
Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark † Chris Wilkerson ‡ Yale N. Patt §

§ECE Department
The University of Texas at Austin

{onur,patt}@ece.utexas.edu

†Microprocessor Research
Intel Labs

jared.w.stark@intel.com

‡Desktop Platforms Group
Intel Corporation

chris.wilkerson@intel.com

Abstract

Today’s high performance processors tolerate long la-
tency operations by means of out-of-order execution. How-
ever, as latencies increase, the size of the instruction win-
dow must increase even faster if we are to continue to tol-
erate these latencies. We have already reached the point
where the size of an instruction window that can handle
these latencies is prohibitively large, in terms of both de-
sign complexity and power consumption. And, the problem
is getting worse. This paper proposes runahead execution
as an effective way to increase memory latency tolerance
in an out-of-order processor, without requiring an unrea-
sonably large instruction window. Runahead execution un-
blocks the instruction window blocked by long latency op-
erations allowing the processor to execute far ahead in the
program path. This results in data being prefetched into
caches long before it is needed. On a machine model based
on the Intel R© Pentium R© 4 processor, having a 128-entry in-
struction window, adding runahead execution improves the
IPC (Instructions Per Cycle) by 22% across a wide range of
memory intensive applications. Also, for the same machine
model, runahead execution combined with a 128-entry win-
dow performs within 1% of a machine with no runahead
execution and a 384-entry instruction window.

1. Introduction

Today’s high performance processors tolerate long la-
tency operations by implementing out-of-order instruction
execution. An out-of-order execution engine tolerates long
latencies by moving the long-latency operation “out of the
way” of the operations that come later in the instruction
stream and that do not depend on it. To accomplish this,

Intel R© and Pentium R© are trademarks or registered trademarks of In-
tel Corporation or its subsidiaries in the United States and other countries.

the processor buffers the operations in an instruction win-
dow, the size of which determines the amount of latency the
out-of-order engine can tolerate.

Today’s processors are facing increasingly larger laten-
cies. With the growing disparity between processor and
memory speeds, operations that cause cache misses out to
main memory take hundreds of processor cycles to com-
plete execution [25]. Tolerating these latencies solely with
out-of-order execution has become difficult, as it requires
ever-larger instruction windows, which increases design
complexity and power consumption. For this reason, com-
puter architects developed software and hardware prefetch-
ing methods to tolerate these long memory latencies.

We propose using runahead execution [10] as a substi-
tute for building large instruction windows to tolerate very
long latency operations. Instead of moving the long-latency
operation “out of the way,” which requires buffering it and
the instructions that follow it in the instruction window,
runahead execution on an out-of-order execution processor
tosses it out of the instruction window.

When the instruction window is blocked by the long-
latency operation, the state of the architectural register file is
checkpointed. The processor then enters “runahead mode.”
It distributes a bogus result for the blocking operation and
tosses it out of the instruction window. The instructions fol-
lowing the blocking operation are fetched, executed, and
pseudo-retired from the instruction window. By pseudo-
retire, we mean that the instructions are executed and com-
pleted as in the conventional sense, except that they do not
update architectural state. When the blocking operation
completes, the processor re-enters “normal mode.” It re-
stores the checkpointed state and refetches and re-executes
instructions starting with the blocking operation.

Runahead’s benefit comes from transforming a small in-
struction window which is blocked by long-latency opera-
tions into a non-blocking window, giving it the performance
of a much larger window. The instructions fetched and exe-
cuted during runahead mode create very accurate prefetches



for the data and instruction caches. These benefits come at
a modest hardware cost, which we will describe later.

In this paper we only evaluate runahead for memory op-
erations that miss in the second-level cache, although it can
be initiated on any long-latency operation that blocks the in-
struction window. We use Intel’s IA-32 ISA, and through-
out this paper, microarchitectural parameters (e. g., instruc-
tion window size) and IPC (Instructions Per Cycle) perfor-
mance are reported in terms of micro-operations. Using
a machine model based on the Intel Pentium 4 processor,
which has a 128-entry instruction window, we first show
that current out-of-order execution engines are unable to
tolerate long main memory latencies. Then we show that
runahead execution can better tolerate these latencies and
achieve the performance of a machine with a much larger
instruction window. Our results show that a baseline ma-
chine with a realistic memory latency has an IPC perfor-
mance of 0.52, whereas a machine with a 100% second-
level cache hit ratio has an IPC of 1.26. Adding runahead
increases the baseline’s IPC by 22% to 0.64, which is within
1% of the IPC of an identical machine with a 384-entry in-
struction window.

2. Related work

Memory access is a very important long-latency op-
eration that has concerned researchers for a long time.
Caches [29] tolerate memory latency by exploiting the
temporal and spatial reference locality of applications.
Kroft [19] improved the latency tolerance of caches by al-
lowing them to handle multiple outstanding misses and to
service cache hits in the presence of pending misses.

Software prefetching techniques [5, 22, 24] are effective
for applications where the compiler can statically predict
which memory references will cause cache misses. For
many applications this is not a trivial task. These techniques
also insert prefetch instructions into applications, increasing
instruction bandwidth requirements.

Hardware prefetching techniques [2, 9, 16, 17] use dy-
namic information to predict what and when to prefetch.
They do not require any instruction bandwidth. Different
prefetch algorithms cover different types of access patterns.
The main problem with hardware prefetching is the hard-
ware cost and complexity of a prefetcher that can cover the
different types of access patterns. Also, if the accuracy of
the hardware prefetcher is low, cache pollution and unnec-
essary bandwidth consumption degrades performance.

Thread-based prefetching techniques [8, 21, 31] use idle
thread contexts on a multithreaded processor to run threads
that help the primary thread [6]. These helper threads ex-
ecute code which prefetches for the primary thread. The
main disadvantage of these techniques is they require idle
thread contexts and spare resources (e. g., fetch and execu-

tion bandwidth), which are not available when the processor
is well used.

