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ABSTRACT

Indirect branches have become increasingly common in naod
programs written in modern object-oriented languages artdal-
machine based runtime systems. Unfortunately, the piedieiccu-
racy of indirect branches has not improved as much as thabrof ¢
ditional branches. Furthermore, previously proposedreadibranch
predictors usually require a significant amount of extrallnare stor-
age and complexity, which makes them less attractive toémpht.

This paper proposes a new technique for handling indir
branches, calleWirtual Program Counter (VPC) predictiohe key
idea of VPC prediction is to treat a single indirect brancimastiple
“virtual” conditional branchesin hardware for prediction purposes
Our technique predicts each of the virtual conditional bles us-
ing the existing conditional branch prediction hardwarehu3, no
separate storage structure is required for predictingrédibranch
targets.

Our evaluation shows that VPC prediction improves average p

formance by 26.7% compared to a commonly-used branch tar

buffer based predictor on 12 indirect branch intensive iappbns.
VPC prediction achieves the performance improvement pexvby
at least a 12KB (and usually a 192KB) tagged target cachéqgboed
on half of the examined applications. We show that VPC ptextic
can be used with any existing conditional branch predicti@tha-
nism and that the accuracy of VPC prediction improves whetmgem
accurate conditional branch predictor is used.

Categories and Subject Descriptors:

C.1.0 [Processor Architectures]: General

C.1.1[Single Data Stream Architectures]: RISC/CISC, VL#¥¢hitectures
C.5.3 [Microcomputers]: Microprocessors

D.3.3 [Language Constructs and Features]: Polymorphism

General Terms: Design, Performance.
Keywords: Indirect branch prediction, virtual functions, devirtizaltion.
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C++, and C#. These languages support polymorphism [4], whic
ignificantly eases the development and maintenance & fagglu-
ar software projects. To support polymorphism, modermglages
include dynamically-dispatched function calls (i.e. wat functions)
whose targets are not known until run-time because theyrabpe
the dynamic type of the object on which the function is call¥a-
tual function calls are usually implemented using inditaeinch/call
instructions in the instruction set architecture. Presioesearch has

e%@own that modern object-oriented languages result infggntly

more indirect branches than traditional C and Fortran laggs [3].
Unfortunately, an indirect branch instruction is more &osh pro-
cessor performance because predicting an indirect brachore

difficult than predicting a conditional branch as it reqgithe pre-
diction of the target address instead of the prediction eftiranch
direction. Direction prediction is inherently simpler lzesse it is di-
nary decisioras the branch direction can take only two values (taken
or not-taken), whereas indirect target prediction is\aary decision
&ereN is the number of possible target addresses. Hence, with

e increased use of object-oriented languages, indimectch tar-
get mispredictions have become an important performanaieli in
high-performance processdrdvioreover, the lack of efficient archi-
tectural support to accurately predict indirect branches esulted
in an increased performance difference between prograiittewin
object-oriented languages and programs written in trawiii lan-
guages, thereby rendering the benefits of object-oriersieguages
unusable by many software developers who are primarily eorex
with the performance of their code [43].

Figure 1 shows the number and fraction of indirect branch mis
predictions per 1K retired instructions (MPKI) in diffet&vindows
applications run on an Intel Core Duo T2500 processor [23twvh
includes a specialized indirect branch predictor [15]. @bt is col-
lected with hardware performance counters using VTune [23he
examined Windows applications, on average 28% of the bramsh
predictions are due to indirect branches. In two progranimsutéch
Simics [32] and Microsoft Excel 2003, almost half of the wlamis-
predictions are caused by indirect branches. These reshdts that
indirect branches cause a considerable fraction of all rediptions

Object-oriented programs are becoming more common as m&¥en in today’s relatively small-scale desktop appligaio

programs are written in modern high-level languages suchasgs,
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LIn the rest of this paper, an “indirect branch” refers to a-neturn unconditional branch
instruction whose target is determined by reading a geperglose register or a memory
location. We do not consider return instructions since they usually very easy to
predict using a hardware return address stack [26].
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Figure 1: Indirect branch mispredictions in Windows applications:
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target address in each enfnAs such a large hardware storage comestops, the processor can stall the front-end until the tarderess of

with an expensive increase in power/energy consumptioncant
plexity, most current high-performance processors do matichte
separate hardware but instead use the branch target bBff&) (to
predict indirect branches [1, 18, 28], which implicitly -eansually
inaccurately— assumes that the indirect branch will jumihésame
target address it jumped to in its previous execution [6,°2¥d our
knowledge, only Intel Pentium M implements specializeddiare
to help the prediction of indirect branches [15], demornstgathat
hardware designers are increasingly concerned with tHeqpeance

the indirect branch is resolved.

The VPC prediction algorithm is inspired by a compiler optiax
tion, calledreceiver class prediction optimization (RCPQ), 19,
16, 2] ordevirtualization[24]. This optimization statically converts
an indirect branch to multiple direct conditional branclfiesother
words, it “devirtualizes” a virtual function call). Unfarhately, de-
virtualization requires extensive static program analysi accurate
profiling, and it is applicable to only a subset of indirecaiches
with a limited number of targets that can be determinedcsityi[24].

impact of indirect branches. However, as we showed in Fidure Our proposed VPC prediction mechanism provides the berfefg-o

even on a processor based on the Pentium M, indirect brarepreni
dictions are still relatively frequent.

In order to efficiently support polymorphism in object-aried
languages without significantly increasing complexityhie proces-
sor front-end, a simple and low-cost —yet effective— incliteranch
predictor is necessary. A current high-performance preaeslready
employs a large and accurate conditional branch predi€r.goal
is to use this existing conditional branch prediction haadyto also
predict indirect branches instead of building separatstlgindirect
branch prediction structures.

We propose a new indirect branch prediction algorithvirtual

Program Counter (VPCprediction. A VPC predictor treats a single

indirect branch as multiple conditional branclestual branchesjn
hardware for prediction purposes. Conceptually, eacliaitranch
has its own unique target address, and the target addretssesd &
the BTB with a unique “fake” PC, which we calirtual PC. The pro-
cessor uses the outcome of the existing conditional brarexdigior
to predict each virtual branch. The processor accessestiuitional
branch predictor and the BTB with the virtual PC address aftaal
branch. If the prediction for the virtual branch is “takethe target
address provided by the BTB is predicted as the next fetcheadd
(i.e. the predicted target of the indirect branch). If thediction of
the virtual branch is “not-taken,” the processor moves othé&onext
virtual branch: it tries a conditional branch predictioraagwith a
different virtual PC. The processor repeats this procesisthe con-
ditional branch predictor predicts a virtual branch as takéPC pre-
diction stops if none of the virtual branches is predictethiien after
a limited number of virtual branch predictions. After VPgiction

2With a 64-bit address space, a conventional indirect bramelictor likely requires
even more hardware resources to store the target addr@$ges [

3Previous research has shown that the prediction accuragy BTB-based indirect
branch predictor, which is essentially a last-target preed] is low (about 50%) because
the target addresses of many indirect branches alterniter idnan stay stable for long
periods of time [6, 27].

ing conditional branch predictors for indirect brancheshaut re-
quiring static analysis or profiling by the compiler. In otheords,
VPC predictiondynamically devirtualizean indirect branch without
compiler support. Unlike compiler-based devirtualizatiyy PC pre-
diction can be applied tany indirect branchiegardless of the number
and locations of its targets.

