicitly imple-
menting associativity or adding ports. Finally, a partitioned
cache allows a larger effective cache to be accessed with
the page offset bits of the virtual address, just as a set-
associative cache does.

This paper shows that 64KB of storage can be arranged
so that it can be accessed with the cache array latency of an
8KB direct-mapped cache. The storage can be arbitrarily
distributed across the chip to minimize the wire delay be-
tween the cache array and each of the load/store functional
units. A partitioned cache consisting of eight 8KB direct-
mapped partitions yields a hit rate slightly better, on aver-
age, than that of a 32KB direct mapped cache. When real-
istic latencies and port limitations are considered, a single-
cycle, partitioned cache with eight 8KB direct-mapped par-
titions and two read ports per partition outperforms a three-
cycle, four-ported 64KB direct-mapped unpartitioned cache
by 4.5%. This paper will also show that the partitioned
cache is effective in increasing bandwidth and reduces the
hardware complexity of the memory disambiguation logic.

2. RELATED WORK

There has been a great deal of research into increasing
the hit rate and decreasing the access times of low-level
caches. A number of schemes have been proposed to achieve
an approximation of set-associativity with access times ap-
proaching that of a direct-mapped cache. The hash-rehash
cache [1, 2] and way prediction [4] have been developed as
methods for a load to potentially hit with a direct-mapped
access regardless of where its target lies in the order of
recently-used set elements. The hash-rehash cache uses a
direct-mapped access followed by a second access using a
different hashing function on a failure. Way prediction uses
the instruction address of a load or the value of its source
register to predict which element of the set is the desired one.
Other techniques combine a direct-mapped data array with
a set-associative tag array [19, 3], as for small associativities,
an associative tag lookup is not significantly slower. The
common theme of these methods is to combine a direct-
mapped access with either another direct-mapped access or
a partial [12, 11] or full set-associative tag match on failure,
with preference to most-recently used elements. [16] These
techniques, however, seek to optimize access to a single,
monolithic structure. Partitioning strives to reduce access
latency by the orthogonal methods of distributing the cache
across the processor die and reducing the size of the cache
array itself. Any of the above methods could be used in
conjunction with a partitioned cache to further increase its
associativity.

There has been less research in the microprocessor
community examining dynamically splitting a cache into
separate entities, as partitioning does. In [17], Wolfe pro-
poses splitting the data cache in half and dedicating half

to integer data and half to floating point data, allowing
memory instructions of each type to be directed to the cache
holding the proper type of data. Others have proposed split-
ting the data cache between the stack and the heap memory
regions [6, 5]. While these partitioning schemes identify data
streams that are very independent, they are only able to
map data of a particular type to each half of their split
cache. These methods are not scalable and can result in a
suboptimal split, since stack caching requirements are very
small and floating point data may or may not be present
in a given application. In [18], Yoaz presents a dynamic
bank prediction scheme for a microprocessor Each load unit
is associated with a particular cache bank and is placed
physically near it. Techniques from branch prediction and
address prediction are used to predict which bank a memory
instruction will access before it is steered to a functional
unit. A bank misprediction results in the load being flushed
from the machine and rescheduled. While two banks were
used for all the results in this paper, Neefs [10] extends the
notion to predict among a larger number of banks. Using
an infinitely-sized hybrid of a stride and context-based bank
predictor, he is able to map an instance of a load to the
correct bank on average about 87% of the time, for a config-
uration with eight banks. In [13], Limaye and Shen propose
a method of increasing L0 cache bandwidth by assigning
static loads that are likely to access the data cache in the
same cycle to separate cache subsections, duplicating cache
lines as necessary. They are able to map a load to the correct
cache subsection about 93% of the time. The bank predic-
tion accuracies of these schemes are substantially lower than
the accuracy of the method proposed in this paper.

3. MOTIVATION

The primary goal in implementing the first level of
the memory hierarchy is to design a caching structure that
minimizes latency and maximizes bandwidth with the min-
imum amount of hardware. With recent increases in clock
frequency, wire delay has become a significant additional
component of cache latency. In this environment, maintain-
ing a centralized cache will be increasingly awkward. Due
to wire delay, the Alpha 21264 was forced to implement a
two-cycle first level data cache at a stated degradation of
4% in processor performance. [9] In this environment, a first
level caching structure is needed that minimizes wire delay
and maximizes bandwidth while maintaining a high hit rate.

m 64K-dm 1cycle
= 64K-dm 2cycle
= 64K-dm 3cycle

40 64K-dm 4cycle
35 = 64K-dm 5cycle
30
2.E -
O
2 20
1.5+
1.0+
0.5
00" S B & F & F
K& Fg &g & & F &

Figure 1: IPC vs. first-level cache latency



Figure 1 shows that, for our machine model, each cycle
reduction in first level cache access latency results in a fairly
constant linear IPC improvement. Starting with a five-
cycle, 64KB direct-mapped first level cache (rightmost bar),
and reducing its latency by one cycle at a time, the graph
shows successive IPC improvements of 4.3%, 8.5%, 13.10%,
and 17.61%. Clearly, a technique allowing a significant
decrease in first-level cache access latency while maintaining
the cache hit rate would be beneficial.

The solution proposed in this paper is to partition
the first level of the memory hierarchy into several separate
and independent entities, each physically located adjacent
to one or more load/store functional units. After decoding
a memory instruction, a prediction is made as to which par-
tition is most likely to contain the data that the instruction
will request. The memory instruction is then steered to the
load/store unit associated with this partition. All commu-
nication between partitions occurs through the second level
cache.

