
Coordinated Control of Multiple Prefetchers
in Multi-Core Systems

Eiman Ebrahimi† Onur Mutlu§ Chang Joo Lee† Yale N. Patt†
†Department of Electrical and Computer Engineering

The University of Texas at Austin
{ebrahimi, cjlee, patt}@ece.utexas.edu

§Computer Architecture Laboratory (CALCM)
Carnegie Mellon University

onur@cmu.edu

ABSTRACT

Aggressive prefetching is very beneficial for memory latency tol-
erance of many applications. However, it faces significant chal-
lenges in multi-core systems. Prefetchers of different cores on a
chip multiprocessor (CMP) can cause significant interference
with prefetch and demand accesses of other cores. Because
existing prefetcher throttling techniques do not address this
prefetcher-caused inter-core interference, aggressive prefetching
in multi-core systems can lead to significant performance degra-
dation and wasted bandwidth consumption.

To make prefetching effective in CMPs, this paper proposes a
low-cost mechanism to control prefetcher-caused inter-core in-
terference by dynamically adjusting the aggressiveness of mul-
tiple cores’ prefetchers in a coordinated fashion. Our solution
consists of a hierarchy of prefetcher aggressiveness control struc-
tures that combine per-core (local) and prefetcher-caused inter-
core (global) interference feedback to maximize the benefits of
prefetching on each core while optimizing overall system perfor-
mance. These structures improve system performance by 23%
while reducing bus traffic by 17% compared to employing ag-
gressive prefetching and improve system performance by 14%
compared to a state-of-the-art prefetcher aggressiveness control
technique on an eight-core system.

Categories and Subject Descriptors: C.1.0 [Processor Archi-
tectures]: General; C.5.3 [Microcomputers]: Microprocessors; C.1.2
[Multiple Data Stream Architectures (Multiprocessors)]

General Terms: Design, Performance.

Keywords: Prefetching, multi-core, memory systems, feedback con-
trol.

1. INTRODUCTION
Memory latency tolerance mechanisms are critical to improv-

ing system performance as DRAM speed continues to lag pro-
cessor speed. Prefetching is one commonly-employed mecha-
nism that predicts the memory addresses a program will re-
quire, and issues memory requests to those addresses before the
program needs the data. By doing so, prefetching can hide the
latency of a memory access since the processor either does not
incur a cache miss for that access or incurs a cache miss that
is satisfied earlier because the prefetch request already started
the memory access.

In a chip-multiprocessor (CMP) system, cores share mem-
ory system resources beyond some level in the memory hierar-
chy. Bandwidth to main memory and a shared last level cache
are two important shared resources in almost all CMP designs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICRO’09, December 12–16, 2009, New York, NY, USA.
Copyright 2009 ACM 978-1-60558-798-1/09/12 ...$10.00.

Aggressive prefetching on different cores of a CMP, although
very beneficial for memory latency tolerance on many applica-
tions when they are run alone, can ultimately lead to 1) sig-
nificant system performance degradation and bandwidth waste
compared to no prefetching, or 2) relatively small system perfor-
mance improvements with prefetching. This is a result of the
following types of prefetcher-caused inter-core interference in
shared resources: 1) prefetch-prefetch interference: prefetches
from one core can delay or displace prefetches from another
core by causing contention for memory bandwidth and cache
space, and 2) prefetch-demand interference: prefetches from one
core can either delay demand (load/store) requests from another
core or displace the other core’s demand-fetched blocks from the
shared caches. Our goal in this paper is to develop a hardware
framework that enables large performance improvements from
prefetching in CMPs by significantly reducing prefetcher-caused
inter-core interference.

Prefetcher-caused inter-core interference can be somewhat re-
duced if the prefetcher(s) on each core are individually made
more accurate. Previous work [31, 8, 27, 13, 6] proposed tech-
niques to throttle the aggressiveness or increase the accuracy of
prefetchers. As a side effect, such techniques can also reduce
prefetcher-caused inter-core interference compared to a system
that enables aggressive prefetching without any prefetcher con-
trol. However, proposed prefetcher throttling techniques [8, 27,
6] only use feedback information local to the core the prefetcher
resides on. Mechanisms that attempt to reduce the negative
effects of aggressive prefetching by filtering useless prefetch
requests [13, 31] also operate independently on each core’s
prefetch requests. Not taking into account feedback informa-
tion about the amount of prefetcher-caused inter-core interfer-
ence is a major shortcoming of previous techniques. We call
this feedback information global (or system-wide) feedback.

Why is global feedback important? Figure 1 compares
the performance improvement obtained by independently throt-
tling the prefetcher on each core using state-of-the-art feedback-
directed prefetching (FDP) [27] to that obtained by an unreal-
izable system that, in addition to using FDP, ideally eliminates
all prefetcher-caused inter-core interference in shared memory
resources. To model the ideal system, for each core we elimi-
nated all memory request buffer entry conflicts, memory bank
conflicts, row buffer conflicts, and cache pollution caused by
another core’s prefetcher, but we model all similar interfer-
ence effects caused by the same core’s prefetcher. This exper-
iment was performed for 32 multiprogrammed workloads on a
4-core system.1 Independently throttling each prefetcher us-
ing FDP improves performance by only 4%. In contrast, if
all prefetcher-caused inter-core interference were ideally elimi-
nated, performance would improve by 56% on average. Hence,
significant performance potential exists for techniques that con-

1The reported average is over all 32 workloads, but only 14 of
them are shown here. These are the same workloads shown in
Figure 7, which constitute four classes of workloads analyzed in
Section 5.2. Potential performance improvements for the other
18 workloads were evaluated and showed similar results.

1

trol prefetcher-caused inter-core interference. Moreover, we find
that, in some workloads, independently throttling the prefetcher
on each core degrades system performance because it blindly
increases the aggressiveness of accurate prefetchers. However,
using global feedback, coordinated and collective decisions can
be made for prefetchers of different cores, leading to signifi-
cant performance and bandwidth-efficiency improvements, as
we show in this paper.

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2

P
er

f.
 N

o
rm

a
li

ze
d

 t
o

 N
o

 T
h

ro
tt

li
n

g

Feedback-Directed Prefetching

No Prefetcher-Caused Inter-Core Interference

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10WL11WL12WL13WL14Gmean-32

Figure 1: System performance improvement of ideally eliminat-
ing prefetcher-caused inter-core interference vs. feedback-directed
prefetching (1.0 is the baseline performance with no throttling; per-
formance measured in harmonic speedup, see Section 4)

Basic Idea We develop a mechanism that controls the ag-
gressiveness of the system’s prefetchers in a hierarchical fashion,
called Hierarchical Prefetcher Aggressiveness Control (HPAC).
HPAC dynamically adjusts the aggressiveness of each prefetcher
in two ways: local and global. The local decision attempts to
maximize the local core’s performance by taking into account
only local feedback information, similar to previous prefetcher
throttling mechanisms [8, 27, 6]. The global mechanism can
override the local decision by taking into account effects and
interactions of different cores’ prefetchers when adjusting each
one’s aggressiveness. The key idea is that if prefetcher-caused
interference in the shared cache and memory bandwidth is es-
timated to be significant, the global control system enforces a
throttling decision that is best for overall system performance
rather than allowing the local control to make a less-informed
decision that may degrade overall system performance.

Summary of Evaluation We evaluate our technique on
both 4-core and 8-core CMP systems. We find that as the
number of cores in a CMP increases, the benefits of our tech-
nique also increase. Experimental results across a wide variety
of workloads on an 8-core CMP show that our proposed Hier-
archical Prefetcher Aggressiveness Control technique improves
average system performance by 23%/14% and reduces memory
bus traffic by 17%/3.2% compared respectively to a system that
enables aggressive stream prefetching on all cores without any
throttling and a system with a state-of-the-art aggressiveness
control mechanism [27] enabled individually for each prefetcher.

Contributions To our knowledge, our proposal is the first
comprehensive solution to dynamic control of prefetcher aggres-
siveness that uses system-wide inter-core prefetcher interference
information to maximize overall system performance. We make
the following contributions:

1. We show that uncoordinated, local-only prefetcher control
can lead to significant system performance degradation com-
pared to no prefetching even though it might make a seemingly
“correct” local decision for each core’s prefetcher in an attempt
to maximize that particular core’s performance.

2. We propose a low-cost mechanism to improve the per-
formance and bandwidth-efficiency of prefetching and make it
effective in CMPs. The proposed mechanism uses a hierarchi-
cal approach to prefetcher aggressiveness control. It optimizes
overall system performance with global control using inter-core
prefetcher interference feedback from the shared memory sys-
tem, while maximizing prefetcher benefits on each core with
local control using per-core feedback.

3. We demonstrate that our approach i) is orthogonal to var-
ious memory scheduling policies (Section 5.3), ii) significantly
improves and is orthogonal to various state-of-the-art local-
only prefetcher throttling (Section 5.5) and pollution filtering
(Section 6.2) techniques, iii) is applicable to multiple types of
prefetchers per core (Section 5.5), and iv) is orthogonal to pre-
viously proposed fairness and quality of service techniques (Sec-
tion 5.4) in shared multi-core resources.