The contributions of VPC prediction are as follows:

1. To our knowledge, VPC prediction is the first mechanism tha
uses the existing conditional branch prediction hardware t
predict the targets of indirect branches, without reqgjramy
program transformation or compiler support.

. VPC prediction can be applied using any current as wellias f
ture conditional branch prediction algorithm without ré&ng
changes to the conditional branch prediction algorithnmc8i
VPC prediction transforms the problem of indirect branch
prediction into the prediction of multiple virtual conditial
branches, future improvements in conditional branch predi
tion accuracy can implicitly result in improving the accecya
of indirect branch prediction.

. Unlike previously proposed indirect branch predictiohemes,
VPC prediction does not require extra storage structures to
maintain the targets of indirect branches. Therefore, VRE p
diction provides a low-cost indirect branch prediction estie
that does not significantly complicate the front-end of the p
cessor while providing the same performance as more compli-
cated indirect branch predictors that require significambants
of storage.



2. BACKGROUND ON INDIRECT BRANCH

PREDICTION

We first provide a brief background on how indirect branctdjre
tors work to motivate the similarity between indirect anehdiional
branch prediction. There are two types of indirect branabdjr-
tors: history-based and precomputation-based [37]. Tblenigue
we introduce in this paper utilizes history information,we focus
on history-based indirect branch predictors.

2.1 Why Does History-Based Indirect Branch
Prediction Work?

History-based indirect branch predictors exploit infotima about
the control-flow followed by the executing program to difatiate
between the targets of an indirect branch. The insight i$ tiina
control-flow path leading to an indirect branch is strongbyrelated
with the target of the indirect branch [6]. This is very siarito mod-
ern conditional branch predictors, which operate on thenladion
that the control-flow path leading to a branch is correlatédtth the
direction of the branch [11].

2.1.1 A Source Code Example

I/ Set up the array of function pointers (i.e. junp table)
EvTab[ T_I NT] Eval _I NT; EvTab[ T_VAR] = Eval _VAR;

EvTab[ T_SUM = Eval _SUM

...

/'l EVAL eval uates an expression by calling the function
/'l corresponding to the type of the expression
/1 using the EvTab[] array of function pointers

eANITRONE

10: #define EVAL(hd) ((*EvTab[ TYPE(hd)])((hd))) /= NDI RECT/

12: TypHandl e Eval _LI STELEMENT ( TypHandl e hdSel ) {
13: hdPos = EVAL( hdSel );

14: /1 evaluate the index of the list elenent

15: /1 check if index is valid and within bounds
16: /1 if within bounds, access the list

17: /1 at the given index and return the el ement
18: }

Figure 2: An indirect branch example from GAP

Chang et al. [6] first proposed to use branch history inforometio
distinguish between different target addresses access#telsame
indirect branch. They proposed the “target cache,” whicsinsilar
to a two-level gshare [33] conditional branch predictor.eTthrget

The example in Figure 2 shows an indirect branch from the GARche is indexed using the XOR of the indirect branch PC aed th

program [12] to provide insight into why history-based potidn
of indirect branch targets works. GAP implements and ims®p

branch history register. Each cache entry contains a tadtess.
Each entry can be tagged, which reduces interference betlitfer-

a language that performs mathematical operations. Onestiéi& et indirect branches. The tagged target cache significanfiroves
ture in the GAP language is a list. When a mathematical fonctijngjrect branch prediction accuracy compared to a BTB-tgse-

is applied to a list element, the program first evaluates tieevof

dictor. However, it also requires separate structures fedigting

the index of the element in the list (line 13 in Figure 2). The i indirect branches, increasing complexity in the proceésmt-end.

dex can be expressed in many different data types, and aeatiffe

function is called to evaluate the index value based on the tgpe
(line 10). For example, in expressions L(1), L(n), and L(p+the
index is of three different data types: T_INT, T_VAR, and TN,

Later work on indirect branch prediction by Driesen and H&lz
focused on improving the prediction accuracy by enhandagir-
dexing functions of two-level predictors [8] and by combigimul-
tiple indirect branch predictors using a cascaded predi&p10].

respectively. An indirect jump through a jump table (EvTaines The cascaded predictor is a hybrid of two or more target pte.
2, 3 and 10) determines which evaluation function is calladel A rejatively simple first-stage predictor is used to prediasy-to-
on the data type of the index. Consider the mathematicaltifomc pregict (single-target) indirect branches, whereas a dexrgecond-
L2(n) = L1(n) + L1(n+1). For each n, the program calculate®éh stage predictor is used to predict hard-to-predict inditeanches.
index values; Eval_VAR, Eval_SUM, and Eval_VAR function® a priesen and Hélzle [10] concluded that a 3-stage cascadtighor
called respectively to evaluate index values for L1(n),r+1X), and performed the best for a particular set of C and C++ benchsiark

L2(n). The targets of the indirect branch that determinesavalua-
tion function of the index are therefore respectively thdradses of
the two evaluation functions. Hence, the target of thisretibranch
alternates between the two functions, making it unpretietwith a

BTB-based last-target predictor. In contrast, a predithat uses
branch history information to predict the target easilytidguishes
between the two target addresses because the branch dsstoli

lowed in the functions Eval_SUM and Eval_VAR are differdmnce

the histories leading into the next instance of the indibeabch used
to evaluate the index of the element are different. Note dhadm-

bination of the regularity in the input index expressiond &ére code
structure allows the target address to be predictable usach his-
tory information.

2.2 Previous Work

Kalamatianos and Kaeli [27] proposed predicting indirect
branches via data compression. Their predictor uses pimaliby
partial matching (PPM) with a set of Markov predictors of bes-
ing size indexed by the result of hashing a decreasing nuofligts
from previous targets. The Markov predictor is a large sehbfes
where each table entry contains a single target address @oid b
keeping bits. The prediction comes from the highest ordaetthat
can predict, similarly to a cascaded predictor. The PPM ipted
requires significant additional hardware complexity in theéexing
functions, Markov tables, and additional muxes used tocséle
predicted target address.

Recently, Seznec and Michaud [40] proposed extending their
TAGE conditional branch predictor to also predict indirbcinches.
However, their mechanism also requires additional stospgee for
indirect target addresses and additional complexity talleaimdirect

The indirect branch predictor described by Lee and Smith] [38,5nches.

used the branch target buffer (BTB) to predict indirect lotees. This
scheme predicts that the target of the current instanceeobthnch
will be the same as the target taken in the last executioredthnch.
This scheme does not work well for indirect branches thaffemtly

switch between different target addresses. Such indirectdhes are
commonly used to implement virtual function calls that ateany

different objects and switch statements with many ‘casgeis that
are exercised at run-time. Therefore, the BTB-based piadias

low (about 50%) prediction accuracy [30, 6, 8, 27].

2.3 Our Motivation

All previously proposed indirect branch predictors (excépe
BTB-based predictor) require separate hardware strustierestore
target addresses in addition to the conditional branchigtied hard-
ware. This not only requires significant die area (which states
into extra energy/power consumption), but also incredsesléesign
complexity of the processor front-end, which is already enplex



and cycle-critical part of the designMoreover, many of the pre-

viously proposed indirect branch predictors are themsebampli-
cated [9, 10, 27, 40], which further increases the overathglexity
and development time of the design. For these reasons, masht
processors do not implement separate structures to priediicect
branch targets.

