
Prefetch-Aware DRAM Controllers

Chang Joo Lee† Onur Mutlu§ Veynu Narasiman† Yale N. Patt†

†Department of Electrical and Computer Engineering

The University of Texas at Austin

{cjlee, narasima, patt}@ece.utexas.edu

§Microsoft Research and Carnegie Mellon University

onur@{microsoft.com,cmu.edu}

Abstract
Existing DRAM controllers employ rigid, non-adaptive schedul-

ing and buffer management policies when servicing prefetch requests.

Some controllers treat prefetch requests the same as demand requests,

others always prioritize demand requests over prefetch requests. How-

ever, none of these rigid policies result in the best performance be-

cause they do not take into account the usefulness of prefetch re-

quests. If prefetch requests are useless, treating prefetches and de-

mands equally can lead to significant performance loss and extra

bandwidth consumption. In contrast, if prefetch requests are useful,

prioritizing demands over prefetches can hurt performance by reduc-

ing DRAM throughput and delaying the service of useful requests.

This paper proposes a new low-cost memory controller, called

Prefetch-Aware DRAM Controller (PADC), that aims to maximize the

benefit of useful prefetches and minimize the harm caused by use-

less prefetches. To accomplish this, PADC estimates the usefulness

of prefetch requests and dynamically adapts its scheduling and buffer

management policies based on the estimates. The key idea is to 1)

adaptively prioritize between demand and prefetch requests, and 2)

drop useless prefetches to free up memory system resources, based on

the accuracy of the prefetcher. Our evaluation shows that PADC sig-

nificantly outperforms previous memory controllers with rigid prefetch

handling policies on both single- and multi-core systems with a variety

of prefetching algorithms. Across a wide range of multiprogrammed

SPEC CPU 2000/2006 workloads, it improves system performance by

8.2% on a 4-core system and by 9.9% on an 8-core system while reduc-

ing DRAM bandwidth consumption by 10.7% and 9.4% respectively.

1. Introduction
High performance memory controllers seek to maximize through-

put by exploiting row buffer locality. A modern SDRAM bank con-

tains a row buffer that buffers the data of the last accessed memory

row. Therefore, an access to the same row (called row-hit) can be ser-

viced significantly faster than an access to a different row (called row-

conflict) [14]. Due to this non-uniform access latency, state-of-the-art

memory access scheduling policies, such as [34, 24, 13], prefer row-

hits over row-conflicts to improve DRAM throughput, thereby improv-

ing system performance. The problem of DRAM access scheduling

becomes more challenging if we take prefetching into consideration.

Today’s microprocessors employ hardware prefetchers to hide long

DRAM access latencies. If prefetch requests are accurate and fetch

data early enough, prefetching can improve performance. Existing

DRAM scheduling policies take two different approaches as to how

to treat prefetch requests with respect to demand requests. Some poli-

cies [31, 24] regard a prefetch request to have the same priority as

a demand request. This can significantly delay demand requests and

cause performance degradation, especially if prefetch requests are not

accurate. Other policies [7, 11, 4, 27, 28] always prioritize demand re-

quests over prefetch requests so that data known-to-be-needed by the

program instructions can be serviced earlier. One might think that do-

ing so provides the best performance by eliminating the interference

of prefetch requests with demand requests. However, such a rigid pol-

icy does not consider the non-uniform access latency of the DRAM

system (row-hits vs. row-conflicts). A row-hit prefetch request can

be serviced much more quickly than a row-conflict demand request.

Therefore, servicing the row-hit prefetch request first provides higher

DRAM throughput and can sometimes provide better system perfor-

mance than servicing the row-conflict demand request first.1

Figure 1 provides supporting data to demonstrate this. This figure

shows the performance impact of an aggressive stream prefetcher [30,

28] when used with two different memory scheduling policies for 10

SPEC 2000/2006 benchmarks. The vertical axis is retired instruc-

tions per cycle (IPC) normalized to the IPC on a processor with no

prefetching. One policy, demand-prefetch-equal does not differentiate

between demand and prefetch requests. This policy is the same as the

FR-FCFS (First Ready-First Come First Serve) policy [24] that prior-

itizes requests as follows: 1) row-hit requests over all others, 2) older

requests over younger requests. The other policy, demand-first, prior-

itizes demand requests over prefetch requests. Prefetch requests to a

bank are not scheduled until all the demand requests to the same bank

are serviced. Within a set of demand requests (or prefetch requests),

the policy uses the same prioritization rules as the FR-FCFS policy.

The results show that neither of the two policies provides the best per-

formance for all applications. For the leftmost five applications, pri-

oritizing demands over prefetches results in better performance than

treating prefetches and demands equally. In these applications, a large

fraction (70% for demand-prefetch-equal, and 59% for demand-first)

of the generated stream prefetch requests are useless. Therefore, it is

important to prioritize demand requests over prefetches. In fact, for

art and milc, servicing the demand requests with higher priority is

critical to make prefetching effective. Prefetching improves the per-

formance of these two applications by 2% and 10% respectively with

the demand-first scheduling policy, whereas it reduces performance by

14% and 36% with the demand-prefetch-equal policy.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

 n
o
rm

a
li

ze
d

 t
o
 n

o
 p

re
fe

tc
h

in
g

demand-first

demand-prefetch-equal

ga
lg

el

am
m

p

xa
la

nc
bm

k

ar
t

m
ilc

sw
im

lib
qu

an
tu

m

bw
av

es

le
sl
ie

3d

lb
m

Figure 1. Performance of two rigid prefetch scheduling policies

On the other hand, for the rightmost five applications, we observe

the exact opposite behavior. Equally treating demand and prefetch

requests provides significantly higher performance than prioritizing

demands over prefetches. In particular, for libquantum, the demand-

prefetch-equal policy allows the prefetcher to provide 169% perfor-

mance improvement, in contrast to the 60% performance improve-

ment it provides with the demand-first scheduling policy. This is be-

cause prefetch requests in libquantum are very accurate (almost 100%

of them are useful). Maximizing DRAM throughput by preferring

row buffer hits in the DRAM system regardless of whether a mem-

ory request is a demand or a prefetch request allows for more efficient

bandwidth utilization and improves the timeliness (and the coverage)

1Note that maximizing the number of row-hits provides the highest through-

put a DRAM bank can deliver.

978-1-4244-2837-3/08/$25.00 ©2008 IEEE 200

of prefetches, thereby improving system performance.2 These results

show that DRAM scheduling policies with rigid prioritization rules

among prefetch and demand requests cannot provide the best perfor-

mance and may even cause prefetching to degrade performance.3

Note that even though the DRAM scheduling policy has a signifi-

cant impact on the performance provided by prefetching, prefetching

sometimes degrades performance regardless of the DRAM scheduling

policy. For example, galgel, ammp, and xalancbmk suffer significant

performance loss with prefetching because a large fraction (69%, 94%,

and 91%) of the prefetches are not needed by the program. The neg-

ative performance impact of these useless prefetch requests cannot be

mitigated solely by a demand-first scheduling policy because useless

prefetches 1) occupy memory request buffer entries in the memory

controller until they are serviced, 2) occupy DRAM bandwidth while

they are being serviced, and 3) cause cache pollution by evicting pos-

sibly useful data from the processor caches after they are serviced.

As a result, useless prefetches could delay the servicing of demand

requests and could result in additional demand requests. In essence,

useless prefetch requests can deny service to demand requests because

the DRAM controller is not aware of the usefulness of prefetch re-

quests in its memory request buffer. To prevent this, the memory con-

troller should intelligently manage the memory request buffer between

prefetch and demand requests.

Our goal in this paper is to design an adaptive DRAM controller

that is aware of prefetching. We propose a memory controller that

adaptively controls the interference between prefetch and demand re-

quests to improve system performance. Our controller aims to maxi-

mize the benefits of useful prefetches and minimize the harm of use-

less prefetches. To do so, it employs two techniques to manage both

memory bandwidth and memory request buffers: based on the runtime

behavior (accuracy and timeliness) of the prefetcher, it 1) adaptively

decides whether or not to prioritize demand requests over prefetch re-

quests, and 2) decides whether or not to drop likely-useless prefetches

from the memory request buffer.

We evaluate our Prefetch-Aware DRAM Controller (PADC) on

a wide variety of benchmarks and systems and find that it consis-

tently outperforms previous DRAM controllers that rigidly handle

prefetches on both single and multi-core systems. Our controller im-

proves the performance of the 55 SPEC 2000/2006 benchmarks by

4.3% compared to the best previous controller on a single-core proces-

sor. Our mechanism also improves system performance (i.e., weighted

speedup) for 32 SPEC workloads by 8.2% on a 4-core system, and

for 21 workloads by 9.9% on an 8-core system while also reducing

memory bandwidth consumption by 10.7% and 9.4% respectively. We

show that our controller is simple to implement and low-cost, requir-

ing only 4.25KB of storage in a 4-core system.