3.1 Partitioning Algorithm Overview

Static memory instructions are associated with a par-
tition number, as is each line in the second level data cache.
Load instructions trigger partitioning decisions only when
a request misses in the first level of the cache hierarchy.
Two degrees of freedom are available to the algorithm on
a load that causes a partition miss. First, the line in the
second level data cache can be assigned to the requesting
partition. This may require invalidating the cache line in
another partition first. Second, the assignment of the static
load can be changed so that the next time it is seen it is
steered to a different partition. The first option has more
potentially harmful consequences. If a data cache line is
moved to another partition, any other static loads that also
need that data will now incur a miss when they next attempt
to access it. On the other hand, if the memory instruction
itself is re-assigned, it is merely steered to the new partition
the next time it is decoded. This option creates a prob-
lem only if most of the data accessed by that particular
memory instruction resides in the original partition. The
implemented partitioning algorithm reflects a preference for
partition reassignment of instructions over reassignment of
data.

4. HARDWARE DESCRIPTION

The basic components necessary to partition the first
level of the memory hierarchy can be seen in figure 2. The
dotted lines in the figure designate the two partitions of the
first level of the memory hierarchy. An instruction partition
assignment table (PAT) tells the steering logic where to di-
rect each memory instruction. A data partition assignment
table (the global data PAT) is used by the second level of
the memory hierarchy to ensure that a data cache line is
present in only one partition at a time. Local copies of the
global data PAT are used in each partition to allow memory
disambiguation to be handled locally within the partition.
Each entry in a partition assignment table holds a parti-
tion identifier and two-bit saturating instruction hysteresis
counter. The partition identifier field of an instruction par-
tition assignment table entry maps a memory instruction to
the cache partition where its data is likely to be found. The
data partition assignment table contains an entry for each
line in the second level data cache. The partition identifier

field of a data PAT entry maps each second level data cache
line to the partition to which it it currently assigned.

After an instruction has been decoded and its depen-
dencies have been mapped, it is issued to the reservation
stations of the load/store functional unit corresponding to
its partition identifier. Instructions being seen for the first
time will have no partition identifier, and will be assigned
to partitions in a round-robin fashion. Once the memory
instruction arrives at its load/store unit, it waits in the
reservation stations until all of its dependencies have been
resolved.

Instruction Cache

i

Decode —= Instruction PAT

!

Register Mapping / Instruction Steering

Load Store Store Load

Unit #1 Unit #1 Unit #2 Unit #2
| -T = i e B I I
1 ] I
: Local Data : Local Data :
, Data PAT #1 V| PAT#2 Data ,
X Cache #1 Store : Store Cache#2 | |
1 Buffer #1 | 1 | Buffer #2 1
I I I
1 : 1 1

Globa Data
PAT

Global Miss [~ Global StoreBuffer ==/ Gjopal Miss
Queue Queue

<—ﬁ Write Combining Buffer }<—>
'

Second Level Data Cache

Figure 2: Organization of partitioned processor

4.1 Load Instructions

Once its dependencies have resolved, a load instruction
is issued to its adjacent functional unit and accesses its cache
partition. If the access hits in the partition, all is well. If
the access is a miss, it is placed in the miss queue, and a
request is made to the second level cache for the relevant
cache line. Simultaneously, the miss request address is also
sent to the global data PAT. If the request hits in the second
level cache, it will have a corresponding entry in the global
data PAT. The partition identifier listed in the global data
PAT is then compared to the number of the partition that
generated the miss request. A match in these two values
implies that the data cache line had already been assigned to
the requesting partition, but the line had been displaced by
other data. Since this indicates that the assignment of cache
line to partition had been accurate, the saturating hysteresis
counter corresponding to the cache line in the global data
PAT is incremented. If the two partition numbers do not



match, the corresponding hysteresis counter in the global
data PAT is decremented. In this latter case, the partition
miss is coming from a partition other than the one to which
the cache line was assigned. A decision must now be made as
to whether or not to reassign the cache line to the requesting
partition by changing the partition identifier recorded in
the global data PAT. This reassignment occurs only if the
hysteresis counter had the value zero before the attempted
decrement. If reassignment does not occur, a fill is still sent
to the requesting partition. This fill provides the necessary
data to any loads waiting for it in the miss queue, but the
fill will not write any data into the cache partition itself.
The latency of the load instruction that generated the miss
request will be that of a second-level cache access.

The reassignment of a data cache line in the global data
PAT requires several steps. First, the cache line must be
invalidated in the previously assigned data cache partition.
Any entries in the local store buffer of the old partition
corresponding to this cache line must also be marked invalid.
A placeholder is set in the local store buffer of the new
partition that causes loads dependent on these entries to
get their information from the global store buffer. Next, the
new partition assignment information is sent to each local
copy of the global data PAT. Lastly, the hysteresis counter in
the global data PAT entry corresponding to the data cache
line is set to 1, so that it is less likely to be immediately
reassigned to another partition. The second level data cache
is now permitted to send the fill to the requesting partition.

A static load’s entry in the instruction PAT is up-
dated at retire time. If the load instruction hit in the
first level of the memory hierarchy, its partition identifier
remains unchanged, and its instruction hysteresis counter is
incremented. If the load access was a miss, the hysteresis
counter is decremented. If the hysteresis counter contained
the value zero before the attempted decrement, and the
load instruction missed, the partition identifier of the load
instruction is changed to the partition number that was
recorded in the global data PAT at the time of the miss.
Loads that miss in their partition but hit in the miss queue
will wait there for the second level cache to provide the fill
for the original outstanding miss request. They will receive
the same partition assignment information as the original
outstanding miss.