Our goal in this paper is to designlow-cost technique that ac-

curately predicts indirect branch targets (by utilizingamch history
information to distinguish between the different targeti@dses of
a branch) without requiring separate complex structurastidirect

branch is fetched. If the virtual branch is predicted néet the
prediction algorithm moves to the next iteration (i.e. tletvirtual
branch) by updating the VPCA and VGHR. The VPCA value for an
iteration (other than the first iteration) is computed byHiag the
original PC value with a randomized constant value thatézgje to

the iteration. In other word§/ PCA = PC @& HASHV ALliter],
where HASHVAL is a hard-coded hardware table of randomized
numbers that are different from one another. The VGHR is Bimp
left-shifted by one bit at the end of each iteration to inticthat the
last virtual branch was predicted not taken.

branch prediction To this end, we propose Virtual Program Counter The iterative prediction process stops when a virtual biasgre-

(VPC) prediction.

3. VIRTUAL PROGRAM COUNTER (VPC)
PREDICTION

3.1 Overview

dicted to be taken. Otherwise, the prediction processtésrantil
either the number of iterations is greater than MAX_ITER leere
is a BTB miss [pred_target in Algorithm 1 means there is a BTB
miss)! If the prediction process stops without predicting a tartiet
processor stalls until the indirect branch is resolved.

Note that the value of MAX_ITER determines how many attempts
will be made to predict an indirect branch. It also dictates/imany

A VPC predictor treats an indirect branch as a sequence di-muljifferent target addresses can be stored for an indirectchrat a
plevirtual conditional branches Each virtual branch is predicted in given time in the BTB.

sequence using the existing conditional branch predidiemdware,
which consists of the direction predictor and the BTB (F@@).
If the virtual branch is predicted to be not-taken, the VP€dutor
moves on to predict the next virtual branch in the sequeritie Vir-
tual branch is predicted to be taken, VPC prediction usesaiget
associated with the virtual branch in the BTB as the nexthfeid-
dress, completing the prediction of the indirect branchteNhat the
virtual branches are visible only to the branch predictiandware.

‘ GHR H VGHR }—»Conditional

Branch
Predictor
(BP)

o Taken/Not Taken

Predict?
b

BTB Cond/Indirect

Target Address

Iteration
Counter

Figure 3: High-level conceptual overview of the VPC prediobr

3.2 Prediction Algorithm

The detailed VPC prediction algorithm is shown in Algoritdm
The key implementation issue in VPC prediction is how tandjetsh
between different virtual branches. Each virtual branclodd ac-
cess a different location in the direction predictor and Bi€B (so
that a separate direction and target prediction can be manie&ch

branch). To accomplish this, the VPC predictor accesses the con

tional branch prediction structures with a different vat#C address
(VPCA) and a virtual global history register (GHR) value (MR)
for each virtual branch. VPCA values are distinct for diéet virtual
branches. VGHR values provide the context (branch histofgy-
mation associated with each virtual branch.

VPC prediction is an iterative prediction process, wherehdter-
ation takes one cycle. In the first iteration (i.e. for thetfirstual
branch), VPCA is the same as the original PC address of thesatd

Algorithm 1 VPC prediction algorithm

iter «+— 1
VPCA «— PC
VGHR «— GHR
done «— FALSE
while (!done) do
pred_target «— access_BTB( PC A)
pred_dir «— access_conditional BP(PCA, VGHR)
if (pred_target and (pred_dir = TAKEN)) then
next_PC «— pred_target
done — TRUE
else if(Ipred_target or (iter > M AX_ITER)) then
STALL +— TRUE
done — TRUE
end if
VPCA «— HashPC, iter)
VGHR « Left-Shift(V GHR)
iter++
end while

3.2.1 Prediction Example

Figure 4a,b shows an example virtual function call and threeco
sponding simplified assembly code with an indirect branégute 4c
shows the virtual conditional branches corresponding ¢oitidirect
branch. Even though the static assembly code has only ore ind
rect branch, the VPC predictor treats the indirect brancaliple
conditional branches that have different targets and VRCNete
that the hardware does not actually generate multiple tiondil
branches. The instructions in Figure 4c are shown to dematast

'PC prediction conceptually. We assume, for this exampiet t

AX_ITER is 3, so there are only 3 virtual conditional braesh

Table 1 demonstrates the five possible cases when the indirec
branch in Figure 4 is predicted using VPC prediction, by singw
the inputs and outputs of the VPC predictor in each iteratigve

SNote that VPC addresses (VPCAs) can conflict with real PCesduis in the program,
thereby increasing aliasing and contention in the BTB ardifrection prediction struc-
tures. The processor does not require any special actiom afiasing happens. To
reduce such aliasing, the processor designer should: @ijde a good randomizing
hashing function and values to generate VPCAs and (2) cigiiéise VPC prediction

branch and VGHR is the same as the GHR value when the indiregteme and the conditional branch prediction structunesidéy to minimize the effects

4Using a separate predictor for indirect branch targets a@smore input to the mux
that determines the predicted next fetch address. Inergdke delay of this mux can
result in increased cycle time, adversely affecting thekcfoequency.

of aliasing. Conventional techniques proposed to reduesiaf in conditional branch
predictors [33, 5] can also be used to reduce aliasing dué>©.V

"The VPC predictor can continue iterating the predictioncpss even if there is BTB
miss. However, we found that continuing in this case doesmptove the prediction

5We call the conditional branches “virtual” because theyrareencoded in the program accuracy. Hence, to simplify the prediction process, ou€\iPedictor design stops the

binary. Nor are they micro-operations since they are orgjblé to the VPC predictor.

prediction process when there is a BTB miss in any iteration.



Table 1: Possible VPC Predictor states and outcomes when kmah in Figure 4b is predicted

1st iteration 2nd iteration 3rd iteration
Case inputs [ outputs inputs outputs input [ output Prediction
VPCATVGHR | BTB [ BP [[ VFCATVGHR | BTB [ BP [ VFCAT VGHR [ BTB [ BP
1 L 1111 TARG1 T - - TARG1
2 L 1111 | TARG1 | NT VL2 1110 | TARG2 | T - TARG2
3 L 1111 | TARG1 | NT VL2 1110 | TARG2 | NT VL3 [ 1100 [ TARG3 | T TARG3
4 L 1111 | TARG1 | NT VL2 1110 | TARG2 | NT VL3 | 1100 [ TARG3 | NT stall
5 L 1111 | TARG1 | NT VL2 1110 MISS - - stall

a = s->area ();
Rl = MEM R2]
INDI RECT_CALL R1 // PC. L

(b) Corresponding assembly code with an indirect branch

(a) Source code target) train the direction predictor as not-taken (as showAlgo-

rithm 2). The last virtual branch trains the conditionaltwh predic-
tor as taken and updates the replacement policy bits in tHe &y
corresponding to the correctly-predicted target addredste that

iterl: cond. br TARGL // VPCA: L . . . . . L. .
iter2: cond br TAR® // VPCA VL2 = L XOR HASHVAL[ 1] Algo.rlthm 2 is a special case of Algorithm 3 in that it is opizraq
iter3: cond. br TARG3 // VPCA: VL3 = L XOR HASHVAL] 2] to eliminate unnecessary BTB accesses when the targetpoedis

(c) Virtual conditional branches (for prediction purposes correct.