Contributions: To our knowledge, this is the first paper that com-

prehensively and adaptively incorporates prefetch-awareness into the

memory controller’s scheduling and request buffer management poli-

cies. We make the following contributions:

1. We show that the performance of a prefetcher significantly de-

pends on how prefetch requests are handled by the memory controller

with respect to demand requests.

2. We propose a low-cost memory controller design that dynami-

cally adapts its prioritization policy between demand and prefetch re-

quests based on how accurate and timely the prefetcher is in a given

program phase.

2Improving DRAM throughput improves prefetch coverage by reducing the

probability that a useful prefetch is not issued into the memory system because

the memory request buffer is full. We explain this in more detail in Section 6.1.
3For completeness, we also implemented another policy, prefetch-first, that

always prioritizes prefetch requests over demand requests. This policy provides

the worst performance on all benchmarks: it degrades average IPC by 5.8%

compared to the demand-first policy.

3. We propose a simple mechanism that reduces the interference of

useless prefetches with demand requests by proactively removing the

likely-useless prefetches from the memory request buffer.

4. We show that the proposed adaptive scheduling and buffer-

management mechanisms interact positively. Together, they signifi-

cantly improve performance and bandwidth-efficiency on both single-

core and multi-core systems with a variety of prefetching algorithms.

2. Background

2.1. DRAM Systems and Scheduling
An SDRAM system consists of multiple banks that can be accessed

independently. Each DRAM bank comprises rows and columns of

DRAM cells. A row contains a fixed-size block of data (usually sev-

eral Kbytes). Each bank has a row buffer (or sense amplifier), which

caches the most recently accessed row in the DRAM bank. A DRAM

access can be done only by reading (writing) data from (to) the row

buffer using a column address.

There are three commands that need to be sequentially issued to

a DRAM bank in order to access data: 1) a precharge command to

precharge the row bitlines, 2) an activate command to open a row into

the row buffer with the row address, and then 3) a read/write command

to access the row buffer with the column address. After the completion

of an access, the DRAM controller can either keep the row open in the

row buffer (open-row policy) or close the row buffer with a precharge

command (closed-row policy). The latency of a memory access to a

bank varies depending on the state of the row buffer and the address

of the request as follows:

1. Row-hit: The row address of the memory access is the same as

the address of the opened row. Data can be read from/written to the

row buffer by a read/write command, therefore the total latency is only

the read/write command latency.

2. Row-conflict: The row address of the memory access is differ-

ent from the address of the opened row. The memory access needs a

precharge, an activate, and a read/write command sequentially. The

total latency is the sum of all three command latencies.

3. Row-closed: There is no valid data in the row buffer (i.e. closed).

The access needs an activate command and then a read/write com-

mand. The total latency is the sum of these two command latencies.

DRAM access time is shortest in the case of a row-hit [14].4 There-

fore, a memory controller can try to maximize DRAM data throughput

by maximizing the hit rate in the row buffer. Previous work [24] in-

troduced the commonly-employed FR-FCFS (First Ready-First Come

First Serve) policy which prioritizes requests such that it services 1)

row-hit requests first and 2) all else being equal, older requests first.

This policy was shown to provide the best average performance in

systems that do not employ hardware prefetching [24, 13]. However,

this policy is not aware of the interaction and interference between de-

mand and prefetch requests in the DRAM system, and therefore treats

demand and prefetch requests equally.

2.2. Hardware Prefetchers
In most of our experiments we use a stream prefetcher similar to

the one used in IBM’s POWER 4/5 [30]. Stream prefetchers are com-

monly used in many processors [30, 9] since they do not require sig-

nificant hardware cost and work well for a large number of applica-

tions. They try to identify sequential streams of data that the appli-

4Row-hit latency is about one third of the latency of a row-conflict for a con-

temporary SDRAM bank. For example, the row-hit and row-conflict latencies

are 12.5ns and 37.5ns respectively for a 2Gbit DDR3 SDRAM chip [14]. The

row-closed latency is 25ns. We use the open-row policy throughout the paper

since it increases the possibility to improve DRAM throughput. The open-row

policy provides 0.5% higher performance compared to the closed-row policy

for our multiprogrammed 4-core workloads.

201

cation needs by closely monitoring and recording previous sequen-

tial accesses. Once a stream is identified, prefetch requests are sent

out for data further down the stream so that when the processor ac-

tually demands the data, it will already be in the cache.5 As such,

stream prefetchers are likely to generate many row-hit prefetch re-

quests which our prefetch-aware DRAM controller can take advantage

of. We also evaluated our mechanism with three other prefetchers: a

stride prefetcher [1], CZone/Delta Correlation (C/DC) prefetcher [22],

and the Markov Prefetcher [7]. All of these prefetchers can generate a

significant fraction of row-hit prefetch requests, especially for stream-

ing/striding address/correlation patterns.

3. Motivation
None of the existing DRAM scheduling policies take into account

both the non-uniform nature of DRAM access latencies and the useful-

ness of prefetch requests. Figure 2 illustrates why a rigid, non-adaptive

prefetch scheduling policy degrades performance. Consider the exam-

ple in Figure 2(a), which shows three outstanding memory requests

(to the same bank) in the memory request buffer. Row A is currently

open in the row buffer of the bank. Two requests are prefetches (to

addresses X and Z) that access row A while one request is a demand

request (to address Y) that accesses row B.

��������
��������
��������

��������
��������
��������

DRAM

Miss Y

Processor stall

��
��
��
��

��
��
��
��

Processor execution (25 cycles)

��
��
��

��
��
��

Row−hit (100 cycles)

��
��
��

��
��
��

Row−conflict (300 cycles)

DRAM
Bank row buffer

Row A opened

controllerDRAM

(a) DRAM and controller state

Memory request buffer

Z: Pref row A

X: Pref row A

Y: Dem row B

}DEMAND
FIRST

DEMAND
FIRST}

DEMAND
PREFETCH
EQUAL}

DEMAND
PREFETCH
EQUAL}

��������
��������
��������

��������
��������
��������

���
���
���

���
���
���

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���

���
���
���

���
���
���

���
���
���

��������
��������
��������

��������
��������
��������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

���
���
���

���
���
���

�
�
�
�

�
�
�
�

���
���
���

���
���
���

���
���
���

���
���
���

��������
��������
��������

��������
��������
��������

�
�
�
�

�
�
�
�

Y Z

X Z Y

Miss Y

Miss Y Miss X Miss Z

X

Time

Processor

Processor

DRAM

Hit X Hit Z

Y X Z

X Z Y

Miss Y

Cycles saved

Time

DRAM

Processor

DRAM

Processor

(c) Timeline when prefetches are useless

(b) Timeline when prefetches are useful

Cycles saved

Figure 2. Example illustrating the performance impact of demand

first and demandprefetchequal policies

For Figure 2(b), assume that the processor needs to load addresses

Y, X, and Z in a serial fashion (i.e., both of the prefetch requests

are useful) and the computation between each load instruction takes

a fixed, small number of cycles (25 in the figure) that is significantly

smaller than the DRAM access latency.6 We assume processor exe-

cution takes a small number of cycles because previous studies [19,

8] showed that most of the execution time is dominated by DRAM

access latency. Figure 2(b) shows the service timeline of the requests

in DRAM and the resulting execution timeline of the processor for

two different memory scheduling policies, demand-first and demand-

prefetch-equal. With demand-first (top), the row-conflict demand re-

quest is satisfied first, which causes the prefetch of address X to incur

5The stream prefetcher we use for the evaluations is the best performing

among the large set of prefetchers we examined. It improves performance by

20% on average for all the 55 SPEC 2000/2006 benchmarks using demand-first

policy. For its detailed implementation, refer to [28, 30].
6For simplicity of illustration, this example abstracts away many details of

the DRAM system as well as processor queues such as DRAM bus/bank timing

constraints and processor queuing delays. These effects are faithfully modeled

in our simulation framework. We omit them from the figure to illustrate the

concept of rigid prefetch scheduling in the DRAM controller.

a row-conflict as well. The subsequent prefetch request to Z is a row-

hit because the prefetch of X opens row A. As a result, the processor

first stalls for approximately two row-conflict latencies (except for a

small period of execution). The processor then stalls for an additional

row-hit latency since it requires the data from address Z. The total ex-

ecution time is the sum of two row-conflict latencies and one row-hit

latency plus a small period of processor execution.

With the demand-prefetch-equal policy (bottom), the row-hit

prefetch requests to X and Z are satisfied first followed by the row-

conflict demand request to Y. The processor must stall until the de-

mand request to Y is serviced. However, after that, the processor

only needs to perform the computations between the load instruc-

tions because loads to X and Z hit in the cache. The total execution

time is the sum of one row-conflict latency and two row-hit latencies

(plus a small period of processor execution), which is less than with

the demand-first policy. Hence, treating prefetches and demands

equally can significantly improve performance when prefetch re-

quests are useful. We observe that the stream prefetcher generates

very accurate prefetch requests for many memory-intensive applica-

tions such as swim, libquantum, and leslie3d. For these applica-

tions, the demand-prefetch-equal memory scheduling policy increases

prefetch timeliness by increasing DRAM throughput and therefore im-

proves performance significantly as shown in Figure 1.

