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ABSTRACT

Much has been written about the interface between hardware and sofiware and
the tradeoffs associated with it. In this paper, we show that there exists a separate
interface which is commonly confused with the hardware/software interface (HSI).
This is the dynamic/static interface (DSI), which defines the boundary between
interpretation and transiation. In this paper we show that the DSI is separate
from the HSI and demonsirate the usefulness of this concept.

1. INTRODUCTION

A computer is a multilevel system with probiems at the
top and circuits at the botiom. In between are lev-
els, or interfaces, which define sets of data structures
and the operations allowed on them. For example, high
level languages, machine architectures and microarchi-
" tectures are all interfaces.

A widely discussed interface is the hardware/software
interface, or HSL, which defines the boundary between
“hardware” and “software”. Another interface, not as
widely discussed but equally if not more important is
the dynamic/static interface, or DSI, which defines the
boundary between transiation and interpretation. We
will show that the DSI and the HSI are often confused,
but are actually separate interfaces. Furthermore, we
will show that by clarifying the concepts of the DSI and
the HSI, different approaches to computer architecture
can be put into a new perspective that we believe is use-
ful. We will also discuss two other interfaces, the single
cycle interface, or SCI, and the builder/user interface,
or BUL :

This paper is divided into four sections.. In this sec-
tion we define the DS, HSI, BUI and SCI and discuss
general tradeoffs associated with the DSI. Section 2 pro-
vides some historical background on the DSI concept.
Section 3 discusses various examples in terms of their
interface configurations. Section 4 concludes with some
final remarks.

1.1. DEFINITIONS

The dynamic/static interface arises from the fact that
problem solutions typically undergo two stages. In the

first stage, tfan.slation, the specification of the problem
is changed from one form into another (i.e., a new prob-
lem specification is created at a lower interface). In the

. second stage, interpretation, the problem specification

218

is executed, poesibly using input data that is not part
of the specification, and resuits are generated. The DSI
is the interface between transiation and interpretation.

For conventional machines running compiled languages,
the DSI is at the machine architecture level. The
high level language is transiated into machine language,
which then gets interpreted by the hardware., Because
this case is so common, the DSI tends to be implicitly
placed at the machine architecture level. Often a dis-
cussion of “hardware vs. software” will include points
that are really related to the issue of static vs. dynamic.

Now suppose we have a program that interprets a high
level language. In this case, the DSI is above the
machine architecture level. The interpreter is clearly
software, so the DSI must be different from the hard-
ware/software interface. Conversely, hardware can be
built which translates a program from one interface
to another. In this case, the DSI is beiow the hard-
ware/software interface.

“The specific definition of the HSI presents some diffi-

culties. The problem is that the question of what is
“hardware” and what is “software” doesn’t have a sim-
ple answer. The extremes are easy to identify, but the
distinction is less clear in between.

We believe that the crucial element in the way most
people interpret software and hardware is the question
of alterability. In other words, how easy it is to alter a
particular interface is related to how “soft” the interface
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is. In this paper, we will use the following definition for
the HSI: the highest interface that is not dynamically
alterable. That is, if an interface cannot be changed
while the computer is operating, everything below will
be called hardware. Note that we could also have used
a test of static alterability (i.e., can the interface be
changed without physically modifying the computer?).
Perhaps the HSI should be broken down into the hard-
ware/firmware interface and the firmware/software in-
terface and the tests of static and dynamic alterability
should be applied to each interface respectively.

Under the dynamic alterability definition of the HSI,
the microcode of most machines, even though it may
be stored in read/write memory, is hardware because
it cannot be changed without halting the processor.
Even the microcode of the [BM System/370 model 145,
which is stored in main memory, would be considered
hardware under thia definition because the memory re-
gion containing the microcode is protected and cannot
be changed without rebooting [17}. However, the mi-
crocode of machines such as the B1700 {21} and the
QM-1 (28| in software under this definition becauss it
can be modified while the processor is running.

There are also ways to define hardware and software
that have nothing to do with alterability. Patt and
Ahlstrom [22| argue that microcode should be conaid-

ered hardware if it is provided by the manufacturer and .

software if it is written by the user. They have called the
hardware/software interface what might be more appro-
priateiy called the builder/user interface, or BUIL This
interface defines the boundary between what the builder
provides and what the user has access to. This defini-
tion of hardware and software, however, waa rejected by
a Federal District Judge in the recent Intel/NEC case.
The microcode of the 8086 was ruled to be software even
though it is not visibie to the user.