2. BACKGROUND AND MOTIVATION
We briefly describe relevant previous research on prefetcher

aggressiveness control, since our proposal builds on this prior
work. We also describe the shortcomings of these prefetcher
control mechanisms and provide insight into the potential ben-
efits of reducing prefetcher-caused inter-core interference using
coordinated control of multiple prefetchers.

2.1 Previous Techniques for Controlling
Prefetcher Aggressiveness

Almost all prefetching algorithms contain a design parameter
determining their aggressiveness [12, 1, 11, 4, 22]. For example,
in many stream or stride prefetcher designs, prefetch distance
and prefetch degree are two parameters that define how aggres-
sive the prefetcher is [27]. Prefetch distance refers to how far
ahead of the demand miss stream the prefetcher can send re-
quests, and prefetch degree determines how many requests the
prefetcher issues at once.

In applications where a prefetcher’s requests are accurate and
timely, a more aggressive prefetcher can achieve higher perfor-
mance. On the other hand, in applications where prefetching is
not useful, aggressive prefetching can lead to large performance
degradation due to cache pollution and wasted memory band-
width, and higher power consumption due to increased off-chip
accesses. To reduce these problems, there have been proposals
for controlling a prefetcher’s aggressiveness based on its useful-
ness. For example, Feedback-Directed Prefetching (FDP) [27]
is a prefetcher throttling technique that collects feedback local
to a single prefetcher (i.e., the prefetcher’s accuracy, timeliness,
and pollution on the local core’s cache) and adjusts its aggres-
siveness to reduce the negative effects of prefetching. Coordi-
nated throttling [6] is a mechanism to adjust the aggressiveness
levels of more than one type of prefetcher in a hybrid prefetch-
ing mechanism. It combines feedback from multiple prefetchers
of a single core and makes a decision on how aggressive each
prefetcher should be. Its goal is to maximize the contribution
of each prefetcher to the single core’s performance while re-
ducing negative effects of useless prefetches. Neither of these
prior works take into account information from other cores in a
multi-core system.

2.2 Shortcomings of Local-Only Prefetcher
Control

Prior approaches to controlling prefetcher aggressiveness that
use only information local to each core can make incorrect deci-
sions from a system-wide perspective. Consider the example in
Figures 2 and 3. In the 4-core workload shown, employing ag-
gressive stream prefetching increases the performance of swim
and lbm (by 86% and 30%) and significantly degrades the per-
formance of crafty and bzip2 (by 57% and 35%). This results
in an overall reduction in system performance of 5% (harmonic
speedup - defined in Section 4) and an increase in bus traf-
fic of 10% compared to no prefetching. As Figure 2 shows,
with FDP, applications independently gain some performance,
however, even with these gains, system performance still de-
grades by 4% and bus traffic increases by 7% compared to no
prefetching. In contrast, our HPAC proposal makes a coor-
dinated decision for the aggressiveness of multiple prefetchers.

2

As a result, system performance increases by 19.1% (harmonic
speedup) while bus traffic increases by only 3.5% compared to
no prefetching as shown in Figure 3.

0.0

0.2

0.4

0.6

0.8

1.0
S

p
ee

d
u

p
 o

v
er

 A
lo

n
e

R
u

n
No Prefetching

Pref. + No Throttling

FDP

HPAC

lbm_06 swim_00 crafty_00 bzip2_00

Figure 2: Speedup of each application w.r.t. when run alone

0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
d

u
p

(a) Hspeedup

0.0

0.5

1.0

1.5

2.0

2.5

W
sp

ee
d

u
p

(b) Wspeedup

0
1
2
3
4
5
6
7
8
9

10
11
12

M
il

li
o

n
 C

a
ch

e
L

in
es

No Prefetching

Pref. + No Throttling

FDP

HPAC

(c) Bus Traffic

Figure 3: System performance

The key to this performance improvement is throttling down
of swim’s and lbm’s prefetchers. When these prefetchers are
very aggressive, they cause significant pollution for other ap-
plications in the shared cache and cause high contention for
DRAM banks. HPAC detects the interference caused by swim’s
and lbm’s aggressive prefetchers. As a result, even though
FDP incorrectly decides to throttle up the prefetchers (because
the prefetchers are very accurate), HPAC throttles down the
prefetchers using global feedback on interference. Doing so re-
sults in a loss of swim’s and lbm’s performance compared to
aggressive prefetching. However, this allows bzip2 to gain per-
formance with prefetching, which was not realizable for this
application with no throttling or with FDP, and significantly
reduces crafty’s performance degradation. Overall, HPAC en-
ables significant performance improvement due to prefetching
which cannot be obtained with no throttling or FDP.

The key insight is that a control system that is aware of
prefetcher-caused inter-core interference in the shared memory
resources can keep an accurate but overly aggressive prefetcher
in check, whereas a local-only control scheme would allow it
to continue to interfere with other cores’ memory requests and
cause overall system performance degradation.

Our goal: In this paper, we aim to provide a solution to
prefetcher control to significantly improve the performance of
prefetching and make it effective on a large variety of workloads
in CMP systems. Our HPAC mechanism does exactly that by
combining system-wide and per-core feedback information to
throttle the aggressiveness of multiple prefetchers of different
cores in a coordinated fashion.

3. HIERARCHICAL PREFETCHER

AGGRESSIVENESS CONTROL (HPAC)
The Hierarchical Prefetcher Aggressiveness Control (HPAC)

mechanism consists of local and global control structures. The
two structures have fundamentally different goals and are hence
designed very differently as explained in detail below.

3.1 Local Aggressiveness Control Structure
The local control structure adjusts the aggressiveness of the

prefetcher(s) of each core with the sole goal of maximizing the
performance of that core. This structure is not aware of the
overall system picture and the interference between memory

requests of different cores. Prior research [27, 6] proposed such
structures. Such previously proposed structures or other novel
structures that determine the aggressiveness of a single core’s
prefetcher(s) are orthogonal to the ideas presented in this paper
and could be incorporated as the local control mechanism of
the system proposed here. In fact, we evaluate the use of two
previous proposals, FDP [27] and coordinated throttling [6], as
our local control structure in Section 5.5.

3.2 Global Aggressiveness Control Structure
The global aggressiveness control structure keeps track of

prefetcher-caused inter-core interference in the shared memory
system. The global control can accept or override decisions
made by each local control structure with the goal of increasing
overall system performance and bandwidth efficiency.

3.2.1 Terminology

We first provide the terminology we will use to describe the
global aggressiveness control. For our analysis we define the
following terms, which are used as global feedback metrics in
our mechanism:

Accuracy of a Prefetcher for Core i - ACCi: The fraction
of prefetches sent by core i’s prefetcher(s) that were used by
subsequent demand requests.

Pollution Caused by Core i’s prefetcher(s) - POLi:
The number of demand cache lines of all cores j evicted by core
i’s (j 6= i) prefetches that are requested subsequent to eviction.2

This indicates the amount of disturbance a core’s prefetches
cause in the cache to the demand-fetched blocks of other cores.

Bandwidth Consumed by Core i - BWCi: The sum
of the number of DRAM banks servicing requests (demand or
prefetch) from core i every cycle.

Bandwidth Needed by Core i - BWNi: The sum of the
number of DRAM banks that are busy every cycle servicing
requests (demand or prefetch) from cores j when there is a
request (demand or prefetch) from core i (j 6= i) queued for that
bank in that cycle. This indicates the number of outstanding
requests of a core that would have been serviced in the DRAM
banks had there been no interference from other cores.

Bandwidth Needed by Cores Other than Core i -
BWNOi: The sum of the needed bandwidth of all cores ex-
cept core i for which the prefetcher throttling decision is being
made. Therefore,

BWNOi =

N−1
X

j=0, j 6=i

BWNj , N : Number of cores

Note that the global feedback metrics we define include in-
formation on interference affecting both demand and prefetch
requests of different cores.

Example: Figure 4 illustrates the concepts of bandwidth
consumption and bandwidth need. Figure 4(a) does not show
many details of the DRAM subsystem but provides a framework
to better understand the definitions above. It shows a snap-
shot of the DRAM subsystem with four requests being serviced
by the different DRAM banks while other requests are queued
waiting for those banks to be released. Based on the defini-
tions above, the “Bandwidth consumed by a core” (BWCi) and
“Bandwidth needed by a core” (BWNi) counts of the four differ-
ent cores are incremented with the values shown in Figure 4(b)
in the cycle the snapshot was taken. We focus on the increments
for BWN of cores 1 and 2 to point out some subtleties. Core
1 has one request waiting for bank 0, one waiting for bank 1,
and one waiting for bank 3. However, when calculating BWN

2Please note this definition is different from that used by Sri-
nath et al. [27] for pollution caused by inaccurate prefetches on
the same core’s demands.