However, prefetch requests might not always be useful. In the ex-

ample of Figure 2(a), assume that the processor needs to load only

address Y but still generates useless prefetches to addresses X and

Z. Figure 2(c) shows the resulting timeline. With demand-first, the

processor stalls for only a single row-conflict latency which is re-

quired to service the demand request to Y. On the other hand, with

demand-prefetch-equal, the processor stalls additional cycles since X

and Z are serviced (even though they are not needed) before Y in the

DRAM bank thereby delaying the useful request to Y. Hence, treat-

ing prefetches and demands equally can significantly degrade per-

formance when prefetch requests are useless. In fact, our experi-

mental data in Figure 1 showed that treating demands and prefetches

equally in applications where most of the prefetches are useless causes

prefetching to degrade performance by up to 36% (for milc).

These observations illustrate that 1) DRAM scheduling policies

that rigidly prioritize between demand and prefetch requests can either

degrade performance or fail to provide the best possible performance,

and 2) the effectiveness of a particular prefetch prioritization mech-

anism significantly depends on the usefulness of prefetch requests.

Based on these observations, to improve the effectiveness of prefetch-

ing we aim to develop an adaptive DRAM scheduling policy that dy-

namically changes the prioritization order of demands and prefetches

by taking into account the usefulness of prefetch requests.

4. Prefetch-Aware DRAM Controller
Our Prefetch-Aware DRAM Controller (PADC) consists of two

components as shown in Figure 3: an Adaptive Prefetch Schedul-

ing (APS) unit and an Adaptive Prefetch Dropping (APD) unit. APS

adaptively schedules prefetch and demand requests to increase DRAM

throughput for useful requests. APD cancels useless prefetch requests

while preserving the benefits of useful prefetches. Both APS and APD

are driven by the measurement of the prefetch accuracy of each pro-

cessing core in a multi-core system. Therefore we first explain how

prefetch accuracy is measured for each core.

4.1. Prefetch Accuracy Measurement
We measure the prefetch accuracy for an application running on a

particular core over a certain time interval. The accuracy is reset once

the interval has elapsed so that the mechanism can adapt to the phase

behavior of prefetching. To measure the prefetch accuracy of each

core, the following hardware support is required:

202

Prefetch−Aware

DRAM Controller

Adaptive Prefetch

Adaptive Prefetch

To DRAM

Update

Drop

information

Request

Request

priority Scheduling (APS)

Dropping (APD)

Buffer (MRB)

Memory Request

DRAM command & address

Prefetch accuracy from each core

Figure 3. PrefetchAware DRAM Controller

1. Prefetch (P) bit per L2 cache line and memory request buffer

(MRB) entry.7 For a memory request buffer entry, this bit indicates

whether or not the request was generated by the prefetcher. It is set

when a new memory request is generated by the prefetcher, and reset

when the processor issues a demand request to the same cache line

while the prefetch request is still in the memory request buffer. For a

cache line, this bit indicates whether or not the line was brought into

the cache by a prefetch request. It is set when the line is filled (only if

the P bit of the request is set) and is reset when a cache hit to the same

line occurs.

2. Prefetch Sent Counter (PSC) per core: keeps track of the total

number of prefetch requests sent by the core. It is incremented when

a prefetch request is sent to the memory request buffer by the core.

3. Prefetch Used Counter (PUC) per core: keeps track of the num-

ber of prefetches that are useful. It is incremented when a prefetched

cache line is used (cache hit) by a demand request or when a demand

request matches a prefetch request in the memory request buffer.

4. Prefetch Accuracy Register (PAR) per core: stores the prefetch

accuracy measured in the last time interval. PAR is computed by di-

viding PUC by PSC.

At the end of a time interval, PAR is updated with the prefetch

accuracy calculated for that interval. PSC and PUC are reset to 0 to

calculate the accuracy for the next interval. PAR values for each core

are fed into Prefetch-Aware DRAM Controller which then uses them

to guide its scheduling and memory request buffer management poli-

cies in the next interval.

4.2. Adaptive Prefetch Scheduling

Adaptive Prefetch Scheduling (APS) changes the priority of de-

mand/prefetch requests from a processing core based on the prefetch

accuracy estimated for that core. The basic idea is to 1) treat use-

ful prefetch requests the same as demand requests so that useful

prefetches can be serviced faster by maximizing DRAM throughput,

and 2) give demand requests and useful prefetch requests a higher pri-

ority than useless prefetch requests so that useless prefetch requests do

not interfere with useful requests.

If the prefetch accuracy of a core is greater than or equal to a

certain threshold, promotion threshold, all of the prefetch requests

from that core are treated the same as demand requests. We call such

prefetch requests and all demand requests critical requests. Otherwise,

if the prefetch accuracy of a core is less than promotion threshold,

then demand requests of that core are prioritized over prefetch re-

quests. Such prefetch requests are called non-critical requests.

The essence of our proposal is to prioritize critical requests over

non-critical ones in the memory controller, while preserving DRAM

throughput. To accomplish this, our mechanism prioritizes memory

requests in the order shown in Rule 1. Each prioritization decision in

this set of rules is described in further detail below.

7Many previous proposals [3, 25, 33, 28] already use a prefetch bit for each

cache line and memory request buffer entry.

Rule 1 Adaptive Prefetch Scheduling (APS)

1. Critical request (C): Demand and useful prefetches are prioritized.

2. Row-hit request (RH): Row-hits are prioritized over row-conflicts.

3. Urgent request (U): Demand requests generated by cores with low

prefetch accuracy are prioritized over other requests.

4. Oldest request (FCFS): Older requests are prioritized over newer ones.

First, critical requests (useful prefetches and demand requests) are

prioritized over others. This delays the scheduling of non-critical re-

quests, most of which are likely to be useless prefetches. As a result,

useless prefetches are prevented from interfering with demands and

useful prefetches.

Second, row-hit requests are prioritized over others. This increases

the row-buffer locality for demand and useful prefetch requests and

maximizes DRAM throughput as much as possible.

Third, demand requests from cores whose prefetch accuracy is less

than promotion threshold are prioritized. These requests are called

urgent requests. Intuitively, this rule tries to boost the demand requests

of a core with low prefetch accuracy over the critical requests of cores

with high prefetch accuracy. This is done for two reasons. First, if a

core has high prefetch accuracy, its prefetch requests will be treated

the same as the demand requests of another core with low prefetch ac-

curacy (due to the critical request prioritization rule). Doing so risks

starving the demand requests of the core with low prefetch accuracy,

resulting in a performance degradation since a large number of criti-

cal requests (demand and prefetch requests) from the core with high

prefetch accuracy can contend with the critical requests (demand re-

quests only) from the core with low prefetch accuracy. To avoid this,

we boost the demand requests of the core with low prefetch accuracy.

Second, the performance of a core with low prefetch accuracy is al-

ready affected negatively by useless prefetches. By prioritizing the

demand requests of such cores, we aim to help the performance of

cores that are already losing performance due to poor prefetcher be-

havior. We further discuss the effect of prioritizing urgent requests in

Section 6.2.4.

Finally, if all else is equal, older requests have priority over

younger requests.

4.3. Adaptive Prefetch Dropping
APS naturally delays the DRAM service of prefetch requests from

applications with low prefetch accuracy by making the prefetch re-

quests non-critical as described in Section 4.2. Although doing so

reduces the interference of useless requests with useful requests, it

cannot get rid of all of the negative effects of useless prefetch requests

(e.g., bandwidth consumption and cache pollution) because such re-

quests will eventually be serviced. Our second scheme, Adaptive

Prefetch Dropping (APD), aims to overcome this limitation by proac-

tively removing old prefetch requests from the request buffer if they

have been outstanding for a long period of time. The key insight is

that if a prefetch request is old, it is likely to be useless, and therefore,

dropping it from the memory request buffer eliminates the negative

effects the useless request might cause in the future. We first describe

why old prefetch requests are likely to be useless.

Why are old prefetch requests likely to be useless? Useful

prefetches tend to have a shorter service time than useless prefetches.

This is because a prefetch request that is waiting in the request buffer

can become a demand request8 if the processor sends a demand re-

quest for that same address while the prefetch request is still in the

buffer. Such useful prefetches that become demand requests will be

serviced earlier by both the demand-first prioritization policy and APS

8A prefetch request that is hit by a demand request in the memory request

buffer becomes a demand request. However, we count it as a useful prefetch

throughout the paper since it was first requested by the prefetcher rather than

the processing core.

203

(since APS treats all demand requests as critical). Therefore, use-

ful prefetches on average experience a shorter service time than use-

less prefetches. For example, for milc, the average service time for

useful prefetches is 1486 cycles compared to 2238 cycles for useless

prefetches.