4.2  Store Instructions

The memory hierarchy used for the experiments in this
paper processes store instructions slightly differently than
a typical architecture might. Instead of writing store data
into the first level cache with a write-through protocol to the
second level cache, stores are written into a write combining
buffer and sent directly to the second level cache. Once the
second level cache has processed the store, it will issue a fill
to the first level cache to update the cache line. The local
and global store buffers are used to forward data to any load
that requires the data in the interim. This technique is used
for both partitioned and unpartitioned caches, as it allows
over 65% of stores on average to be combined or eliminated.

When a store instruction is encountered, an entry is al-
located for the store in both the local store buffer associated
with its partition and in the global store buffer. Both these
entries will be updated with the store’s address and data
once they have been calculated. Once the store’s address
has been calculated, the local copy of the global data PAT is

accessed, to determine if the store data address is assigned
to the local partition. If it is, store forwarding from the
local store buffer is enabled for the allocated entry. If not,
store forwarding from the entry in the local store buffer is
disabled, and the store’s information is propagated to the
local store buffer of the relevant partition as soon as its
data and address become known. Stores will also change the
partition assignment information in the global data PAT,
based on whether or not the cache line they update was
assigned to the partition that they were steered to. While
only load misses update the global data PAT, each store
updates the fields of the structure. When the store retires,
the store’s data is sent to the write-combining buffer and the
data waits there for an opportunity to update the second
level cache.

A static store’s entry in the instruction PAT is updated
after it retires. If the access to the local data PAT showed
that cache line associated with the store’s address was as-
signed to the partition that the store was steered to, the
store’s instruction hysteresis counter is incremented. If the
local data PAT showed that the store’s data cache line was
assigned to another partition, the store’s instruction hystere-
sis counter is decremented. If a decrement is attempted with
a hysteresis counter containing the value 0, the partition
identifier associated with the static store is changed to the
partition id from the local data PAT.

4.3 Memory Disambiguation

In most cases, memory disambiguation is performed
locally. Loads are speculatively assumed to be dependent
only on earlier stores that have been sent to the same par-
tition. Within a partition, any memory dependence scheme
can be used. There are two situations where cross-partition
memory dependencies can occur. The first situation consists
of a store steered to the wrong partition generating data
to be used by a load steered to the correct partition. In
this case, the load will speculatively execute. The store
will identify that it was sent to the wrong partition when it
accesses its local data PAT. It will propagate its address and
data to the correct partition as soon as they are available.
The dependent load will have to be re-executed. The second
situation consists of a load steered to an incorrect partition
being dependent on a store steered correctly. In this case,
the load will miss in its local partition’s data cache, and
get the required data from the global store buffer. On all
partitioned configurations tested with eight partitions or
fewer, less than 2% of load forwards were cross-partition
forwards or required an access to the global store buffer.

5. SIMULATION ENVIRONMENT

The experiments presented in this paper were per-
formed on the SPEC2000 integer benchmark suite compiled
for the Alpha EV6 ISA with -fast optimizations and profiling
feedback enabled. The benchmarks are run to completion
on the SPEC test inputs or a shortened version thereof. The
baseline machine model is an aggressive 16-way superscalar
machine with an idealized front-end, able to predict and
fetch the targets of three branches every cycle. Table 1 shows
a summary of the relevant machine parameters.

A perfect memory dependence predictor was used to
delay dependent loads until their data was available. The L1
cache is locked during a fill, meaning that only loads depen-
dent on fill data can execute while the write is progressing.



However, fills are scheduled to begin on cycles during which
no loads are pending. Since the data bus between the L2
and L1 is 32 bytes, and the cache line size is 64 bytes, loads
are not delayed for more than one cycle by the processing of
a fill transaction.

Table 1: Machine Model

Branch Prediction

128K-entry gshare/PAs hybrid with 64K-entry hybrid selector;
4K-entry 8-way associative BTB, 32-entry call/return stack;
64K-entry indirect branch predictor.

All predictors capable of 3 predictions / cycle;

Instruction Fetch

64KB, 4-way associative instruction cache with 3 cycle latency.
Capable of three accesses per cycle.

Pipeline

4 cycle decode, 10 cycle register mapping
20 cycle overall misprediction penalty

Core

512-entry instruction window, 16 general purpose pipelined FUs;

Caches

3 cycle L1 data cache; 64B lines; 64-entry store buffer

8 L1 read / 1 L1 write ports; 32B full speed L1/L2 data bus;
512KB 8-way associative unified L2, 10 cycle latency; 64B lines;
all intermediate queues and traffic are modeled.

Busses and Memory

16 outstanding misses; 32B memory bus at 2:1 bus ratio;
split address/data busses; 1 cycle bus arbitration;

100 cycle DRAM access latency; 32 DRAM banks;

all intermediate queues and traffic are modeled.