Another interface that is useful to discuss is the single
cycle interface, or SCI, This is the lowest interface of
a machine; it is generally interpreted by combinational
logic only. In the case of a pipelined implementation,
there may be sequential logic below the SCI, but a par-
ticular piece of the data path is not used more than once
for each instruction at the SCJ level. For conventional
machines, the SCI is the microarchitecture (i.e., the mi-
croword format, the definitions of the microorders and
the definitions of the internal registers).

1.2. DSI TRADEOFFS

There are many tradeoffs associated with the DSI. We
are mainly interested in how movement of the DSI af-
fecta performance, but it is necesaary to understand
that performance is variable even with a fixed DSI (i.e.,
translation time can be traded off for interpretation
time]. The translator can be very complex, perform-
ing many optimizations and making the interpretation

phase faster, or it can be very simple, making the inter-
pretation phase slower. In the extreme case, if a prob-
lem needs no input data, the transiator could do what
amounts to executing the entire program and then gen-
erate just the atatements that print the result.

Movement of the DSI has different implications. If the
DSI is at a suitably matched high semantic level, then
the translation process would be simple but interpreta-
tion would be complex and might require several levels.
In this case, the highest level interpreter would be ex-
ecuting instructions which would themselves be inter-
preted by a lower level interpreter.

On the other hand, if the DS] is &t a very low semantic
level, for example at the SCI, then there is no interpre-
tation involved except by the circuits below the SCI.
Translating to this interface involves several issues. De-
pending on the complexity of the SCI, translating near
optimally may be very difficult. Translating to a sim-
ple SCI is easier, but performance may be related to
the complexity of the SCI (e.g., how many things can
be done in one cycle). Note that the problems associ-
ated with translating to the 3CI are different from the
problems associated with writing an interpreter which
executes above the SCI, Thus, it is not always straight-
forward to compare the compilation to microcode with
the creation of a macrocode interpreter in microcode.

There are also bandwidth tradeoffs. Lowering the DSI
increases the run-time bandwidth to the highest level
interpreter. Raising the DSI would lower the bandwidth
required to this interpreter, and since the lower level
interpreters are generally smaller, this could be advan-
tageous,
3. HISTORICAL BACKGROUND
The concept of hardware and software and the concept
of interpretation and translation have both been around
for many years. However, the connection of the two in
a coherent manner haa not. In this section, we will pro-
vide a brief background on how others have viewed the

DST and the HSI and to what extent they have con-
nected the two.

People have long recognized the two—phase nature of
the execution of most programs. Hoevel [16] addresses
the DSI directly and argues that it should be above
the SCI but below the high level langnage. Flynn [8],[9}
also distinguishes the DSI. These papers, however, don’t
discuss the DSI in connection with the HSL

Myers, in chapter 3 of (20|, compares some basic ap-
proaches to computer architecture. He distinguishes
five approachea: traditional, language-directed, type
A HLL machines, type B HLL machines and type C
HLL machines. The main feature separating these ap-

219 .



Proceedings of the Twentieth Annuai Hawaii International Conference on System Sciences, 1987,

proaches is the level of the DSI, not the level of the
HSI. The diacussion centers on the transiation and in-
terpretation process, even though the terms “machine
architecture® and “machine language” are used. The
implicit assumption is made that the HSI and DSI are
the same with the exception of type B HLL machines,
which differ from type A machines only in that the HSI
is higher {above the DSI).

Thus, he discusses a category in which the hardware
transaiates as well as interprets, but he seems to consider
the “machine architecture” in this case to be the level
from which interpretation takes place rather than the
level from which translation takes place:

“Note that the type B machine has the same
semantic gap as a type A machine. Its only
advantage over a type A machine is that the
assernbly process should be faster because it
is implemented as a microprogram or in hard-
ware.” [20], p. 46

This would imply that he considers the DSI to define
the semantic gap. However, in his discussion of hard-
ware va. software, he is clea.rly talking about something
else:

“Architects often use the following three crite-
ria in determining whether a function should
be implemented in the machine rather than
in software: {1) the function should be small,
(2) the function should be unlikely to change,
and (3) systera performance wouid suffer from
a slower software implementation of the func-
tion.” [20], p.46

These criteria are not related to the translation and
interpretation issue and the second criterion clearly re-
lates to a question of alterability. Thus, Myers shows
that the HSI and the DSI (by our definitions) are sepa-

rate things, even though he doesn’t discuss them in this
way.

