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Abstract— Previous research on runahead execution took it for
granted as a prefetch-only technique. Even though the results of
instructions independent of an L2 miss are correctly computed
during runahead mode, previous approaches discarded those
results instead of trying to utilize them in normal mode execution.
This paper evaluates the effect of reusing the results of pre-
executed instructions on performance. We find that, even with
an ideal scheme, it is not worthwhile to reuse the results of pre-
executed instructions. Our analysis provides insights into why re-
sult reuse does not provide significant performance improvement
in runahead processors and concludes that runahead execution
should be employed as a prefetching mechanism rather than a
full-blown prefetching/result-reuse mechanism.

I. INTRODUCTION

Runahead execution is a technique that improves proces-
sor performance by pre-executing the running application
instead of stalling the processor when a long-latency cache
miss occurs. Previous research has shown that this technique
significantly improves the performance of high-performance
processors in the face of long main memory latencies. Previous
papers on runahead execution took it for granted as a prefetch-
only technique [3], [7]. Even though the results of most
instructions independent of an L2 miss are correctly computed
during runahead mode, previous approaches discarded those
results instead of trying to utilize them in normal mode
execution. Discarding the instruction results generated during
runahead mode, as opposed to buffering them and reusing
them in normal mode, is very appealing due to two reasons.
First, it simplifies the implementation of a runahead processor.
Any attempt at reusing the results generated during runahead
mode needs to provide storage for those results and needs
to provide a mechanism through which those results are
incorporated into the processor state (register file and memory)
during normal mode. These requirements increase the area,
design complexity, and probably the peak power consumption
of the runahead processor.

Second, discarding the instruction results generated during
runahead mode decreases the verification complexity of a
runahead processor. If results of instructions are not reused,
runahead execution does not require any correctness guaran-
tees, since it is purely speculative (i.e., it never updates the
architectural state of the processor). Reusing instruction results
requires correctness guarantees in the form of mechanisms
that make sure that the reused values used to update the
architectural state are correct. This requirement is likely to
increase the design verification time of a runahead processor.
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On the other hand, reuse of instruction results is also
appealing in two ways. First, it has the potential to increase
performance, since instructions that are valid during runahead
mode do not need to be executed during normal mode and
therefore they do not need to consume processor resources
during normal mode. This frees up space in the processor
for other instructions and possibly enables the processor to
make faster progress through the instruction stream. Second,
the reuse of instruction results increases the efficiency of a
runahead processor. An aggressive reuse scheme reduces the
total number of instructions executed by a runahead processor,
thereby increasing its efficiency.

To quantify the advantages of the reuse of instruction results
generated during runahead mode, this paper examines the
effects of reuse on the performance of a runahead processor. If
the reuse of results could improve the performance of a runa-
head processor significantly, perhaps it would be worthwhile
to research techniques for implementing reuse.

Il. EVALUATION

We consider the hypothetical ideal reuse model to assess
the performance potential of runahead result reuse. In this
mechanism, if an instruction was valid (correctly-executed)
during runahead mode, it consumes no processor resources
(including fetch bandwidth) during normal mode and updates
the architectural state of the processor with the value it
computed during runahead mode. Note that this mechanism
is not implementable. We only simulate it to get an upper
bound on the performance improvement that can be achieved.

In the ideal reuse mechanism, the instructions pseudo-
retired during runahead mode write their results and INV status
into a FIFO reuse queue, the size of which is sufficiently large
(64K entries) in our experiments. At the end of a runahead
period, the reuse queue contains a trace of all instructions
pseudo-retired in the runahead period along with their program
counters, results, and INV status. During normal mode, the
simulator reads instructions from this queue, starting with
the first instruction pseudo-retired during runahead mode. If
the processor encounters an INV instruction in the queue, it
is inserted into the pipeline to be executed, since the result
for an INV instruction was not generated during runahead
mode. If the processor encounters a valid instruction, the
instruction is not inserted into the pipeline, but the simulator
makes sure that its results are correctly incorporated into the
architectural state at the right time, without any latency cost.
Hence, the processor is able to fetch a fetch-width worth of
INV instructions from the reuse queue each cycle, regardless
of the number of intervening valid instructions. If an INV
branch that was fetched from the reuse queue is found out