6. EXPERIMENTAL RESULTS

Traditionally, the benefit of a new caching scheme is
measured by its effectiveness across structures of equivalent
size. This method is useful for measuring relative cache
storage efficiency. However, with processors shipping today
with 512KB on-chip caches, cache size is clearly not the pri-
mary limitation for the first level of the memory hierarchy.
The size of a first level cache is limited by its access time,
not by available chip area. Hence, caching schemes for the
first level of the memory hierarchy should be evaluated by
performance across structures of equivalent access latency,
rather than equivalent size. The default partitioned cache
used in the following experiments consists of 64KB of stor-
age broken into eight 8KB direct-mapped partitions. If its
wire delay advantage is ignored, the partitioned cache has a
cache array access time equivalent to that of an 8KB direct-
mapped cache. Hence, the baseline for all of the speedup
graphs presented in this section will be the performance
achievable with a single, unpartitioned, 8KB, direct-mapped
data cache. The performance of this baseline configuration
exceeds that of a 64KB direct-mapped banked cache with 8
banks utilizing bank prediction as described in [10], if a full
cache miss is taken on a bank misprediction.

6.1 Basic Configuration

All experiments use two-bit counters for the instruction
hysteresis counter and the address hysteresis counter. Also,
invalidation and partition assignments for the second level
data cache are done on the granularity of an entire cache
line. Experimentation showed that the additional flexibility
of allowing disjoint portions of the same cache line to be valid

in two partitions simultaneously was outweighed by the ad-
ditional misses incurred to transfer the cache line when the
whole was needed. To factor out the bandwidth advantage
of the partitioned cache, the initial experiments approximate
infinite bandwidth to the first level of the memory hierarchy
by simulating eight read ports to each cache or partition.
All cache configurations have a three-cycle access latency
and eight read ports per cache or partition unless otherwise
specified. All graphs except Figure 11 use a partitioned
cache with an infinite instruction PAT and no additional
latency for cross-partition memory dependencies.

Figure 3 shows the speedup of the basic partitioning
scheme and various-sized unpartitioned caches over a pro-
cessor with an unpartitioned 8KB direct-mapped cache. All
caches are assumed to have an equivalent access latency of
3 cycles. The bar labeled “8-8KB-dm partitions” represents
the performance of the basic partitioned cache with eight
8KB direct-mapped partitions. The other bars represent
unpartitioned caches of various sizes and associativities. The
graph shows that, even if access times were equal, the har-
monic mean performance of the basic partitioned cache with
64KB of total storage broken into eight 8KB partitions is
practically identical to that of a 32KB direct-mapped cache.
The partitioned cache, containing 64KB of total storage, is
able to outperform the 64KB direct-mapped cache on crafty,
gap, and twolf. This is because these benchmarks are among
those particularly sensitive to associativity. The partitioned
cache is able to provide a small degree of associativity by
assigning conflicting static loads to separate partitions. On
the other hand, parser responds well to associativity, but
sees little benefit from the partitioned cache. The problem
in the case of parser is that the conflict misses are occurring
between static instructions that partially share data. Hence,
they must be mapped to the same partition, where they
exhibit contention.

m 8KB-8way unpartitioned
= 32KB-dm unpartitioned

w
=4
=)

m 8-8KB-dm partitions
= 250 16K B-8way unpartitioned
g ® 64K B-dm unpartitioned
20.0
&
g 1504
o)
& 100

it Eﬁm

& v N
R A @&&“@Qo}’?dé

Figure 3: Basic Partitioning vs.
tioned Configurations

Various Unparti-

Figure 4 shows how the performance of the partitioned
cache changes as the number of partitions is varied. Ideally,
the bars here would be almost equivalent. However, as the
degree of partitioning increases, the size of the working set
that can be kept in cache for any individual static load in-
struction decreases. Benchmarks that have individual loads
with large working sets will perform better with fewer, larger
partitions. These benchmarks exhibit the linear perfor-
mance increase with decreasing partition degree that can be
seen most noticeably in bzip2, gcc, mcf and parser. Crafty,
gap and twolf respond primarily to associativity and often
show an increase in performance with an increase in parti-



tion degree. In these benchmarks, the working set size that
can be supported for a given static load instruction is less
important than the ability to resolve conflict misses between
static loads that do not share data. A partitioned cache with
two partitions outperforms the basic eight partition cache
by 2.6%, and one with four partitions outperforms the eight
partition cache by 2.0%. A sixteen partition cache peforms
on average, 1.9% worse than the eight partition cache. All
partitioned caches in this graph are direct-mapped and have
a three-cycle access latency.

350 m 16-4KB-dm partitions
300 m 8-8KB-dm partitions
g m 4-16KB-dm partitions
a 2-32KB-dm partitions
.é 250 = 64KB-dm unpartitioned
(% 20.0
g 150-
o)
& 1004 —
0.0

& . S &
&KL & ééc\ @& & @\o@ & 406& & %‘éf

Figure 4: Comparative Performance of Different
Degrees of Partitioning

6.2 Load Balancing

Since the basic partitioning scheme relies on the initial
round-robin assignment of instructions to partitions to dis-
tribute cache lines, it is susceptible to worst case scenarios.
For example, it has no mechanism to prevent all of the data
and instructions from migrating to a single partition. While
the hysteresis counters, particularly in the global data par-
tition assignment table, are usually effective at preventing
the data movement that would result in this occurrence, a
mechanism should be in place to detect and redistribute
loads should such a concentration occur. Hence, a load
balancing mode was developed for the partitioning scheme.
Load balancing mode is triggered when an undue amount
of miss traffic is coming from a single partition. When in
this mode, the hysteresis preventing data and instruction
movement is eliminated for the problem partition, making
it easy for its instructions and data to migrate to other
partitions. Load balancing is monitored by maintaining a
miss counter for each partition. At regular intervals, the
counters are compared. Load balancing mode is triggered
when the largest counter value is several times greater than
the next largest. The experiments in this section will com-
pare a configuration that never enters load balancing mode
with one that is always in load balancing mode and with one
that enters load balancing mode if the largest miss counter
has a value three times greater than the second largest. For
these experiments, the counters were compared every twenty
thousand misses.