Runahead execution [10] was first proposed and evalu-
ated as a method to improve the data cache performance
of a five-stage pipelined in-order execution machine. It
was shown to be effective at tolerating first-level data cache
and instruction cache misses [10, 11]. In-order execution is
unable to tolerate any cache misses, whereas out-of-order
execution can tolerate some cache miss latency by exe-
cuting instructions that are independent of the miss. We
will show that out-of-order execution cannot tolerate long-
latency memory operations without a large, expensive in-
struction window, and that runahead is an alternative to a
large window. We also introduce the “runahead cache” to
effectively handle store-load communication during runa-
head mode.

Balasubramonian et al. [3] proposed a mechanism to ex-
ecute future instructions when a long-latency instruction
blocks retirement. Their mechanism dynamically allocates
a portion of the register file to a “future thread,” which is
launched when the “primary thread” stalls. This mechanism
requires partial hardware support for two different contexts.
Unfortunately, when the resources are partitioned between
the two threads, neither thread can make use of the ma-
chine’s full resources, which decreases the future thread’s
benefit and increases the primary thread’s stalls. In runa-
head execution, both normal and runahead mode can make
use of the machine’s full resources, which helps the ma-
chine to get further ahead during runahead mode.

Finally, Lebeck et al. [20] proposed that instructions de-
pendent on a long-latency operation be removed from the
(relatively small) scheduling window and placed into a (rel-
atively big) waiting instruction buffer (WIB) until the oper-
ation is complete, at which point the instructions are moved
back into the scheduling window. This combines the la-
tency tolerance benefit of a large instruction window with
the fast cycle time benefit of a small scheduling window.
However, it still requires a large instruction window (and a
large physical register file), with its associated cost.

3. Out-of-order execution and memory latency
tolerance

3.1. Instruction and scheduling windows

Out-of-order execution can tolerate cache misses better
than in-order execution by scheduling operations that are in-
dependent of the miss. An out-of-order execution machine
accomplishes this using two windows: the instruction win-
dow and the scheduling window. The instruction window
holds all the instructions that have been decoded but not
yet committed to the architectural state. Its main purpose is
to guarantee in-order retirement of instructions in order to



support precise exceptions. The scheduling window holds a
subset of the instructions in the instruction window. Its main
purpose is to search its instructions each cycle for those that
are ready to execute and to schedule them for execution.

A long-latency operation blocks the instruction window
until it is completed. Although later instructions may have
completed execution, they cannot retire from the instruction
window. If the latency of the operation is long enough and
the instruction window is not large enough, instructions pile
up in the instruction window and it becomes full. The ma-
chine then stalls and stops making forward progress. 1

3.2. Memory latency tolerance of an out-of-order
processor

In this section, we show that an idealized version of a
current out-of-order execution machine spends most of its
time stalling, mostly waiting for main memory. We model
both a 128 and a 2048 entry instruction window. All other
machine buffers except the scheduler are set to either 128
or 2048 entries so they do not create bottlenecks. The fetch
engine is ideal in that it never suffers from cache misses
and always supplies a fetch-width’s worth of instructions
every cycle. Thus fetch never stalls. However, it does use a
real branch predictor. The other machine parameters are the
same as those of the current baseline—which is based on
the Intel Pentium 4 processor—and are shown in Table 2.

Figure 1 shows the percentage of cycles the instruction
window is stalled for seven different machines. The number
on top of each bar is the IPC of the machine. The data is an
average over all benchmarks simulated. (See Section 5.)

0

10

20

30

40

50

60

70

80

90

100

%
 c

yc
le

s 
w

/ f
ul

l i
ns

t 
w

in
do

w
 s

ta
lls

finite sched, real L2, 128-entry inst window
infinite sched, real L2, 128-entry inst window
finite sched, perfect L2, 128-entry inst window
infinite sched, perfect L2, 128-entry inst window
infinite sched, real L2, 2048-entry inst window
infinite sched, perfect L2, 2048-entry inst window
finite sched, runahead on real L2, 128-entry inst window

0.73 0.77

1.66 1.69 1.15

2.02

0.94

Figure 1. Percentage of cycles with full in-
struction window stalls. The number on top
of each bar is the IPC of the machine.

1The machine can still fetch and buffer instructions but it cannot de-
code, schedule, execute, and retire them.

The machine with a 128-entry instruction window, a fi-
nite scheduling window size, and a real L2 cache spends
71% of its cycles in full instruction window stalls, where no
progress is made. If the scheduler is removed from being
a bottleneck by making the scheduling window size infi-
nite, the instruction window still remains a bottleneck, with
70% of all cycles spent in full window stalls. If instead the
main memory latency is removed from being a bottleneck
by making the L2 cache perfect, the machine only wastes
32% of its cycles in full window stalls. Thus most of the
stalls are due to main memory latency. Eliminating this la-
tency increases the IPC by 143%.

The machine with a 2048-entry instruction window and
a real L2 cache is able to tolerate main memory latency
much better than the machines with 128-entry instruction
windows and real L2 caches. Its percentage of full window
stalls is similar to those of the machines with 128-entry in-
struction windows and perfect L2 caches. However, its IPC
is not as high, because L2 misses are still not free. The ma-
chine with a 2048-entry instruction window and a perfect
L2 cache is shown for reference. It has the highest IPC and
almost no full window stalls. As shown in the rightmost
bar, runahead execution eliminates most of the full window
stalls due to main memory latency on a 128-entry window
machine, increasing IPC by more than 20%.

3.3. The insight behind runahead

The processor is unable to make progress while the
instruction window is blocked waiting for main memory.
Runahead execution removes the blocking instruction from
the window, fetches the instructions that follow it, and ex-
ecutes those that are independent of it. Runahead’s per-
formance benefit comes from fetching instructions into the
fetch engine’s caches and executing the independent loads
and stores that miss the first or second level caches. All
these cache misses are serviced in parallel with the miss
to main memory that initiated runahead mode, and pro-
vide useful prefetch requests. The premise is that this non-
blocking mechanism lets the processor fetch and execute
many more useful instructions than the instruction window
normally permits. If this is not the case, runahead provides
no performance benefit over out-of-order execution.