to be mispredicted after it is executed in normal mode, the
reuse queue is flushed and the fetch engine is redirected to
the correct next instruction after the mispredicted INV branch.
An INV branch is mispredicted if the program counter of the
next instruction fetched from the reuse queue does not match
the address of next instruction as calculated by the execution
of the branch. When the reuse queue is empty, the simulator
fetches from the I-cache just like in a normal processor.® As
an optimization, if the processor enters runahead mode again
while fetching from the reuse queue, the processor continues
fetching from the reuse queue. Therefore, valid instructions
that are executed in the previous runahead period do not need
to be executed again in the next entry into runahead mode. A
runahead period overlapping with a previous runahead period
can thus reuse the instruction results generated in the previous
period. This allows for further progress in the instruction-
stream during runahead mode.

A. Simulation Methodology

We use an execution-driven simulator that models a super-
scalar, out-of-order processor implementing the Alpha ISA.
The machine parameters are listed in Table I. An aggressive
state-of-the-art stream-based prefetcher similar to the one
described in [11] is also employed in the baseline processor.
All experiments were performed using the SPEC 2000 Integer
(INT) and Floating Point (FP) benchmarks. INT benchmarks
are run to completion with a reduced input set [5].> FP
benchmarks are simulated using the reference input set. The
initialization portion is skipped for each FP benchmark and
simulation is performed for the next 250 million instructions.

TABLE |
BASELINE PROCESSOR CONFIGURATION.

Front End || 64KB, 4-way |-cache; 8-wide fetch, decode, rename; 64K-entry
gshare/PAs hybrid branch pred.; min. 20-cycle mispred. penalty
Execution || 128-entry reorder buffer; 8 al-purpose functional units, inst. latencies:
Core IMUL (8),FMUL (4),FCVT(4),FCMP(4),FADD(4),FDIV (16),0thers(1);
64-entry store buffer, stores don’t block the reorder buffer
64KB, 4-way, 2-cycle L1 D-cache, 128 L1 MSHRs, 4 Id/st per cycle;
Caches 1MB, 32-way, 10-cycle unified L2, 1 Id/st per cycle; 128 L2 MSHRs
al caches have LRU replacement and 64B line size; 1-cycle AGEN
Memory || 500-cycle min. latency; 32 banks; 32B-wide, split-trans. core-to-mem.
bus at 4:1 freq. ratio; conflicts, bandwidth, and queueing modeled
Prefetcher || Stream-based [11]; 32 stream buffers; can stay 64 cache lines ahead

I1l. PERFORMANCE POTENTIAL OF RESULT REUSE

Figure 1 shows the IPC of four processors for each bench-
mark: from left to right, a processor with no prefetcher, the
baseline processor, the baseline processor with runahead, and
the baseline processor with runahead and ideal reuse. On
average, adding runahead execution to the baseline processor
increases the baseline IPC by 22.64%. Adding ideal reuse
to the runahead processor improves the average IPC by an
additional 1.64%. Unfortunately, such a small performance im-
provement, even with an ideal mechanism, probably does not
justify the cost and complexity of adding a reuse mechanism
to a runahead execution processor.

INote that this mechanism does not allow the reuse of results generated by
instructions executed on the wrong path during runahead mode. Section 111-B
examines the impact of ideal reuse on a processor with perfect branch predic-
tion, which gives the ultimate upper bound on the performance achievable by
reusing the results of all valid instructions pre-executed in runahead mode.

2We also simulated the ideal reuse mechanism with the reference input
set for the INT benchmarks and larger L2 caches. These are not presented
due to space limitations, but they lead to the same conclusions described in
Section 11I.
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Fig. 1. IPC of the baseline processor with runahead and ideal reuse.

