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Abstract

Several researchers have recognized in recent years that today’s

workloads require a microarchitecture that can handle single-

threaded code at high performance, and multi-threaded code at high

throughput, while consuming no more energy than is necessary. This

paper proposes MorphCore, a unique approach to satisfying these

competing requirements, by starting with a traditional high per-

formance out-of-order core and making minimal changes that can

transform it into a highly-threaded in-order SMT core when neces-

sary. The result is a microarchitecture that outperforms an aggres-

sive 4-way SMT out-of-order core, “medium” out-of-order cores,

small in-order cores, and CoreFusion. Compared to a 2-way SMT

out-of-order core, MorphCore increases performance by 10% and

reduces energy-delay-squared product by 22%.

1. Introduction

Traditional core microarchitectures do not adapt to the thread level

parallelism (TLP) available in programs. In general, industry

builds two types of cores: large out-of-order cores (e.g., Intel’s

Sandybridge, IBM’s Power 7), and small cores (e.g., Intel’s MIC

a.k.a Larrabee, Sun’s Niagara, ARM’s A15). Large out-of-order

(OOO) cores provide high single thread performance by exploiting

Instruction-Level Parallelism (ILP), but they are power-inefficient

for multi-threaded programs because they unnecessarily waste en-

ergy on exploiting ILP instead of leveraging the available TLP. In

contrast, small cores do not waste energy on wide superscalar OOO

execution, but rather provide high parallel throughput at the cost of

poor single thread performance.

Heterogeneous (or Asymmetric) Chip Multiprocessors

(ACMPs) [11, 22, 28] have been proposed to handle this soft-

ware diversity. ACMPs provide one or few large cores for speedy

execution of single-threaded programs, and many small cores

for high throughput in multi-threaded programs. Unfortunately,

ACMPs require that the number of large and small cores be fixed

at design time, which inhibits adaptability to varying degrees of

software thread-level parallelism.

To overcome this limitation of ACMPs, researchers have pro-

posed CoreFusion-like architectures [16, 5, 17, 25, 24, 32, 9, 10].

They propose a chip with small cores to provide high throughput per-

formance in multi-threaded programs. These small cores can dynam-

ically “fuse” into a large core when executing single-threaded pro-

grams. Unfortunately, the fused large core has low performance and

high power/energy consumption compared to a traditional out-of-

order core for two reasons: 1) there are additional latencies among

the pipeline stages of the fused core, thus, increasing the latencies of

the core’s “critical loops”, and 2) mode switching requires instruc-

tion cache flushes and incurs the cost of data migration among the

data caches of small cores.

To overcome these limitations, we propose MorphCore, an adap-

tive core microarchitecture that takes the opposite approach of previ-

ously proposed reconfigurable cores. Rather than fusing small cores

into a large core, MorphCore uses a large out-of-order core as the

base substrate and adds the capability of in-order SMT to exploit

highly parallel code. MorphCore provides two modes of execu-

tion: OutOfOrder and InOrder. In OutOfOrder mode, MorphCore

provides the single-thread performance of a traditional out-of-order

core with minimal performance degradation. However, when TLP

is available, MorphCore “morphs” into a highly-threaded in-order

SMT core. This allows MorphCore to hide long latency operations

by executing operations from different threads concurrently. Con-

sequently, it can achieve a higher throughput than the out-of-order

core. Since no migration of instructions or data needs to happen on

mode switches, MorphCore can switch between modes with mini-

mal penalty.

MorphCore is built on two key insights. First, a highly-threaded

(i.e., 6-8 way SMT) in-order core can achieve the same or better

performance as an out-of-order core. Second, a highly-threaded in-

order SMT core can be built using a subset of the hardware required

to build an aggressive out-of-order core. For example, we use the

Physical Register File (PRF) in the out-of-order core as the archi-

tectural register files for the many SMT threads in InOrder mode.

Similarly, we use the Reservation Station entries as an in-order in-

struction buffer and the execution pipeline of the out-of-order core

as-is.

MorphCore is more energy-efficient than a traditional out-of-

order core when executing multi-threaded programs. It reduces ex-

ecution time by exploiting TLP, and reduces energy consumption

by turning off several power hungry structures (e.g., renaming logic,

out-of-order scheduling, and the load queue) while in InOrder mode.

Our evaluation with 14 single-threaded and 14 multi-threaded

workloads shows that MorphCore increases performance by 10%

and reduces energy-delay-squared product by 22% over a typi-

cal 2-way SMT out-of-order core. We also compare MorphCore

against three different core architectures optimized for different per-

formance/energy design points, and against CoreFusion, a reconfig-

urable core architecture. We find that MorphCore performs best

in terms of performance and energy-delay-squared product across

a wide spectrum of single-threaded and multi-threaded workloads.

Contributions: This paper makes two contributions:

1. We present MorphCore, a new microarchitecture that combines

out-of-order and highly-threaded in-order SMT execution within

a single core. We comprehensively describe the microarchitec-

ture needed to implement MorphCore, and the policy to switch

between modes.

2. To the best of our knowledge, this is the first paper to quanti-

tatively compare small, medium and large core architectures in



Figure 1: Out of Order core microarchitecture

terms of performance and energy-efficiency on single-threaded

and multi-threaded workloads.

2. Background and Motivation

2.1. Out-of-order Execution

Out-of-order (OOO) cores provide better performance by executing

instructions as soon as their operands become available, rather than

executing them in program order. Figure 1 shows a high-level layout

of a 2-way SMT OOO core pipeline. The top part shows major

structures accessed and functionality performed in different stages of

the pipeline. We describe a Pentium-4 like architecture [26], where

the data, both speculative and architectural, is stored in the Physical

Register File (PRF), and the per-thread Register Alias Table (RAT)

entries point to PRF entries. The front-end Speculative-RAT points

to the speculative state, and a back-end Permanent-RAT points to

the architectural state. The front-end of the pipeline (from the Fetch

stage until the Insert into Reservation Station (RS)) works in-order.

Instructions are fetched, decoded, and then sent to the Rename Stage.

The Rename stage renames (i.e. maps) the architectural source and

destination register IDs into Physical Register File IDs by reading

the Speculative-RAT of the thread for which instructions are being

renamed, and inserts the instructions into the Reservation Station

(also referred to as Issue Queue).