3

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������

������
������
������

������
������
������
������

������
������
������
������

Bank 2 Bank 3

Memory requests waiting

Memory requests being serviced

1 2 3

1 0 21

1 13

5

2

6 4 6

0

BWCi

BWNi

iBWNO

(b) Measured parameters(a) Snapshot of memory requests’ state

Core 3 Core 3

Core 2

i (Core)

Core 2

Core 3

Core 2

Core 2

Core 0

Core 1

Core 2

Core 2

To DRAM

Core 1

Bank 0 Bank 1

Core 0 Core 1

Core 1

Figure 4: Example of how to measure BWCi, BWNi, and BWNOi

of core 1, only the requests waiting for bank 0 and bank 3 are
accounted for. If there was no interference in the system, and if
core 1 was the only core using the shared resources, the request
from core 1 in the queue for bank 1 would still have had to
wait. Hence, the BWN count for core 1 is incremented by 2 in
this cycle. Core 2 has three requests waiting for bank 0, one
request waiting for bank 2 and two requests waiting for bank
3. However, if there was no interference present only one of the
three requests waiting for bank 0, the request waiting for bank
2, and one of the requests waiting for bank 3 could have been
serviced in the cycle shown by the snapshot. Hence, the BWN

count for core 2 is incremented by 3 in this cycle.
Intuitively, BWC corresponds to the amount of shared band-

width used by a particular core. A core with high BWC can
potentially delay other cores’ simultaneous access to the shared
DRAM banks and have a negative impact on their memory ac-
cess latencies. BWN corresponds to the amount of bandwidth
a core is denied due to interference caused by other cores in the
system. A core might be causing interference for other cores if
the sum of BWN of other cores grows too large (i.e., BWNO of
the core is too large).

3.2.2 Global Control Mechanism

In this section we explain how the feedback defined above
is used to implement the global control mechanism. We re-
fer to the prefetcher being throttled as the target prefetcher.
When making a decision to allow or override the decision of
a prefetcher’s local control, global control needs to know: i)
how accurate that prefetcher is, and ii) how much interference
the prefetcher is causing for other cores in the system. In our
proposed solution, we use the following parameters to identify
how much interference the prefetcher of core i is generating for
other cores in the shared resources: 1) the bandwidth consumed
by core i (BWCi), 2) the pollution caused by the prefetcher(s)
of core i on other cores’ demand requests (POLi), and 3) the
bandwidth needed by the other cores’ requests (both prefetch
and demand) (BWNOi). Parameter 1, BWCi, indicates the
potential for increased interference with other cores due to the
bandwidth consumption of core i. A high BWCi indicates that
core i will potentially cause interference if the target prefetcher’s
aggressiveness is not kept in check. Parameters 2 and 3 indicate
the existence of such interference in the form of high bandwidth
needs of other cores (BWNOi) or cache pollution experienced
by other cores (POLi). When BWNOi or POLi has a high
value, high interference has been detected, and hence measures
are required to reduce it.

Our global control mechanism is an interval-based mechanism
that gathers the described feedback parameters during each in-
terval. At the end of an interval, global control uses the col-
lected feedback to allow or override the decision made by the
target prefetcher’s local control using the following principles.
Principle 1. When the target prefetcher shows low pollution

(low POLi):
(a) If the accuracy of the prefetcher is low3 and other cores

need a lot of bandwidth (i.e., BWNO of the core is high), then
override the local control’s decision and throttle down. Ra-
tionale: this state indicates that an inaccurate prefetcher’s
requests have caused bandwidth interference that is negatively
affecting other cores. Hence, the inaccurate prefetcher should
be throttled down to reduce the negative impact of its inaccu-
rate prefetches on other cores.

(b) If the accuracy of the prefetcher is low and the
prefetcher’s core is consuming a large amount of bandwidth
(i.e., BWC of the core is high), our global control mechanism
allows the local decision to affect the prefetcher only if the lo-
cal control decides to throttle down. Otherwise, global control
leaves the aggressiveness at its current level. Rationale: this
is a state where interference can potentially worsen because the
high bandwidth consumption of an inaccurate prefetcher’s core
can result in high bandwidth needs for other cores.

(c) If the prefetcher is highly accurate, then allow the local
control to decide the aggressiveness of the prefetcher. Ratio-
nale: if a highly accurate prefetcher is not polluting other cores’
demand requests (i.e., POL of the core is low), it should be given
the opportunity to increase the performance of its local core.
Principle 2. When the target prefetcher is polluting other
cores (high POLi):

(a) If the accuracy of the prefetcher is low, then override the
local control’s decision and throttle down. Rationale: if an
inaccurate prefetcher’s requests pollute the demands of other
cores, it could be negatively affecting system performance.

(b) If the target prefetcher is highly accurate, then allow the
local decision to proceed if there are no other signs of interfer-
ence (both BWC and BWNO of the core are low). Rationale:
if the bandwidth needs of all cores are observed to be low, the
high pollution caused by the target prefetcher is likely not af-
fecting the performance of other cores.

(c) If either bandwidth consumed (BWC) by the target
prefetcher’s core is high or other cores need a lot of bandwidth
(BWNO is high), then only allow the local decision to affect
the prefetcher if it decides to throttle down, otherwise leave ag-
gressiveness at its current level. Rationale: even though the
prefetcher is accurate, it is showing more than one sign of inter-
ference which could be damaging overall system performance.

Rules used for global aggressiveness control: Table 1
shows the rules used by the global control structure. There is
one case in this table that does not follow the general principles
described above, case 14. In this case, interference is quite se-
vere even though the target prefetcher is highly accurate. The
target prefetcher’s core is consuming a lot of bandwidth and
is polluting other cores’ demands while other cores have high
bandwidth needs. Due to high interference detected by multiple
feedback parameters, reducing prefetcher aggressiveness is de-
sirable. The decision based on general principles would be: “Al-
low local decision only if it throttles down,” which is not strong
enough to alleviate this very high interference scenario. There-
fore, we treat case 14 as an exception to the aforementioned
principles and enforce a throttle-down with global control.

Classification of global control rules: We group the cases
of Table 1 into three main categories classified based on the
intensity of the interference detected by each case.

1) Severe interference scenario: Cases 3, 8, 9, 10 and 14 fall
into this category. In these cases, the goal of the global control is
to reduce the detected severe interference by reducing the num-
ber of prefetch requests generated by the interfering prefetch-
ers. When the target prefetcher is inaccurate, and there is high
bandwidth need from other cores (case 3), when an inaccurate

3Note that the local and global control structures can have sep-
arate thresholds to categorize an accuracy value as low or high.

4

Info from Info from
Case core i other cores Decision Rationale

Acci BWCi POLi BWNOi

1 Low Low Low Low Allow local decisionNo interference
Allow local

2 Low High Low Low throttle down 1(b)

Global enforces
3 Low - Low High

throttle down
1(a)

4 High Low Low Low Allow local decision 1(c)
5 High High Low Low Allow local decision 1(c)
6 High Low Low High Allow local decision 1(c)
7 High High Low High Allow local decision 1(c)

Global enforces
8 Low Low High Low

throttle down
2(a)

Global enforces
9 Low High High Low

throttle down
2(a)

Global enforces
10 Low - High High

throttle down
2(a)

11 High Low High Low Allow local decision 2(b)
Allow local

12 High High High Low
throttle down

2(c)

Allow local
13 High Low High High

throttle down
2(c)

Global enforces Very high
14 High High High High

throttle down interference

Table 1: Global control rules - ACCi: Accuracy of prefetcher, BWCi:
Consumed bandwidth, POLi: Pollution imposed on other cores, and
BWNOi: Sum of needed bandwidth of other cores

prefetcher is polluting (cases 8, 9 and 10), or when a prefetcher
consumes high bandwidth, is polluting, and causes high band-
width needs on other cores (case 14), prefetcher aggressiveness
should be reduced regardless of the local decision. After the
prefetcher has been throttled down and the detected interfer-
ence has become less severe (by either improved accuracy of the
target prefetcher, reduced pollution for other cores, or reduced
bandwidth needs of other cores), the global throttling decisions
for this prefetcher will be relaxed. This will allow the prefetcher
to either not be throttled down further or throttled up based
on local control’s future evaluation of the prefetcher’s behavior.

2) Borderline interference scenario: Cases 2, 12 and 13 fall
into this category. In these cases, the global control’s goal is
to prevent the prefetcher from transitioning into a severe in-
terference scenario, by either not throttling the prefetcher or
throttling it down at the request of the local control. When
an inaccurate prefetcher consumes high bandwidth but is not
polluting (case 2), or when an accurate polluting prefetcher ei-
ther consumes high bandwidth or causes high bandwidth need
for other cores (cases 12 and 13), the prefetcher should not be
throttled up as a result of the local control structure’s decision.

3) No interference scenario or moderate interference by an
accurate prefetcher: All other cases fall in this category. In these
cases, either there is no interference or an accurate prefetcher
has moderate interference. As explained in the general princi-
ples, in these cases, the prefetchers’ aggressiveness is decided by
the local control structures optimizing for highest performance
in each core. We empirically found that high prefetcher accu-
racy can overcome the negative effects of moderate interference
(cases 5, 6, 7 and 11) and therefore the local decision is used.