A. Why Does Reuse Not Increase Performance Significantly?

We analyzed why ideal result reuse does not increase
the IPC of a runahead execution processor significantly. We
identify four reasons as to why this is the case.

First, the percentage of retired instructions that are ideally
reused is very low in many benchmarks. Result reuse can only
be effective if it significantly reduces the number of retired
instructions by eliminating those that are executed in runahead
mode. Figure 2 shows the breakdown of retired instructions
based on where they were fetched from. An instruction that
is “Reuse queue fetch - ideally reused” does not consume
processor resources in normal mode. All other instructions
need to be executed as described in Section Il. Figure 2
shows that only 8.5% of the instructions are eliminated (ideally
reused) during normal mode.® The percentage of ideally reused
instructions is low because: (1) For many benchmarks, the
processor spends a small amount of time during runahead
mode, which means only a small number of instructions are
pre-executed in runahead mode. Hence, there are not a lot of
opportunities for reuse. (2) The results of instructions after
a mispredicted INV branch cannot be reused. This limits the
number of reused results especially in integer benchmarks,
where 43% of all instructions pseudo-retired during runahead
mode are after a mispredicted INV branch. Unfortunately, even
in FP benchmarks, where only 5% of instructions pseudo-
retired during runahead mode are after a mispredicted INV
branch, ideal reuse does not result in a large IPC increase due
to the reasons explained in the following paragraphs.

Second, and more importantly, eliminating an instruction
does not guarantee increased performance because eliminating
the instruction may not reduce the critical path of program
execution. The processor still needs to execute the instructions
that cannot be eliminated because they were INV in runahead
execution. After eliminating the valid instructions, instructions
that are INV become the critical path during normal mode
execution.* If this INV critical path is longer than or as long
as the critical path of the eliminated valid instructions, we
should not expect much performance gain unless the processor
is limited by execution bandwidth. Our analysis of the code
shows the execution of valid instructions after runahead mode

30nly in perlbmk, ammp, art, equake, lucas, and swim does the percentage
of eliminated instructions exceed 10%. With the exception of lucas, these
are the benchmarks that see the largest IPC improvements over the runahead
processor with the ideal reuse mechanism.

4In some cases they were already on the critical path, regardless of the
elimination of valid instructions.
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Fig. 2. Classification of retired instructions in the ideal reuse model.

is actually much faster than the execution of INV instructions,
in general. Instructions that were valid in runahead mode can
be executed much faster in normal mode because they do
not incur any L1 or L2 cache misses in normal mode.® In
contrast, instructions that were INV can and do incur L1 and
L2 misses during normal mode, making them more expensive
to execute. We find that the average execution time of a valid
instruction is only 2.48 cycles after runahead mode, whereas
the average execution time of an INV instruction is 14.58
cycles. Thus, ideal reuse eliminates valid instructions that
do not take long to execute. Therefore, it cannot reduce the
critical path of the program significantly and results in small
performance improvements.® Table 11 provides supporting data
showing that although most of the instructions pre-executed
in runahead mode are valid (row 6), an important percentage
of INV instructions incur very long latency L2 misses and
relatively long latency L1 misses in normal mode (rows 7-
8) and therefore take much longer to execute than valid
instructions (rows 12-13).

TABLE 11
RUNAHEAD EXECUTION STATISTICS RELATED TO IDEAL REUSE.