4. Implementation of runahead execution in an
out-of-order processor

In this section, we describe the implementation of runa-
head execution on an out-of-order processor, where in-
structions access the register file after they are sched-
uled and before they execute. The Intel Pentium 4 pro-
cessor [13], MIPS∗ R10000∗ microprocessor [30], and

∗Other names and brands may be claimed as the property of others.



Compaq∗ Alpha∗ 21264 processor [18] are examples of
such a microarchitecture. In some other microarchitectures,
such as the Intel Pentium Pro processor [12], instructions
access the register file before they are placed in the sched-
uler. The implementation details of runahead are slightly
different between the two microarchitectures, but the basic
mechanism works the same way.

Figure 2 shows the simulated processor pipeline. Dashed
lines in this figure show the flow of miss traffic out of the
caches. Shaded structures constitute the hardware required
to support runahead execution and will be explained in this
section. The Frontend Register Alias Table (RAT) [13] is
used for renaming incoming instructions and contains the
speculative mapping of architectural registers to physical
registers. The Retirement RAT [13] contains pointers to
those physical registers that contain committed architectural
values. It is used for recovery of state after branch mispre-
dictions and exceptions. Important machine parameters are
given in Section 5.

4.1. Entering runahead mode

A processor can enter runahead mode at any time. A
data cache miss, an instruction cache miss, and a scheduling
window stall are only a few of many possible events that can
trigger a transition into runahead mode. In our implemen-
tation, the processor enters runahead mode when a memory
operation misses in the second-level cache and that mem-
ory operation reaches the head of the instruction window.
The address of the instruction that causes entry into runa-
head mode is recorded. To correctly recover the architec-
tural state on exit from runahead mode, the processor check-
points the state of the architectural register file. For perfor-
mance reasons, the processor also checkpoints the state of
the branch history register and the return address stack. All
instructions in the instruction window are marked as “runa-
head operations” and will be treated differently by the mi-
croarchitecture. Any instruction that is fetched in runahead
mode is also marked as a runahead operation.

Checkpointing of the architectural register file can be ac-
complished by copying the contents of the physical registers
pointed to by the Retirement RAT, which may take time. To
avoid performance loss due to copying, the processor can
always update the checkpointed architectural register file
during normal mode. When a non-runahead instruction re-
tires from the instruction window, it updates its architectural
destination register in the checkpointed register file with its
result. No cycles are lost for checkpointing. Other check-
pointing mechanisms can also be used, but their discussion
is beyond the scope of this paper. No updates to the check-
pointed register file are allowed during runahead mode.

It is worthwhile to note that, with this kind of imple-
mentation, runahead execution introduces a second level

of checkpointing mechanism to the pipeline. Although the
Retirement RAT points to the architectural register state in
normal mode, it points to the pseudo-architectural register
state during runahead mode and reflects the state updated
by pseudo-retired instructions.

4.2. Execution in runahead mode

The main complexities involved with execution of runa-
head instructions are with memory communication and
propagation of invalid results. Here we describe the rules
of the machine and the hardware required to support them.

Invalid bits and instructions. Each physical register has
an invalid (INV) bit associated with it to indicate whether
or not it has a bogus value. Any instruction that sources
a register whose invalid bit is set is an invalid instruction.
INV bits are used to prevent bogus prefetches and resolution
of branches using bogus data.

If a store instruction is invalid, it introduces an INV
value to the memory image during runahead. To handle
the communication of data values (and INV values) through
memory during runahead mode, we use a small “runahead
cache” which is accessed in parallel with the first-level data
cache. We describe the rationale behind the runahead cache
and its design later in this section.

Propagation of INV values. The first instruction that in-
troduces an INV value is the instruction that causes the pro-
cessor to enter runahead mode. If this instruction is a load,
it marks its physical destination register as INV. If it is a
store, it allocates a line in the runahead cache and marks its
destination bytes as INV.

Any invalid instruction that writes to a register marks that
register as INV after it is scheduled or executed. Any valid
operation that writes to a register resets the INV bit of its
destination register.

Runahead store operations and runahead cache. In pre-
vious work [10], runahead store instructions do not write
their results anywhere. Therefore, runahead loads that are
dependent on valid runahead stores are regarded as invalid
instructions and dropped. In our experiments, partly due to
the limited number of registers in the IA-32 ISA, we found
that forwarding the results of runahead stores to runahead
loads is essential for high performance (See Section 6.4).

If both the store and its dependent load are in the instruc-
tion window, this forwarding is accomplished through the
store buffer that already exists in current out-of-order pro-
cessors. However, if a runahead load depends on a runahead
store that has already pseudo-retired (which means that the
store is no longer in the store buffer), it should get the re-
sult of the store from some other location. One possibil-



Frontend

RAT

SCHEDULER
FP

SCHEDULER
INT

SCHEDULER
MEM

FP
PHYSICAL

REG. FILE

PHYSICAL
INT

REG. FILE

EXEC
UNITS

INT

ADDR
GEN
UNITS

FP
EXEC
UNITS

DATA
CACHE

L1

STORE
BUFFER

RUNAHEAD
CACHE

FP Uop Queue

Int Uop QueueUop Queue

REORDER
BUFFER

RAT

FETCH

TRACE
CACHE

RENAMER

IN
V

IN
V

INV

Mem Uop Queue

Checkpointed 

Register File
Architectural 

RETIREMENT

UNIT

Instruction
Decoder

L2 CACHE

L2 Access Queue

Stream−based
Hardware
Prefetcher

Front Side Bus
Access Queue

From memory

To memory

Logic
Selection

Figure 2. Processor model used for description and evaluation of runahead. Figure is not to scale.

ity is to write the result of the pseudo-retired store into the
data cache. This introduces extra complexity to the design
of the data cache (and possibly to the second-level cache),
because the data cache needs to be modified so that data
written by speculative runahead stores is not used by future
non-runahead instructions. Writing the data of speculative
stores into the data cache can also evict useful cache lines.
Another possibility is to have a large fully-associative buffer
that stores the results of pseudo-retired runahead store in-
structions. But, the size and access time of this associative
structure can be prohibitively large. Also, such a structure
cannot handle the case where a load depends on multiple
stores, without increased complexity.