In Section 5.2.2, we present a detailed case study to provide
insight into how prefetcher-caused inter-core interference ham-
pers system performance and how HPAC improves performance
significantly by reducing such interference.

3.2.3 Handling Multiple Prefetchers on Each Core

HPAC can seamlessly support systems with multiple types
of prefetchers per core. In such systems, where specula-
tive requests from different prefetchers can potentially increase
prefetcher-caused inter-core interference, having a mechanism
that takes such interference into account is even more impor-
tant. In a system with multiple prefetchers on each core, the

system-level feedback information referred to in Table 1 for each
core corresponds to all the prefetchers on that core as a whole.
For example, accuracy is the overall accuracy of all prefetchers
on that core. Similarly, pollution is the overall shared cache
pollution caused by all prefetchers from that core.

Note that prior research on intra-core prefetcher manage-
ment [6] is orthogonal to the focus of this paper. In HPAC,
when the local aggressiveness control corresponding to each core
makes a decision for one of the prefetchers on that core, the
global control allows or overrides that decision based on the
effects and interactions of other cores’ prefetchers.

3.2.4 Support for System-Level Application Priorities

So far, we have assumed concurrently running applications
are of equal priority and hence are treated equally. However,
system software (operating system or virtual machine monitor)
may make policy decisions prioritizing certain applications over
others in a multi-programmed workload. We seamlessly extend
HPAC to support such priorities: 1) separate threshold values
can be used for each concurrently-running application, 2) these
separate threshold values are configurable by the system soft-
ware using privileged instructions. To prioritize a more impor-
tant application within HPAC, the system software can simply
set a higher threshold value for BWNOi, POLi, and BWCi

and a lower threshold value for Acci for that application. By do-
ing so, HPAC allows a more important application’s prefetcher
to cause more interference for other applications if doing so im-
proves the more important application’s performance.

3.2.5 Optimizing Threshold Values and Decision Set

Genetic algorithms [9] can be used to optimize the threshold
value set or decision set of HPAC at design time. We imple-
mented and evaluated a genetic algorithm for this purpose. We
found that the improvements obtained by optimizing the de-
cision set were not significant, but a 5% average performance
improvement on top of HPAC can be achieved by optimizing
thresholds for subsets of workloads. Although we did not use
such an optimization for the results presented in the evaluation
section, this demonstrates a rigorous and automated approach
to optimization of decision and threshold sets for HPAC.

3.3 Implementation
In our implementation of HPAC, FDP, and coordinated throt-

tling, all mechanisms are implemented using an interval-based
sampling mechanism similar to that used in [27, 6]. To de-
tect the end of an interval, a hardware counter is used to keep
track of the number of cache lines evicted from the L2 cache.
When the counter exceeds the empirically determined threshold
of 8192 evicted lines, an interval ends and the counters gathering
feedback information are updated using the following equation:

Count = 1/2 CountAtStartOfInt. + 1/2 CountDuringInt.

HPAC’s global control mechanism maintains counters for
keeping track of the BWCi, BWNi and POLi at each core i

as defined in Section 3.2.1. ACCi is calculated by maintaining
two counters to keep track of the number of useful prefetches for
core i (used-totali) and the total number of prefetches of that
core (pref -totali). The update of these counters is similar to
that proposed for FDP. ACCi is obtained by taking the ratio
of used-totali to pref-totali at the end of every interval. BWCi

and BWNi are maintained by simply incrementing their values
at the memory controller every DRAM cycle based on the state
of the requests in that cycle (see the example in Section 3.2.1).

To calculate POLi, we need to track the number of last-level
cache demand misses core i’s prefetches cause for all other cores.
We use a Bloom filter [2] for each core i to approximate this
count. Each filter entry consists of a pollution bit and a proces-
sor id. When a prefetch from core i replaces another core j’s

5

demand line, core i’s filter is accessed using the evicted line’s
address, the corresponding pollution bit is set in the filter, and
the corresponding processor id entry is set to j. When memory
finishes servicing a prefetch request from core j, the Bloom fil-
ters of all cores are accessed by the address of the fetched line
and the pollution bit of that entry is reset if the processor id of
the corresponding entry is equal to j. When a demand request
from core j misses the last level cache, the filters of all cores
are accessed using the address of that demand request. If the
corresponding bit of core i’s Bloom filter is set and the proces-
sor id of the entry is equal to j, the filter predicts that this line
was evicted previously due to a prefetch from core i and the
miss could have been avoided had the prefetch that evicted the
requested line not been inserted into the cache. Hence, POLi is
incremented and the pollution bit is reset. The interval-based
nature of our technique puts the communication of informa-
tion needed to update pollution filters and feedback counters
off the critical path since all such communication only needs to
complete before the end of the current interval.

4. METHODOLOGY
Processor Model and Workloads We use a cycle accurate

x86 CMP simulator for our evaluation. We faithfully model
all port contention, queuing effects, bank conflicts, and other
DDR3 DRAM system constraints in the memory subsystem.
Table 2 shows the baseline configuration of each core and the
shared resource configuration for the 4 and 8-core CMP systems
we use.

Out of order, 15 stages
Decode/retire up to 4 instructionsExecution Core
Issue/execute up to 8 micro instructions;
256-entry reorder buffer;
Fetch up to 2 branches; 4K-entry BTB;Front End
64K-entry hybrid branch predictor
L1 I-cache: 32KB, 4-way, 2-cycle, 64B line size;
L1 D-cache: 32KB, 4-way, 2-cycle, 64B line size;

On-chip Caches Shared unified L2: 2MB (4MB for 8-core), 16-way
(32-way for 8-core), 16-bank, 15-cycle (20-cycle
for 8-core), 1 port, 64B line size;

Prefetcher
Stream prefetcher with 32 streams, prefetch de-
gree of 4, and prefetch distance of 64 [28, 27]
On-chip, demand-first [13] Parallelism-Aware
Batch Scheduling policy [21]DRAM controller
128 L2 MSHR (256 for 8-core) and memory re-
quest buffer; Two memory channels for 8-core;
667MHz DRAM bus cycle, Double Data Rate
(DDR3 1333MHz) [17], 8B-wide data bus

DRAM and Bus
Latency: 15ns per command (t

RP , t
RCD, CL);

8 DRAM banks, 16KB row buffer per bank;

Table 2: Baseline system configuration

We use the SPEC CPU 2000/2006 benchmarks for our exper-
imental evaluation. Each benchmark was compiled using ICC
(Intel C Compiler) or IFORT (Intel Fortran Compiler) with the
-O3 option. We ran each benchmark with the reference input
set for 200 million x86 instructions selected by Pinpoints [24]
as a representative portion of each benchmark.

We classify benchmarks into memory intensive/non-
intensive, with/without cache locality in data accesses, and
prefetch sensitive for purposes of analysis in our evaluation. We
refer to a benchmark as memory intensive if its L2 Cache Miss
per 1K Instructions (MPKI) is greater than one. We say a
benchmark has cache locality if its number of L2 cache hits per
1K instructions is greater than five, and we say it is prefetch
sensitive if the performance delta obtained with an aggressive
prefetcher is greater than 10% compared to no prefetching.
These classifications are based on measurements made when
each benchmark was run alone on the 4-core system. We show
the characteristics of some (due to space limitations) of the
benchmarks that appear in the evaluated workloads in Table 3.

Workload Selection We used 32 four-application and 32

No prefetcher With Stream Prefetcher

Benchmark IPC MPKI Traffic IPC MPKI Traffic ACC (%)
bzip2 00 1.27 0.39 0.08 1.37 0.11 0.08 95.4
swim 00 0.36 23.10 4.62 0.70 3.43 4.62 99.9

facerec 00 1.35 2.72 0.56 1.46 1.16 0.87 60.0
parser 00 1.06 0.63 0.13 1.17 0.11 0.16 83.1
apsi 00 1.75 0.85 0.17 1.87 0.39 0.17 99.3

perlbmk 00 1.85 0.04 0.01 1.86 0.02 0.02 28.7
xalancbmk 06 0.93 0.82 0.18 0.78 1.48 0.87 8.2
libquantum 06 0.39 13.51 2.70 0.41 2.62 2.70 99.9
omnetpp 06 0.41 8.68 1.74 0.43 8.43 5.35 11.5

GemsFDTD 06 0.46 15.35 3.03 0.78 1.64 3.33 90.9
lbm 06 0.31 20.16 4.03 0.50 3.92 3.92 93.8

bwaves 06 0.58 18.7 3.74 1.02 0.57 3.74 99.8

Table 3: Characteristics of 12 SPEC 2000/2006 benchmarks
with/without prefetching: IPC, MPKI, Bus Traffic (M cache lines),
and ACC

eight-application multi-programmed workloads for our 4-core
and 8-core evaluations. These workloads were randomly se-
lected from all possible 4-core and 8-core workloads with the
one condition that the evaluated workloads be relevant to the
proposed techniques: each application in each workload is either
memory intensive, prefetch sensitive, or has cache locality.