Instructions wait in the Reservation Station until they are selected

for execution by the Select stage. The Select stage selects an instruc-

tion for execution once all of the source operands of the instruction

are ready, and the instruction is the oldest among the ready instruc-

tions. When an instruction is selected for execution, it readies its

dependent instructions via the Wakeup Logic block, reads its source

operands from the PRF, and executes in a Functional Unit. After ex-

ecution, an instruction’s result is broadcast on the Bypass Network,

so that any dependent instruction can use it immediately. The result

is also written into the PRF, and the instruction updates its ROB sta-

tus. The instruction retires once it reaches the head of the ROB, and

updates the corresponding Permanent-RAT.

Problem With Wide Superscalar Out-of-order Execution. Un-

fortunately, the single-thread performance benefit of the large out-

of-order (OOO) core comes with a power penalty. As we show in

Section 6.2, a large OOO core consumes 92% more power than a

medium OOO core, and 4.3x more than a small in-order core. This

overhead exists to exploit instruction-level parallelism to increase

core throughput, and is justified when the software has a single

thread of execution. However, when multiple threads of execution

exist, we propose that the core can be better utilized using in-order

Simultaneous Multi-Threading (SMT).

2.2. Simultaneous Multi-Threading

Simultaneous Multi-Threading (SMT) [13, 35, 31] is a technique to

improve the utilization of execution resources using multiple threads

provided by the software. In SMT, a core executes instructions from

multiple threads concurrently. Every cycle, the core picks a thread

from potentially many ready threads, and fetches instructions from

that thread. The instructions are then decoded and renamed in a reg-

ular pipelined fashion and inserted into a common (shared among all

the threads) RS. Since instructions from multiple candidate threads

are available in the RS, the possibility of finding ready instructions

increases. Thus, SMT cores can achieve higher throughput provided

that software exposes multiple threads to the hardware.

The Potential of In-Order SMT on a Wide Superscalar Core.

The observation that a highly multi-threaded in-order core can

achieve the instruction issue throughput similar to an OOO core was

noted by Hily and Seznec [12]. We build on this insight to design

a core that can achieve high-performance and low-energy consump-

tion when software parallelism is available.
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Figure 2: Performance of black with SMT

Figure 2 shows the performance of the workload black (Black-

Scholes pricing [23]) on an out-of-order and an in-order core. For

this experiment, both of the cores are similarly sized in terms of

cache sizes, pipeline widths (4-wide superscalar) and depths (refer

to Section 5 for experimental methodology). The performance of

the in-order core is significantly less than the performance of the

out-of-order core when both cores run only a single thread. As the



Figure 3: The MorphCore microarchitecture

number of SMT threads increases from 1 to 8, the performance of

the out-of-order core increases significantly at 2 threads, but starts

to saturate at 4 threads, because the performance is limited by the

peak throughput of the core. In contrast, the performance of the in-

order core continues to benefit from more threads (which allows it to

better tolerate long latency operations and memory accesses). When

the number of threads is equal to 8, the in-order core’s performance

begins to match the performance of the out-of-order core. This ex-

periment shows that when high thread-level parallelism is available,

high performance and low energy consumption can be achieved with

in-order SMT execution, therefore the core need not be built with

complex and power hungry structures needed for out-of-order SMT

execution.

Summary. In spite of its high power cost, out-of-order execu-

tion is still desirable because it provides significant performance im-

provement over in-order execution. Thus, if we want high single-

thread performance we need to keep support for out-of-order exe-

cution. However, when software parallelism is available, we can

provide performance by using in-order SMT and not waste energy

on out-of-order execution. To accomplish both, we propose the Mor-

phCore architecture.

3. MorphCore Microarchitecture

3.1. Overview of the MorphCore Microarchitecture

The MorphCore microarchitecture is based on a traditional OOO

core. Figure 3 shows the changes that are made to a baseline OOO

core (shown in Figure 1) to build the MorphCore. It also shows

the blocks that are active in both modes, and the blocks that are

active only in one of the modes. In addition to out-of-order exe-

cution, MorphCore supports additional in-order SMT threads, and

in-order scheduling, execution, and commit of simultaneously run-

ning threads. In OutofOrder mode, MorphCore works exactly like a

traditional out-of-order core.

3.2. Fetch and Decode Stages.

The Fetch and Decode Stages of MorphCore work exactly like an

SMT-enabled traditional OOO core. Figure 4 shows the Fetch Stage

of the MorphCore. MorphCore adds 6 additional SMT contexts to

Figure 4: Microarchitecture of the Fetch stage

the baseline core. Each context consists of a PC, a branch history

register, and a Return Address Stack. In OutofOrder mode, only 2

of the SMT contexts are active. In InOrder mode, all 8 contexts

are active. The branch predictor and the I-Cache are active in both

modes.

3.3. Rename Stage

Figure 5 shows the Rename Stage of the MorphCore. InOrder re-

naming is substantially simpler, and thus power-efficient, than OOO

renaming. In InOrder mode, we use the Physical Register File (PRF)

to store the architectural registers of the multiple in-order SMT

threads: we logically divide the PRF into multiple fixed-size par-

titions where each partition stores the architectural register state of

a thread (Figure 5(b)). Hence, the architectural register IDs can be

mapped to the Physical Register IDs by simply concatenating the

Thread ID with the architectural register ID. This approach limits

the number of in-order SMT threads that the MorphCore can support

to num_physical_registers/num_architectural_registers. However,

the number of physical registers in today’s cores is already large

enough (and increasing) to support 8 in-order SMT threads which is

sufficient to match the out-of-order core’s performance. For the x86

ISA [15] that we model in our simulator, a FP-PRF partition of 24

entries and an INT-PRF partition of 16 entries per thread is enough

to hold the architectural registers of a thread. The registers that are

not renamed and are replicated 2-ways in the baseline OOO core

need to be replicated 8-ways in MorphCore.



Figure 5: Microarchitecture of the Rename stage

Allocating/Updating the Resources. When the MorphCore is in

OutofOrder mode, the instructions that are being renamed are allo-

cated resources in the ROB and in the Load and Store Queues. In In-

Order mode, MorphCore leverages the ROB to store the instruction

information. We partition the ROB into multiple fixed-size chunks,

one for each active thread. We do not allocate resources in the Load

Queue in InOrder mode since memory instructions are not executed

speculatively. Thus, the Load Queue is inactive. The Store Queue

that holds the data from committed store instructions and the data

that is not yet committed to the D-cache, is active in InOrder Mode

as well, and is equally partitioned among the threads.