Algorithm 2 VPC training algorithm when the branch target is cor-
rectly predicted. Inputspredicted_iter, PC, GHR
iter «— 1
VPCA — PC
VGHR «— GHR
while (iter < predicted_iter) do
if (iter == predicted_iter) then

Figure 4: VPC prediction example: source, assembly, and the
corresponding virtual branches

assume that the GHR is 1111 when the indirect branch is fétche
Cases 1, 2, and 3 correspond to cases where respectivelyghe fi

second, or third virtual branch is predicted taken by thediional
branch direction predictor (BP). As VPC prediction itegtePCA

update_conditional_BR{PC' A, VGH R, TAKEN)
update_replacement_BTBEPC A)

and VGHR values are updated as shown in the table. Case 4 corre else

sponds to the case where all three of the virtual branchgzadicted
not-taken and therefore the outcome of the VPC predictorsigi
Case 5 corresponds to a BTB miss for the second virtual brandh
thus also results in a stall.

3.3 Training Algorithm

update_conditional_BR{PC A, VGH R, NOT-TAKEN)
end if
V PCA «+ Hash(PCjter)
VGHR « Left-Shift(V GHR)
iter++

end while

The VPC predictor is trained when an indirect branch is cor

mitted. The detailed VPC training algorithm is shown in Algo
rithms 2 and 3. Algorithm 2 is used when the VPC prediction was—

‘Algorithm 3 VPC training algorithm when the branch target is mis-
redicted. InputsPC, GHR, CORRECT_TARGET

correct and Algorithm 3 is used when the VPC prediction was in !

correct. The VPC predictor trains both the BTB and the coowlél
branch direction predictor for each predicted virtual fanThe key
functions of the training algorithm are:

1. to update the direction predictor as not-taken for théugir

branches that have the wrong target (because the targets of
those branches were not taken) and to update it as taken for

the virtual branch, if any, that has the correct target.

2. to update the replacement policy bits of the correct targhe
BTB (if the correct target exists in the BTB)

3. to insert the correct target address into the BTB (if theeaxi
target does not exist in the BTB)

Like prediction, training is also an iterative process. oilitate
training on a correct prediction, an indirect branch carneth it
through the pipeline the number of iterations performedrégljet the
branch predicted_iter). VPCA and VGHR values for each train-
ing iteration are recalculated exactly the same way as irptadic-
tion algorithm. Note that only one virtual branch trains ginediction
structures in a given cycfe.

3.3.1 Training on a Correct Prediction

If the predicted target for an indirect branch was correlityia-
tual branches except for the last one (i.e. the one that leasoitiect

81t is possible to have more than one virtual branch updatetadiction structures by
increasing the number of write ports in the BTB and the dicecpredictor. We do not
pursue this option as it would increase the complexity oflfmtion structures.

er —1

VPCA «— PC

VGHR «— GHR

found_correct_target — FALSE

while ((iter < MAX ITER) and (found_correct_target =

FALSFE))do

pred_target «— access_BTB( PC A)

if (pred_target = CORRECT_TARGET}hen
update_conditional_BR{PC' A, VGH R, TAKEN)
update_replacement_BTBPC A)
found_correct_target — TRUE

else if(pred_target) then
update_conditional_BR{PC A, VGH R, NOT-TAKEN)

end if

V PCA «— Hash(PCijter)

VGHR « Left-Shift(V GHR)

iter++

end while

[* no-target case */

if (found_correct_target = FALSFE) then
VPCA «— VPCA corresponding to the virtual branch with a BTB-Miss or
Least-frequently-used target among all virtual branches
VGHR < VGHR corresponding to the virtual branch with a BTB-Miss or
Least-frequently-used target among all virtual branches
insert BTB{/ PC A, CORRECT_TARGET)
update_conditional BR{(PCA, VGH R, TAKEN)

end if

3.3.2 Training on a Wrong Prediction

If the predicted target for an indirect branch was wrong,rehe

are two misprediction cases: (®rong-target one of the virtual



branches has the correct target stored in the BTB but thetiire
predictor predicted that branch as not-taken,r(@target none of
the virtual branches has the correct target stored in the B3 Ehe
VPC predictor could not have predicted the correct targethéno-

target case, the correct target address needs to be inserted @to th

BTB.
To distinguish betweewrong-targetandno-targetcases, the train-
ing logic accesses the BTB for each virtual branch (as showAl-i

gorithm 3)° If the target address stored in the BTB for a virtual

branch is the same as the correct target address of thedéhtianch

(wrong-targetcase), the direction predictor is trained as taken and the 4.

replacement policy bits in the BTB entry corresponding @ tidrget
address are updated. Otherwise, the direction predictoaiised as
not-taken. Similarly to the VPC prediction algorithm, whée train-
ing logic finds a virtual branch with the correct target addrét stops
training.

If none of the iterations (i.e. virtual branches) has theedrtarget
address stored in the BTB, the training logic inserts thesmtarget

1. Three registers to stoieer, V PC A, andV GH R for predic-
tion purposes (Algorithm 1).

A hard-coded tablelf ASHV AL, of 32-bit randomized val-
ues. The table hadf AX _ITE R number of entries. Our ex-
perimental results show that? AX_ITER does not need to

2.

be greater than 20. The table is dual-ported to support one

prediction and one update concurrently.
3. A predicted_iter value that is carried with each indirect
thanM AX _ITER.
Three registers to stoféer, V PC A, andV G H R for training
purposes (Algorithms 2 and 3).
Two registers to store tHé PC' A andV G H R values that may
be needed to insert a new target into the BTB (forrtbetarget
case in Algorithm 3).

5.

Note that the cost of the required storage is very small. Kérpire-
viously proposed history-based indirect branch predgtoo large

address into the BTB. One design question is what VPCA/VGHft complex tables are needed to store the target addressisad,

values should be used for the newly inserted target addréss-
ceptually, the choice of VPCA value determines tirder of the
newly inserted virtual branch among all virtual branches. ifsert
the new target in the BTB, our current implementation of tha@iing
algorithm uses the VPCA/VGHR values corresponding to theiai
branch that missed in the BTB. If none of the virtual brananéessed

target addresses are naturally stored in the existing BTB.

The combinational logic needed to perform the computatiens
quired for prediction and training is also simple. Actual &@ GHR
values are used to access the branch prediction structtire first it-
eration of indirect branch prediction. While an iteratisrperformed,
the VPCA and VGHR values for the next iteration are calculated

in the BTB, our implementation uses the VPCA/VGHR values coloaded into the corresponding registers. Therefore, upglafPCA
responding to the virtual branch whose BTB entry has the lestal and VGHR for the next iterations is not on the critical paththos

least frequently used (LFU) value. Note that the virtualnofathat

branch predictor access.

missed in the BTB or that has the smallest LFU-value in its BTB The training of the VPC predictor on a misprediction maysiig

entry can be determined easily while the training algoriiterates
over virtual branches (However, we do not show this comjmrtan
Algorithm 3 to keep the algorithm more readabl®).

3.4 Supporting Multiple Iterations per Cycle

The iterative prediction process can take multiple cycl@he
number of cycles needed to make an indirect branch predietith

increase the complexity of the BTB update logic becausegitires
multiple iterations to access the BTB. However, the VPCnirgy
logic needs to access the BTB multiple times only on a target m
prediction, which is relatively infrequent, and the updatgic of the
BTB is not on the critical path of instruction execution.

4. EXPERIMENTAL METHODOLOGY

a VPC predictor can be reduced if the processor already stgppo

the prediction of multiple conditional branches in parajet]. The
prediction logic can perform the calculation of VPCA values
multiple iterations in parallel since VPCA values do not eleg on
previous iterations. VGHR values for multiple iteratiorsncalso
be calculated in parallel assuming that previous iteratizare “not
taken” since the prediction process stops when an iteragisults in

We use a Pin-based [31] cycle-accurate x86 simulator taatel
VPC prediction. The parameters of our baseline processmstanwn
in Table 2. The baseline processor uses the BTB to prediaeictd
branches [30].