Prefetcher Aggressiveness Levels and Thresholds for
Evaluation Table 4 shows the values we use for determining
the aggressiveness of the stream prefetcher in our evaluations.
The aggressiveness of the GHB [22] prefetcher is determined by
its prefetch degree. We use five values for GHB’s prefetch degree
(2, 4, 8, 12, 16). Throttling a prefetcher up/down corresponds
to increasing/decreasing its aggressiveness by one level.

Threshold values for FDP [27] and coordinated throttling [6]
are empirically determined for our system configuration. We use
the threshold values shown in Table 5 for HPAC. We determined
these threshold values empirically, but due to the large design
space, we did not tune the values. Unless otherwise stated, we
use FDP as the local control mechanism in our evaluations.

Aggressiveness Stream Stream
Level Prefetcher Prefetcher

Distance Degree

Very Conservative 4 1
Conservative 8 1

Moderate 16 2
Aggressive 32 4

Very Aggressive 64 4

Table 4: Pref. configurations

ACC BWC POL BWNO

0.6 50k 90 75k

Table 5: HPAC threshold values

Metrics To measure CMP system performance, we use Indi-
vidual Speedup (IS), Harmonic mean of Speedups (Hspeedup or
HS) [16], and Weighted Speedup (Wspeedup or WS) [26]. IS is
the ratio of an application’s performance when it is run together
with other applications on different cores of a CMP to its perfor-
mance when it runs alone on one core in the CMP system (other
cores are idle). This metric reflects the change in performance
of an application that results from running concurrently with
other applications in the CMP system. Recent research [7] on
system-level performance metrics for multi-programmed work-
loads shows that HS is the reciprocal of the average turn-around
time and is the primary user-oriented system performance met-
ric [7]. WS is equivalent to system throughput which accounts
for the number of programs completed per unit of time. We
show both metrics throughout our evaluation. To demonstrate
that the performance gains of our techniques are not due to
unfair treatment of applications, we also report Unfairness, as
defined in [20]. Unfairness is defined as the ratio between the
maximum individual speedup and minimum individual speedup
among all co-executed applications.

The equations below provide the definitions of these metrics.
In these equations, N is the number of cores in the CMP system.
IPC

alone is the IPC measured when an application runs alone

6

on one core in the CMP system with the prefetcher enabled
(other cores are idle). IPC

together is the IPC measured when
an application runs on one core while other applications are
running on the other cores.

ISi =
IPCtogether

i

IPCalone
i

, WS =

N−1
X

i=0

IPCtogether
i

IPCalone
i

HS =
N

N−1
X

i=0

IPCalone
i

IPCtogether
i

, Unfairness =
MAX{IS0, IS1, ..., ISN−1}

MIN{IS0, IS1, ..., ISN−1}

5. EXPERIMENTAL EVALUATION
We evaluate HPAC on both 4-core and 8-core systems. We

find the improvements provided by our technique increases as
the number of cores in a CMP increases. We present both sets
of results, but most of the analysis is done on the 4-core system
to ease understanding.

5.1 8-core System Results
Figure 5 shows system performance and bus traffic averaged

across 32 workloads evaluated on the 8-core system. HPAC
provides the highest system performance among all examined
techniques, and is the only technique employing prefetching
that improves average system performance over no prefetch-
ing. It also consumes the least bus traffic among schemes that
employ prefetching. Several key observations are in order:

1. Employing aggressive prefetching with no throttling per-
forms worse than no prefetching at all: harmonic speedup and
weighted speedup decrease by 16% and 10% respectively. We
conclude that attempting to aggressively prefetch in CMPs with
no throttling has significant negative effects, which makes ag-
gressive prefetching a challenge in CMP systems.

2. FDP increases performance compared to no prefetcher
throttling, but is still inferior to no prefetching. FDP’s per-
formance is 4.8%/1.2% (HS/WS) lower than no prefetching
while its bus traffic is 12.8% higher. We conclude that inter-
core prefetcher interference, which is left unmanaged by even
a state-of-the-art local-only prefetch control scheme, can cause
prefetching to be detrimental to system performance in CMPs.

3. HPAC improves performance by 8.5%/5.3% (HS/WS)
compared to no prefetching, at the cost of only 8.9% higher bus
traffic. In addition, HPAC increases performance by 23% and
14% (HS), and consumes 17% and 3.2% less memory bandwidth
compared to no throttling and FDP respectively, as summa-
rized in Table 6. HPAC enables prefetching to become effective
in CMPs by controlling and reducing prefetcher-caused interfer-
ence. Among the schemes where prefetching is enabled, HPAC
is the most bandwidth-efficient. We conclude that with HPAC,
prefetching can significantly improve system performance of
CMP systems without large increases in bus traffic.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
sp

ee
d

u
p

(a) Hspeedup

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

W
sp

ee
d

u
p

(b) Wspeedup

0

2

4

6

8

10

12

14

16

18

20

M
il

li
o

n
 C

a
ch

e
L

in
es

No Prefetching

Pref. + No Throttling

FDP

HPAC

(c) Bus Traffic

Figure 5: HPAC performance on 8-core system (all 32 workloads)

As an example of how HPAC performs compared to other
schemes on different workloads, Figure 6 shows the performance
improvement (in terms of harmonic speedup) of no prefetch-
ing, FDP, and HPAC normalized to that of prefetching with

HS WS Bus Traffic
HPAC ∆ over No Prefetching 8.5% 5.3% 8.9%
HPAC ∆ over No Throttling 23% 12.8% -17%

HPAC ∆ over FDP 14% 6.6% -3.2%

Table 6: Summary of average results on the 8-core system

no throttling across eight of the 32 evaluated workloads. We
do not present a per-workload analysis of these workloads due
to space constraints but we do present a thorough analysis of
workload characteristics for 4-core workloads in Section 5.2.

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

H
a
rm

o
n

ic
 S

p
ee

d
u

p

No Prefetching

FDP

HPAC

swim
perlbmk
crafty

leslie3d
lbm
mesa

sphinx3
fma3d

bwaves
bzip2-00
fma3d

sphinx3
crafty
equake
gcc06
lbm

soplex
gromacs

astar
mesa

gobmk
sphinx3
leslie3d
ammp

wrf
bzip2-00
bwaves
zeusmp
mcf00
soplex

gromacs
gcc06

sphinx3
bzip2-06
bzip2-00
perlbmk

swim
lbm

gcc06
gromacs

gromacs
swim

leslie3d
crafty

sphinx3
povray
soplex
gcc06

lbm
gromacs
gobmk
zeusmp

wrf
swim
parser

bwaves

sphinx3
facerec
gcc00
gzip
lucas

hmmer
galgel

bzip2-06

Figure 6: Hspeedup of 8 of the 32 workloads
(normalized to “no throttling”)

5.2 4-core System Results
We first present overall performance results for the 32 work-

loads evaluated on the 4-core system, and analyze the work-
loads’ characteristics. We then discuss a case study in detail to
provide insight into the behavior of the scheme.

5.2.1 Overall Performance

Table 7 summarizes our overall performance results for the
4-core system. As observed with the 8-core workloads in Sec-
tion 5.1, HPAC provides the highest system performance among
all examined techniques. It also generates the least bus traffic
among schemes that employ prefetching.

HS WS Bus Traffic
HPAC ∆ over No Prefetching 8.9% 5.3% 8.9%
HPAC ∆ over No Throttling 15% 8.4% -14%

HPAC ∆ over FDP 10.7% 4.7% -3.2%

Table 7: Summary of average results on the 4-core system

Workload Analysis: Figure 7 shows the performance im-
provement (in terms of harmonic speedup) of no prefetching,
FDP, and HPAC normalized to that of prefetching with no
throttling across 14 of the 32 evaluated workloads. Four dis-
tinct classes of workloads can be identified from this figure.
Class 1: Prefetcher-caused inter-core interference does not al-
low significant gains with no throttling or FDP. In fact, in the
leftmost two cases, FDP degrades performance slightly com-
pared to no throttling because it increases prefetchers’ interfer-
ence in the shared resources (as discussed in detail in the case
study presented in Section 5.2.2). HPAC controls this interfer-
ence and enables much higher system performance improvement
than what is possible without it.
Class 2: Significant performance can be obtained with FDP
and sometimes with no throttling since prefetcher-caused inter-
core interference is tolerable. HPAC performs practically at
least as well as these previous mechanisms.
Class 3: Intense prefetcher-caused inter-core interference
makes prefetching significantly harmful with no throttling or
FDP. FDP can slightly reduce this interference compared to

7

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

H
a
rm

o
n

ic
 S

p
ee

d
u

p
No Prefetching

FDP

HPAC

Class 1

libquantum_06
swim_00

GemsFDTD_06
bzip2_00

mesa_00
gromacs_06

lbm_06
crafty_00

lbm_06
parser_00
crafty_00

leslie3d_06

bwaves_06
crafty_00
bzip2_00
swim_00

Class 2

libquantum_06
bwaves_06

lbm_06
GemsFDTD_06

mcf_00
equake_00
sphinx3_06

gzip_00

applu_00
hmmer_06
fma3d_00
mesa_00

gap_00
hmmer_06
fma3d_00

GemsFDTD_06

facerec_00
swim_00

xalancbmk_06
apsi_00

bzip2_06
gobmk_06

lbm_06
sjeng_06

Class 3

sphinx3_06
gromacs_06
vortex_00
swim_00

sixtrack_00
parser_00
lbm_06

omnetpp_06

Class 4

sixtrack_00
hmmer_06

vpr_00
gzip_00

parser_00
perlbmk_00

xalancbmk_06
omnetpp_06

AVG-32

Figure 7: Hspeedup of 14 of the 32 workloads (normalized to “no throttling”)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
p

ee
d

u
p

 o
v

er
 A

lo
n

e
R

u
n

No Prefetching

Pref. + No Throttling

FDP

HPAC

libquantum_06 swim_00 GemsFDTD_06 bzip2_00

(a) Individual Speedup

0

10

20

30

40

50

60

70

80

90

100

%
 T

im
e

a
t

ea
ch

 A
g

g
r.