Tanenbaum [34| separates the DSI from the HSI more
clearly although he doesn’t connect the two together.
In Chapter 1, muitilevel machines are introduced and
the techniques of translation and interpretation are de-
fined. He doesn’t mention the DSI explicitly, but he
does discuss translating to and interpreting from differ-
ent levels (i.e., movement of the DSI). Then, software
and hardware are discussed:

“Any operation performed by software can
also be built directly into the hardware and
any instruction executed by the hardware can
also be simulated in software. The decision
to put certain functions in the hardware and
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others in the software is made on the basis of
such factors as cost, speed, reliability, and fre-
quency of expected changes.” [34], p. 11

Thua, although the DSI and the HSI are not related to
one another, they are clearly com:dered to be separate

interfaces.
3. DSI/HSI CONFIGURATION EXAMPLES

Figure 1 shows an HSI versus DSI diagram showing
where a number of computers {all within the two dimen-
sional space. In this section we consider different ap-
proaches to computer design and discuss them in terms
of how they affect the HSI and the DSI.

3.1. HIGH LEVEL LANGUAGE MACHINES

The principle behind the notion of high leve! language
machines is to raise the HSI to the high level language
level. The DSI is also generally raised as high as possi-
ble, usually slightly beiow the HSI. The SYMBOL ma-
chine was an early example of this [32], {33], [31]. In
this case, the HSI is at the SYMBOL language level
[7] since the hardware is able to accept SYMBOL lan-
guage input, while the DSI is at a slightly lower level
represented by the internal representation of a SYM-
BOL program. The hardware of the machine trans-
lates a SYMBOL program into this intermediate form
(remaves redundant blanks, changes keywords into bit
strings, replaces symbolic addresses to pointers, etc.),
After this translation has been completed for the entire
program, execution begins.

Another example of a high level language machine is the
Abacus machine that ran BASIC [3|. Like SYMBOL,
this machine has the HSI at the high level language
level and the DSI slightly below. Abacus did a hard-
ware translation similar to that performed by SYMBOL
before starting the execution of the program. A FOR-
TRAN machine [1] also falls into this general category.
The HSI is at the FORTRAN level, the DSI is slightly
below. Finally, there is a machine proposed by Chu and
Abrahms {5], [4]. Unlike the previous examples, this
machine actually has the DSI at the high level language
level. During the execution of the program, the hard-
ware actually scana the source code and executes it. No
transiation is done previous to this and there exists no
other specification of the program other than the source
code.

3.2, DYNAMIC MICROPROGRAMMING

The basic idea of dynamic microprogramming is to
tower the HSI to the single cycle level, while keeping
the DSI at a typical level. The motivation behind dy-
namic microprogramming is to allow the DSI to be bet-
ter matched to the problem being run. By lowering the
HSI, the level in between the HSI and the DSI becomes
dynamically alterable, thus, the DSI can be changed
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for different problems being run. Exampies of dynamic
microprogramming are the Burroughs B1700 series {21]
and the QM-1/28].

Cook and Flynn describe a dynamicaily micropro-
grammable computer in (6], and Flynn, Neuhauser and
McClure describe the EMMY system at Stanford in {10],
which was similar. Also, the ‘Intarpreter’ is described
in [30], a system similar to the QM-1. Rauacher and
Agrawala discuss the application of dynamically micro-
programmable machines in {29]. Most of these papers
and books, however, don't explicitly address the issue
of DSI placement. The main point behind dynamic mi--
croprogramming is HSI placement, not DSI placement.
1t is generally assumed that the DSI should be where it
typically has been. In other words, these machines are
generally designed as interpreters, they are not set up
to handle placement of the DSI at the HSI (compllmg
down to the microcode level).