As a simpler alternative, we propose using the runahead
cache to hold the results and INV status of the pseudo-
retired runahead stores. The runahead cache is addressed
just like the data cache, but it can be much smaller in size,
because only a small number of store instructions pseudo-
retire during runahead mode.

Although we call it a cache (because it is physically the
same structure as a traditional cache), the purpose of the
runahead cache, is not to “cache” data. Its purpose is to
provide communication of data and INV status between in-
structions. The evicted cache lines are not stored back in
any other larger storage, they are simply dropped. The runa-
head cache is only accessed by runahead loads and stores.
In normal mode, no instruction accesses it.

To support correct communication of INV bits between
stores and loads, each entry in the store buffer and each byte
in the runahead cache has a corresponding INV bit. Each
byte in the runahead cache also has another bit associated
with it (the STO bit) indicating whether or not a store has
written to that byte. An access to the runahead cache results
in a hit only if the accessed byte was written by a store (STO
bit is set) and the accessed runahead cache line is valid. The
runahead stores follow the following rules to update these
INV and STO bits and store their results:

1. When a valid runahead store completes execution, it
writes its data into its store buffer entry (just like in a
normal processor) and resets the associated INV bit of
the entry. In the meantime, it queries the data cache
and sends a prefetch request down the memory hierar-
chy if it misses in the data cache.

2. When an invalid runahead store is scheduled, it sets the
INV bit of its associated store buffer entry.

3. When a valid runahead store exits the instruction win-
dow, it writes its result into the runahead cache, and
resets the INV bits of the written bytes. It also sets the
STO bits of the bytes it writes to.

4. When an invalid runahead store exits the instruction
window, it sets the INV bits and the STO bits of the
bytes it writes into (if its address is valid).

5. Runahead stores never write their results into the data
cache.



One complication arises when the address of a store op-
eration is invalid. In this case, the store operation is simply
treated as a NOP. Since loads are unable to identify their
dependencies on such stores, it is likely they will incor-
rectly load a stale value from memory. This problem can
be mitigated through the use of memory dependence pre-
dictors [7, 23] to identify the dependence between an INV-
address store and its dependent load. Once the dependence
has been identified, the load can be marked INV if the data
value of the store is INV. If the data value of the store is
valid, it can be forwarded to the load.

Runahead load operations. A runahead load operation can
be invalid due to three different reasons:

1. It may source an INV physical register.
2. It may be dependent on a store that is marked as INV

in the store buffer.
3. It may be dependent on a store that has already pseudo-

retired and was INV.

The last case is detected using the runahead cache. When
a valid load executes, it accesses three structures in parallel:
the data cache, the runahead cache, and the store buffer. If it
hits in the store buffer and the entry it hits is marked valid,
the load gets its data from the store buffer. If the load hits in
the store buffer and the entry is marked INV, the load marks
its physical destination register as INV.

A load is considered to hit in the runahead cache only if
the cache line it accesses is valid and STO bit of any of the
bytes it accesses in the cache line is set. If the load misses in
the store buffer and hits in the runahead cache, it checks the
INV bits of the bytes it is accessing in the runahead cache.
The load executes with the data in the runahead cache if
none of the INV bits is set. If any of the sourced data bytes
is marked INV, then the load marks its destination INV.

If the load misses in both the store buffer and runahead
cache, but hits in the data cache, then it uses the value from
the data cache and is considered valid. Nevertheless, it may
actually be invalid because of two reasons: 1) it may be de-
pendent on a store with INV address, or 2) it may be depen-
dent on an INV store which marked its destination bytes in
the runahead cache as INV, but the corresponding line in the
runahead cache was deallocated due to a conflict. However,
both of these are rare cases which do not affect performance
significantly.

If the load misses in all three structures, it sends a re-
quest to the second-level cache to fetch its data. If this re-
quest hits in the second-level cache, data is transferred from
the second-level cache to the first-level cache and load com-
pletes its execution. If the request misses in the second-level
cache, the load marks its destination register as INV and is
removed from the scheduler, just like the load that caused
entry into runahead mode. The request is sent to memory
like a normal load request that misses the L2 cache.

Execution and prediction of branches. Branches are pre-
dicted and resolved in runahead mode exactly the same way
they are in normal mode except for one difference: A branch
with an INV source, like all branches, is predicted and up-
dates the global branch history register speculatively, but,
unlike other branches, it can never be resolved. This is not
a problem if the branch is correctly predicted. However,
if the branch is mispredicted, the processor will always be
on the wrong path after the fetch of this branch until it hits
a control-flow independent point. We call the point in the
program where a mispredicted INV branch is fetched the
“divergence point.” Existence of divergence points is not
necessarily bad for performance, but as we will show later,
the later they occur in runahead mode, the better the perfor-
mance improvement.

One interesting issue with branch prediction is the train-
ing policy of the branch predictor tables during runa-
head mode. One option—and the option we use for our
implementation—is to always train the branch predictor ta-
bles. If a branch executes in runahead mode first and then
in normal mode, such a policy results in branch predictor
being trained twice by the same branch. Hence, the predic-
tor tables are strengthened and the counters may lose their
hysteresis. A second option is to never train the branch
predictor in runahead mode. This results in lower branch
prediction accuracy in runahead mode, which degrades per-
formance and moves the divergence point closer in time
to runahead entry point. A third option is to always train
the branch predictor in runahead mode, but also to use a
queue to communicate the results of branches from runa-
head mode to normal mode. The branches in normal mode
are predicted using the predictions in this queue, if a predic-
tion exists. If a branch is predicted using a prediction from
the queue, it does not train the predictor tables again. A
fourth option is to use two separate predictor tables for runa-
head mode and normal mode and to copy the table informa-
tion from normal mode to runahead mode on runahead en-
try. This option is costly to implement in hardware but we
simulated it to determine how much the twice-training pol-
icy of the first option matters. Our results show that training
the branch predictor table entries twice does not show sig-
nificant performance loss compared to the fourth option.

Instruction pseudo-retirement during runahead mode.
During runahead mode, instructions leave the instruc-
tion window in program order. If an instruction reaches
the head of the instruction window it is considered for
pseudo-retirement. If the instruction considered for pseudo-
retirement is INV, it is moved out of the window immedi-
ately. If it is valid, it needs to wait until it is executed (at
which point it may become INV) and its result is written
into the physical register file. Upon pseudo-retirement, an
instruction releases all resources allocated for its execution.