Table 2: Baseline processor configuration

branch throughout the pipeline. This value cannot be greate

a “taken” prediction. Section 5.4 evaluates the performanmact | . gng| 64KB, 2-way, 2-cycle I-cache; fetch ends at the first preidiaken br.;
of performing multiple prediction iterations in parallel. fetch up to 3 conditional branches or 1 indirect branch _
Branch 64KB (64-bit history, 1021-entry) perceptron branch pcgali [25];
. : 4K-entry, 4-way BTB with pseudo-LFU replacement;
3.5 Hardware Cost and CompIeXIty Predictors 64-entry return address stack; min. branch mispred. peisa®0 cycles
; ; : 8-wide fetch/issue/execute/retire; 512-entry ROB; 38ysital registers
Th.e extra hr_:lrdware reqU|red .by. the VPC pr_edlctor on top of t1g>é?gut|on 128-entry LD-ST queue; 4-cycle pipelined wake-up and sieledogic;
existing conditional branch prediction scheme is as fodiow scheduling window is partitioned into 8 sub-windows of 64riess each
On-chip L1 D-cache: 64KB, 4-way, 2-cycle, 2 Id/st ports;
®Note that these extra BTB accesses for training are requitydon a misprediction and | caches | L2 unified cache: 1MB, 8-way, 8 banks, 10-cycle latency;
they do not require an extra BTB read-port. An extra BTB asdeslds only one BTB All caches use LRU replacement and have 64B line size
bank per training-iteration. Even if the access resultsamk conflict with the accesses | Buses and 300-cycle minimum memory latency; 32 memory banks;
from the fetch engine for all the mispredicted indirect tmfa@s, we found that the per- | Memory | 32B-wide core-to-memory bus at 4:1 frequency ratio
formance impact is negligible due to the low frequency ofriect branch mispredictions | 5 toi.he, Stream prefetcher with 32 streams and
in the VPC mechanism [29]. 16 cache line prefetch distance (lookahead) [42]

19This scheme does not necessarily find and replace the legsifntly used of the targets . .
corresponding to an indirect branch — this is difficult to levpent as it requires keep- 1 N€ €Xperiments are run using 5 SPEC CPU2000 INT benchmarks,

ing LFU information on a per-indirect branch basis acrostenént BTB sets. Rather, 5 SPEC CPU2006 INT/C++ benchmarks, and 2 other C++ bench-
our scheme is an approximation that replaces the targetémthe lowest value for marks. We chose those benchmarks in SPEC INT 2000 and 2006
LFU-bits (corresponding to the LFU within a set) stored ia 8TB entry, assuming the ’ . . . .

baseline BTB implements an LFU-based replacement polityecheuristics are possi- INT/C++ suites that gain at least 5% performance with a péife
ble to determine the VPCA/VGHR of a new target address (pe: virtual branch). We  direct branch predictor. Table 3 provides a brief desaiptof the
experimented with schemes that select among the VPCA/VGafiles corresponding to other two C++ benchmarks.

the iterated virtual branches randomly, or based on thexmceformation that could be We use Pinpoints [36] to select a representative simulatigion

stored in the corresponding BTB entries and found that LFifopes best with random - -
selection a close second. We do not present these results dpace limitations. for each benchmark using the reference input set. Each bear&h



Table 3: Evaluated C++ benchmarks that are not included in ngfr: \\:VVEE?I I;]AOA ?:,g:ﬁ?oﬁ;gﬁffaestggéyhmh increases the afle
SPI,EC CPU 2000 or 2006 _ On average, VPC prediction improves performance by 26.7%
o s B andeei o Coigr] | Over the BTE-based predictor (when MAX_ITER=12), by reduc-
ing the average indirect branch MPKI from 4.63 to 0.52. Siace
is run for 200 million x86 instructions. Table 4 shows the rewa MAX_ITER value of 12 provides the best performance, mosgriat
teristics of the examined benchmarks on the baseline psoceall €XPeriments in this section use MAX_ITER=12. We found trsitg
binaries are compiled with Intel's production compiler @[21] VPC prediction does not significantly impact the predictmeuracy

with the -O3 optimization level. of conditional branches in the benchmark set we examinetiagrs
in Table 6.
5. RESULTS 10
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5.1 Dynamic Target Distribution

Figure 5 shows the distribution of the number of dynamic tar-

baseline

over

gets for executed indirect branches. In eon, gap, and ixxer@an E w© «VPC-ITER-10)
40% of the executed indirect branches have only one targe¢esd” ¢ VPC-ITER-12
single-target indirect branches are easily predictablta wisimple & * VPC-ITER-14
BTB-based indirect branch predictor. However, in gcc (508gfty ¢ 0
(100%), perlbmk (94%), perlbench (98%), sjeng (100%) andgpo = o
(97%), over 50% of the dynamic indirect branches have maaa th
5 targets. On average, 51% of the dynamic indirect branahései 0 § &@ S & & Sa@o EE SR RN S
evaluated benchmarks have more than 5 targets. N N ¢ ¢ ¢ T ¢ ¢« <
100 4 =baseline
€ wf £ =VPC-ITER-2
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Figure 5: Distribution of the number of dynamic targets across
executed indirect branches Figure 6: Performance of VPC prediction: IPC improvement

(top), indirect branch MPKI (bottom)

5.2 Performance of VPC Prediction Figure 7 shows the distribution of the number of iteratioasded

_Figure 6 (top) shows the performance improvement of VPC prgs generate a correct target prediction. On average 44.6%eafor-
diction over the baseline BTB-based predictor when MAX_RTE  yect predictions occur in the first iteration (i.e. zero idieles) and
varied from 2 to 16. Figure 6 (bottom) shows the indirect lBfan g1 of the correct predictions occur within three iterasio®nly in
MPKI in the baseline and with VPC prediction. In eon, gap, anskribmk and sjeng more than 30% of all correct predictiomngiire
namd, where over 60% of all executed indirect branches haveag|east 5 iterations. Hence, most correct predictions areopned

most 2 unique targets (as shown in Figure 5), VPC predictitth w quickly resulting in few idle cycles during which the fetchggne
MAX_ITER=2 eliminates almost all indirect branch mispretibns. gtg|s.

Almost all indirect branches in richards have 3 or 4 différemgets. .

Therefore, when the VPC predictor can hold 4 different tergeer o —11-12
indirect branch (MAX_ITER=4), indirect branch MPKI is reckd w0 =3-10
to only 0.7 (from 13.4 in baseline and 1.8 with MAX_ITER=2h& 70l 25:2

1
—3
—_2

=1

performance of only perlbomk and perlbench continues to awer
significantly as MAX_ITER is increased beyond 6, becauseastl
65% of the indirect branches in these two benchmarks haweaat |
16 dynamic targets (This is due to the large switch-caserskts in
perl that are used to parse and pattern-match the input &sipres.
The most frequently executed/mispredicted indirect binaincperl- 107
bench belongs to a switch statement with 57 static targdtgjte

that even though the number of mispredictions can be funther
duced when MAX_ITER is increased beyond 12, the performance
improvement actually decreases for perlbench. This is dusvo Figure 7: Distribution of the number of iterations (for corr ect
reasons: (1) storing more targets in the BTB via a larger MADER ~ predictions) (MAX_ITER=12)

value starts creating conflict misses, (2) some correcigtieds take

Percent of all correct predictions (%)




Table 4: Characteristics of the evaluated benchmarks:language and type of the benchmark (Lang/Type), baseline & (BASE IPC), potential IPC
improvement with perfect indirect branch prediction (PIBP IPC A), static number of indirect branches (Static I1B), dynamic rumber of indirect branches (Dyn. IB),
indirect branch prediction accuracy (IBP Acc), indirect br anch mispredictions per kilo instructions (IB MPKI), conditional branch mispredictions per kilo instructions
(CB MPKI). gcc06 is 403.gcc in CPU2006 and gec is 176.gcc in OR000.