 L
ev

el

Level 5

Level 4

Level 3

Level 2

Level 1

libquantum_06 swim_00 GemsFDTD_06 bzip2_00

FDP HPAC

(b) Prefetch Aggr. Levels

Figure 8: Case Study: individual application behavior

0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
d

u
p

(a) Hspeedup

0.0

0.5

1.0

1.5

2.0

W
sp

ee
d

u
p

(b) Wspeedup

0
1
2
3
4
5
6
7
8
9

10
11
12

M
il

li
o

n
 C

a
ch

e
L

in
es

No Prefetching

Pref. + No Throttling

FDP

HPAC

(c) Bus Traffic

Figure 9: Case Study: system behavior

no throttling by making prefetchers independently more accu-
rate, but still degrades performance significantly compared to
no prefetching. The existence of such workloads makes prefetch-
ing without control of prefetcher-caused inter-core interference
very unattractive in CMPs. However, HPAC enables prefetch-
ing to significantly improve performance over no prefetching.
Class 4: Small prefetcher-caused inter-core interference can be
controlled by FDP. Potential system performance to be gained
by prefetching is small compared to other classes. Small per-
formance degradations of no throttling can be eliminated using
FDP or HPAC, which perform similarly.

We conclude that HPAC is effective for a wide variety of work-
loads. In many workloads where there is significant prefetcher-
caused inter-core interference (classes 1 and 3), HPAC is the
only technique that enables prefetching to improve performance
significantly over no prefetching. When prefetcher-caused inter-
core interference is not significant (class 2), HPAC retains sig-
nificant performance over no prefetching. Hence, HPAC makes
prefetching effective and robust in multi-core systems.

5.2.2 Case Study

This case study is an example of a scenario where prefetcher-
caused inter-core interference that hampers system performance
can be observed in both shared bandwidth and shared cache
space. It provides insight into why controlling aggressiveness of
a CMP’s prefetchers based on local-only feedback of each core
is ineffective.

We examine a scenario where a combination of three memory-
intensive applications (libquantum, swim, GemsFDTD) are run
together with one memory non-intensive application that has
high data cache locality (bzip2). Figures 8 and 9 show individ-
ual benchmark performance and overall system performance,
respectively. Several observations are in order:

First, employing aggressive prefetching on all cores improves
performance by 6.0%/3.7% (HS/WS) compared to no prefetch-
ing. However, the effect of prefetching on individual bench-
marks is mixed: even though two applications’ (swim and
GemsFDTD) performance significantly improves, that of two
others (libquantum and bzip2) significantly degrades. Although
libquantum’s prefetches are very accurate, they, along with
libquantum’s demands, are delayed by swim’s and GemsFDTD’s

prefetches in the memory controller. Since previous works [13,
6] analyzed the effects of enabling prefetching in multi-core sys-
tems, we focus our analysis on the differences between prefetch-
ing without throttling, local-only throttling, and HPAC.

Second, using FDP to reduce the negative effects of
prefetching actually degrades system performance by 1.2%/1%
(HS/WS) compared to no throttling. To provide insight, Fig-
ure 8(b) shows the percentage of total execution time each
application’s prefetcher spends in different aggressiveness lev-
els. With FDP, since the feedback indicates high accuracy for
prefetchers of libquantum, swim and GemsFDTD (respectively
at accuracies of 99.9%, 99.9%, 92%), their prefetchers are kept
very aggressive. This causes significant memory bandwidth
interference between these three applications, which causes
libquantum’s demand and prefetch requests to be delayed by
the aggressive swim and GemsFDTD prefetch requests. On the
other hand, bzip2’s demand-fetched cache blocks get thrashed
due to the very large number of swim’s and GemsFDTD’s
prefetches: bzip2’s L2 demand MPKI increases by 26% from
2.1 to 2.7. bzip2’s prefetcher performance is also affected nega-
tively as its useful prefetches are evicted from the cache before
being used and therefore reduced by 40%. This prompts FDP
to reduce the aggressiveness of bzip2’s prefetcher as a result
of detected local low accuracy, which in turn causes a loss of
potential performance improvement for bzip2 from prefetching.
As a result, FDP does not help libquantum’s performance and
degrades bzip2’s performance, resulting in overall system per-
formance degradation compared to no throttling.

Third, using HPAC increases system performance signifi-
cantly by 12.2%/8.7% (HS/WS) while reducing bus traffic by
3.5% compared to no throttling. Hence, HPAC makes aggres-
sive prefetching significantly beneficial to the entire system: it
increases performance by 19%/12.7% (HS/WS) compared to a
system with no prefetching. The main reason for the perfor-
mance benefits of HPAC over FDP is twofold: 1) by tracking
prefetcher-caused interference in the shared cache, HPAC rec-
ognizes that aggressive (yet accurate) prefetches of swim and
GemsFDTD destroy the cache locality of bzip2 and throttles
those applications’ prefetchers, thereby significantly improv-
ing bzip2’s locality and performance, 2) by tracking the band-
width need and bandwidth consumption of cores in the DRAM

8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
sp

ee
d

u
p

(a) Hspeedup

0.0

0.5

1.0

1.5

2.0

2.5

3.0

W
sp

ee
d

u
p

(b) Wspeedup

0

1

2

3

4

5

6

7

8

9

10

M
il

li
o
n

 C
a
ch

e
L

in
es

No Prefetching

Pref. + No Throttling

FDP

HPAC

(c) Bus Traffic

Figure 10: Performance of HPAC on
system using PADC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

U
n

fa
ir

n
es

s

No Prefetching

Pref. + No Throttling

FDP

HPAC

8-core 4-core

Figure 11: Unfairness
in 8- and 4-core systems

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
sp

ee
d

u
p

(a) Hspeedup

0.0

0.5

1.0

1.5

2.0

2.5

W
sp

ee
d

u
p

(b) Wspeedup

0
1
2
3
4
5
6
7
8
9

10
11
12

M
il

li
o
n

 C
a
ch

e
L

in
es

FDP + Fair Cache

HPAC + Fair Cache

HPAC

(c) Bus Traffic

Figure 12: Comparison to combination of
fair cache + fair memory scheduling + FDP

system, HPAC recognizes that swim’s and GemsFDTD’s ag-
gressive prefetches delay service of libquantum’s demands and
prefetches, and therefore throttles down these two prefetch-
ers. Doing so significantly improves libquantum’s performance.
HPAC improves the performance of all applications compared
to no prefetching, except for bzip2, which still incurs a slight
(1.5%) performance loss. Finally, HPAC reduces memory bus
traffic compared to both FDP and no throttling because: 1)
it eliminates many unnecessary demand requests that need to
be re-fetched from memory by reducing the pollution bzip2 ex-
periences in the shared cache: bzip2’s bandwidth demand re-
duces by 33% with HPAC compared to FDP, 2) it eliminates
some useless (or marginally useful) prefetch requests due to
GemsFDTD’s very aggressive prefetcher: we found that in to-
tal, HPAC reduces the number of useless prefetch requests by
14.6% compared to FDP.

Table 8 and Figure 8(b) provide more insight into the behav-
ior and benefits of HPAC by showing the most common global
control cases (from Table 1) for each application and the per-
centage of time each prefetcher spends at different levels of ag-
gressiveness respectively. Note that Case 14, which indicates
extreme prefetcher interference is swim’s and GemsFDTD’s
most frequent case. As a result, HPAC throttles down their
prefetchers to reduce the interference they cause in shared re-
sources. Figure 8(b) shows that FDP keeps these two applica-
tions’ prefetchers at the highest aggressiveness for more than
70% of their execution time, which degrades system perfor-
mance, because FDP cannot detect the inter-core interference
caused by the two prefetchers. In contrast, with HPAC, the two
prefetchers spend approximately 50% of their execution time in
the lowest aggressiveness level, thereby reducing inter-core in-
terference and improving system performance.

Most Frequent 2nd Most Frequent 3rd Most FrequentApplication
Case # Case # Case #

libquantum Case 6 (89%) Case 13 (7%) Case 7 (2%)
swim Case 14 (65%) Case 7 (23%) Case 6 (6%)

GemsFDTD Case 14 (55%) Case 7 (24%) Case 6 (8%)
bzip2 Case 10 (39%) Case 3 (39%) Case 6 (15%)

Table 8: Most frequently exercised cases for HPAC in case study I

We conclude that HPAC can effectively control and re-
duce the shared resource interference caused by the prefetchers
of multiple memory- and prefetch-intensive applications both
among themselves and against a simultaneously running mem-
ory non-intensive application, thereby resulting in significantly
higher system performance than what is possible without it.