During load balancing mode, all hysteresis counters
are ignored for the purposes of moving instructions or data
out of the problem partition. In addition, no new data cache
lines or load instructions can be assigned to the problem par-
tition until load balancing mode terminates. Figure 5 shows
the effect of load balancing on the percentage of loads that
access each partition. The y-axis shows the percentage of
the total number of dynamic loads that access each partition

over the course of the benchmark. Each color represents the
dynamic load traffic to an individual partition, sorted by
load traffic from most to least, where black represents the
partition with the most load traffic. There are three bars
for each benchmark. From left to right, these represent: a
configuration with no load balancing, a configuration where
load balancing mode is triggered when the largest miss
counter is three times greater than the second largest, and a
configuration implementing continuous load balancing. By
comparing the black region of the leftmost bar with the other
two, one can see that load balancing is clearly effective in
eliminating worst-case scenarios. A worst-case scenario con-
sists of enough data and instructions migrating to the same
partition that the capacity of that partition is overwhelmed.
By examining the black bars for vpr, gcc, and eon, one can
see that each have over 50% of their load traffic going to the
same partition in the configuration without load balancing
(leftmost of the three bars). However, the most frequently
used partition receives only 256%, 16% and 37% respectively
of the load traffic in the configuration with continuous load
balancing (rightmost of the three bars.)

8th most Id traffic
= 7th most Id traffic
6th most Id traffic
= 5th most Id traffic
4th most Id traffic
= 3rd most Id traffic

Bars from left to right:

: - No load balancin:
= 2nd most Id traffic - Load balancing Treshold = 3)
= most |d traffic - Load balancing always on

Distribution of Load Traffic by Partition (Percent)

Figure 5: Effect of Load Balancing on Dynamic Load
Distribution

Figure 6 shows how the frequency of misses in each
partition corresponds to the amount of load traffic to that
partition. Once load balancing is employed, only in bzip2,
mcf, and twolf is the partition that receives the greatest
fraction of dynamic loads also responsible for the greatest
fraction of misses. With a load balancing threshold of 3
(middle bar), the partition receiving the sixth most load
traffic in gzip (7.1% of the load traffic) is responsible for
41% of the misses. This illustrates one of the limitations of
the partitioned cache. Since loads are assigned to partitions
on a static load granularity, it is impossible to accommodate
a static load with a footprint larger than the capacity of the
partition. Similarly, without implementing set-associative
partitions, it is impossible to eliminate conflict misses that
occur between static loads that share data or between dif-
ferent instances of the same static load.

Employing load balancing involves a tradeoff, however.
The goal of load balancing is to maximize hit rate by moving
instructions with a large footprint to a partition that is



8th most Id traffic
m 7th most Id traffic
6th most Id traffic
m 5th most Id traffic
4th most Id traffic
m 3rd most Id traffic

Bars from left to right:

X - No load balancin
= 2nd most Id traffic - Load balancing (f (%rﬁhold 3)
m most |d traffic - Load balancing aways on

®
~N
o

Distribution of Miss Traffic by Partition (Percent)
o
b

Figure 6: Effect of Load Balancing on Miss Distri-
bution

— - Barsfrom left to right:
m hit lineinvalid - 8-8KB-dm partitions (no Id bal)
= local miss - 8-8KB-dm partitions (Id bal thres=3.0)
. - 8-8KB-dm partitions (Id bal always)
m global miss - 32K B-dm unpartitioned
13.0 . - 64K B-dm unpartitioned

Per centage of dynamic loadsthat missin L1

Figure 7: Overhead of Partitioning: Invalidation

Misses

assigned mostly to loads with smaller footprints. However,
each time a static load or data line is reassigned, there is
the potential for triggering a number of misses from other
loads that share that data. Also, if a single static load is
responsible for producing the high miss rate, moving it to
another partition will not do anything to solve the problem.
With the continuous load balancing scheme, gcc shows a
very even distribution of both load traffic and misses be-
tween partitions. (Compare the rightmost of the three bars
for gec in figures 5 and 6.) However, Figure 7 will show that
this even distribution comes at the cost of a higher overall
miss rate. The y-axis of this graph shows the percentage
of dynamic loads that miss in their assigned partition or
cache. These misses are broken into three categories. The
term global miss represents a load access that misses in its
assigned partition, and whose data is also not present in
any other partition. The term local miss represents a load
access that misses in the assigned partition, but whose data
is currently present in a different partition. The term hit line
invalid represents a load access that hits on the line in the
local partition, except that the line is marked invalid. This
is because it had been previously invalidated by the global

data PAT as part of the process of assigning the cache line
to another partition. While such “invalid” data may well
be correct, and could be speculatively used by the load, this
possibility is out of the scope of this paper. There are five
bars for each benchmark. From left to right, these represent:
a partitioned cache with eight 8KB direct-mapped partitions
and no load balancing, the same partitioned cache with load
balancing triggered when the largest miss counter exceeds
the second largest by a factor of 3, the same partitioned con-
figuration with continuous load balancing, a 32KB direct-
mapped unpartitioned cache, and a 64KB direct-mapped
unpartitioned cache. From the figure, we can see that while
continuous load balancing produced an even distribution
of loads and misses in gcc, it also causes a sharp increase
in the number of reassignment misses (local misses and
hits to invalid lines). In fact, gcc performs better with no
load balancing at all than with continuous load balancing.
These reassignment misses could potentially be eliminated
by allowing data to reside in more than one partition at
once. However, data duplication would reduce the available
capacity of the partitioned cache as a whole in addition to
increasing its complexity and damaging its ability to reduce
the complexity of the memory disambiguation logic. Parser
and gzip both show an increase in the global miss rate as
the degree of load balancing is increased. This could be the
result of temporarily moving several static loads with a large
footprint into the same partition.