Mechanism: The observation that old prefetch requests are likely

to be useless motivates us to remove a prefetch from the request

buffer if the prefetch is old enough. Our proposal, APD, monitors

prefetch requests for each core and invalidates any prefetch request

that has been outstanding in the memory request buffer for longer than

drop threshold cycles. By removing useless prefetches, APD saves

resources such as request buffer entries, DRAM bandwidth, and cache

space, which can instead be used for critical requests (i.e., demand

and useful prefetch requests). Note that APD interacts positively with

APS since APS naturally delays the service of useless (non-critical)

requests such that APD can remove them from the memory system.

Determining drop threshold: Figure 4 shows the runtime behav-

ior of the stream prefetcher accuracy for milc, an application that suf-

fers from many useless prefetches. Prefetch accuracy was measured as

described in Section 4.1 using an interval of 100K cycles. The figure

clearly shows that prefetch accuracy can have very strong phase be-

havior and therefore a dynamic drop threshold value is needed. Be-

tween 150-275 million cycles, prefetch accuracy is very low (close to

0%), implying many useless prefetch requests were generated. Since

almost all prefetches are useless during this period, we would like to be

able to quickly drop them. Our mechanism accomplishes this using a

low drop threshold when prefetch accuracy is low to facilitate quick

dropping of useless prefetch requests. On the other hand, we would

want drop threshold to be higher during periods of high prefetch ac-

curacy to avoid prematurely dropping useful prefetch requests. Our

evaluation shows that a simple 4-level drop threshold that is dynam-

ically adjusted can effectively reduce useless prefetch requests in the

memory system while keeping useful prefetch requests.

0 50 100 150 200 250 300 350 400
Million processor cycles

0

10

20

30

40

50

60

70

80

90

100

P
re

fe
tc

h
 a

cc
u

ra
cy

 (
%

)

Figure 4. Phase behavior of prefetch accuracy in milc

4.4. Implementation and Hardware Cost of PADC
An implementation of PADC requires storing additional informa-

tion in each memory request buffer entry to support the priority and

aging information needed by APS and APD. Figure 5 shows the re-

quired additional information (in terms of the fields added to each re-

quest buffer entry). The C, RH, and FCFS fields are already used in

the baseline demand-first FR-FCFS policy to indicate criticality (de-

mand/prefetch), row-hit status, and arrival time of the request. There-

fore the only additional fields are U, P, ID, and AGE, which indicate

the urgency, prefetch status, core ID, and age of the request. Each

DRAM cycle, priority encoder logic chooses the highest priority re-

quest using the priority fields (C, RH, U, and FCFS) in the order shown

in Figure 5.

Urgent (1 bit)

*FCFS

AGE (8 bits)*Critical (1 bit)

*Row−hit (1 bit) Core ID (log (N) bits)

Prefetch (1 bit)

URHC FCFS P ID AGE

Priority for APS Information for APD

N: Number of cores

*Already used in demand−first

2

Figure 5. Fields of a memory request buffer entry in PADC

APD removes a prefetch request from the memory request buffer

if the request is older than the drop threshold of the core that gen-

erated the request and the request has not yet started being serviced in

DRAM. Before removing a prefetch request, APD ensures that the

prefetch cannot be matched by a demand request. This is accom-

plished by invalidating the MSHR entry of the prefetch request be-

fore actually dropping it. The APD unit uses the P, ID, and AGE

fields of each request buffer entry. It determines the corresponding

core’s drop threshold for each prefetch request and compares it to

the AGE field of the request. Note that the estimation of the age of a

request does not need to be highly accurate. For example, the AGE

field is incremented every 100 processor cycles in our evaluation.

Table 1 shows the hardware storage cost required for our imple-

mentation of PADC. The total storage cost for our 4-core CMP system

described in Section 5 is only 34,720 bits (∼4.25KB). Note that the

Prefetch bit (P) per cache line accounts for over 4KB of storage by

itself (∼95% of the total required storage). If a processor already em-

ploys prefetch bits in its cache, the total storage cost of our prefetch-

aware DRAM controller is only 1,824 bits (∼228B).

Bit field Cost equation (bits) Cost (bits)

P (1 bit) Ncache × Ncore + Nreq 32,896

Prefetch PSC (16 bits) Ncore × 16 64

accuracy PUC (16 bits) Ncore × 16 64

PAR (8 bits) Ncore × 8 32

APS U (1 bit) Nreq 128

ID (log2Ncore bits) Nreq × log2Ncore 256
APD

AGE (10 bits) Nreq × 10 1,280

Total storage cost for the 4-core system in Section 5 34,720

Total storage cost as a fraction of the L2 cache capacity 0.2%

Table 1. Hardware cost of PADC (Ncache: number of cache lines per core

Ncore: number of cores, Nreq : number of request buffer entries)

5. Methodology
5.1. Processor Model and Workloads

We use a cycle accurate x86 CMP simulator for our evaluation. Our

processor faithfully models port contention, queuing effects, bank con-

flicts at all levels of the memory hierarchy, as well as DDR3 DRAM

system constraints. Table 2 shows the baseline configuration of each

core. Table 3 shows the shared resource configuration for single-, 4-,

and 8-core CMPs.

Out of order; 15 stages; decode/retire up to 4 instructions,

Execution core issue/execute up to 8 microinstructions

256-entry reorder buffer; 32-entry load-store queue

Fetch up to 2 branches; 4K-entry BTB; 64K-entry gshare,
Front end

64K-entry PAs, 64K-entry selector hybrid branch predictor

L1 I and D: 32KB, 4-way, 2-cycle, 1 read and 1 write ports;

On-chip caches Unified L2: 512KB (1MB for 1-core), 8-way, 8-bank,

15-cycle, 1 read/write port; 64B line size for all caches

Stream prefetcher with 32 streams, prefetch degree of 4,
Prefetcher

cache line prefetch distance (lookahead) of 64 [30, 28]

Table 2. Baseline configuration of each core

On-chip, demand-first FR-FCFS scheduling policy;

DRAM controller 1 controller for 1-, 4-, 8-core CMP (also 2 for 8-core)

64, 128, 256-entry L2 MSHR and MRB for 1-, 4-, 8-core

DDR3 1333MHz [14], 16B-wide data bus per controller

DRAM and bus Latency: 15-15-15ns (tRP ,tRCD, CL), BL = 4;

8 DRAM banks, 4KB row buffer per bank

Table 3. Baseline configuration of shared CMP resources

We use the SPEC CPU 2000/2006 benchmarks for experimental

evaluation. Each benchmark was compiled using ICC (Intel C Com-

piler) or IFORT (Intel Fortran Compiler) with the -O3 option and was

run with the reference input set for 200 million representative x86 in-

structions as selected by Pinpoints [23].

204

No prefetcher Prefetcher with demand-first policy No prefetcher Prefetcher with demand-first policy

Benchmark IPC MPKI IPC MPKI RBH(%) ACC(%) COV(%) Class Benchmark IPC MPKI IPC MPKI RBH(%) ACC(%) COV(%) Class

eon 00 2.08 0.01 2.08 0.00 84.93 37.37 52.64 0 swim 00 0.35 27.57 0.62 8.66 42.83 99.95 68.58 1

galgel 00 1.42 4.26 1.10 7.56 65.50 30.96 23.94 2 art 00 0.18 89.39 0.18 65.52 91.46 35.88 34.00 2

ammp 00 1.70 0.80 1.47 1.70 56.20 5.96 8.03 2 gcc 06 0.55 6.28 0.81 2.23 81.57 32.62 65.37 1

mcf 06 0.13 33.73 0.15 29.70 25.63 31.43 14.75 1 sjeng 06 1.57 0.38 1.57 0.38 25.13 1.67 1.11 0

omnetpp 06 0.41 10.16 0.44 9.57 61.86 10.50 18.33 2 libquantum 06 0.41 13.51 0.65 2.75 81.39 99.98 79.63 1

xalancbmk 06 0.80 1.70 0.71 2.12 49.35 8.96 13.26 2 bwaves 06 0.59 18.71 1.23 0.37 83.99 99.97 98.00 1

milc 06 0.41 29.33 0.46 20.88 81.13 19.45 28.81 2 cactusADM 06 0.71 4.54 0.84 2.21 33.56 45.12 51.47 1

leslie3d 06 0.53 20.89 0.86 2.41 77.32 89.72 88.66 1 soplex 06 0.35 21.25 0.72 3.61 78.81 80.12 83.08 1

GemsFDTD 06 0.44 15.61 0.80 2.02 55.82 90.71 87.12 1 lbm 06 0.46 20.16 0.70 2.93 58.24 94.27 85.45 1

Table 4. Characteristics of some evaluated benchmarks RBH (Row Buffer Hit rate), MPKI (L2 Misses per 1000 inst.)