Both valid and invalid instructions update the Retirement
RAT when they leave the instruction window. The Retire-
ment RAT does not need to store INV bits associated with
each register, because physical registers already have INV
bits associated with them.

4.3. Exiting runahead mode

An exit from runahead mode can be initiated at any time.
For simplicity, we handle the exit from runahead mode the
same way a branch misprediction is handled. All instruc-
tions in the machine are flushed and their buffers are deallo-
cated. The checkpointed architectural register file is copied
into a pre-determined portion of the physical register file.
The frontend and retirement RATs are also repaired so that
they point to the physical registers that hold the values of
architectural registers. This recovery is accomplished by
reloading the same hard-coded mapping into both of the
alias tables. All lines in the runahead cache are invalidated
(and STO bits set to 0) and the checkpointed branch history
register and return address stack are restored upon exit from
runahead mode. The processor starts fetching instructions
starting at the address of the instruction that caused entry
into runahead mode.

Our policy is to exit from runahead mode when the data
of the blocking load returns from memory. An alternative
policy is to exit some time earlier using a timer so that a
portion of the pipeline-fill penalty or window-fill penalty [1]
is eliminated. We found that this alternative performs well
for some benchmarks whereas it performs badly for others.
Overall, exiting early performs slightly worse. The reason
it performs worse for some benchmarks is that some more
second-level cache miss prefetch requests are generated if
the processor does not exit from runahead mode early.

A more aggressive runahead implementation may dy-
namically decide when to exit from runahead mode. Some
benchmarks benefit from staying in runahead mode even
hundreds of cycles after the original L2 miss returns from
memory. We are investigating the potential and feasibility
of a mechanism that dynamically decides when to exit runa-
head mode.

5. Simulation methodology

We used a simulator that was built on top of a micro-
operation (uop) level IA-32 architectural simulator that exe-
cutes Long Instruction Traces (LITs). A LIT is not actually
a trace, but a checkpoint of the processor state, including
memory, that can be used to initialize an execution-based
performance simulator. A LIT also includes a list of “LIT
injections,” which are system interrupts needed to simulate
events like DMA. Since the LIT includes an entire snapshot

of memory, we can simulate both user and kernel instruc-
tions, as well as wrong-path instructions.

Table 1 shows the benchmark suites we used. We evalu-
ated runahead execution on LITs that gain at least 10% IPC
improvement with a perfect L2 cache. In all, there are 80
benchmarks, comprising 147 LITs. Each LIT is 30 million
IA-32 instructions long, and carefully selected to be repre-
sentative of the overall benchmark. Unless otherwise stated,
all averages are harmonic averages over all 147 LITs.

No. of Description or
Suite Bench. Sample Benchmarks

SPEC∗ CPU95 (S95) 10 vortex + all fp except fppp [26]
SPECfp∗2K (FP00) 11 most SPECfp2K [26]
SPECint∗2K (INT00) 6 some SPECint2K [26]
Internet (WEB) 18 SPECjbb∗ [26], WebMark∗2001 [4]
Multimedia (MM) 9 MPEG, speech recognition, Quake∗

Productivity (PROD) 17 SYSmark∗2k [4], Winstone∗ [28]
Server (SERV) 2 TPC-C∗, TimesTen∗ [27]
Workstation (WS) 7 CAD, Verilog∗

Table 1. Simulated Benchmark Suites.

The performance simulator is an execution-driven cycle-
accurate simulator that models a superscalar out-of-order
execution microarchitecture similar to that of the Intel Pen-
tium 4 processor [13]. The simulator includes a detailed
memory subsystem that fully models buses and bus con-
tention. We evaluate runahead for two baselines. The first
is a 3-wide machine with microarchitecture parameters sim-
ilar to the Intel Pentium 4 processor, which we call the “cur-
rent baseline.” The second is a more aggressive 6-wide ma-
chine with a pipeline twice as deep and buffers four times as
large as those of the current baseline, which we call the “fu-
ture baseline.” Table 2 gives the parameters for both base-
lines. Note that both baselines include a stream-based hard-
ware prefetcher [14]. Unless otherwise noted, all results are
relative to a baseline using this prefetcher (HWP).

6. Results

We first evaluate how runahead prefetching performs
compared to the stream-based hardware prefetcher. Fig-
ure 3 shows the IPC of four different machine models.
For each suite, bars from left to right correspond to: 1) a
model with no prefetcher and no runahead (current baseline
without the prefetcher), 2) a model with the stream-based
prefetcher but without runahead (current baseline), 3) a
model with runahead but no prefetcher, and 4) a model with
the stream-based prefetcher and runahead (current baseline
with runahead). Percentage numbers on top of the bars
are the IPC improvements of runahead execution (model 4)
over the current baseline (model 2).



PARAMETER CURRENT FUTURE

Processor Frequency 4 GHz 8 GHz
Fetch/Issue/Retire Width 3 6
Branch Misprediction Penalty 29 stages 58 stages
Instruction window size 128 512
Scheduling window size 16 int, 8 mem, 24 fp 64 int, 32 mem, 96 fp
Load and store buffer sizes 48 load, 32 store 192 load, 128 store
Functional units 3 int, 2 mem, 1 fp 6 int, 4 mem, 2 fp
Branch predictor 1000-entry 32-bit history perceptron [15] 3000-entry 32-bit history perceptron
Hardware Data Prefetcher Stream-based (16 streams) Stream-based (16 streams)
Trace Cache 12k-uops, 8-way 64k-uops, 8-way
Memory Disambiguation Perfect Perfect

Memory Subsystem
L1 Data Cache 32 KB, 8-way, 64-byte line size 64 KB, 8-way, 64-byte line size
L1 Data Cache Hit Latency 3 cycles 6 cycles
L1 Data Cache Bandwidth 512 GB/s, 2 accesses/cycle 4 TB/s, 4 accesses/cycle
L2 Unified Cache 512 KB, 8-way, 64-byte line size 1 MB, 8-way, 64-byte line size
L2 Unified Cache Hit Latency 16 cycles 32 cycles
L2 Unified Cache Bandwidth 128 GB/s 256 GB/s
Bus Latency 495 processor cycles 1008 processor cycles
Bus Bandwidth 4.25 GB/s 8.5 GB/s
Max Pending Bus Transactions 10 20

Table 2. Parameters for Current and Future Baselines.