350 B 8 8KB-dm part (no bal) L
. B 88KB-dm part (Id bal thres 3)
m 8 8KB-dm part (Id bal dways)
30.0 32K B-dm unpartitioned

N
3
o

Per cent Speedup
8
o

IllI. iiil]i

15.0
10.0
5.0
N S
A@Qq@éﬁ’@&\*’ Aé‘@‘\@

Figure 8: Effect of Load Balancing on IPC

Figure 8 shows the impact of the various load balancing
schemes on IPC. As with all speedup graphs in this paper,
the baseline of the graph is the performance achievable
with an 8KB direct-mapped unpartitioned cache with 8
ports and a 3-cycle access time. When averaged across the
benchmarks, a configuration with eight 8KB direct-mapped
partitions with a load balancing threshold of 3 has an IPC
about 1.1% greater than that of a machine with a 32KB
direct-mapped cache of equal access latency. Since the load
balancing scheme with a threshold of 3 provides the best
performance, this load balancing method will be used for all
data involving a partitioned cache from this point on.

6.3 Benefits and Limitations of the Partitioned
Cache

There are several benefits to implementing a parti-
tioned cache. In this section, most of these benefits are
analyzed and quantified. The first benefit is the partitioned
cache’s reduction in cache access latency. The partitions



of the partitioned cache are arbitrarily distributable across
the processor die. This minimizes the wire delay between
the functional units and the cache array. This reduction
in access latency due to this wire delay may well be more
significant than the reductions in the cache array access
latency that result from reducing the cache array size. The
second benefit of the partitioned cache is the additional
bandwidth inherently provided by the partitions. The par-
titioned cache increases bandwidth both between the first
level of the cache hierarchy and the functional units and
between the partitioned cache and the second level cache,
since each partition acts independently. This section will
show that the partitioned cache needs only two read ports
per partition, while an unpartitioned cache requires at least
three. Third, store handling and memory disambiguation
logic are also partitioned. Memory disambiguation requires
a large number of concurrent comparisons and complex
hardware. Reducing the scope of comparisons required will
significantly reduce this complexity. Fourth, the partitioned
cache is compatible with previously published methods for
increasing set-associativity or cache bandwidth without ex-
plicitly implementing associativity or adding ports. Lastly,
the partitioned cache allows a larger effective cache to be
accessed with the untranslated page offset bits of the virtual
address, just as a set-associative cache does.

40 m 8KB-8way unpartitioned
40.0 u 8 8KB-8way partitions
m 8 64KB-8-way partitions
35.0 64K B 8-way unpartitioned
_§ 200 m 256K B 8-way unpartitioned
& 250 | —
T 200 I
o
B 150
10.0
5.0‘

‘o‘éb RN @Q <§5' «g’\ é’bﬁ &45 & &\Q@ ¢Zg \\0@‘. 6\& &ép

Figure 9: Performance of Partitioning with High
Associativities and Large Caches

Figure 9 shows the response of the partitioned cache
to increasing the associativity of each of the partitions. The
y-axis of the graph shows speedup compared to the single,
unpartitioned, 8KB direct-mapped cache baseline. A parti-
tioned cache consisting of eight 8KB 8-way set-associative
partitions achieves an IPC within 2.3% of that of a 64KB 8-
way unpartitioned cache. However, the performance of the
partitioned cache levels out more rapidly than the unparti-
tioned one, due to partition reassignment misses. A parti-
tioned cache consisting of eight 64KB 8-way set-associative
caches performs on average only slightly better than a single
unpartitioned 64KB 8-way set-associative cache. The eight
8KB-8-way partitioned configuration outperforms the 64KB
8-way unpartitioned cache on gap by a significant amount.
This is due to the partitioned cache’s increased bandwidth
to the second level cache. In gap, about 9% of the loads
in the unpartitioned cache configuration are blocked for a
cycle waiting for a store fill or L1 miss fill to be processed,
while almost no loads are blocked by fills in the partitioned
scheme. All configurations in this graph use the same 3-cycle
access latency.

Figure 10 shows the performance effect of limiting the

m 64KB-dm 2-ports

= 64KB-dm 3-ports

m 64KB-dm 4-ports
64K B-dm 8-ports

= 8-8KB-dm partitions 2-ports
8-8KB-dm partitions 8-ports

m

Figure 10: Bandwidth Analysis: Port Contention

8
o

N
o
=]

N
o
=]

=
a

Per cent Speedup

=
1)
S}

.0
5.

ilIHIi i

0Q4¢Q>Q&¢9é’5@@°

o

I Hl‘

@

bandwidth available to the first level memory hierarchy by
reducing the number of read ports to the data cache. As
always, the baseline used is an 8KB direct-mapped cache
with 8 read ports. The graph shows that the partitioned
cache succeeds in increasing the bandwidth to the data
cache. The IPC dropoff between a partitioned cache with
8 read ports per partition and one with only 2 read ports
per partition is on average 1.36%, comparable to the 0.91%
dropoff going from the 64KB direct-mapped 8-ported un-
partitioned cache to a 4-ported version thereof. When the
64KB direct-mapped unpartitioned cache is restricted to 2
read ports, it sees a 5.96% IPC dropoff from the 8-ported
version. All configurations would see a large performance
degradation if restricted to a single read port. This is due
to the fact that there are regular periods of high traffic to
certain regions of memory, such as the stack, that cannot be
satisfied by a single port, even with partitioning.