3.3. VERTICAL MIGRATION

Another idea concerning the movement of the HSI and
DSI is vertical migration. The principle here is to raise
the HSI. In some cases the DSI is raised with the HSI,
and in some cases it remains unchanged. The differ-
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.ence lies in whether the functions that are vertically

migrated are then transiated to, or are then used by
an interpreter (see figure 1). In either case, the mo-
tivation behind this idea is to raise the HSI in order
to allow more efficient execution of commonly executed
functions. This ia accomplished for two reasons. First,
inatruction bandwidth is reduced because more complex
operations are encoded at the HSI level. Second, the
implementor of the functions to be vertically migrated
has a finer level of control than wouid be poasible us-
ing conatructs above the HSI. Typically, functions that
were previously written in the macrocode of a conven-
tional processor are rewritten in microcode, which then
becomes part of the hardware.

Hassit and Lyon describe an application of vertical mi-
gration in {13] and {12]. This was a vertical migration
of selected APL primitives. The primitives were mi-
crocoded on an IBM System/370 model 25. Weber de-
scribes an implementation of EULER on an IBM Sys-
tem/360 model 30 in {35]. Luque and Ripoll provide
a summary and overview of vertical migration in |18].
Pihlgren describes the vertical migration of COBOL
primitives in {25]. These are just a few examples of
the many papers published in this area.
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3.4. REDUCED INSTRUCTION SETS

The last idea about the HSI and DSI that will be dia-
cussed ia the idea of “reduced instruction set” machines.
There iz no consensus on what defines & reduced instruc-
tion set machine. We wiil consider in this section only
those machines that put the DSI and the HSI at the SCI,
gince we believe this is critical issue. Examples of these
achines are the IBM 801 [26], the Berkeley RISC (23],
[24], the Stanford MIPS (14], (18], and the HP Spectrum
2], {19]. Two other machines that have claimed to be
reduced instruction set machines, the Ridge 32 (11], and
the Pyramid 90X [27] may have lowered the HSI and the
DSI somewhat compared with some machines, but they
are both still above the SCL

The unique feature of the reduced instruction set idea is
to lower the DSI as well as the HSL The dynamic micro-
programming idea discussed above advocated the lower-
ing of the HSI, but not the DSI. Many papers justifying
the ‘reduced instruction set’ concept seem to ignore the
fact that the DSI ia lower as weil a8 the HSI. For exam-
ple, Radin, in [26], makes the following statement with
regard to the IBM 801:

« .. the benefits claimed {of microcode] are
generally not due to the power of the instruc-
tions as much as to their residence in a high-
speed control store. This amounts to a hard-
ware architect attempting to guess which sub-
routines, or macros, are most frequently used
and assigning high-speed memory to them.

The 801 CPU geta its instructions from
an ‘instruction cache’ which is managed by
least-recently-used information. Thus, ail fre-
quently used functions are very likely to be
found in this high-speed storage, ...” [26]

Birnbaum and Worley, in (2], p. 41, also make an equiv-

alent remark about the HP Spectrum family. What they
fail to make clear is that the DSI has been lowered as
well as the HSL Making the comparison between a con-
trol store and an instruction cache isn’t as simple as they
might have you believe because one has microinstruc-
tions below the DSI and the other has microinstructions
above the DSL These are two very different situations
and a comparizon is not simple. Besides, some comput-
ers cache the control store without lowering the DSI,
for example the Burroughs B1726 {21]. The hit ratio
of a control store cache depends only on the frequency
of individual instructions. The hit ratio of an instruc-
tion cache, on the other hand, depends on instruction
stream locality, compiler technology, and how dynamic
the environment is.

4. CONCLUSIONS

The computer architect is faced with many tradeoffs. In
order to appropriately evaluate these tradeoffs, many
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different tools are needed. In particular, it is neces-
sary to capture the significant features of different de-
signs while ignoring the insignificant onea. We have at-
tempted to aid thia process by clarifying the concept
of the dynamic/static interface and comparing it to the
hardware/software interface. :

The interfaces themselves are not new, but we have com-
bined them in a coherent manner and defined a iwo di-
mensional space that has each interface as an axis. This
apace, shown in figure 1, illustrates the usefulness of the
HSI/DSI concept, Different approaches to computer de-
sign can be put into perspective with other approaches.
Of course, this captures only some of the characteristics
of a design, but we believe them to be significant ones.

This paper represents research in progress. Most of the
ideas presented here are still developing. We welcome
feadback and encourage discussion. :
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