Insert into the Reservation Station (RS). Figure 5(c) shows the

part of Rename stage that inserts renamed instructions into the RS.

In OutofOrder mode, the RS is dynamically shared between multiple

threads, and the RS entry that is allocated to an incoming renamed

instruction is determined dynamically by consulting a Free List. In

InOrder mode, the RS is divided among the multiple threads into

fixed-size partitions (Figure 5(d)), and each partition operates as a

circular FIFO. Instructions are inserted into consecutive RS entries

pointed to by a per-thread RS-Insert-Ptr, and removed in-order after

successful execution.

3.4. Select and Wakeup

MorphCore employs both OutofOrder and InOrder Wakeup and Se-

lect Logic. The Wakeup Logic makes instructions ready for execu-

tion, and the Select Logic selects the instructions to execute from the

pool of ready instructions. Figure 6 shows these logic blocks.

OutofOrder Wakeup. OutofOrder Wakeup logic works exactly

the same as a traditional out-of-order core. Figure 6 (unshaded)

shows the structure of an RS entry [27]. An operand is marked

ready (R-bit is set) when the corresponding MATCH bit has been

set for the number of cycles specified in the DELAY field. When

an instruction fires, it broadcasts its destination tag (power hungry),

so that it can be compared against source tags of all instructions in

the RS. If the destination tag matches the source tag of an operand,

the MATCH bit is set and the DELAY field is set equal to the exe-

cution latency of the firing instruction (the latency of the instruction

is stored in the RS entry allocated to the instruction). The DELAY

field is also latched in the SHIFT field associated with the source tag.

The SHIFT field is right shifted one-bit every cycle the MATCH bit

is set. The R bit is set when the SHIFT field becomes zero. The

RS-entry waits until both sources are ready, and then raises the Req

OOO Exec line.

OutofOrder Select. The OutofOrder Select logic monitors all in-

structions in the RS (power hungry), and selects the oldest instruc-

tion(s) that have the Req OOO Exec lines set. The output of the

Select Logic is a Grant bit vector, in which every bit corresponds to

an RS entry indicating which instructions will fire next. When an

instruction is fired, the SCHEDULED bit is set in the RS entry so

that the RS entry stops requesting execution in subsequent cycles.

InOrder Wakeup. The InOrder mode executes/schedules instruc-

tions in-order, i.e., an instruction becomes ready after the previ-

ous instruction has either started execution or is ready and indepen-

dent. We add 2 new bit-fields to each RS entry for in-order schedul-

ing (Scheduled, and MATCH (M)). The new fields are shaded in

Figure 6. The InOrder Wakeup Logic block also maintains the

M/DELAY/SHIFT/R bit fields per architectural register, in order to

track the availability of architectural registers. When an instruction

fires, it sets the R, M, and DELAY bit fields corresponding to the

destination register in the InOrder Wakeup Logic block as follows:

resets the R bit, sets the MATCH (M) bit, and sets the DELAY field

to the execution latency of the firing instruction (the DELAY/SHIFT

mechanism works as explained above). Each cycle, for every thread,

the InOrder Wakeup checks the availability of source registers of the

two oldest instructions (R bit is set). If the sources are available, the

Wakeup logic readies the instructions by setting the M bit in the RS

entry to 1. The InOrder Wakeup is power-efficient since it avoids

the broadcast and matching of the destination tag against the source



Figure 6: MorphCore Wakeup and Selection Logic

operands of all instructions in the RS.

InOrder Select. The InOrder Select Logic block works hierar-

chically in a complexity-effective (power-efficient) manner by main-

taining eight InOrder select blocks (one per thread) and another

block to select between the outcomes of these blocks. Furthermore,

each in-order select logic only monitors the two oldest instructions

in the thread’s RS partition, rather than monitoring the entire RS as

in OOO select. Note that only two instructions need monitoring in

InOrder mode because instructions from each thread are inserted and

scheduled/removed in a FIFO manner.

3.5. Execution and Commit

When an instruction is selected for execution, it reads its source

operands from the PRF, executes in an ALU, and broadcasts its result

on the bypass network as done in a traditional OOO core. In Mor-

phCore, an additional PRF-bypass and data storage is active in In-

Order mode. This bypass and buffering is provided in order to delay

the write of younger instruction(s) in the PRF if an older longer la-

tency instruction is in the execution pipeline. In such a case, younger

instruction(s) write into a temporary small data buffer (4-entry per

thread). The buffer adds an extra bypass in PRF-read stage. Instruc-

tions commit in traditional SMT fashion. For OutofOrder commit,

the Permanent-RAT is updated as well. In InOrder mode, only the

thread’s ROB Head pointer needs to be updated.

3.6. Load/Store Unit

Figure 7 shows the Load/Store Unit. In OutofOrder mode, load/store

instructions are executed speculatively and out of order (similar to

a traditional OOO core). When a load fires, it updates its entry in

Figure 7: Load / Store unit

the Load Queue and searches the Store Queue to get the latest data.

When a store fires, it updates and stores data in the Store Queue,

and searches the Load Queue to detect store-to-load program order

violations. In InOrder mode, since load/store instructions are not ex-

ecuted speculatively, no Load Queue CAM searches are done. How-

ever, loads still search the Store Queue that holds committed data.

Store instructions also update the Store Queue.

3.7. Recovering from Branch Mispredictions

In OutofOrder mode, a branch misprediction triggers a recovery

mechanism that recovers the F-RAT to the state prior to the renaming

of the mispredicted branch instruction. In InOrder mode, a branch

misprediction squashes the instructions in the RS partition, the ROB

partition and the front-end pipeline from the thread, followed by redi-

rection of the PC to the correct target.



4. MorphCore Discussion

4.1. Area and Power Overhead of MorphCore

First, MorphCore increases the number of SMT ways from 2 to 8.

This adds hardware to the Fetch stage and other parts of the core,

which is less than 0.5% area overhead as reported by our modified

McPAT [20] tool. Note that it does not incur the two biggest over-

heads of adding SMT contexts in an OOO core –additional Rename

tables and physical registers– because the SMT contexts being added

are in-order. Second, MorphCore adds InOrder Wakeup and Select

logic, which we assume adds an area overhead of less than 0.5% of

core area, half the area of the OOO Wakeup and Select logic blocks.