While the partitioned cache’s reduction in cache access
latency due to wire delay is highly dependent on implemen-
tation, there are tools available to estimate its reduction
in cache array access latency. Table 2 shows cache array
timing estimates for caches with 64 byte lines under 0.13
micron technology. Cacti 2.0 [15] was used to generate these
estimates. The table shows that a partitioned cache consist-
ing of eight 8KB two-ported direct-mapped partitions has
an array access time of 0.625ns in 0.13 micron technology.
This is essentially half the access time of an equivalently-
sized direct-mapped unpartitioned cache array using either
3 or 4 ports, more than 3 times less than a 64KB 8-way
set-associative unpartitioned cache array with 3 ports, and
4 times less than a 64KB 8-way set associative cache array
with 4 read ports.

Table 2: Cacti 2.0 Timing Data

Cache size | Ports direct-mapped | 8-way set-assoc.
8KB 1rd, 1 rd/wr 0.625 ns 1.154 ns
8KB 3rd, 1 rd/wr 0.734 ns 1.640 ns
16KB 1rd, 1rd/wr 0.713 ns 1.228 ns
16KB 3rd, 1rd/wr 0.875 ns 1.787 ns
32KB 1rd, 1rd/wr 0.869 ns 1.362 ns
32KB 3rd, 1 rd/wr 1.088 ns 2.040 ns
64KB 1rd, 1rd/wr 1.057 ns 1.640 ns
64KB 2rd, 1 rd/wr 1.211 ns 2.067 ns
64KB 3rd, 1rd/wr 1.378 ns 2.533 ns

It is important to note that the data provided by
CACTI does not take into account the reduction in wire
delay leading up to the cache array itself. This wire delay
caused the Alpha 21264 to double the latency of its first level



cache access [9], and wire delay is expected to become an
increasingly important problem as clock rates increase. The
partitioned cache provides the ability to arbitrarily place
the partitions and associated memory disambiguation logic
anywhere on the processor floorplan. Hence, each partition
can be placed immediately adjacent to the load and store
units that access it. This paper will conservatively assume
that this reduction in wire delay is able to reduce cache
access time by at least 0.625 ns, the latency of an 8KB
direct-mapped cache array access.

m 8KB-dm 4-ports 1-cycle unpartitioned

® 64KB-dm 4-ports 3-cycle unpartitioned

m 64KB 8-way 3-ports 4-cycle unpartitioned
8-8KB-dm 2-port 3-cycle partitioned

40.0 ® 8-8KB-dm 2-port 2-cycle partitioned

8-8KB-dm 2-port 1-cycle partitioned

35.0
30.0 —
o
>
@ 25.0 — —
3 2001 —
§ 15.0 —
g
10.0+—— 3
50 -
00 '\ -
x\Q < \ qQ d\\ é ‘\@g’f

Figure 11: Potential Benefits of Optimized Cache
Access Latency

Figure 11 incorporates all costs and advantages of
the partitioned cache. A 20KB Instruction PAT and 5KB
Global Data PAT are simulated. In addition, each cross-
partition memory forward incurs a penalty of 10 cycles for
the partitioned cache. No additional penalty is simulated
for memory forwarding in the unpartitioned configurations.
Together, the imposition of a real PAT and a 10-cycle cross-
partition forwarding penalty reduce the performance of a
single-cycle 8-partition partitioned cache by an average of
1%. This figure shows the performance achievable if we allow
the true strength of the partitioned cache, the reduction in
cache access latency, to take effect. The graph lists the
access time of a 64KB direct-mapped unpartitioned cache
with 4 read ports as 3 cycles (twice the latency of a 8KB
direct-mapped 2-ported partition + 0.625 ns for wire delay.)
Similarly, the access time of a 64KB 8-way set associative
cache with 3 read ports is computed to be 3 cycles (twice the
latency of a 8KB direct-mapped 2-ported partition + 0.625
ns for wire delay.) Performance for a partitioned cache with
eight 8KB direct-mapped partitions and two read ports is
shown for an access time varying from 3 cycles to a single
cycle. Based on the CACTTI data shown in table 2, a single-
cycle cache access latency is the most reasonable estimate.
The single-cycle partitioned cache outperforms the “64KB-
dm 4-ports 3-cycle unpartitioned” configuration by 4.5%,
and the “64KB-8way 3-ports 4-cycle unpartitioned” config-
uration by 7.0%.

7. CONCLUSIONS

A high speed, high bandwidth first level cache is critical
to the performance of a superscalar processor. As clock
frequencies continue to increase, it will become more and
more difficult to achieve this requirement with a centralized
structure. Already, current processors are including pipeline

stages that do nothing but move data from one point on the
chip to another. This paper presents a mechanism that al-
lows the first level of the memory hierarchy to be arbitrarily
distributed across the processor die, allowing wire delay to
be minimized. The partitioning scheme functions without
the need for compiler support or profiling information and
will dynamically adapt to the data usage patterns of the
running program. It can be combined with any previously
published scheme for streamlining the data cache access or
implementing associativity in a direct-mapped cache array.
This paper has shown that further increasing the associa-
tivity or decreasing the access time of the partitioned cache
through these methods will yield additional performance
gains.