[ Row | Statistic [ INT ] FP [ Average |
1 | Percent cycles in runahead mode 13.7% 27.1% 21.2%
2 | Cycles per runahead (RA) period 474 436 454
3 | L2 misses captured per RA period 145 34 25
4 | Pseudo-retired inst. per RA period 1240 1169 1201
5 | Correct-path inst. per RA period 712 (57%) | 1105 (95%) | 923 (77%)
6 |INV inst. per RA period 544 (44%) | 264 (23%) | 393 (33%)
7 | % of INV/valid that are L2 miss 1.4%/0% 2.1%/0% 1.9%/0%
8 | % of INV/valid that are D-cache miss || 3.0%/0% 2.8%/0% 2.9%/0%
9 | % of INV/valid that are D-cache hit 38%/38% | 36%/44% | 36%/43%
10 | % of INV/valid inst. that are FP 0.8%/0.4% | 60%/25% | 43%/20%
11 | % of INV/valid that are 1-cycle 59%/61% | 2%/31% | 18%/37%
12 | Avg. latency of valid inst. (after RA) 1.78 cyc 2.66 cyc 2.48 cyc
13 | Avg. latency of INV inst. (after RA) 10.16 cyc | 16.31 cyc | 1458 cyc
14 | IPC improvement of ideal reuse 0.90% 2.45% 1.64%

Figure 3 shows an example data-flow graph from mcf
demonstrating why reuse may not increase performance. In
this example, shaded instructions were INV during runahead
mode. Numbers by the data-flow arcs show the latency of
the instructions. After exit from runahead mode, the second
INV load takes 13 cycles because it incurs an L1 data cache
miss. Therefore, the INV dependence chain takes 17 cycles
to execute. If there is no result reuse, valid instructions take

SExcept in the rare case when the runahead period was so long that it
caused thrashing in the L1 cache.

6Note that ideal reuse is more effective in FP benchmarks than in INT
benchmarks, because it eliminates some FP dependence chains that take a
long time to execute due to the relatively long-latency FP instructions.

only 6 cycles to execute because there are enough execution
resources in the processor core. Hence, eliminating these valid
instructions via ideal reuse does not affect the critical path
and does not increase performance, even though the number
of valid instructions is larger than the number of INV ones.
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Fig. 3. Example showing why reuse does not increase performance.

Third, if the execution time of a benchmark is dominated
by long-latency memory accesses (memory-bound), the perfor-
mance potential of result reuse is not very high since reuse can
only speed up the smaller execution-bound portion. That is, the
ideal reuse of valid instructions cannot reduce the number of
cycles spent on long-latency memory accesses. Note that this
is a special case of Amdahl’s Law [2]. If the optimization we
apply (reuse) speeds up only a small fraction of the program
(execution-bound portion of the program), the performance
gain due to that optimization will be small. Unfortunately,
memory-bound benchmarks are also the benchmarks that ex-
ecute many instructions in runahead mode. Art is a very good
example of a memory-bound benchmark. We find that, in art,
86% of all cycles are spent waiting for long-latency L2 load
misses to be serviced. Hence, even if all other execution cycles
are magically eliminated, only a 16% IPC improvement can
be achieved. This constitutes a loose upper bound on the IPC
improvement that can be attained by the ideal reuse scheme.
In our simulations, the ideal reuse scheme only increases the
IPC of art on the runahead processor by 3.3%, even though it
eliminates 51% of all retired instructions.

Fourth, a processor that implements ideal reuse enters some
performance-degrading short runahead periods that do not
exist in the baseline runahead processor. The ideal reuse
processor reaches an L2-miss load faster than the baseline
runahead processor, due to the elimination of valid instructions
in normal mode. If there is a prefetch pending for this load,
the ideal reuse processor provides less time than the baseline
runahead processor for the prefetch to complete before the
load is executed (since it reaches the load quicker), which
makes the ideal reuse processor more likely to enter runahead
mode for the load than the baseline runahead processor. This
runahead period is usually very short and results in a pipeline
flush without any performance benefit. Such periods, which
do not exist in the baseline runahead processor, reduce the
performance benefit due to ideal reuse.

B. Effect of Main Memory Latency and Branch Prediction

Memory latency is an important factor on the performance
impact of result reuse, since it affects the number of instruc-
tions executed during runahead (hence, the number of instruc-
tions that can possibly be reused) and it affects how much of a
program’s total execution time is spent on servicing L2 cache



misses. Branch prediction accuracy is also an important factor,
because it affects the number of useful instructions that can be
reused (by affecting the number of mispredicted INV branches
during runahead mode or by affecting when they occur during
runahead mode [7]).