Third, adding extra bypass/buffering adds an area overhead of 0.5%

of core. Thus, MorphCore adds an area overhead of 1.5%, and a

power overhead of 1.5% in InOrder mode.

4.2. Timing/Frequency Impact of MorphCore

MorphCore requires only two key changes to the baseline OOO

core:

1) InOrder renaming/scheduling/execution logic. MorphCore

adds a multiplexer in the critical path of three stages: a) in the Re-

name stage to select between OutofOrder mode and InOrder mode

renamed instructions, b) in the Instruction Scheduling stage to select

between the OutofOrder mode and InOrder mode ready instructions,

and c) in PRF-read stage because of additional bypassing in InOrder

mode. In order to estimate the frequency impact of this overhead,

we assume that a multiplexer introduces a delay of one transmission

gate, which we assume to be half of an FO4 gate delay. Assum-

ing 20 FO4 gate delays per pipeline stage [33, 7], we estimate that

MorphCore runs 2.5% slower than the baseline OOO core.

2) More SMT contexts. Addition of in-order SMT contexts can

lengthen the thread selection logic in MorphCore’s front-end. This

overhead is changing the multiplexer that selects one out of many

ready threads from 2-to-1 to 8-to-1. We assume that running Mor-

phCore 2.5% slower than the baseline OOO core hides this delay.

In addition to the above mentioned timing-critical changes to the

baseline OOO core, MorphCore adds InOrder Wakeup and Select

logic blocks. Because InOrder instruction scheduling is simpler than

OutofOrder instruction scheduling, we assume that newly added

blocks can be placed and routed such that they do not affect the

critical path of other components of the baseline OOO core. Thus,

we conclude that the frequency impact of MorphCore is only 2.5%.

4.3. Turning Off Structures in InOrder Mode

The structures that are inactive in InOrder Mode (OOO renaming

logic, OOO scheduling, and load queue) are unit-level clock-gated.

Thus, no dynamic energy is consumed, but static energy is still con-

sumed. Unit-level power-gating could be applied to further cut-

down static energy as well, but we chose not to do so, since ac-

cording to our McPAT estimates, static energy consumed by these

structures is very small, whereas the overhead incurred by unit-level

power-gating is significant.

4.4. Interaction with OS

MorphCore does not require any changes to the operating system,

and acts like a core with the number of hardware threads equal to the

maximum number of threads supported in the InOrder Mode (8 in

our implementation). Switching between the two modes is handled

in hardware.

4.5. When does MorphCore Switch Modes?

In our current implementation of MorphCore, we switch between

modes based on the number of active threads (other policies are part

of our future work). A thread is active when it is not waiting on any

synchronization event. The MorphCore starts running in OutofOrder

mode when the number of active threads is less than a threshold (2

in our initial implementation). If the OS schedules more threads

on MorphCore, and the number of active threads becomes greater

than the threshold, the core switches to InOrder mode. While run-

ning in InOrder mode, the number of active threads can drop for two

reasons: the OS can de-schedule some threads or the threads can

become inactive waiting for synchronization. We assume that the

threading library uses MONITOR/MWAIT [15] instructions such

that MorphCore hardware can detect a thread becoming inactive,

e.g., inactive at a barrier waiting for other threads to reach the barrier,

or inactive at a lock-acquire waiting for another thread to release the

lock. If the number of active threads becomes smaller than or equal

to the threshold, the core switches back to OutofOrder mode until

more threads are scheduled or become active (the hardware makes

the thread active when a write to the cacheline being monitored is

detected).

4.6. Changing Mode from OutofOrder to InOrder

Mode switching is handled by a micro-code routine that performs

the following tasks:

1) Drains the core pipeline.

2) Spills the architectural registers of all threads. We spill these

registers to a reserved memory region. To avoid cache misses on

these writes, we use Full Cache Line Write instructions that do not

read the cache line before the write [15].

3) Turns off the Renaming unit, OutofOrder Wakeup and Select

Logic blocks, and Load Queue. Note that these units do not neces-

sarily need to be power-gated (we assume that these units are clock-

gated).

4) Fills the register values back into each thread’s PRF partitions.

This is done using special load micro-ops that directly address the

PRF entries without going through renaming.

4.7. Changing Mode from InOrder to OutofOrder

Since MorphCore supports more threads in InOrder Mode than

in OutofOrder Mode, when switched into OutofOrder mode, Mor-

phCore cannot run all the threads simultaneously and out-of-order.

Thus some of the threads need to be marked inactive or “not running”

(unless they are already inactive, which is the case in our current im-

plementation). The state of the inactive threads is stored in memory

until they become active. To load the state of the active threads, the

MorphCore stores pointers to the architectural state of the inactive

threads in a structure called the Active Threads Table. The Active

Threads Table is indexed using the Thread ID, and stores an 8-byte

pointer for each thread. Mode switching is handled by a micro-code

routine that performs the following tasks:

1) Drains the core pipeline.

2) Spills the architectural registers of all threads. Store pointers

to the architectural state of the inactive threads in the Active Thread

Table.

3) Turns on the Renaming unit, OutofOrder Wakeup and Select

Logic blocks, and Load Queue.

4) Fills the architectural registers of only the active threads into

pre-determined locations in PRF, and updates the Speculative-RAT

and Permanent-RAT.



Table 1: Configuration of the simulated machine

Core Configurations

OOO-2 Core: 3.4GHz, 4-wide issue OOO, 2-way SMT, 14-stage pipeline, 64-entry unified Reservation Station (Issue Queue), 192 ROB, 50
LDQ, 40 STQ, 192 INT/FP Physical Reg File, 1-cycle wakeup/select Functional Units: 2 ALU/AGUs, 2 ALU/MULs, 2 FP units. ALU
latencies (cycles): int arith 1, int mul 4-pipelined, fp arith 4-pipelined, fp divide 8, loads/stores 1+2-cycle D-cache L1 Caches: 32KB
I-cache, D-cache 32KB, 2 ports, 8-way, 2-cycle pipelined SMT: Stages select round-robin among ready threads. ROB, RS, and instr
buffers shared as in Pentium 4 [18]

OOO-4 3.23GHz (5% slower than OOO-2), 4-wide issue OOO, 4-way SMT, Other parameters are same as OOO-2.