We classify the benchmarks into three categories: prefetch-

insensitive, prefetch-friendly, and prefetch-unfriendly (class 0, 1, and

2 respectively) based on the performance impact a prefetcher has on

the application.9 The characteristics of a subset of benchmarks with

and without a stream prefetcher are shown in Table 4. We chose only

a subset of benchmarks due to limited space, but we do evaluate the

entire set of 55 benchmarks in our single-core experiments. To eval-

uate our mechanism on CMP systems, we formed multiprogrammed

combinations of the benchmarks. We ran 32 and 21 randomly cho-

sen workload combinations (from the 55 SPEC benchmarks) for our

4- and 8-core CMP configurations respectively.

For the evaluation of PADC, we use a prefetch accuracy value of

85% for promotion threshold (in APS) and the values shown in

Table 5 for drop threshold (in APD). Prefetch accuracy is calculated

every 100K cycles.

Prefetch accuracy (%) 0 - 10 10 - 30 30 - 70 70 - 100

drop threshold (processor cycles) 100 1,500 50,000 100,000

Table 5. Dynamic drop threshold values used in APD

5.2. Metrics
We use several metrics to measure bandwidth consumption and

performance. Bus traffic is the total number of cache lines transferred
over the bus during the execution of a workload. We define prefetch
accuracy (ACC) and coverage (COV) as follows:

ACC =
Num of useful prefetches

Num of prefetches sent

COV =
Num of useful prefetches

Num of demand requests + Num of useful prefetches

To analyze the effect of DRAM throughput improvement on the
processing core, we define instruction window Stall cycles Per Load
instruction (SPL) which indicates the amount of time the processor
spends idle, waiting for DRAM service.

SPL =
Total num of window stall cycles

Total num of load instructions

To measure CMP system performance, we use Individual Speedup
(IS), Weighted Speedup (WS) [26], and Harmonic mean of Speedups
(HS) [12]. In the equations that follow, N is the number of cores in

the CMP system. IPCalone is the IPC measured when an applica-

tion runs alone on one core in the CMP system and IPCtogether is
the IPC measured when an application runs on one core while other

9If MPKI (L2 Misses Per 1K Instructions) increases when the prefetcher

is enabled, the benchmark is classified as 2. If MPKI without prefetching is

greater than 10 and bus traffic increases by more than 75% when prefetching

is enabled the benchmark is also classified as 2. Otherwise, if IPC increases

by 5%, the benchmark is classified as 1. Otherwise, it is classified as 0. Note

that memory intensive applications that experience increased IPC and reduced

MPKI (such as milc) may still be classified as prefetch-unfriendly if bus traffic

increases significantly. The reason for this is that although an increase in bus

traffic may not have much of a performance impact on single core systems,

in CMP systems with shared resources, the additional bus traffic can degrade

performance substantially.

applications are running on the other cores of a CMP. Unless other-
wise mentioned, we use the baseline demand-first policy to measure

IPCalone for all of our experiments.

ISi =
IPC

together
i

IPCalone
i

, WS =

N
X

i

ISi, HS =
N

PN
i

1

ISi

6. Experimental Evaluation
6.1. Single-Core Results

Figure 6 shows the performance of PADC on a single-core sys-

tem. IPC is normalized to the baseline that employs the demand-first

scheduling policy. We show the performance of only 15 individual

benchmarks due to limited space. The rightmost bars show the average

performance of all 55 benchmarks (gmean55). As discussed earlier,

neither of the rigid scheduling policies (demand-first, demand-pref-

equal) provides the best performance across all applications. Demand-

first performs better for most prefetch-unfriendly benchmarks (class 2)

such as galgel, art, and ammpwhile demand-pref-equal does better for

most prefetch-friendly ones (class 1) such as swim, libquantum, and

lbm. Averaged over all 55 benchmarks, the demand-pref-equal policy

outperforms demand-first by 0.5% since there are more benchmarks

(29 out of 55) that belong to class 1.

0.0

0.5

1.0

1.5

2.0

N
o
rm

a
li

ze
d

 I
P

C

no-pref

demand-first

demand-pref-equal

aps-only

aps-apd (PADC)

sw
im

ga
lg

el
ar

t
am

m
p

gc
c_

06

m
cf

_0
6

lib
qu

an
tu

m

om
ne

tp
p

xa
la

nc
bm

k

bw
av

es

m
ilc

ca
ct

us
A

D
M

le
sl
ie

3d

so
pl

ex
lb

m

gm
ea

n5
5

Figure 6. Singlecore system performance (gmean55: all benchmarks)

Adaptive Prefetch Scheduling (APS), shown in the fourth bar

from the left, effectively adapts to the behavior of the prefetcher.

In most benchmarks, APS provides at least as good performance

as the best rigid prefetch scheduling policy. As a result, APS im-

proves performance by 3.6% over all 55 benchmarks compared to the

baseline. APS (and demand-pref-equal) improves performance over

demand-first for many prefetch-friendly applications such as libquan-

tum, bwaves, and leslie3d. This is due to two reasons. First, APS

increases DRAM throughput in these applications because it treats de-

mands and prefetches equally most of the time. Doing so improves the

timeliness of the prefetcher because prefetch requests do not get de-

layed behind demand requests. Second, improved DRAM throughput

reduces the probability of the memory request buffer being full. As a

result, more prefetches are able to enter the request buffer. This im-

proves the coverage of the prefetcher as more useful prefetch requests

get a chance to be issued. For example, APS improves prefetch cover-

age from 80%, 98%, and 89% to 100%, 100%, and 92% for libquan-

tum, bwaves, and leslie3d respectively (as shown in Figure 8).

Even though APS is able to provide the performance of the best

rigid prefetch scheduling policy for each application, it is unable to

205

overcome the performance loss due to prefetching in some prefetch-

unfriendly applications such as galgel, ammp and xalancbmk. The

prefetcher generates many useless prefetches in these benchmarks that

a DRAM scheduling policy by itself cannot eliminate. Incorporat-

ing adaptive prefetch dropping (APD) into APS significantly improves

performance especially in such applications. Using APD recovers

part of the performance loss due to prefetching in galgel, ammp, and

xalancbmk because it eliminates 54%, 76%, and 54% of the useless

prefetch requests respectively (shown in Figure 8). As a result, us-

ing both of our proposed mechanisms (APD in conjunction with APS)

provides 4.3% performance improvement over the baseline.

Figure 7 provides insight into the performance improvement of the

proposed mechanisms by showing the effect of each mechanism on the

stall time experienced per load instruction (SPL). PADC reduces SPL

by 5.0% compared to the baseline by getting useless prefetches out of

the way of useful requests. As a result, PADC significantly improves

single-core performance.

0

2

4

6

8

10

12

14

16

18

20

22

S
P

L
 (

C
y
cl

es
/l

o
a
d

)

no-pref

demand-first

demand-pref-equal

aps-only

aps-apd (PADC)

sw
im

ga
lg

el
ar

t
am

m
p

gc
c_

06

m
cf

_0
6

lib
qu

an
tu

m

om
ne

tp
p

xa
la

nc
bm

k

bw
av

es

m
ilc

ca
ct

us
A

D
M

le
sl
ie

3d

so
pl

ex
lb

m

am
ea

n5
5

Figure 7. Stall time per load (SPL) on the singlecore system

Figure 8 shows the bus traffic with each policy broken down into

three categories: useful prefetches, useless prefetches, and demand

requests. PADC reduces bus traffic by 10.4% on average across all

benchmarks (amean55). Reduction in bus traffic is mainly due to

APD, which significantly reduces the number of useless prefetches.

For many benchmarks, APS by itself uses the same amount of bus

bandwidth as the best rigid policy for each benchmark. We conclude

that our prefetch-aware DRAM controller improves both performance

and bandwidth-efficiency in single-core systems.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

B
u

s
tr

a
ff

ic
 (

M
 c

a
ch

e
li

n
es

)

pref-useless

pref-useful

demand

 a
rt

m
cf

_0
6

m
ilc

0

1

2

3

4

5

6

7

B
u

s
tr

a
ff

ic
 (

M
 c

a
ch

e
li

n
es

)

pref-useless

pref-useful

demand
no-pref

demand-first

demand-pref-equal

aps-only
aps-apd (PADC)

sw
im

ga
lg

el

am
m

p

gc
c_

06

lib
qu

an
tu

m

om
ne

tp
p

xa
la

nc
bm

k

bw
av

es

ca
ct

us
A

D
M

le
sl
ie

3d

so
pl

ex
lb

m

am
ea

n5
5

Figure 8. Bus traffic on the singlecore system

6.2. 4-Core Results
We ran 32 different workloads to evaluate the effectiveness of

PADC on a 4-core system. In the following sections, we discuss three

cases in detail to provide insights into the behavior of PADC.