5.3 HPAC Performance with Different
DRAM Scheduling Policies

We evaluate the performance of our proposal in a system
with the recently proposed Prefetch-Aware DRAM Controller
(PADC) [13]. PADC uses feedback about the accuracy of the
prefetcher of each core to adaptively prioritize between prefetch
requests of that prefetcher and demands in memory scheduling
decisions. If the prefetcher of a core is accurate, prefetch re-
quests from that core are treated with the same priority as

demand requests. Otherwise, prefetches from that core are de-
prioritized below demands and prefetches from cores with high
prefetch accuracy. Note that this local-only technique does not
take into account inter-core interference caused by prefetchers.
If the memory scheduler increases the priority of highly accu-
rate but interfering prefetches, inter-core interference will likely
increase. As a result, PADC cannot control the negative per-
formance impact of accurate yet highly-interfering prefetchers
in the memory system, which can degrade system performance.

Figure 10 shows the effect of HPAC when employed in a sys-
tem with a prefetch-aware DRAM controller. HPAC increases
the performance of a 4-core system that uses PADC by 12%
(HS) on average while reducing bus traffic by 7%. HPAC’s
ability to reduce the negative interference caused by accurate
prefetchers can have positive effects on PADC’s options for bet-
ter memory scheduling when PADC and HPAC are employed
together. A reduction in interference caused by one core’s very
aggressive prefetcher can reduce the number of demand misses
of other cores. This removes many pollution-induced misses
caused by the interfering core(s) and the new miss stream
observed by the prefetchers of other cores can increase their
accuracy significantly. HPAC’s interference reduction enables
PADC’s memory scheduling decisions to take advantage of these
more accurate prefetches. In contrast, PADC without HPAC
would have seen inaccurate prefetch requests from such cores
and deprioritized them due to their low accuracy. We conclude
that systems with PADC-like memory controllers can benefit
significantly if their prefetchers are controlled in a coordinated
manner using HPAC.

The performance and bus traffic benefits of using HPAC with
an FR-FCFS [25] memory scheduling policy are similar to those
presented for the PAR-BS [21] fair memory scheduler which
we use as our baseline (i.e., 12.4%/6.2% HS/WS improvement
over FDP). We conclude that our proposal is orthogonal to the
baseline memory scheduling policy.

5.4 Effect of HPAC on Fairness
Although HPAC’s objective is to “improve system perfor-

mance” not to “improve fairness,” it is worth noting that
HPAC’s performance improvement does not come at the ex-
pense of fair treatment of all applications. We have evalu-
ated HPAC’s impact on performance unfairness [20] as defined
in Section 4. Figure 11 shows that HPAC actually reduces
unfairness in the system compared to all other techniques in
both 4-core and 8-core systems. We found that this is because
HPAC significantly reduces the interference caused by applica-
tions that generate a very large number of prefetches on other
less memory-intensive applications. This interference unfairly
slows down the latter type of applications in the baseline since
there is no mechanism that controls such interference.

We note that HPAC is orthogonal to techniques that provide
fairness in shared resources [23, 10, 21]. As such, HPAC can be
combined with techniques that are designed to provide fairness
in shared multi-core resources. Note that we use Parallelism-
Aware Batch Scheduling [21] as a fair memory scheduler in the
baseline for all our evaluations. Figure 12 shows system per-

9

formance and bus traffic of a 4-core system that uses a fair
cache [23], a fair memory scheduler [21] and a state-of-the-art
local-only prefetcher throttling mechanism (FDP) compared to
1) the combination of HPAC and a fair cache, and 2) HPAC
by itself. Two observations are in order: First, using HPAC
improves the performance of a system employing a fair cache.
However, the improvement in performance is less than that ob-
tained by HPAC alone. The reason is that constraining each
core to a certain number of ways in each cache set as done
in [23] reduces HPAC’s flexibility. HPAC can throttle down a
prefetcher that is causing large inter-core pollution to reduce
such interference without the constraints of a fair cache [23].
Therefore HPAC can make more efficient use of cache space and
perform better alone. Second, HPAC outperforms the combina-
tion of a fair cache, a fair memory scheduler, and FDP, by 10.2%
(HS) and 4.7% (WS) while consuming 15% less bus traffic. We
conclude that 1) our contribution is orthogonal to techniques
that provide fairness in shared resources, and 2) the benefits
of adjusting the aggressiveness of multiple prefetchers in a co-
ordinated fashion (as done by HPAC) cannot be obtained by
combining FDP, a fair cache, and a fair memory controller.

5.5 Multiple Types of Prefetchers per Core
Recent research suggests that by using “coordinated throt-

tling” of multiple prefetchers of different types, hybrid prefetch-
ing systems can be useful [6]. Some current processors already
employ more than one type of prefetcher on each core of a
CMP [30]. We evaluate the effectiveness of our proposal on
a 4-core system with two types of prefetcher per core and also
with two different state-of-the-art local control policies as the
local control for HPAC: FDP [27] and coordinated throttling [6].
Tables 9 and 10 show that HPAC is effective: 1) when multiple
prefetchers of different types are employed within each core and
2) regardless of the local throttling policy used for prefetchers
of each core. In all comparisons HPAC is the best performing
of all schemes and produces the least bus traffic compared to
any configuration with prefetching turned on.

HS WS Bus Traffic
∆ over No Prefetching 7.9 % 5.1 % 10.7 %

∆ over Prefetching w. no Throttling 15.6 % 6.7 % -13.9 %
∆ over FDP 10.6 % 3.2 % -3 %

Table 9: Stream and GHB with HPAC (local policy: FDP)

HS WS Bus Traffic
∆ over No Prefetching 6.3 % 4.0 % 12.2 %

∆ over Prefetching w. no Throttling 14.6 % 6.3 % -12.7 %
∆ over coordinated throttling 12.2 % 4.5 % -6.3 %

Table 10: Stream and GHB with HPAC
(local policy: coordinated throttling)

5.6 Sensitivity to System Parameters
We evaluate the sensitivity of our technique to three major

memory system parameters: L2 cache size, memory latency
and number of memory banks. Table 11 shows the change in
system performance (HS) and bus traffic provided by HPAC
over FDP for each configuration. For these experiments we
did not tune HPAC’s parameters; doing so will likely increase
HPAC’s benefits even more. We conclude that our technique is
effective for a wide variety of system parameters.

5.7 Hardware Cost
Table 12 shows HPAC’s required storage. The additional

storage is 15.14KB (for a 4-core system), most of which is al-
ready required to implement FDP. This storage corresponds to
0.739% of the 2MB L2 baseline cache. The new global control
structures require only 1.55KB of storage (for a 4-core system)
on top of FDP. HPAC does not require any structures or logic
that are on the critical path of execution.

L2 Cache Size
1 MB 2 MB 4 MB

∆ HS ∆ Bus Traffic ∆ HS∆ Bus Traffic ∆ HS∆ Bus Traffic
19.5% -4% 10.7% -3.2% 9.6% -2.5%

Memory Latency - Latency per command (t
RP , t

RCD, CL)
13ns 15ns 17ns

∆ HS∆ Bus Traffic ∆ HS∆ Bus Traffic ∆ HS ∆ Bus Traffic
15 % -3% 10.7% -3.2% 6% -3.4%

Number of Memory Banks
8 banks 16 banks 32 banks

∆ HS ∆ Bus Traffic ∆ HS∆ Bus Traffic ∆ HS∆ Bus Traffic
10.7% -3.2% 12% -1.5% 9% -1%

Table 11: Effect of our proposal on Hspeedup (HS) and bus traffic
with different system parameters on a 4-core system

Global Control Closed form for N cores (bits) N=4(bits)
Counters for

global feedback
7 counters/core×N×16 bits/counter 448

Interference Pol. Filter 1024 entries × N ×

per core (pol. bit+(log N) bit proc. id)/entry
12,288

Local Control - FDP
Proc. id for each 16384 blocks/Megabyte
L2 tag store entry × Scache × (log N) bit/block

65,536

Pref. bit for each 16384 blocks/Megabyte
L2 tag store entry × Scache × 1 bit/block

32,768

Pol. Filter for intra-core 1024 entries× N ×

prefetch interference (pol. bit+(log N) bit proc. id)/entry
12,288

Counters for (8 counters/core×N + 3 counters)
local feedback ×16 bits/counter

560

Pref. bit per MSHR entry 32 entries/core × N × 1 bit/entry 128

Total storage Sum of the above 15.14 KB

Table 12: Hardware cost of HPAC - Including both local and global
throttling structures on an N-core CMP with Scache MB L2 cache

6. RELATED WORK
To our knowledge, this paper provides the first comprehensive

solution for coordinated control of multiple prefetchers of multi-
ple cores in a CMP environment. The major contribution of our
proposal is a hierarchical prefetcher aggressiveness control tech-
nique that incorporates system-wide inter-core prefetcher inter-
ference feedback into the decision making process of how aggres-
sive the prefetcher(s) of each core should be. In this section, we
briefly discuss and compare to related work in prefetcher con-
trol, useless prefetch elimination, and cache pollution reduction.