MED Core: 3.4GHz, 2-wide issue OOO, 1 Thread, 10-stage, 48-entry ROB/PRF. Functional Units: Half of OOO-2. Latencies same as
OOO-2. L1 Caches: 1 port Dcache, other same as OOO-2. SMT: N/A

SMALL Core: 3.4GHz, 2-wide issue In-Order, 2-way SMT, 8-stage pipeline. Functional Units: Same as MED. L1 Caches: Same as MED.
SMT: Round-Robin Fetch

MorphCore Core: 3.315GHz (2.5% slower than OOO-2), Other parameters are same as OOO-2. Functional Units and L1 Caches: Same as
OOO-2. SMT and Mode switching: 2-way SMT similar to OOO-2, 8-way in-order SMT (Round-Robin Fetch) in InOrder mode. RS
and PRF partitioned in equal sizes among the in-order threads. InOrder mode when active threads > 2, otherwise, OutofOrder mode

Memory System Configuration

Caches L2 Cache: private L2 256KB, 8-way, 5 cycles. L3 Cache: 2MB write-back, 64B lines, 16-way, 10-cycle access

Memory 8 banks/channel, 2 channels, DDR3 1333MHz, bank conflicts, queuing delays modeled. 16KB row-buffe, 15 ns row-buffer hit latency

Table 2: Characteristics of Evaluated Architectures

Core Type Freq
(Ghz)

Issue-
width

Num of
cores

SMT threads
per core

Total
Threads

Total Norm.
Area

Peak ST
throughput

Peak MT
throughput

OOO-2 out-of-order 3.4 4 1 2 2 1 4 ops/cycle 4 ops/cycle

OOO-4 out-of-order 3.23 4 1 4 4 1.05 4 ops/cycle 4 ops/cycle

MED out-of-order 3.4 2 3 1 3 1.18 2 ops/cycle 6 ops/cycle

SMALL in-order 3.4 2 3 2 6 0.97 2 ops/cycle 6 ops/cycle

MorphCore out-of-order
or in-order

3.315 4 1 OutOfOrder: 2,
or InOrder: 8

2 or 8 1.015 4 ops/cycle 4 ops/cycle

4.8. Overheads of Changing the Mode

The overhead of changing the mode is pipeline drain, which varies

with the workload, and the spill or fill of architectural register state

of the threads. The x86 ISA [15] specifies an architectural state of

∼780 bytes per thread (including the latest AVX extensions). The

micro-code routine takes ∼30 cycles to spill or fill the architectural

register state of each thread after the pipeline drain (a total of ∼6KB

and ∼250 cycles for 8 threads) into reserved ways of the private L2

cache (assuming a 256 bit wide read/write port to the cache, and a

cache bandwidth of 1 read/write per cycle). We have empirically

observed no loss in performance by taking away ∼6KB from the

private 256KB cache. Note that the overhead of changing the mode

can be reduced significantly by overlapping the spilling or filling of

the architectural state with the pipeline drain. It is our future work

to explore such mechanisms.

5. Experimental Methodology

Table 1 shows the configurations of the cores and the memory sub-

system simulated using our in-house cycle-level x86 simulator. The

simulator faithfully models microarchitectural details of the core,

cache hierarchy and memory subsystem, e.g., contention for shared

resources, DRAM bank conflicts, banked caches, etc. To estimate

the area and power/energy of different core architectures, we use a

modified version of McPAT [20]. We modified McPAT to: 1) report

finer-grain area and power data, 2) increase SMT ways without in-

creasing the Rename (RAT) tables, 3) use the area/energy impact of

InOrder scheduling (1/2 of OOO), 4) model extra bypass/buffering,

and 5) model the impact of SMT more accurately. Note that all core

configurations have the same memory subsystem (L2, L3 and main

memory).

Table 2 summarizes the key characteristics of the compared ar-

chitectures. We run the baseline OOO-2 core at 3.4GHz and scale

the frequencies of the other cores to incorporate the effects of both

increase in area and critical-path-delay. For example, OOO-4’s fre-

quency is 5% lower than OOO-2 because adding the 2 extra SMT

threads significantly increases the area/complexity of the core: it

adds two extra Rename tables (RATs), at least a multiplexer at the

end of Rename stage, and also adds extra buffering at the start of

Rename stage (to select between 4, rather than 2 rename tables)

which we estimate (using McPAT) to be an additional 5% area and

thus lower frequency by 5%. MorphCore’s frequency is reduced

by 2.5% because its critical path increased by 2.5% (as explained

in Section 4.2). Since the OOO-2 core has the highest frequency

and supports 4-wide superscalar OOO execution, we can expect it to

have the highest single thread (ST) performance. Since the SMALL

and MED cores have the highest aggregate ops/cycle, we can expect

them to have the highest multi-threaded (MT) performance. We ex-

pect the MorphCore to perform close to best in both ST and MT

workloads. In Section 7.1, we also compare MorphCore against

CoreFusion [16], a representative of reconfigurable core architec-

tures proposed to date.

5.1. Workloads

Table 3 shows the description and input-set for each application. We

simulate 14 single-threaded SPEC 2006 applications and 14 multi-

threaded applications from different domains. We limit the number

of single-thread workloads to 14 to ensure that the number of single-

thread and multi-thread workloads is equal, so that the single-thread

results do not dominate the overall average performance data. We

randomly choose the 14 SPEC workloads. Each SPEC benchmark



Table 3: Details of the simulated workloads

Workload Problem description Input set

Multi-Threaded Workloads

web web cache [29] 500K queries

qsort Quicksort [8] 20K elements

tsp Traveling salesman [19] 11 cities

OLTP-1 MySQL server [2] OLTP-simple [3]

OLTP-2 MySQL server [2] OLTP-complex [3]

OLTP-3 MySQL server [2] OLTP-nontrx [3]

black Black-Scholes [23] 1M options

barnes SPLASH-2 [34] 2K particles

fft SPLASH-2 [34] 16K points

lu (contig) SPLASH-2 [34] 512x512 matrix

ocean (contig) SPLASH-2 [34] 130x130 grid

radix SPLASH-2 [34] 300000 keys

ray SPLASH-2 [34] teapot.env

water (spatial) SPLASH-2 [34] 512 molecules

Single-Threaded Workloads

SPEC 2006 7 INT and 7 FP benchmarks 200M instrs

is run for 200M instructions with ref input set, where the represen-

tative slice is chosen using a Simpoint-like methodology. We do

so since SPEC workloads are substantially longer (billions of in-

structions), and easier to sample using existing techniques like Sim-

Point. Single-threaded workloads run on a single core with other

cores turned off. In contrast, multi-threaded workloads run with the

number of threads set equal to the number of available contexts,

i.e., numbero f cores× numbero f SMTcontexts. We run all multi-

threaded workloads to completion and count only useful instructions,

excluding synchronization instructions. Statistics are collected only

in the parallel region, and initialization phases are ignored. For ref-

erence, Figure 8 shows the percentage of execution time in multi-

threaded workloads when a certain number of threads are active. A

thread is active when it is not waiting on any synchronization event.