6.2.1. Case Study I: Prefetch-Friendly Applications Our

first case study examines the behavior of our proposed mechanisms

when four prefetch-friendly applications (swim, bwaves, leslie3d, and

soplex) are run together. Figure 9 shows the speedup of each ap-

plication and system performance. Figure 10 shows the bandwidth

consumption. Several observations are in order. First, since all ap-

plications are prefetch-friendly (i.e., prefetcher has very high cover-

age as shown in Figure 10(a)), prefetching provides significant perfor-

mance improvement regardless of the DRAM scheduling policy. The

demand-prefetch-equal policy significantly outperforms the demand-

first policy (by 28% in weighted speedup) because prefetches are very

accurate in all applications.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
p

ee
d

u
p

 o
v

er
 s

in
g

le
 r

u
n

no-pref

demand-first

demand-pref-equal

aps-only

aps-apd (PADC)

swim bwaves leslie3d soplex

(a) Individual speedup

0.0

0.5

1.0

1.5

2.0

V
a

lu
e

o
f

m
et

ri
c

WS HS

(b) System performance

Figure 9. Performance of a prefetchfriendly 4core workload

0

1

2

3

4

5

6

7

B
u

s
tr

a
ff

ic
 (

M
 c

a
ch

e
li

n
es

)

pref-useless

pref-useful

demand

swim bwaves leslie3d soplex

no-pref
demand-first

demand-pref-equal

aps-onlyaps-apd (PADC)

(a) Bus traffic breakdown

0

2

4

6

8

10

12

14

16

18

20

B
u

s
tr

a
ff

ic
 (

M
 c

a
ch

e
li

n
es

)

Total

(b) Total traffic
Figure 10. Bus traffic of a prefetchfriendly 4core workload

Second, PADC outperforms both of the rigid prefetch schedul-

ing policies, improving weighted speedup by 31.3% over the baseline

demand-first policy. This is because it 1) successfully prioritizes crit-

ical (useful) requests over others thereby increasing DRAM through-

put, and 2) drops useless prefetches in leslie3d and soplex, thereby

reducing their negative effects on all applications. Consequently,

PADC improves prefetch coverage from 56% to 73% (as shown in

Figure 10(b)). This is because it reduces contention for memory sys-

tem resources by dropping useless prefetches from leslie3d and soplex

which allows more useful prefetches to enter the memory system.

Finally, the bandwidth savings provided by PADC are relatively

small (0.9%) because these applications do not generate a large num-

ber of useless prefetch requests. However, there is still a non-

negligible reduction in bus traffic due to the effective dropping of some

useless prefetches in leslie3d and soplex. We conclude that PADC can

improve both performance and bandwidth-efficiency even when all ap-

plications benefit significantly from prefetching.

6.2.2. Case Study II: Prefetch-Unfriendly Applications We

examine the behavior of PADC when four prefetch-unfriendly appli-

cations (art, galgel, ammp, and milc) are run together. Figures 11

and 12 show the performance and bandwidth consumption. Since the

prefetcher is very inaccurate for all applications, prefetching degrades

performance regardless of the scheduling policy. The demand-first and

APS policies provide better performance than the demand-prefetch-

equal policy by prioritizing demand requests over prefetch requests,

which are more than likely to be useless. Employing APD drasti-

cally reduces the useless prefetches in all four applications (see Fig-

ure 12(a)) and therefore frees up memory system resources to be used

by demands and useful prefetch requests. As a result, PADC outper-

forms the best previous prefetch scheduling policy for all applications.

0.0

0.2

0.4

0.6

0.8

1.0

S
p

ee
d

u
p

 o
v
er

 s
in

g
le

 r
u

n no-pref

demand-first

demand-pref-equal

aps-only

aps-apd (PADC)

art galgel ammp milc

(a) Individual speedup

0.0

0.5

1.0

1.5

2.0

2.5

V
a
lu

e
o
f

m
et

ri
c

WS HS

(b) System performance
Figure 11. Performance of a prefetchunfriendly 4core workload

PADC improves system performance by 17.7% (weighted

speedup) and 21.5% (hmean speedup), while reducing bandwidth con-

sumption by 9.1% over the baseline demand-first scheduler. By largely

reducing the negative effects of useless prefetches both in scheduling

206

0

5

10

15

20

25

30

35

40

B
u

s
tr

a
ff

ic
 (

M
 c

a
ch

e
li

n
es

)

art milc

no-pref

demand-first

demand-pref-equal

aps-only

aps-apd

(PADC)

0

1

2

3

4

5

B
u

s
tr

a
ff

ic
 (

M
 c

a
ch

e
li

n
es

) pref-useless

pref-useful

demand

galgel ammp

(a) Bus traffic breakdown

0

5

10

15

20

25

30

35

40

45

50

55

60

65

B
u

s
tr

a
ff

ic
 (

M
 c

a
ch

e
li

n
es

)

Total

(b) Total traffic
Figure 12. Bus traffic of a prefetchunfriendly 4core workload

and memory system buffers/resources, PADC almost eliminates the

system performance loss observed in this prefetch-unfriendly mix of

applications. Weighted speedup and hmean speedup is within 2% and

1% of those obtained with no prefetching. We conclude that PADC

can effectively eliminate the negative performance impact caused by

inaccurate prefetching by intelligently managing the scheduling and

buffer management of prefetch requests even in workload mixes where

all applications are prefetch-unfriendly.

6.2.3. Case Study III: Mix of Prefetch-Friendly and
Prefetch-Unfriendly Applications Figures 13 and 14 show per-

formance and bus traffic when two prefetch-friendly (libquantum

and GemsFDTD) and two prefetch-unfriendly (omnetpp and galgel)

applications are run together. The prefetches for libquantum and

GemsFDTD are very beneficial. Therefore demand-pref-equal sig-

nificantly improves weighted speedup. However, the prefetcher gen-

erates many useless prefetches for omnetpp and galgel as shown in

Figure 14(a). These useless prefetches temporarily deny service to

critical requests from the two other cores. Because APD eliminates

a large portion (67% and 57%) of all useless prefetches in omnetpp

and galgel, it frees up both request buffer entries and bandwidth in

the memory system. These freed up resources are utilized efficiently

by the critical requests of libquantum and GemsFDTD thereby signif-

icantly improving their individual performance, while slightly reduc-

ing omnetpp and galgel’s individual performance. Since it eliminates

a large amount of useless prefetches, PADC reduces total bandwidth

consumption by 14.5% over the baseline demand-first policy. We con-

clude that PADC can effectively prevent the denial of service caused

by the useless prefetches of prefetch-unfriendly applications on the

useful requests of other applications.

0.0

0.2

0.4

0.6

0.8

1.0

S
p

ee
d

u
p

 o
v
er

 s
in

g
le

 r
u

n no-pref

demand-first

demand-pref-equal

aps-only

aps-apd (PADC)

omnetpp libquantum galgel GemsFDTD

(a) Individual speedup

0.0

0.5

1.0

1.5

2.0

2.5

V
a
lu

e
o
f

m
et

ri
c

WS HS

(b) System performance
Figure 13. Performance of a mixed 4core workload

0

1

2

3

4

5

6

7

B
u

s
tr

a
ff

ic
 (

M
 c

a
ch

e
li

n
es

)

pref-useless

pref-useful

demand

omnetpp libquantum galgel GemsFDTD

no-pref

demand-first

demand-pref-equal

aps-only

aps-apd (PADC)

(a) Bus traffic breakdown

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

B
u

s
tr

a
ff

ic
 (

M
 c

a
ch

e
li

n
es

)

Total

(b) Total traffic
Figure 14. Bus traffic of a mixed 4core workload

6.2.4. Effect of Prioritizing Urgent Requests We analyze the

effectiveness of prioritizing urgent requests using the application mix

in Case Study III. We say that a multi-core system is fair if each appli-

cation experiences the same individual speedup. We use the unfairness

metric (UF) in [17, 18] to indicate the degree of unfairness. Table 6

shows individual speedups, unfairness, WS, and HS for the workload

for three policies: demand-first, a version of PADC that does not use

the concept of “urgent requests,” and PADC.

Individual speedup

omnetpp libquantum galgel GemsFDTD
UF WS HS

demand-first 0.404 0.425 0.681 0.410 1.687 1.919 0.458

PADC-no-urgent 0.206 0.936 0.418 0.696 4.547 2.256 0.410

PADC 0.352 0.649 0.636 0.594 1.845 2.231 0.524

Table 6. Effect of prioritizing urgent requests on perf. and fairness

If the concept of “urgent requests” is not used, demand requests

from the prefetch-unfriendly applications (omnetpp and galgel) un-

fairly starve because a large number of critical requests from the

prefetch-friendly applications (libquantum and GemsFDTD) are given

the same priority as those demand requests. This starvation, combined

with the negative effects of useless prefetches, leads to unacceptably

low individual speedups for these applications (resulting in large un-

fairness). When urgency is used to prioritize requests, this unfairness

is significantly mitigated, as shown in Table 6. In addition, harmonic

speedup significantly improves at the cost of very little WS degrada-

tion.10 This trend holds true for most workload mixes that consist of

prefetch-friendly and prefetch-unfriendly applications. On average,

prioritizing urgent requests improves HS by 8.8% for the 32 4-core

workloads. We conclude that the concept of urgency significantly im-

proves system fairness while keeping system performance high.