S95 FP00 INT00 WEB MM PROD SERV WS AVG
Suite

0.0

0.5

1.0

In
st

ru
ct

io
ns

 P
er

 C
yc

le

No HWP, no runahead (1)
HWP, no runahead (current baseline) (2)
Runahead, no HWP (3)
Both runahead and HWP (4)

12%

35%

13%

15%

22% 12%

16% 52%

22%

Figure 3. Runahead on current model.

The model with only runahead outperforms the model
with only HWP for all benchmark suites except for
SPEC95. This means that runahead is a more effec-
tive prefetching scheme than the stream-based hardware
prefetcher for most of the benchmarks. Overall, the model
with only runahead (IPC:0.58) outperforms the model with
no HWP or runahead (IPC:0.40) by 45%. It also outper-
forms the model with only the HWP (IPC:0.52) by 12%.
But, the model that has the best performance is the one
that leverages both the hardware prefetcher and runahead
(IPC:0.64). This model has 58% higher IPC than the model
with no HWP or no runahead. It has 22% higher IPC than
the current baseline. This IPC improvement over the cur-
rent baseline ranges from 12% for the SPEC95 suite to 52%
for the Workstation suite.

6.1. Interaction between runahead and the hard-
ware data prefetcher

If runahead execution is implemented on a machine with
a hardware prefetcher, the prefetcher tables can be trained
and new prefetch streams can be created while the proces-
sor is in runahead mode. Thus, runahead memory access
instructions not only can generate prefetches for the data
they need, but also can trigger hardware data prefetches.
These triggered hardware data prefetches, if useful, would
likely be initiated much earlier than they would be on a ma-
chine without runahead. We found that if the prefetcher
is accurate, using runahead execution on a machine with a
prefetcher usually performs best. However, if the prefetcher
is inaccurate, it may degrade the performance improvement
of a processor with runahead.

Prefetches generated by runahead instructions are inher-
ently quite accurate, because these instructions are likely on
the program path. There are no traces whose performance is
degraded due to the use of runahead execution. The IPC im-
provement of runahead execution ranges from 2% to 401%
over a baseline that does not have a prefetcher. This range
is from 0% to 158% over a baseline with the stream-based
prefetcher.

In this section we show the behavior of some applica-
tions that demonstrate different patterns of interaction be-
tween runahead execution and hardware data prefetcher.
Figure 4 shows the IPCs of a selection of SPECfp2k and
SPECint2k benchmarks on the four models. The number
on top of each benchmark denotes the percentage IPC im-



provement of model 4 over model 2. For gcc, mcf, vortex,
mgrid, and swim, both runahead execution and the hard-
ware prefetcher alone improve the IPC. When both are com-
bined, the performance of these benchmarks is better than
if either technique was used alone.

gcc mcf vortex twolf mgrid ammp apsi swim
Benchmark

0.0

0.5

1.0

1.5

In
st

ru
ct

io
ns

 P
er

 C
yc

le

No HWP, no runahead (1)
HWP, no runahead (base) (2)
Runahead, no HWP (3)
Both runahead and HWP (4)

3% 

8% 

24% 

36%

36%

55%
48%

49%

Figure 4. Prefetcher-runahead interaction.

Sometimes, having a prefetcher on a machine that imple-
ments runahead execution degrades performance. Twolf,
and ammp are examples of this case. For twolf, the
prefetcher causes bandwidth contention by sending useless
prefetches. For ammp, the prefetcher sends out inaccurate
prefetches, which causes the IPC of a machine with runa-
head and the streaming prefetcher to be 12% less than that
of a machine with runahead and no prefetcher.

6.2. Runahead and large instruction windows

This section shows that with the prefetching benefit of
runahead execution, a processor can attain the performance
of a machine with a larger instruction window.

Figure 5 shows the IPCs of four different models. The
leftmost bar of each suite is the IPC of the current baseline
with runahead. The other three bars show machines with-
out runahead and with 256, 384, and 512-entry instruction
windows, respectively. Sizes of all other buffers of these
large-window machines are scaled based on the instruction
window size. The percentages on top of the bars show the
IPC improvement of the runahead machine over the ma-
chine with the 256-entry window.

On average, runahead on the 128-entry window baseline
has an IPC 3% greater than a model with a 256-entry win-
dow. Also, it has an IPC within 1% of that of a machine
with a 384-entry window. For two suites, SPECint2k and
Workstation, runahead on the current baseline performs 1–
2% better than the model with the 512-entry window. For
SPEC95, runahead on the 128-entry window has a 6% lower
IPC than the machine with 256-entry window. This is due to
the fact that this suite contains mostly floating-point bench-
marks that have long latency FP operations. A 256-entry
window can tolerate the latency of those operations better

S95 FP00 INT00 WEB MM PROD SERV WS AVG
Suite

0.0

0.5

1.0

1.5

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Current baseline with runahead (128-entry instruction window)
Model with 256-entry instruction window
Model with 384-entry instruction window
Model with 512-entry instruction window

-6%

4%

6%

0%

3% -1%

2%
12%

3%

Figure 5. Performance of Runahead versus
models with larger instruction windows.

than a 128-entry one. Runahead execution, with its current
implementation, does not offer any solution to tolerating the
latency of such operations. Note that the behavior of the
SPECfp2k suite is different. For SPECfp2k, runahead per-
forms 2% better than the model with the 256-entry window,
because traces for this suite are more memory-limited than
FP-operation limited.

6.3. Effect of a better frontend

There are two reasons why a machine with a more ag-
gressive frontend would increase the performance benefit
of runahead:

1. A machine with a better instruction supply increases
the number of instructions executed during runahead,
which increases the likelihood of prefetches.