We will refer to this data when presenting our results next.
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Figure 8: Percentage of execution time when a certain number of
threads are active

6. Results

Since MorphCore attempts to improve performance and reduce

energy, we compare our evaluated architectures on performance,

Table 4: Micro-op throughput (uops/cycle) on OOO-2

web qsort tsp OLTP-1 OLTP-2 OLTP-3 black

3.47 1.95 2.78 2.29 2.23 2.35 3.39

barnes fft lu ocean radix ray water

3.31 2.68 3.11 2.17 1.94 3.06 3.51

energy-consumption, and a combined performance-energy metric,

the energy-delay-squared product.

6.1. Performance Results

Since design and performance trade-offs of ST and MT workloads

are inherently different, we evaluate their performance separately.

We will present a combined average across all ST and MT work-

loads in Section 6.1.3.

6.1.1. Single-Thread (ST) Performance Results. Figure 9a shows

the speedup of each core normalized to OOO-2. As expected,

OOO-2 achieves the highest performance on all workloads. The

MorphCore is a close second. This is because MorphCore intro-

duces minimal changes to a traditional out-of-order core. As a

result of these changes, MorphCore runs at a 2.5% slower frequency

than OOO-2, achieving 98.8% of the performance of OOO-2. The

OOO-4 core provides slightly lower performance than MorphCore.

This is because OOO-4 has a higher overhead when running in ST

mode, a 5% frequency penalty, as it supports 4 OOO SMT threads.

Note that the difference in performance among OOO-2, OOO-4,

and MorphCore is the smallest for memory-bound workloads, e.g.,

mcf, GemsFDTD, and lbm. On the other hand, the cores optimized

for multi-thread performance, MED and SMALL, have issue widths

of 2 (as opposed to 4 for ST optimized cores) and either run in-order

(SMALL) or out-of-order with a small window (MED). This results

in significant performance loss in ST workloads: MED loses perfor-

mance by 25% and SMALL by 59% as compared to OOO-2. The

performance loss is more pronounced for FP workloads (right half

of figure) as compared to INT workloads. In summary, MorphCore

provides the second best performance (98.8% of OOO-2) on ST

workloads.

6.1.2. Multi-Thread (MT) Performance Results. Multi-thread

(MT) performance is affected by not only the performance poten-

tial of a single core, but the total number of cores and SMT threads

on the cores. Figure 9b shows the speedup of each core normalized

to OOO-2. As expected, the throughput optimized cores, MED and

SMALL, provide the best MT performance (on average 30% and

33% performance improvement over OOO-2 respectively). This is

because MED and SMALL cores have higher total peak throughput

even though they take approximately the same area as OOO-2 (see

Table 2).

More importantly, MorphCore provides a significant 22% perfor-

mance improvement over OOO-2. MorphCore provides the highest

performance improvement for workloads that have low micro-op ex-

ecution throughput (uops/cycle) when run on the baseline OOO-2

core (Table 4). This is because MorphCore provides better latency

tolerance and increases core throughput by executing up to 8 threads

simultaneously. For example, radix gets the highest performance

improvement of 84% over OOO-2 by increasing the uops/cycle from

1.94 to 3.58. In fact, MorphCore outperforms MED cores by 15% on

radix because of its ability to run more SMT threads as compared
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(a) Single-thread (ST) workloads
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(b) Multi-Thread (MT) workloads

Figure 9: Performance results

to three MED cores. qsort is another workload with low uops/cycle

(1.95), however MorphCore (similar to other throughput cores) does

not provide as high a performance improvement as in the case of

radix. This is because of two reasons: 1) when executing qsort,

MorphCore does not spend a significant amount of time in InOrder

mode (only 80% of execution time runs more than 2 threads active as

shown in Figure 8), and 2) even when more than 2 threads are active,

only 50% of the time are 6 or more threads active (data not shown

in Figure 8). Thus, MorphCore does not get much opportunity to

achieve higher throughput. Note that MorphCore still outperforms

MED cores in qsort because of its ability to execute up to 8 threads.

Other workloads that have relatively high uops/cycle on OOO-2

(from 2.17 to 2.78) achieve relatively lower performance improve-

ment with MorphCore over OOO-2 (from 23% for fft to 40% for

tsp). The performance improvement of MorphCore is higher for

tsp as compared to other workloads in this category even with a rel-

atively high baseline uops/cycle of 2.78 (on OOO-2) because Mor-

phCore ends up executing fewer number of total instructions (-10%)

as compared to OOO-2 although doing the same algorithmic work.

This is because tsp is a branch and bound algorithm, and the likeli-

hood of quickly reaching the solution increases with more threads.

MorphCore provides the least performance improvement in work-

loads that can achieve a high uops/cycle (from 3.06 to 3.51) even

when run with 2 threads on OOO-2 (web, black, barnes, ray,

and water). These workloads have high per-thread ILP available,

and thus do not benefit significantly from increasing the number of

threads, because the performance improvement that can be achieved

is limited by the peak throughput of MorphCore. However, as we

later show, MorphCore is still beneficial because it is able to pro-

vide higher performance at a lower energy consumption by execut-

ing SMT threads in-order.