6.2.5. Overall Performance Figure 15 shows the average system

performance and bus traffic for all 32 workloads run on the 4-core

system. PADC provides the best performance and lowest bandwidth

consumption compared to all previous prefetch handling policies. It

improves weighted speedup by 8.2% compared to both the demand-

first and demand-prefetch-equal policies and reduces the bus traffic by

10.1% over the best-performing demand-first policy.

We found that PADC outper-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

V
a
lu

e
o
f

m
et

ri
c

no-pref

demand-first

demand-pref-equal

aps-only

aps-apd (PADC)

WS HS

(a) Performance

0

1

2

3

4

5

6

7

8

9

10

11

B
u

s
tr

a
ff

ic
 (

M
 c

a
ch

e
li

n
es

)

(b) Traffic
Figure 15. Results for 32 work

loads on the 4core system

forms both the demand-first and

demand-pref-equal policies for all

but one workload we examined.

The worst performing workload is

the combination of vpr, gamess,

dealII, and calculix. PADC’s WS

degradation is only 1.2% com-

pared to the demand-first policy.

These applications are either insen-

sitive to prefetching (class 0) or not

memory intensive (vpr).

6.3. 8-Core Results
Figure 16(a) shows average performance and bus traffic over the

21 workloads we simulated on an 8-core system with a single memory

controller and a single memory channel. Note that the rigid prefetch

scheduling policies actually cause stream prefetching to degrade per-

formance in the 8-core system. This is because DRAM bandwidth per

core becomes a lot more scarce since the increased number of cores

puts more pressure on the memory system. Also, resource contention

and interference between prefetch and demand requests increase. For

the very same reasons, PADC becomes more effective. As resource

contention becomes higher, the benefit of intelligent prefetch prioriti-

zation and dropping of useless prefetches increases. PADC improves

overall system performance (WS) by 9.9% on the 8-core system while

also reducing memory bandwidth consumption by 9.4%. We expect

the benefits of PADC will increase as off-chip memory bandwidth be-

comes a bigger performance bottleneck in future many-core systems.

10We found that, in many cases, prioritizing urgent requests improves

weighted speedup as well.

207

0.0

1.0

2.0

3.0

4.0

5.0

V
a
lu

e
o
f

m
et

ri
c

no-pref

demand-first

demand-pref-equal

aps-only

aps-apd (PADC)

WS HS 0

2

4

6

8

10

12

14

16

18

20

B
u

s
tr

a
ff

ic
 (

M
 c

a
ch

e
li

n
es

)
(a) Single memory controller

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

V
a
lu

e
o
f

m
et

ri
c

no-pref

demand-first

demand-pref-equal

aps-only

aps-apd (PADC)

WS HS 0

2

4

6

8

10

12

14

16

18

20

B
u

s
tr

a
ff

ic
 (

M
 c

a
ch

e
li

n
es

)

(b) Dual memory controllers
Figure 16. Results for 21 workloads on the 8core system

Figure 16(b) evaluates the performance impact of PADC when

two DRAM controllers are used in the 8-core system. Each con-

troller works independently through a dedicated channel, doubling

the peak memory bandwidth. Due to the increased bandwidth, the

dual-controller system significantly reduces the contention between

prefetch and demand requests and improves system performance over

the single-controller system (WS improves by 30.9%). However,

PADC still remains very effective with two memory controllers, im-

proving WS by 5.5% and reducing bandwidth consumption by 13.2%

compared to the previous-best demand-first policy. Therefore, we con-

clude that PADC is effective even on high-bandwidth DRAM systems.

6.4. Comparison with Feedback Directed Prefetching
Feedback Directed Prefetching (FDP) [28] adaptively adjusts the

aggressiveness of the prefetcher in order to reduce its negative ef-

fects. We implemented FDP and tuned its parameters (prefetch ac-

curacy, lateness, and pollution thresholds) for the stream prefetcher in

our CMP system.

FDP is orthogonal to APS. As such, it can be employed together

with APS. However, the benefits of FDP and APD overlap. FDP

eliminates useless prefetches by reducing the aggressiveness of the

prefetcher, which reduces the likelihood that useless prefetch requests

are generated. In contrast, APD eliminates useless prefetches by drop-

ping them after they are generated. As a result, we find (based on

our experimental analyses) that APD has two advantages over FDP.

First, FDP can be very slow in increasing the aggressiveness of the

prefetcher when a new phase of execution starts. In such cases, FDP

cannot issue useful prefetches whereas APD would have issued them

because it always keeps the prefetcher aggressive. Second, FDP re-

quires the tuning of multiple threshold values [28] to throttle the ag-

gressiveness of the prefetcher and also has a greater hardware and pa-

rameter optimization cost than APD.

Figure 17 shows the per-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
ei

g
h

te
d

 s
p

ee
d

u
p

demand-first

demand-first-fdp

demand-first-apd

demand-pref-equal-fdp

aps-fdp

aps-apd (PADC)

(a) Performance

0

1

2

3

4

5

6

7

8

9

10

B
u

s
tr

a
ff

ic
 (

M
 c

a
ch

e
li

n
es

)

(b) Traffic

Figure 17. PADC vs. FDP

formance and bus traffic of

different combinations of FDP

and PADC mechanisms aver-

aged across the 32 workloads

run on the 4-core system. When

used with the demand-first pol-

icy, FDP improves performance

by 1.7% and reduces bus traffic

by 12.6% while APD improves

performance by 2.9% and re-

duces bus traffic by 10.4%. Since FDP reduces the aggressiveness

of the prefetcher, it is able to eliminate more useless prefetches (hence

the lower bus traffic). However, for the very same reason, FDP elim-

inates some useful prefetches as well and therefore its performance

improvement is not as high as that of APD.

When used together with APS, FDP improves performance by

7.4%. Hence, our adaptive scheduling policy and FDP are orthog-

onal and improve performance significantly when combined together.

However, PADC outperforms the combination of FDP and APS, which

shows that adaptive prefetch dropping is better suited to eliminate the

negative effects of prefetching than feedback directed prefetching.

6.5. Effect on Other Prefetching Mechanisms
We briefly evaluate the effect of PADC on different types of

prefetchers: PC-based stride [1], CZone/Delta Correlation (C/DC)

prefetcher [22], and the Markov prefetcher [7]. Figure 18 shows the

performance and bus traffic results averaged over all 32 workloads run

on the 4-core system. PADC consistently improves performance and

reduces bandwidth consumption compared to the demand-first policy

and demand-prefetch-equal policy (not shown) with all prefetchers.

We conclude that PADC is effective with a wide variety of prefetching

mechanisms.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
ei

g
h

te
d

 s
p

ee
d

u
p

 (
W

S
)

Stride

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
C/DC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

no-pref

demand-first

PADC

Markov

(a) Performance

0

1

2

3

4

5

6

7

8

9

10

11

12

B
u

s
tr

a
ff

ic
 (

M
 c

a
ch

e
li

n
es

)

Stride

0

1

2

3

4

5

6

7

8

9

10

11

12
C/DC

0

1

2

3

4

5

6

7

8

9

10

11

12

no-pref

demand-first

PADC

Markov

(b) Traffic
Figure 18. PADC on stride, C/DC, and Markov prefetchers

7. Related Work
The main contribution of our work beyond previous research is an

adaptive way of handling prefetch requests in the memory controller’s

scheduling and buffer management policies. To our knowledge, none

of the previously proposed DRAM controllers adaptively prioritize be-

tween prefetch and demand requests nor do they adaptively drop use-

less prefetch requests based on prefetch usefulness information. We

discuss closely related work in DRAM scheduling, prefetch filtering,

and adaptive prefetching.

7.1. Prefetch Handling in DRAM Controllers
Many previous DRAM scheduling policies were proposed to

improve DRAM throughput in single-threaded [34, 24, 6], multi-

threaded [20, 32, 6], and stream-based [13, 31] systems. In addition,

several recent works [21, 17, 18] proposed techniques for fair DRAM

scheduling across different applications sharing the DRAM system.

Some of these previous proposals [34, 20, 32, 21, 17, 18, 6] do not

discuss how prefetch requests are handled with respect to demand re-

quests. Our mechanism is orthogonal to these scheduling policies:

they can be extended to adaptively prioritize between demand and

prefetch requests and to adaptively drop useless prefetch requests.

Other DRAM controller proposals take two different approaches to

handling prefetch requests. Some proposals [24, 11, 5, 28] always pri-

oritize demand requests over prefetch requests. Other proposals [31]

treat prefetch requests the same as demand requests. As such, these

previous DRAM controller proposals handle prefetch requests rigidly.

As we have shown in Sections 1 and 3, rigid handling of prefetches

can cause significant performance loss compared to adaptive prefetch

handling. Our work improves upon these proposals by incorporating

the effectiveness of prefetching into DRAM scheduling decisions.