2. A machine with better branch prediction decreases the
likelihood of an INV branch being mispredicted dur-
ing runahead. Therefore, it increases the likelihood of
correct-path prefetches. In effect, it moves the “diver-
gence point” later in time during runahead.

If a mispredicted INV branch is encountered during
runahead mode, it doesn’t necessarily mean that the pro-
cessor cannot generate useful prefetches that are on the pro-
gram path. The processor can reach a control-flow indepen-
dent point, after which it continues on the correct program
path again. Although this may be the case, our data shows
that it is usually better to eliminate the divergence points.
Averaged over all traces, the number of runahead instruc-
tions pseudo-retired before the divergence point is 431 per
runahead mode entry, and the number of runahead instruc-
tions pseudo-retired after the divergence point is 280. The
number of L2 miss requests generated before the divergence
point is 2.38 per runahead entry, whereas this number is
0.22 after the divergence point. Hence, far fewer memory-
to-L2 prefetches per instruction are generated after the di-
vergence point than before.



Figure 6 shows the performance of runahead execution
as the frontend of the machine becomes more ideal. Mod-
els with “Perfect Trace Cache” model a machine that never
misses in the trace cache and whose trace cache is not lim-
ited by fetch breaks and supplies the maximum instruc-
tion fetch bandwidth possible. In this model, the traces are
formed using a real branch predictor.

S95 FP00 INT00 WEB MM PROD SERV WS AVG
Suite

0.0

0.5

1.0

1.5

2.0

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Current baseline (1)
With Runahead (2)
With perfect Trace Cache (3)
With perfect Trace Cache and Runahead (4)
With perfect Branch Prediction and Perfect Trace Cache (5)
With perfect Branch Prediction and Perfect Trace Cache and Runahead (6)

13%

36%

8%

29% 34%

20%

37%
89%

31%

Figure 6. Performance of Runahead as the
frontend of the machine gets more ideal.

As the frontend becomes more ideal, the performance
improvement of runahead execution increases. For all suites
except for SPECint2k, the IPC improvement between bars 5
and 6 (shown as the percentage above the bars) is larger than
the IPC improvement between bars 1 and 2. As mentioned
before, runahead execution improves the IPC of the current
baseline by 22%. Runahead on the current baseline with a
perfect trace cache and a real branch predictor improves the
IPC of that machine by 27%. Furthermore, runahead on the
current baseline with a perfect trace cache and branch pre-
diction improves the performance of that machine by 31%.
On a machine with perfect branch prediction and a perfect
trace cache, the number of pseudo-retired instructions per
runahead entry increases to 909 and the number of useful
L2 miss requests generated increases to 3.18.

6.4. Effect of the runahead cache

This section shows the importance of handling store-to-
load data communication during runahead execution. We
evaluate the performance difference between a model that
uses a 512-byte, 4-way set associative runahead cache with
8-byte lines versus a model that does not perform mem-
ory data forwarding between pseudo-retired runahead stores
and their dependent loads (but still performs data forward-
ing through the store buffer). In the latter model, instruc-
tions dependent on pseudo-retired stores are marked INV.
For this model, we also assume that communication of INV
bits through memory is handled correctly and magically

without any hardware and performance cost, which gives an
unfair advantage to that model. Even with this advantage, a
machine that does not perform store-load data communica-
tion through memory during runahead mode loses much of
the performance benefit of runahead execution.

Figure 7 shows the results. In all suites but SPECfp2k,
inhibiting store-load data communication through mem-
ory significantly decreases the performance gain of runa-
head execution. The overall performance improvement of
runahead without using the runahead cache is 11% ver-
sus 22% with the runahead cache. For all suites except
SPECfp2k and Workstation, the IPC improvement for the
model without the runahead cache remains well under 10%.
The improvement ranges from 4% for SPEC95 to 31% for
SPECfp2k. The runahead cache used in this study cor-
rectly handles 99.88% of communication between pseudo-
retired stores and their dependent loads. It may be possi-
ble to achieve similar performance using a smaller runahead
cache, but we did not tune its parameters.

S95 FP00 INT00 WEB MM PROD SERV WS AVG
Suite

0.0

0.5

1.0

In
st

ru
ct

io
ns

 P
er

 C
yc

le
Current baseline
Runahead without runahead cache
Runahead with runahead cache

Figure 7. Performance of Runahead with and
without the runahead cache.

6.5. Runahead execution on the future model

Figure 8 shows the IPC of the future baseline machine,
the future baseline with runahead, and the future baseline
with a perfect L2 cache. The number on top of each bar is
the percentage IPC improvement due to adding runahead to
the future baseline. Due to their long simulation times, the
benchmarks art and mcf were excluded from evaluation for
the future model. Runahead execution improves the perfor-
mance of the future baseline by 23%, increasing the average
IPC from 0.62 to 0.77. This data shows that runahead is also
effective on a wider, deeper, and larger machine.



S95 FP00 INT00 WEB MM PROD SERV WS AVG
Suite

0.0

0.5

1.0

1.5

2.0

2.5

3.0

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Future baseline
With Runahead
With Perfect L2

25%

62%

20% 15% 32% 12%

14%

31%
23%

Figure 8. Runahead on the future model.

The effect of runahead on a machine with a better fron-
tend becomes much more pronounced on a larger machine
model, as shown in Figure 9. The number on top of each
bar is the percentage improvement due to runahead. The
average IPC of the future baseline with a perfect instruction
supply is 0.90 whereas the IPC of the future baseline with
a perfect instruction supply and runahead is 1.38, which is
53% higher. This is due to the fact that branch mispredic-
tions and fetch breaks, which adversely affect the number
of useful instructions the processor can pre-execute during
runahead mode, are costlier on a wider and larger machine.

S95 FP00 INT00 WEB MM PROD SERV WS AVG
Suite

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Future baseline with Perfect TC, perfect BP 
Future baseline with Perfect TC, perfect BP and Runahead
Future baseline with Perfect TC, perfect BP and Perfect L2

29%

68%
38%

39% 67%
34%

50%

81%

53%

Figure 9. Effect of a perfect frontend on Runa-
head performance on the future model.