6.1 Per-Core Prefetcher Control
We have already shown that HPAC significantly improves

system performance and bandwidth efficiency over two purely-
local prefetcher control techniques [27, 6] and is orthogonal to
them. Other prior work proposed dynamically configuring the
aggressiveness of the prefetcher of a core or turning off prefetch-
ers based on their accuracy [22, 8]. Nesbit et al. [22] propose
per program-phase dynamic configuration of the prefetch de-
gree of a GHB prefetcher. Gendler et al. [8] propose a multi-
ple prefetcher handling mechanism (called PAB) that turns off
all prefetchers but the most accurate one based on only per-
prefetcher accuracy data obtained from the last N prefetched
addresses. All such techniques that use only local feedback in-
formation to either turn off or throttle the prefetcher(s) can
significantly degrade performance because they can exacerbate
interference in shared resources.
Prior work in shared memory multiprocessors Prior
works on prefetching in multiprocessors [5, 29] study adaptiv-
ity and limitations of prefetching in these systems. Dahlgren
et al. [5] use prefetch accuracy to decide whether to increase or
decrease aggressiveness on a per-processor basis, similar to em-
ploying FDP on each core’s prefetcher independently. Tullsen
and Eggers [29] develop a prefetching heuristic tailored to write-
shared data in multi-threaded applications. They apply a re-
structuring algorithm for shared data to reduce false sharing in
multi-threaded applications. In contrast to these prior works,
our goal is to make prefetching effective by controlling prefetch-

10

caused inter-application interference. None of these prior works
solve the problem we target and therefore are ineffective in re-
ducing prefetcher-caused inter-application interference.

6.2 Eliminating Useless Prefetches
Many previous proposals address the problem of useless

prefetches by proposing mechanisms to intelligently filter them
out [18, 3, 15, 31, 19, 13]. HPAC is complementary to these
prefetch filtering techniques because it can reduce the harmful
effects of not only inaccurate prefetchers but also accurate yet
interfering prefetchers, as we showed in our case study. Hence,
HPAC can be used in conjunction with prefetch filtering to at-
tain even higher performance.

Zhuang and Lee [31] propose a hardware-based prefetch filter-
ing scheme that eliminates a prefetch request for an address if
a prefetch request for the same address was useless in the past.
They use a two-level branch predictor-like structure to record
the usefulness of prefetches. We implemented HPAC on top of
this hardware filtering scheme, and found that HPAC increases
system performance by 12% while reducing bus traffic by 8.7%
compared to hardware filtering alone on the evaluated 4-core
workloads. We find that hardware filters and HPAC work syn-
ergistically: together, they perform better than each one alone.

6.3 Reducing Cache Pollution
Cache pollution caused by prefetches can be reduced by us-

ing separate prefetch buffers [14] instead of inserting prefetched
data into the last level cache. However, doing so 1) may lead
to eviction of prefetches from these buffers before they are used
due to the limited storage capacity of prefetch buffers, and 2)
increases design complexity of the memory system. Prior re-
search [27] showed that in order to provide significant perfor-
mance improvements, the size of the prefetch buffers needs to
be very large (at least 64KB). In this work, we propose a signif-
icantly lower-cost and simpler technique that does not require
separate buffer structures and data paths in the memory system
to treat prefetches specially.

7. CONCLUSION
We have proposed a low-cost technique that controls the ag-

gressiveness of multiple prefetchers of different cores in chip-
multiprocessors with the goal of improving system performance
and making prefetching effective. We show that adjusting
prefetcher aggressiveness using state-of-the-art techniques with-
out paying attention to prefetcher-caused inter-core interference
in shared memory systems can significantly degrade system per-
formance compared to no prefetching at all. The key idea of
our solution is to take into account prefetcher-caused inter-core
interference in determining the aggressiveness of each core’s
prefetcher. Our scheme reduces the interference due to prefetch-
ers using a coordinated control mechanism, thereby signifi-
cantly improving system performance and bandwidth-efficiency
compared to the state-of-the-art prefetcher control techniques
that do not take into account such interference. We conclude
that our technique significantly improves the performance of
prefetching and makes it effective in multi-core environments.

Acknowledgments

Many thanks to Jose Joao, Veynu Narasiman, Rustam Mif-
takhutdinov, Khubaib, and other HPS members and the anony-
mous reviewers for their comments and suggestions. We grate-
fully acknowledge the support of the Cockrell Foundation, Intel,
and Microsoft. We also acknowledge the Texas Advanced Com-
puting Center (TACC) at The University of Texas at Austin for
providing HPC resources.

REFERENCES
[1] J. Baer and T. Chen. An effective on-chip preloading scheme to

reduce data access penalty. In Supercomputing ’91, 1991.
[2] B. H. Bloom. Space/time trade-offs in hash coding with

allowable errors. Communications of the ACM, 13, 1970.
[3] M. Charney and T. Puzak. Prefetching and memory system

behavior of the SPEC95 benchmark suite. IBM Journal of
Research and Development, 31(3):265–286, 1997.

[4] R. Cooksey et al. A stateless, content-directed data prefetching
mechanism. In ASPLOS-X, 2002.

[5] F. Dahlgren et al. Fixed and adaptive sequential prefetching in
shared memory multiprocessors. In ICPP-22, 1993.

[6] E. Ebrahimi et al. Techniques for bandwidth-efficient
prefetching of linked data structures in hybrid prefetching
systems. In HPCA-15, 2009.

[7] S. Eyerman and L. Eeckhout. System-level performance metrics
for multiprogram workloads. IEEE Micro, 28(3):42–53, 2008.

[8] A. Gendler et al. A PAB-based multi-prefetcher mechanism.
Intl. Journal of Parallel Programming, 34(2):171–188, Apr.
2006.

[9] D. E. Goldberg and J. H. Holland. Genetic algorithms and
machine learning. Journal of Machine Learning, 3(2-3):95–99,
1988.

[10] R. Iyer et al. QoS policies and architecture for cache/memory
in CMP platforms. In SIGMETRICS’07, June 2007.

[11] D. Joseph and D. Grunwald. Prefetching using Markov
predictors. In ISCA-24, 1997.

[12] N. Jouppi. Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers.
In ISCA-17, 1990.

[13] C. J. Lee et al. Prefetch-aware DRAM controllers. In
MICRO-41, 2008.

[14] R. L. Lee, P.-C. Yew, and D. H. Lawrie. Data prefetching in
shared memory multiprocessors. In ICPP-16, 1987.

[15] W.-F. Lin et al. Filtering superfluous prefetches using density
vectors. In ICCD-19, 2001.

[16] K. Luo, J. Gummaraju, and M. Franklin. Balancing
throughput and fairness in SMT processors. In ISPASS, 2001.

[17] Micron. Datasheet: 2Gb DDR3 SDRAM, MT41J512M4 - 64
Meg x 4 x 8 banks,
http://download.micron.com/pdf/datasheets/dram/ddr3.

[18] T. C. Mowry et al. Design and evaluation of a compiler
algorithm for prefetching. In ASPLOS-5, 1992.

[19] O. Mutlu et al. Using the first-level caches as filters to reduce
the pollution caused by speculative memory references. Intl.
Journal of Parallel Programming, 33(5):529–559, October 2005.

[20] O. Mutlu and T. Moscibroda. Stall-time fair memory access
scheduling for chip multiprocessors. In MICRO-40, 2007.

[21] O. Mutlu and T. Moscibroda. Parallelism-aware batch
scheduling: Enhancing both performance and fairness of shared
DRAM systems. In ISCA-35, 2008.

[22] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith. AC/DC: An
adaptive data cache prefetcher. In PACT, 2004.

[23] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private
caches. In ISCA-34, June 2007.

[24] H. Patil et al. Pinpointing representative portions of large intel
itanium programs with dynamic instrumentation. In
MICRO-37, 2004.

[25] S. Rixner et al. Memory access scheduling. In ISCA-27, 2000.
[26] A. Snavely and D. M. Tullsen. Symbiotic job scheduling for a

simultaneous multithreading processor. In ASPLOS-IX, 2000.
[27] S. Srinath et al. Feedback directed prefetching: Improving the

performance and bandwidth-efficiency of hardware prefetchers.
In HPCA-13, 2007.

[28] J. Tendler et al. POWER4 system microarchitecture. IBM
Technical White Paper, Oct. 2001.

[29] D. M. Tullsen and S. J. Eggers. Limitations of cache
prefetching on a bus-based multiprocessor. In ISCA-20, 1993.

[30] O. Wechsler. Inside Intel core microarchitecture. Intel
Technical White Paper, 2006.

[31] X. Zhuang and H.-H. S. Lee. A hardware-based cache pollution
filtering mechanism for aggressive prefetches. In ICPP-32,
2003.

11