7.2. Prefetch Filtering
Our Adaptive Prefetch Dropping (APD) scheme shares the same

goal of eliminating useless prefetches with several other previous pro-

posals. However, our mechanism provides either higher bandwidth-

efficiency or better adaptivity compared to these works.

Charney and Puzak [2] and Mutlu et al. [16] proposed prefetch fil-

tering mechanisms using on-chip caches. Both of these proposals un-

necessarily consume memory bandwidth since useless prefetches are

filtered out only after they are serviced by the DRAM system. In con-

trast, APD eliminates useless prefetches before they consume valuable

DRAM bandwidth.

208

Mowry et al. [15] proposed a mechanism that cancels software

prefetches when the prefetch issue queue is full. This mechanism is

not aware of the usefulness of prefetches. In contrast, PADC drops a

prefetch request only if its age is greater than a dynamically adjusted

threshold (based on prefetch accuracy). PADC can be used with soft-

ware prefetching to efficiently schedule and drop software prefetches.

Srinivasan et al. [29] use a profiling technique to mark load instruc-

tions that are likely to generate useful prefetches. This mechanism

needs ISA support to mark selected load instructions and cannot adapt

to phase behavior in prefetcher accuracy. In contrast, APD does not

require ISA changes and can adapt to changes in prefetcher accuracy.

Zhuang and Lee [33] propose a mechanism that eliminates a

prefetch request for an address if the prefetch request for the same ad-

dress was useless in the past. In an extended version of this paper [10],

we show that PADC outperforms their hardware filter by 6.5% on our

4-core system since their technique aggressively removes too many

useful prefetches.

7.3. Adaptive Prefetching

Several previous works proposed changing the aggressiveness of

the hardware prefetcher based on dynamic information. Our work is

either complementary to or higher-performance than these proposals,

as described below.

Hur and Lin [5] designed a probabilistic prefetching technique that

adjusts prefetcher aggressiveness. They also schedule prefetch re-

quests to DRAM adaptively based on a count of the number of demand

requests that cannot issue due to a DRAM bank conflict caused by a

prefetch request. In contrast, our mechanism adapts the prioritization

policy between demands and prefetches based on prefetcher accuracy.

As a result, Hur and Lin’s proposal can be combined with our adaptive

prefetch scheduling policy to provide even higher performance.

Srinath et al. [28] show how adjusting the aggressiveness of the

prefetcher based on accuracy, lateness, and cache pollution infor-

mation can reduce bus traffic without compromising the benefit of

prefetching. As we showed in Section 6.4, PADC outperforms and

also complements their mechanism.

8. Conclusion
This paper shows that existing DRAM controllers that employ

rigid, non-adaptive prefetch scheduling and buffer management poli-

cies cannot achieve the best performance since they do not take into

account the usefulness of prefetch requests. To overcome this lim-

itation, we propose a low-cost Prefetch-Aware DRAM Controller

(PADC), which aims to 1) maximize the benefit of useful prefetches

by adaptively prioritizing them, and 2) minimize the harm caused

by useless prefetches by adaptively deprioritizing them and dropping

them from the memory request buffers. To this end, PADC dynam-

ically adapts its memory scheduling and buffer management policies

based on prefetcher accuracy. Our evaluation shows that PADC sig-

nificantly improves system performance and bandwidth-efficiency on

both single-core and multi-core systems as well as with four differ-

ent prefetchers. We conclude that incorporating awareness of prefetch

usefulness into memory controllers is critical to efficiently utilizing

valuable memory system resources in current and future systems.

Acknowledgments
Many thanks to Minsik Cho, Viji Srinivasan, José A. Joao, Eiman

Ebrahimi and other HPS members. The initial study on APD was per-

formed when Chang Joo Lee worked as an intern for IBM. Chang Joo

Lee and Veynu Narasiman were supported by IBM and NVIDIA Ph.D.

fellowships respectively during this work. We also gratefully acknowl-

edge the support of the Cockrell Foundation and Intel Corporation.

References
[1] J. Baer and T. Chen. An effective on-chip preloading scheme to reduce data access

penalty. In Proceedings of Supercomputing ’91, 1991.

[2] M. Charney and T. Puzak. Prefetching and memory system behavior of the SPEC95

benchmark suite. IBM Journal of Research and Development, 31(3):265–286, 1997.

[3] J. D. Gindele. Buffer block prefetching method. IBM Technical Disclosure Bulletin,

20(2):696–697, July 1977.

[4] I. Hur and C. Lin. Adaptive history-based memory scheduler. InMICRO-37, 2004.

[5] I. Hur and C. Lin. Memory prefetching using adaptive stream detection. InMICRO-

39, 2006.

[6] E. Ipek, O. Mutlu, J. Martı́nez, and R. Caruana. Self-optimizing memory controllers:

A reinforcement learning approach. In ISCA-35, 2008.

[7] D. Joseph and D. Grunwald. Prefetching using Markov predictors. In ISCA-24,

1997.

[8] T. Karkhanis and J. E. Smith. A day in the life of a data cache miss. In Second

Workshop on Memory Performance Issues, 2002.

[9] H. Q. Le, W. J. Starke, J. S. Fields, F. O’Connell, D. Q. Nguyen, B. J. Ronchetti,

W. M. Sauer, E. M. Schwarz, and M. T. Vaden. IBM POWER6 microarchitecture.

IBM Journal of Research and Development, 51:639–662, 2007.

[10] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prefetch-aware DRAM con-

trollers. Technical Report TR-HPS-2008-002, University of Texas at Autin, 2008.

[11] W.-F. Lin, S. K. Reinhardt, and D. Burger. Reducing DRAM latencies with an

integrated memory hierarchy design. In HPCA-7, pages 301–312, 2001.

[12] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput and fairness in smt

processors. In ISPASS, 2001.

[13] S. A. McKee, W. A. Wulf, J. H. Aylor, M. H. Salinas, R. H. Klenke, S. I. Hong,

and D. A. B. Weikle. Dynamic access ordering for streamed computations. IEEE

Transactions on Computers, 49:1255–1271, Nov. 2000.

[14] Micron. Datasheet: 2Gb DDR3 SDRAM, MT41J512M4 - 64 Meg x 4 x 8 banks.

[15] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a compiler algo-

rithm for prefetching. In ASPLOS-V, 1992.

[16] O. Mutlu, H. Kim, D. N. Armstrong, and Y. N. Patt. Using the first-level caches

as filters to reduce the pollution caused by speculative memory references. Interna-

tional Journal of Parallel Programming, 33(5):529–559, October 2005.

[17] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling for chip

multiprocessors. In MICRO-40, 2007.

[18] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: Enhancing both

performance and fairness of shared DRAM systems. In ISCA-35, 2008.

[19] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution: An alternative

to very large instruction windows for out-of-order processors. In HPCA-9, 2003.

[20] C. Natarajan, B. Christenson, and F. Briggs. A study of performance impact of

memory controller features in multi-processor server environment. In WMPI, 2004.

[21] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair queuing memory systems.

InMICRO-39, 2006.

[22] K. J. Nesbit, A. S. Dhodapkar, J. Laudon, and J. E. Smith. AC/DC: An adaptive data

cache prefetcher. In PACT-13, 2004.

[23] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. Pinpointing

representative portions of large intel itanium programs with dynamic instrumenta-

tion. InMICRO-37, 2004.

[24] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens. Memory access

scheduling. In ISCA-27, 2000.

[25] A. J. Smith. Cache memories. Computing Surveys, 14(4):473–530, 1982.

[26] A. Snavely and D. M. Tullsen. Symbiotic job scheduling for a simultaneous multi-

threading processor. In ASPLOS-9, 2000.

[27] L. Spracklen and S. G. Abraham. Chip multithreading: opportunities and challenges.

In HPCA-11, 2005.

[28] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed prefetching: Improv-

ing the performance and bandwidth-efficiency of hardware prefetchers. InHPCA-13,

2007.

[29] V. Srinivasan, G. S. Tyson, and E. S. Davidson. A static filter for reducing prefetch

traffic. Technical Report CSE-TR-400-99, University of Michigan, 1999.

[30] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER4 system microar-

chitecture. IBM Journal of Research and Development, 46:5–25, Jan. 2002.

[31] C. Zhang and S. A. McKee. Hardware-only stream prefetching and dynamic access

ordering. In ICS-14, 2000.

[32] Z. Zhu and Z. Zhang. A performance comparison of DRAM memory system opti-

mizations for SMT processors. In HPCA-11, 2005.

[33] X. Zhuang and H.-H. S. Lee. Reducing cache pollution via dynamic data prefetch

filtering. IEEE Transactions on Computers, 56(1):18–31, Jan. 2007.

[34] W. Zuravleff and T. Robinbson. Controller for a synchronous DRAM that maximizes

throughput by allowing memory requests and commands to be issued out of order.

U.S. Patent Number 5,630,096, 1997.

209