7. Conclusion

Main memory latency is a significant performance lim-
iter of modern processors. Building an instruction window
large enough to tolerate the full main memory latency is a
very difficult task. Runahead execution achieves the per-
formance of a larger window by preventing the window
from stalling on long-latency operations. The instructions
executed during runahead mode provide useful prefetching,

which improves the IPC performance of an aggressive base-
line processor by 22%. This baseline includes a stream-
based hardware prefetcher, so this improvement is in addi-
tion to the improvement provided by hardware prefetching.

As an extension to the mechanism described in the pa-
per, we are investigating a more aggressive runahead exe-
cution engine, which will dynamically extend the length of
runahead periods and make use of more of the information
exposed by runahead mode. By architecting a mechanism
to communicate information between runahead and normal
modes, we hope we can unleash more of the potential of
runahead execution, allowing us to build even more latency-
tolerant processors without having to resort to larger in-
struction windows.

Acknowledgements

We thank Tom Holman, Hyesoon Kim, Konrad Lai,
Srikanth Srinivasan, and the anonymous referees for their
help, insights, and comments on this work; and the folks
in the Desktop Platforms Group that built and provided us
with the simulator for this research. We also thank the other
members of the HPS and Intel Labs research groups for the
fertile environments they help create. This work was sup-
ported by an internship provided by Intel.

References

[1] J. L. Aragón, J. González, A. González, and J. E. Smith.
Dual path instruction processing. In Proceedings of the 2002
International Conference on Supercomputing, 2002.

[2] J. Baer and T. Chen. An effective on-chip preloading scheme
to reduce data access penalty. In Proceedings of Supercom-
puting ’91, 1991.

[3] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi.
Dynamically allocating processor resources between nearby
and distant ILP. In Proceedings of the 28th Annual Interna-
tional Symposium on Computer Architecture, 2001.

[4] BAPCo∗. BAPCo Benchmarks. http://www.bapco.com/.
[5] D. Callahan, K. Kennedy, and A. Porterfield. Software

prefetching. In Proceedings of the 4th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, 1991.

[6] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N.
Patt. Simultaneous subordinate microthreading (SSMT). In
Proceedings of the 26th Annual International Symposium on
Computer Architecture, 1999.

[7] G. Z. Chrysos and J. S. Emer. Memory dependence pre-
diction using store sets. In Proceedings of the 25th Annual
International Symposium on Computer Architecture, 1998.

[8] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen. Dy-
namic speculative precomputation. In Proceedings of the
34th Annual ACM/IEEE International Symposium on Mi-
croarchitecture, 2001.



[9] R. Cooksey. Content-Sensitive Data Prefetching. PhD the-
sis, University of Colorado, Boulder, 2002.

[10] J. Dundas and T. Mudge. Improving data cache performance
by pre-executing instructions under a cache miss. In Pro-
ceedings of the 1997 International Conference on Super-
computing, 1997.

[11] J. D. Dundas. Improving Processor Performance by Dynam-
ically Pre-Processing the Instruction Stream. PhD thesis,
University of Michigan, 1998.

[12] L. Gwennap. Intel’s P6 uses decoupled superscalar design.
Microprocessor Report, Feb. 1995.

[13] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel. The microarchitecture of the Pen-
tium 4 processor. Intel Technical Journal, Feb. 2001. Q1
2001 Issue.

[14] Intel Corporation. Intel Pentium 4 Processor Optimization
Reference Manual, 1999.

[15] D. A. Jiménez and C. Lin. Dynamic branch prediction with
perceptrons. In Proceedings of the Seventh IEEE Interna-
tional Symposium on High Performance Computer Architec-
ture, 2001.

[16] D. Joseph and D. Grunwald. Prefetching using Markov pre-
dictors. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, 1997.

[17] N. P. Jouppi. Improving direct-mapped cache perfor-
mance by the addition of a small fully-associative cache and
prefetch buffers. In Proceedings of the 17th Annual Interna-
tional Symposium on Computer Architecture, 1990.

[18] R. E. Kessler. The Alpha 21264 microprocessor. IEEE Mi-
cro, 19(2), 1999.

[19] D. Kroft. Lockup-free instruction fetch/prefetch cache or-
ganization. In Proceedings of the 8th Annual International
Symposium on Computer Architecture, 1981.

[20] A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and
E. Rotenberg. A large, fast instruction window for toler-
ating cache misses. In Proceedings of the 29th Annual In-
ternational Symposium on Computer Architecture, 2002.

[21] C.-K. Luk. Tolerating memory latency through software-
controlled pre-execution in simultaneous multithreading
processors. In Proceedings of the 28th Annual International
Symposium on Computer Architecture, 2001.

[22] C.-K. Luk and T. C. Mowry. Compiler-based prefetching for
recursive data structures. In Proceedings of the 7th Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems, 1996.

[23] A. Moshovos and G. S. Sohi. Streamlining inter-operation
memory communication via data dependence prediction. In
Proceedings of the 30th Annual ACM/IEEE International
Symposium on Microarchitecture, 1997.

[24] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evalua-
tion of a compiler algorithm for prefetching. In Proceedings
of the 5th International Conference on Architectural Support
for Programming Languages and Operating Systems, 1992.

[25] E. Sprangle and D. Carmean. Increasing processor perfor-
mance by implementing deeper pipelines. In Proceedings
of the 29th Annual International Symposium on Computer
Architecture, 2002.

[26] The Standard Performance Evaluation Corporation. Wel-
come to SPEC. http://www.spec.org/.

[27] TimesTen, Inc. TimesTen. http://www.timesten.com/.
[28] VeriTest∗. Ziff Davis Media benchmarks.

http://www.etestinglabs.com/benchmarks/.
[29] M. V. Wilkes. Slave memories and dynamic storage allo-

cation. IEEE Transactions on Electronic Computers, 14(2),
1965.

[30] K. C. Yeager. The MIPS R10000 superscalar microproces-
sor. IEEE Micro, 16(2), Apr. 1996.

[31] C. Zilles and G. Sohi. Execution-based prediction using
speculative slices. In Proceedings of the 28th Annual In-
ternational Symposium on Computer Architecture, 2001.