[ [[ gcc Jcrafty[ eon [perbmk] gap [ perlbench] gccO6[ sjeng [ namd [ povray ] richards] ixx [ AVG ]
Lang/Type || Cl/int | Clint | C++/int| Clint Clint Clint Clint | Clint | C++/fp | C++/fp | C++/int | C++/int -
BASE IPC 1.20 | 1.71 2.15 1.29 1.29 1.18 0.66 1.21 2.62 1.79 0.91 1.62 1.29
PIBP IPCA || 23.0%| 4.8% | 16.2% | 105.5% | 55.6% | 51.7% | 17.3%| 18.5%| 5.4% | 12.1% | 107.1%| 12.8% || 32.5%
Static IB 987 356 1857 864 1640 1283 1557 369 678 1035 266 1281 -

Dyn. IB 1203K | 195K | 1401K | 2908K | 3454K| 1983K | 1589K| 893K | 517K | 1148K | 4533K | 252K -
IBP Acc (%) || 34.9 | 34.1 72.2 30.0 55.3 32.6 43.9 28.8 83.3 70.8 40.9 80.7 50.6
1B MPKI 3.9 0.6 1.9 10.2 7.7 6.7 4.5 3.2 0.4 1.7 13.4 1.4 4.63
CB MPKI 3.0 6.1 0.2 0.9 0.8 3.0 3.7 9.5 1.1 2.1 1.4 4.2 3.0

5.3 Comparisons with Other Indirect Branch targets in addition to the BTB whereas VPC prediction uség ihe

Predictors available BTB space. As the average number of targets isesga
100 the contention for space in the BTB also increases, and iegltitis
o :E‘é'gggg contention even with a relatively small separate strucfaseTTC
S TTO-1 5KB does) provides significant performance gains.
% «TTC-3KB Figure 9 compares the performance of VPC prediction with a 3-
7 +TTC-6KB stage cascaded predictor [9, 10]. On average, VPC predigtio-
% Eg;iig vides the same performance improvement as a 22KB cascaded pr

o TTC-48KB dictor. As shown in Table 5, in six benchmarks, VPC predittio
sTTC-96KB provides the performance of at least a 176KB cascaded poetfic

% IPC improvement over baseline
a
o

30 = TTC-192KB 100
20+ % =cascaded-704B
104 2 =cascaded-1.4KE
. e 3 80 ] =cascaded-2.8KB ¢
v S o & K SEES) K S 2 S 70 =cascaded-5.5KB—]
§ & & QQSQ s Q@\\v s Qé\\ & @\é\@ + &\‘& g o =cascaded-11KB| |
15 g s cascaded-22KB|
14 =baseline % 50 =cascaded-44KB[§
%"13 = TTC-384B g 404 =cascaded-88KB|
s12 +TTC-768B g 5l =cascaded-176K|
Z 1 < TTC-1.5KB © =VPC-ITER-12
g1 +TTC-3KB s X
g9 s TTC-6KB T
58 sTTC-12KB il
27 0 I o
s s TTC-24KB oy P N\ Y > O | S
§ 6 o TTC-48KB $ &"@ & Q@\\Q & QQ«@@ § £ & s T
g = TTC-96KB
S 4 [ I
g 3 f—{]°TTC-192KB —  Figure 9: Performance of VPC prediction vs. cascaded predior
5, *VPC-ITER-12
-1 . .
o Mipeater Ml A w 5.4 Effect of VPC Prediction Delay
& & & & R F L & & G & . . .
e & T g ° Qe\ § & & & ¥4 So far we have assumed that a VPC predictor can predict aesingl

virtual branch per cycle. Providing the ability to predictittiple vir-
Figure 8: Performance of VPC prediction vs. tagged target tual branches per cycle (assuming the underlying conditibranch
cache: IPC (top), MPKI (bottom) predictor supports this) would reduce the number of idldeyspent

during multiple VPC prediction iterations. Figure 10 shaive per-

Figure 8 compares the performance and MPKI of VPC predictidfrmance impact when multiple iterations can take only oyelec
with the tagged target cache (TTC) predictor [6]. The sizéhef4- Supporting, unrealistically, even 10 prediction iterasoper cycle
way TTC predictor is calculated assuming 4-byte targetsahgite  further improves the performance benefit of VPC predictigrobly
tags for each entrd% On average, VPC prediction provides the per2-2%. As we have already shown in Figure 7, only 19% of all cor-
formance provided by a 6KB TTC predictor. However, as show#Ct predictions require more than 3 iterations. Therefsupporting
in Table 5, in six benchmarks, the VPC predictor performseast Multiple iterations per cycle does not provide significanprove-
as well as a 12KB TTC (and on 4 benchmarks better than a 192REgNt. We conclude that, to simplify the design, the VPC miedi
TTC). As shown in Table 5, the size of TTC that provides equiv&an be implemented to support only one iteration per cycle.

lent performance is negatively correlated with the averagaber of R A

dynamic targets for each indirect branch in a benchmarkhipleer 5.5 '\SAenSItIVI:]YtOf ;/PCPPI’edICt{OI‘I to
the average number of targets the smaller the TTC that pesfas ICroarchitecture Farameters
well as VPC (e.g. in crafty, perlbmk, and perlbench). Thigsdsause . iy .
TTC provides separate storage to cache the large numbenahuig 5.5.1 Different Conditional Branch Predictors
We evaluated VPC prediction with various baseline condélo

“Note that we simulated full 8-byte tags for TTC and hence @rfggmance results pranch predictors. Figure 11 compares the performancesot TiC
reflect full tags, but we assume that a realistic TTC will netiimplemented with full
tags so we do not penalize it in terms of area cost. A targétecantry is allocated only *?We found that a 3-stage cascaded predictor performs slighitse than an equally-
on a BTB misprediction for an indirect branch. Our resultshdt take into account the sized TTC predictor. This is because the number of statiténtlbranches in the eval-
increase in cycle time that might be introduced due to thetiatdof the TTC predictor uated benchmarks is relatively small (10-20) and a cascpdetictor performs better
into the processor front-end. than a TTC when there is a larger number of static branchek0[9,




Table 5: The sizes of tagged target cache (TTC) and cascadedeplictors that provide the same performance as the VPC preditor
(MAX_ITER=12) in terms of IPC

[ [ gcc Jcrafty[ eon [perlbmk] gap [ perlbench gccO6[ sjeng] namd | povray | richards| ixx ]
TTCsize (B) | 12KB | 1.5KB| >192KB| 1.5KB | 6KB | 512B |12KB| 3KB | >192KB| >192KB| >192KB| 3KB

cascaded size (B)>176KB|2.8KB| >176KB| 2.8KB | 11KB| 1.4KB |44KB|5.5KB|>176KB| >176KB| >176KB| >176KB
avg. # of targets| 6.1 8.0 2.1 15.6 1.8 17.9 5.8 9.0 2.0 5.9 3.4 4.1