The partitioned cache has been shown to decrease
cache access time and increase cache bandwidth while main-
taining a reasonable hit rate. These benefits are achieved
with a minimum amount of additional maintenance infor-
mation, and the partitioned cache actually ends up consid-
erably simplifying the hardware involved in memory disam-
biguation. A direct-mapped partitioned cache with eight
8KB partitions achieves a hit rate greater than that of
an unpartitioned 32KB direct-mapped cache. When in-
corporating the likely reduction in cache access latency, a
single-cycle two-ported partitioned cache consisting of eight
8KB direct-mapped partitions outperforms a 3-cycle 64KB
direct-mapped by 4.5%, and a 4-cycle 3-ported 64KB 8-way
set-associative cache by 7.0%. The access latency of the
partitioned cache is equivalent to that of an 8KB direct
mapped unpartitioned cache placed immediately adjacent
to all load/store units that must access it.

The partitioned cache does have some weaknesses. In-
dividual static loads that access data footprints larger than
a single partition are awkward for the partition cache to
handle, since it does not assign partitions on a finer gran-
ularity than instruction address. The partitioned cache, as
presented here, cannot provide associativity between static
loads that share the same data. A possible solution to this
problem is to implement a different hashing function for
each partition, in the hope that the loads will migrate to
a partition where they will conflict less. The performance
of large, high-associativity partitioned caches is dominated
by invalidation misses, and does not compare favorably with
equivalent unpartitioned caches. Future research will exam-
ine these issues.

8. ACKNOWLEDGMENTS

We gratefully acknowledge the Cockrell Foundation and
Intel Corporation for supporting the research that led to
this paper. We thank the anonymous reviewers and FEric
Sprangle for their comments on earlier drafts of this work,
as well as the other members of the HPS research group and
associated research scientists for their continual interaction
and insights.

9. REFERENCES

[1] A. Agarwal, J. Hennessy, and M. Horowitz. Cache
performance of operating systems and
multiprogramming. ACM Transactions on Computer
Systems, 6(4):393-431, Nov. 1988.

[2] A. Agarwal and S. Pudar. Column-associative caches:
A technique for reducing the miss rate of



8]

[4]

[5]

(6]

[7]

8]

[9]

(10]

direct-mapped caches. In Proceedings of the 20th
Annual International Symposium on Computer
Architecture, pages 179-190, 1993.

B. Batson and T. N. Vijaykumar. Reactive associative
caches. In Proceedings of the 2001 International
Conference on Parallel Architecture and Compilation,
2001.

B. Calder and D. Grunwald. Next cache line and set
prediction. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture,
pages 287-296, 1995.

S. Cho, P. C. Yew, and G. Lee. Access region locality
for high-bandwidth processor memory system design.
In Proceedings of the 32th Annual ACM/IEEE
International Symposium on Microarchitecture, 1999.
S. Cho, P. C. Yew, and G. Lee. Decoupling local
variable accesses in a wide-issue superscalar processor.
In Proceedings of the 26th Annual International
Symposium on Computer Architecture, pages 100-110,
1999.

K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic.
The multicluster architecture: Reducing cycle time
through partitioning. In Proceedings of the 30th
Annual ACM/IEEE International Symposium on
Microarchitecture, pages 149-159, Dec. 1997.

M. Franklin. The multiscalar architecture. Technical
Report 1196, Computer Sciences Department,
University of Wisconsin - Madison, Nov. 1993.

L. Gwennap. Digital 21264 sets new standard.
Microprocessor Report, pages 11-16, Oct. 1996.

H. V. Henk Neefs and K. D. Bosschere. A technique
for high bandwidth and deterministic low latency
load/store accesses to multiple cache banks. In
Proceedings of the Sizth IEEE International
Symposium on High Performance

(15]

(16]

(17]

(19]

Computer Architecture, pages 313—-324, 2000.

T. Juan, T. Lang, and J. J. Navarro. The
difference-bit cache. In Proceedings of the 23rd Annual
International Symposium on Computer Architecture,
pages 114-120, 1996.

R. Kessler, R. Joss, A. Lebeck, and M. Hill.
Inexpensive implementations of set-associativity. In
Proceedings of the 16th Annual International
Symposium on Computer Architecture, pages 131-139,
1989.

D. Limaye, R. Rakvic, and J. P. Shen. Parallel
cachelets. In International Conference on Computer
Design, pages 284-292, 2001.

S. Palacharla, N. P. Jouppi, and J. E. Smith.
Complexity-effective superscalar processors. In
Proceedings of the 24th Annual International
Symposium on Computer Architecture, 1997.

G. Reinman and N. P. Jouppi. Cacti 2.0: An
integrated cache timing and power model. Technical
report, Western Research Laboratory, 2000.

K. So and R. N. Rechtschaffen. Cache operations by
MRU change. IEEE Transactions on Computers,
37(6):700-709, June 1988.

A. Wolfe and R. Boleyn. Two-ported cache
alternatives for superscalar processors. In Proceedings
of the 26th Annual ACM/IEEE International
Symposium on Microarchitecture, pages 41-48, 1993.
A. Yoaz, M. Erez, R. Ronen, and S. Jourdan.
Speculation techniques for improving load related
instruction scheduling. In Proceedings of the 26th
Annual International Symposium on Computer
Architecture, May 1999.

C. Zhang, X. Zhang, and Y. Yan. Two fast and
high-associativity cache schemes. IEEE Micro, pages
40-49, Sept. 1997.