The left graph in Figure 4 shows the average IPC im-
provement of runahead execution and runahead with ideal
reuse over the respective baseline processor for four different
memory latencies. As the memory latency becomes shorter,
the processor spends less time and executes fewer instructions
during runahead mode. This reduces the percentage of retired
instructions that are ideally reused in a program. For all four
memory latencies, the IPC improvement of ideal reuse is not
very promising.

The right graph in Figure 4 shows the average IPC improve-
ment of runahead execution and runahead with ideal reuse
over the respective baseline processor with perfect branch
prediction for the same four memory latencies. Ideal reuse
on a processor with perfect branch prediction shows more
performance potential for INT benchmarks than ideal reuse
on a processor with imperfect branch prediction. On INT
benchmarks, with perfect branch prediction, runahead execu-
tion by itself improves the IPC of the baseline processor with
500-cycle main memory latency by 18%, whereas ideal reuse
improves the IPC of the same processor by 23%. Therefore,
even if an ideal reuse mechanism is implemented in a runahead
processor, the prefetching benefit of runahead execution would
provide most of the performance improvement obtained over
the baseline processor. The additional performance improve-
ment due to ideal reuse is still perhaps not large enough to
warrant the implementation of a realistic reuse mechanism,
even with perfect branch prediction.
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Fig. 4. Effect of memory latency and branch prediction on reuse performance.

1V. RELATED WORK

Several previous papers proposed the use of runahead
execution for improving the latency tolerance of microproces-
sors [3], [7].- The possibility of the reuse of results generated
during runahead execution was mentioned by Mutlu et al. [7],
but design trade-offs related to it were not discussed or
evaluated. Dundas evaluated reusing the branch outcomes
generated during runahead mode and found that such reuse
did not result in significant performance benefits [4].

Sodani and Sohi proposed a general-purpose mechanism for
reusing the results generated by instructions in order to elimi-
nate redundant computations [8]. We pursue the same goal of
eliminating redundant computations and possibly instructions
by evaluating the reuse of runahead results. Our results are
not as promising as what they reported because: (1) memory
latencies are much longer in today’s processors, which makes

the execution of instructions cheap in terms of performance;
(2) we evaluated the effect of result reuse in a more special-
purpose context, i.e., reusing runahead results.

Srinivasan et al. proposed Continual Flow Pipelines [10] as
a mechanism that stores instructions dependent on L2 misses
in a large buffer so that they do not occupy scheduler and
register file entries for a long time. This mechanism is not a
reuse mechanism, but it frees up resources so that L2-miss
independent instructions can execute early in a CPR proces-
sor [1]. Srinivasan et al. found that allowing the execution
of L2-miss independent instructions significantly improves the
performance of a CPR processor, a result that is seemingly at
odds with the results presented in this paper. The differences in
results can be due to: (1) the fundamental differences between
the CPR and runahead processing paradigms; e.g., a runahead
processor pre-processes the L2-miss independent instructions
whereas a CPR processor does not, which may make the
processing of these instructions more costly for the CPR
processor; (2) the differences in the evaluated benchmarks
and the ISAs; (3) the differences in the modeled instruction
latencies (Srinivasan et al. [10] did not specify the modeled
instruction latencies). Further research is needed to understand
these differences.

Value prediction [6] is a technique that may overcome some
of the limitations of reuse [9]. Therefore, combining runahead
execution with value prediction may have more potential and
we are examining this in our current work.

V. CONCLUSION

We examined the performance impact of reusing the results
of instructions pre-executed in runahead mode. Even with an
ideal reuse mechanism, along with perfect branch prediction,
reuse of results does not show significant performance benefits.
We provided insights into why this is the case. We conclude
that runahead execution should be employed as a prefetching
mechanism without reuse, since reuse does not provide sig-
nificant performance benefits while it very likely significantly
increases the implementation cost and complexity.
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