100 5.5.2 Different BTB sizes

90

% . =1 br/cycle We evaluated VPC prediction with different BTB sizes: 51224,
g 'igxgz:g and 2048 entries. As Table 7 shows, even with smaller BTBssize
g e 1 <6 bricycle VPC prediction still provides significant performance iropements.
é 50 =8 bricycle
o =10br/cycle . .
g 40 Table 7: Effect of different BTB sizes
E 304 : T
° | Baseline [[ VPCprediction |
£ 5 ‘ BB e”t"esh Tdirect MPKT] TPC || Tndirect MPKI[TPC A |
S
10 512 4381 1.16 1.31 18.5%
i 1K 4.65 1.25 0.95 21.7%
R T N SIS R 2K 7.64 1.28 0.78 23.8%
O QO Ry @Q & < o & . . . . .
R & & & e v 7K 763 129 052  |26.7%

5.5.3 VPC Prediction on a Less Aggressive Processor

Figure 12 shows the performance of VPC and TTC predictors on
a less aggressive baseline processor that has a 20-stajieqig-
wide fetch/issue/retire rate, 128-entry instruction vangd 16KB per-
ceptron branch predictor, 1K-entry BTB, and 200-cycle mgnia-

Figure 10: Performance impact of supporting multiple VPC pre-
diction iterations per cycle

predictor and the VPC predictor on a baseline processoravedhik B . ) ;
O-GEHL predictor [39]. On average, VPC prediction impropes- tency. Slncg the Igs; aggressive processor incurs asrpaﬂelty for
formance by 31% over the baseline with an O-GEHL predictoe. W Pranch misprediction, improved indirect branch handpnavides
also found [29] that VPC prediction improves performanc@Bygy, Smaller performance improvements than in the baselineessar.
on a baseline with a 64KB gshare [33] predictor. However, VPC prediction still improves performance by 23.6

Table 6 summarizes the results of our comparisons. Redtieeg 100

conditional branch misprediction rate via a better preaficesultsin =~ o ZEE'??SB

also reducing the indirect branch misprediction rate witRG/pre- < g TTC-1 5KB

diction. Hence, as the baseline conditional branch prediicomes g 70 =TTC-3KB

better, the performance improvement provided by VPC ptagtién- £ 4 =TTC-6KB

creases. We conclude that, with VPC prediction, any rebegffort ~ § o, Eg;iig

that improves conditional branch prediction accuracy \ikkly re- 2 ,, o TTC-48KB

sult in also improving indirect branch prediction accuracwithout & 204 sVPC-ITER-12

requiring the significant extra effort to design complex apécial- & |

ized indirect branch predictors. = ol
110 — 0
100 . = TTC-384B s é’;’&\ & QQ§Q > $ e’,\\&o $° é\Q’QCb & QC)\\{O '\\é\q} « \\‘&0
%0 ] «TTC-768B - <
" =TTC-1.5KB
70 il Eggﬁg Figure 12: VPC prediction vs. TTC on a less aggressive procesr
60 s TTC-12KB

=TTC-24KB
= TTC-48KB
s VPC-ITER-12

50

5.6 Performance of VPC Prediction on Server
Applications
We also evaluated the VPC predictor with commercial on-line
transaction processing (OLTP) applications [17]. Each Pliiace
PR R \03 2 o e & p is collected from an IBM System 390 zSeries machine [20] &iv12
g ° Qe° X & & & ¥ E instructions. Unlike the SPEC CPU benchmarks, OLTP apjiioa
have a much higher number of static indirect branches (OLA&IL,
OLTP2:7991, and OLTP3:15733) and very high indirect bramit
prediction rates® The VPC predictor (MAX_ITER=10) reduces the
indirect branch misprediction rate by 28%, from 12.2 MPKI&d@
MPKI. The VPC predictor performs better than a 12KB TTC pcedi
tor on all applications and almost as well as a 24KB TTC onltp

40-1

% IPC improvement over baseline

Figure 11: Performance of VPC prediction vs. TTC on a proces-
sor with an O-GEHL conditional branch predictor

Table 6: Effect of different conditional branch predictors Hence, we conclude that the VPC predictor is also very éfiedn
Cond. 8P| Baseline [ VPC prediction | large-scale server applications.
"~ |[cond. MPKI indi. MPKI | IPC || cond. MPKI] indi. MPKI [ IPC A |
gshare 3.70 4.63 1.25 3.78 0.65 23.8% 13system 390 ISA has both unconditional indirect and condétiindirect branch instruc-
perceptron 3.00 4.63 1.29 3.00 0.52 26.7% tions. For this experiment, we only consider unconditiandirect branches and use a
O-GEHL 1.82 4.63 1.37 1.84 0.32 31.0% 16K-entry 4-way BTB in the baseline processor.
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Figure 13: MPKI of VPC prediction on OLTP Applications: effe ct of MAX_ITER (left) and vs. TTC predictor (right)

6. VPC PREDICTION AND but requires whole-program analysis to make sure therelisare
COMPILER-BASED p:);sibl_e tatr)gert_]._ Tc?is e:jpgro;ch _er;gblets c?ldeHoptimizanﬁtr:_nwoulcri‘
otherwise be hindered by the indirect call. However, thiprapc
DEVIRTUALIZATION cannot be used statically if the language supports dyndass toad-
Devirtualization is the substitution of an indirect method Caling, like Java. Dynamic recompilation can overcome thisittm
with direct method calls in object-oriented languages [, 16, 2, tion, but it requires an expensive mechanism called orkstmace-
24]. Ishizaki et al. [24] classify the devirtualization bedques into  ment [24].
guarded devirtualizatiomnddirect devirtualization L. .
Guarded devirtualization: Figure 14a shows an example virtuaB.1 ~ Limitations of Compiler-Based
function call in the C++ language. In the example, dependimthe Devirtualization
actual type ofShape s, differentar ea functions are called at run-
time. However, even though there could be many differenpsbain  6.1.1  Need for Static Analysis or Accurate Profiling
the program, if the types of shapes are mostly either annostaf  The application of devirtualization to large commerciaftsare
theRect angl e class or theSi r cl e class at run-time, the compilerpases is limited by the cost and overhead of the static asatys
can convert the indirect call to multiple guarded direct<fl6, 13, profiling required to guide the method call transformatidbevir-
2] as shown in Figure 14(b). This compiler optimization i$e®Re- tyalization based on static analysis requires type arslystiich in
ceiver Class Prediction OptimizatioRCPQ and the compiler can tyrn requires whole program analysis [24], and unsafe laggs like

perform RCPO based on profiling. C++ also require pointer alias analysis. Note that theslysesineed
Shape* s = ... ; to be conservative in order to guarantee correct progranasgos.
a = s->area(); // an indirect call Guarded devirtualization usually requires accurate mrofiforma-

(a) A virtual function call in C++ tion, which may be very difficult to obtain for large applitats. Due
Shape * s = ...} to the limited applicability of static devirtualizatior24] reports only

if (s->class == Rectangle) // a cond. br at PC. X  an average 40% reduction in the number of virtual method calla

a = Rectangle::area(); /1 a direct call . . S .
else if (s->class == Gircle) // a cond. br at PC set of Java benchmarks, with the combined application ofesgiye
a=GCrcle::area(); /] a direct call guarded and direct devirtualization techniques.
el se . . .
a = s->area(); // an indirect call at pc z 6.1.2 Impacton Code Size and Branch Mispredictions
(b) Devirtualized form of the above virtual function call Guarded devirtualization can sometimes reduce performaince
(1) it increases the static code size by converting a sinyl@éct
Figure 14: A virtual function call and its devirtualized for m branch instruction into multiple guard test instructiomedadirect

calls; (2) it could replace one possibly mispredicted iadicall with

_The benefits of this optimization are: (1) It enables othen<o myltiple conditional branch mispredictions, if the guaests become
piler optimizations. The compiler could inline the direcinttion hard-to-predict branches [41].