In general, MorphCore’s performance improvement is lower than

that of throughput optimized cores, MED and SMALL, over OOO-

2 (on average 22% vs 30% and 33%) because of its lower peak

MT throughput (Table 2). However, MorphCore outperforms MED

cores in 3 workloads: qsort, fft, and radix. qsort and radix

benefit from more threads as explained above. In fft, MED cores

suffer from thread imbalance during the execution: 3 threads are

active only for 72% of the execution time, and only 2 threads are

active for 24% of execution time, and thus provide a slightly lower

performance (-3%) than MorphCore. MorphCore also outperforms

SMALL cores in lu. (In fact SMALL cores perform worse than

OOO-2). This is because lu’s threads do not reach global barrier

at the same time and have to wait for the lagging thread. Because

SMALL cores have low single-thread performance, threads end up

waiting for the lagging thread for a significant amount of time (only

1 thread is active for 35% of the execution time as shown in Fig-

ure 8), and thus execution time increases significantly. MorphCore

does not suffer significantly from the problem of thread-imbalance-

at-barrier because it switches into OutOfOrder mode when only 1

thread is active, therefore thread’s waiting time is reduced.

MorphCore also outperforms OOO-4, a core architecture that

has a higher area overhead and is significantly more complex than

MorphCore (because OOO-4 supports 4 OOO SMT contexts), on

average by 7% and up to 26% (for qsort). Although the peak

throughput of both MorphCore and OOO-4 is the same (4, Table 2),

MorphCore wins because it provides better latency tolerance by

executing more threads than OOO-4. Thus, for workloads which

have low uops/cycle and benefit from increasing the number of

threads, MorphCore provides significantly higher MT performance

compared to OOO-4.

6.1.3. Overall Performance Results. Figure 10a summarizes the

average speedup of each architecture normalized to OOO-2. On

single-thread (ST) workloads, MorphCore performs very close to

OOO-2, the best ST-optimized architecture. On multi-thread (MT)

workloads, MorphCore performs 22% higher than OOO-2, and

achieves 2/3 of the performance potential of the best MT-optimized

architectures (MED and SMALL). On average across all workloads

(ST and MT), MorphCore outperforms all other architectures. We

conclude that MorphCore is able to handle diverse ST and MT work-

loads efficiently.

6.1.4. Sensitivity of MorphCore’s Results to Frequency Penalty.

We find that for a MorphCore with an X% frequency penalty, perfor-

mance of ST and MT workloads reduces by ∼ X/2% and X% respec-

tively as compared to a MorphCore with no frequency penalty. This

is because our ST workloads are core+memory bound while our MT

workloads are primarily core bound.
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Figure 10: Speedup, Power, Energy, and Energy-Delay-Squared Results Summary

6.2. Energy-Efficiency Results

We first refer to Figure 10b that shows total power (static + dy-

namic) of each core configuration for ST and MT workloads. As

expected, for ST workloads, the highest power configurations are

large out-of-order cores (OOO-2, OOO-4, and MorphCore). A sin-

gle MED or a single SMALL core takes area less than an out-of-

order core, and thus toggle less capacitance, resulting in 47% and

77% lower power respectively. For MT workloads, all core config-

urations consume similar power (except MED cores), thus confirm-

ing that area-equivalent core comparisons result in power-equivalent

core comparisons. The 3 MED cores take 18% more area (Table 2),

and provide 30% higher performance (which translates into more dy-

namic power), resulting in 25% more power over OOO-2. Note that

MorphCore consumes 2% less power than OOO-4 while providing

7% higher performance. This is because MorphCore does not waste

energy on OOO renaming/scheduling, and instead, provides perfor-

mance via highly-threaded in-order SMT execution.

Figure 10c shows the total (static + dynamic) energy consumed

by each configuration (core includes L1 I and D caches but not L2

and L3 caches) normalized to OOO-2. As expected, SMALL cores

are the most energy-efficient cores in both workload categories: for

ST workloads, they have 59% lower performance for 77% lower

power (an energy reduction of 46%), and for MT workloads they

have 33% higher performance for 1% higher power (an energy re-

duction of 19%) than OOO-2. For MT workloads, MorphCore is the

second best in energy-efficiency (after SMALL cores): MorphCore

consumes 9%, 7%, and 6% less energy than OOO-2, OOO-4, and

MED cores respectively.

MorphCore reduces energy consumption for two reasons: 1) Mor-

phCore reduces execution time, thus keeping the core’s structures

active for shorter period of time, and 2) even when MorphCore is

active, some of the structures that will be active in traditional out-of-

order cores will be inactive in MorphCore’s InOrder mode. These

structures include the Rename logic, part of the instruction Sched-

uler, and the Load Queue. For reference, Table 5 shows the power

for several key structures of OOO-2 core as a percentage of core

power averaged across MT workloads. We find that 50% of the en-

ergy savings of MorphCore over OOO-2, and 75% of the energy

savings of MorphCore over OOO-4 come from reducing the activ-

ity of these structures. MorphCore is also more energy-efficient than

MED cores because even when it provides 8% lower performance, it

does so at significantly (22%) lower power than MED cores, result-

ing an energy savings of 6% (70% of MorphCore’s energy savings

over MED cores happen because of reduced activity of MorphCore’s

structures in InOrder mode).

Table 5: Power of key structures of OOO-2

Structure Power

Rename + RATs 4.9%

Scheduler 2.9%

Physical Register File 3.7%

Load + Store Queue 3.0%

ROB 2.1%

Figure 10d shows Energy-Delay-Squared (ED2), a combined

energy-performance efficiency metric [36, 21], of the five evaluated

architectures. On average across all workloads, MorphCore provides

the lowest ED2: 22% lower than the baseline OOO-2, 13% lower

than OOO-4, 9% lower than MED, and 44% lower than SMALL.

We conclude that MorphCore provides a good balance between en-

ergy consumption and performance improvement in both ST and MT

workloads.

7. Related Work

MorphCore is related to previous work in reconfigurable cores, het-

erogeneous chip multiprocessors, scalable cores, simultaneous mul-

tithreading, and power-efficient cores.

7.1. Reconfigurable Cores

Most closely related to our work are the numerous proposals that

use reconfigurable cores to handle both latency- and throughput sen-

sitive workloads [16, 5, 17, 25, 24, 32, 9, 10]. All these proposals

share the same fundamental idea: build a chip with “simpler cores”

and “combine” them using additional logic at runtime to form a high

performance out-of-order core when high single thread performance

is required. The cores operate independently in throughput mode.