calls or perform interprocedural analysis [13]. Removingdtion

calls also reduces the register save/restore overhea@h@proces- 6.1.3 Lack of Adaptivity to Run-Time Input-Set and
sor can predict the virtual function call using a conditibheanch Phase Behavior

predictor, which usually has higher accuracy than an intlibeanch  The most frequently-taken targets chosen for devirtutitinacan
predictor [2] However, not all indirect calls can be corteerto mul- be based on profiling, which averages the whole executiomegpto-
tiple conditional branches. In order to perform RCPO, tHeWing  gram for one particular input set. However, the most fredjyetaken
conditions need to be fulfilled [13, 2]: targets can be different across different input sets. Euntiore, the

1. The number of frequent target addresses from a caller SWQSt frequently-ta}ken targets can char_lge during dlﬁqndaases of

should be small (1-2). _the program. Additionally, dynamic Ilnklng and dynamlcsz_*.aoad-

ing can introduce new targets at runtime. Compiler-baseittdal-

ization cannot adapt to these changes in program behaviaube

the most frequent targets of a method call are determineitaits
and encoded in the binary.

Direct devirtualization: Direct devirtualization converts an in- Due to these limitations, state-of-the-art compilers egittio not
direct call into a single unconditional direct call if theropiler can implement any form of devirtualization (e.g. GCC 4.0 [f3]or
prove that there is only one possible target for the indicatt Hence, 14GCC only implements a form of devirtualization based on<laigrarchy analysis in
direct devirtualization does not require a guard beforedinect call, theipa-branchexperimental branch, but not in the main branch [35].

2. The majority of target addresses should be similar adnpas
sets.
3. The target addresses must be available at compile-time.
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they implement a limited form of direct devirtualizationathcon-
verts only provably-monomorphic virtual function callstandirect
function calls (e.g. the Bartok compiler [41, 34]).

6.2 VPC Prediction vs. Compiler-Based
Devirtualization

VPC prediction is essentially dynamic devirtualizatiormecha-
nism used for indirect branch prediction purposes. HowevEC'’s
devirtualization is visible only to the branch predictiomustures.
VPC has the following advantages over compiler-based timlira-
tion:

1. Asitis a hardware mechanism, it can be appliedrtyg indirect
branchwithout requiring any static analysis/guarantees or prafil

2. Adaptivity: Unlike compiler-based devirtualizatiorhet dy-
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Figure 15: Performance of VPC prediction on RCPO binaries

namic training algorithms allow the VPC predictor to adapt t

changes in the most frequently-taken targets or even to agyets
introduced by dynamic linking or dynamic class loading.

3. Because virtual conditional branches are visible onlyht®
branch predictor, VPC prediction does not increase the siadg nor
does it possibly convert a single indirect branch mispréaficinto
multiple conditional branch mispredictions.

On the other hand, the main advantage of compiler-based-dev

tualization over VPC prediction is that it enables compitee code
optimizations. However, as we show in the next section, ¥ t
techniques can be used in combination and VPC predictioviges
performance benefits on top of compiler-based devirtutidina

6.3 Performance of VPC Prediction on
Binaries Optimized with Compiler-Based
Devirtualization

A compiler that performs devirtualization reduces the nemdsf
indirect branches and therefore reduces the potentiabpednce
improvement of VPC prediction. This section evaluates ffectve-
ness of VPC prediction on binaries that are optimized usggyes-
sive profile-guided optimizations, which include RCPO. 121]
performs a form of RCPO [38] when value-profiling feedbackris
abled, along with other profile-based optimizatidhs.

Table 8 shows the number of static/dynamic indirect braache

in the BASEand RCPObinaries run with the full reference input
set. BASEbinaries are compiled with theG3 option. RCPObi-
naries are compiled with all profile-guided optimizatioms;luding
RCPO Table 8 shows that RCPO binaries reduce the number
static/dynamic indirect branches by up to 51%/86%.
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If)i]gure 16: VPC prediction vs. tagged target cache on RCPO
binaries: IPC (top) and MPKI (bottom)

Figure 15 shows the performance impact of VPC prediction on
RCPO binaries. Even though RCPO binaries have fewer irtdiref CONCLUSION

branches, VPC prediction still reduces indirect branchpnedic-

tions by 80% on average, improving performance by 11.5% aver

BTB-based predictor. Figure 16 shows the performance casgpa
of VPC prediction with a tagged target cache on RCPO binafike
performance of VPC is better than a tagged predictor of 48tB (
eon, namd, povray), and equivalent to a tagged predictoA&BR2
(for gap), of 12KB (for gcc), of 3KB (for perlbmk, gcc06, aneisg),
of 1.5KB (for crafty), and 768B (for perlbench). Hence, a VP@é-
dictor provides the performance of a large and more comigéta
tagged target cache predictor even when the RCPO optimizéi
used by the compiler.

5since it is not possible to selectively enable only RCPO i@ I®e could not isolate the
impact of RCPO on performance. Hence, we only present tieetedf VPC prediction
on binaries optimized with RCPO.

This paper proposed and evaluated the VPC prediction garadi
The key idea of VPC prediction is to treat an indirect branddtruc-
tion as multiple “virtual” conditional branch instructierfor predic-
tion purposes in the microarchitecture. As such, VPC ptexien-
ables the use of existing conditional branch predictioncitires to
predict the targets of indirect branches without requiramy extra
structures specialized for storing indirect branch tasg€ur evalua-
tion shows that VPC prediction, without requiring comptazstruc-
tures, achieves the performance provided by other indibeahch
predictors that require significant extra storage and cerigl. We
believe the performance impact of VPC prediction will fuathin-
crease in future applications that will be written in objediented
programming languages and that will make heavy use of palymo
phism since those languages were shown to result in significa

16 P sad i ; . T - L f L "
RCPO binaries were compiled in two passes with ICC: the faissps a profiling run more indirect branch mlspredlctlons than traditional Oﬁ%m-style

with the train input set-(pr of _gen switch), and the second pass optimizes the binari
based on the profile (we use ther of _use switch, which enables all profile-guided
optimizations).

11

l1Sanguages. By making available to indirect branches thg Accu-

rate, highly-optimized, and continuously-improving haete used



Table 8: The number of static and dynamic indirect branches in BASE and RCPO binaries

gce | crafty | eon | perlomk| gap | perlbench gcc06| sjeng | namd| povray
Static BASE 987 356 [1857| 864 |[1640] 1283 | 1557| 369 | 678 | 1035
Static RCPO 984 358 [ 1854 764 [1709] 930 1293] 369 | 333 | 578
Dynamic BASE (M)[| 144] 174 | 628 | 1041 |2824] 8185 304 [ 10130] 7 8228
Dynamic RCPO (M| 94 | 119 | 619 1005 |[2030] 1136 202 [10132] 4 7392

to predict conditional branches, VPC prediction can ses/araen-
abler encouraging programmers (especially those conderith the
performance of their code) to use object-oriented progrargstyles,
thereby improving the quality and ease of software devekgm
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