TFlex [17], E2 dynamic multicore architecture [25], Bahu-

rupi [24], and Core Genesis [10] require compiler analysis and/or

ISA support for instruction steering to constituent cores to reduce

the number of accesses to centralized structures. MorphCore does

not require compiler/ISA support, and therefore can run legacy bina-

ries without modification. Core Fusion [16], Federation Cores [5],

Widget [32], and Forwardflow [9] provide scalability without any

compiler/ISA support, similar to MorphCore.



Shortcomings. There are several shortcomings with the approach

of combining simpler cores to form a large OOO core:

(1) Performance benefit of fusing the cores is limited because the

constituent small cores operate in lock-step. Furthermore, fusing

adds latencies among the pipeline stages of the fused core, and re-

quires inter-core communication if dependent operations are steered

to different cores.

(2) Switching modes incurs high overhead due to instruction cache

flushes and data migration among the data caches of small cores.

(3) Core-Fusion-like proposals are not only in-efficient in “fused”

mode, but also in their “non-fused” mode, because they use medium-

size OOO cores as their base cores, which are power inefficient.

Comparison with CoreFusion. CoreFusion [16] fuses medium-

sized OOO cores (2-wide, 48 entry OOO window) to form a large

out-of-order core. Figure 11 shows the speedup of a single medium-

sized OOO core (MED) and MorphCore normalized to CoreFusion

for single-threaded workloads. In this experiment, CoreFusion com-

bines three MED cores (see Table 2), and we use fusion latencies

as described in [16] (7-cycle rename, 2-cycle extra branch mispre-

diction, and 2-cycle inter-core communication penalties). We use

the instruction steering heuristic described in the CoreFusion paper,

and assume perfect LSQ bank prediction for steering loads/stores to

cores. CoreFusion outperforms MED across all workloads except

mcf (12% on average) because of its higher effective issue-width,

window-size and L1 Dcache size. In mcf, these benefits are nullified

by the overhead of inter-core communication introduced by CoreFu-

sion. MorphCore outperforms both MED and CoreFusion across the

board because unlike CoreFusion, it is a traditional aggressive out-

of-order core without latency and communication overheads. On

average MorphCore performs 17% better than CoreFusion.

Figure 12 shows the average speedup, power, energy, and ED2

of MorphCore normalized to CoreFusion. On average, MorphCore

provides 5% higher performance than CoreFusion. CoreFusion out-

performs MorphCore in multi-threaded workloads (8% on average,

per benchmark results are shown in Figure 9b) because it has a

higher peak throughput as it consists of 3 medium-sized OOO cores.

MorphCore reduces power (19%), energy (29%), and ED2 (29%)

when averaged across both single-threaded and multi-threaded work-

loads over CoreFusion because it uses less area (see Table 2), and

thus, consumes less static power than CoreFusion’s three MED cores

while providing higher or comparable performance.
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Figure 11: MorphCore’s Single-Thread Performance versus CoreFu-
sion
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Figure 12: Average Speedup, Power, Energy, and ED2 of MorphCore
versus CoreFusion

7.2. Heterogeneous Chip-Multiprocessors

Heterogeneous (or Asymmetric) Chip Multiprocessors

(ACMPs) [11, 22, 28] consist of one or a few large cores to

accelerate single-threaded code, and many small cores to accelerate

multi-threaded code. They have two limitations. First, the number

of large and small cores is fixed at design time. In contrast,

MorphCore can adapt the number of cores optimized for serial and

parallel execution dynamically. Second, they incur a migration

cost when execution is migrated between a small and a large core.

Since MorphCore can accelerate threads “in-place,” no migration

overhead is incurred.

7.3. Scalable Cores

Scalable cores scale their performance and power consumption over

a wide operating range. Dynamic Voltage and Frequency Scaling

(DVFS) [14, 6] is a widely-used technique to scale a core’s perfor-

mance and power (e.g., Intel Turbo Boost [1]). However, increasing

performance using DVFS costs significant increase in power con-

sumption (power increases with the cube of frequency). Albonesi et

al. [4] proposed dynamically tuning processor resources (e.g., cache

size, register file size, issue queue entries etc.) in order to provide

on-demand performance and energy savings. However, such tech-

niques do not explore how these resources can be better used, and

what other resources can be turned-off when TLP is available.

7.4. Simultaneous Multi-Threading

Simultaneous Multi-Threading (SMT) [13, 35, 31] was proposed to

improve resource utilization by executing multiple threads on the

same core. However, unlike MorphCore, previously proposed SMT

techniques do not reduce power consumption when TLP is avail-

able. Furthermore, traditional SMT increases the area/complexity

and power consumption of the core, whereas MorphCore leverages

existing structures and does not increase area/complexity and power.

Hily and Seznec observed in [12] that out-of-order execution be-

comes unnecessary when thread-level parallelism is available. In

contrast, MorphCore saves energy and improves performance when

executing multi-threaded workloads.

7.5. Power-Efficient Cores

Braids [30] provides OOO-like single-thread performance using in-

order resources. However, Braids does not adapt to the software

because it requires complicated compiler/software effort upfront. In

contrast, MorphCore requires no software effort, and adapts to the

software’s needs.



8. Conclusion

We propose the MorphCore architecture which is designed from

the ground-up to improve the performance and energy-efficiency of

both single-threaded and multi-threaded programs. MorphCore op-

erates as a high-performance out-of-order core when Thread-Level

Parallelism is low, and as a high-performance low-energy, highly-

threaded in-order SMT core when Thread-Level Parallelism is high.

Our evaluation with 14 single-threaded and 14 multi-threaded work-

loads shows that MorphCore increases performance by 10% and re-

duces energy-delay-squared product (ED2) by 22% over a typical

2-way SMT out-of-order core. We also show that MorphCore in-

creases performance and reduces ED2 when compared to an aggres-

sive 4-way SMT out-of-order core, medium out-of-order cores, and

small in-order cores. It also outperforms CoreFusion, a reconfig-

urable core architecture, in terms of performance (by 5%), and ED2

(by 29%). We therefore suggest MorphCore as a promising direc-

tion for increasing performance, saving energy, and accommodating

workload diversity while requiring minimal changes to a traditional

out-of-order core. In the future we plan to further enhance Mor-

phCore by exploring better policies for switching between in-order

and out-of-order mode and by providing hardware mechanisms to

support a low-power in-order single-thread mode.
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