
Using Convolutionan Neural Networks to Improve

Branch Prediction

Siavash Zangeneh Kamali

High Performance Systems Group
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas 78712-0240

TR-HPS-2022-002
August, 2022

1

Copyright

by

Siavash Zangeneh Kamali

2022

2

The Dissertation Committee for Siavash Zangeneh Kamali
certifies that this is the approved version of the following dissertation:

Using Convolutional Neural Networks to Improve Branch

Prediction

Committee:

Yale Patt, Supervisor

Mattan Erez

Andreas Gerstlauer

Calvin Lin

Tse-Yu Yeh

3

Using Convolutional Neural Networks to Improve Branch

Prediction

by

Siavash Zangeneh Kamali

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2022

4

Dedicated to my parents, Parviz Zangeneh Kamali and Hayedeh Gharehbaghi.

Acknowledgments

I owe the completion of this dissertation to many people who have helped and

supported me.

My advisor, Prof. Yale Patt has been instrumental in the completion of my

Ph.D. program. Thank you for inspiring my interest in computer architecture, for

convincing me to pursue my Ph.D., for demonstrating effective teaching, and for

teaching me the importance of sound fundamentals in research and scholarship. Your

insistence on clear simple, concise, and clear presentation has had a significant pos-

itive impact on my communication skills. Also, thank you for providing me with

opportunities to enhance my professional career.

I thank my Ph.D. committee members, Prof. Mattan Erez, Prof. Calvin Lin,

Prof. Andreas Gerstlauer, and Tse-Yu Yeh. Your feedback after my proposal exam

and the final defense helped shape this dissertation, fix several mistakes, and improve

its writing quality.

I thank previous and current members of the HPS research group. In partic-

ular:

• Eric Sprangle, for teaching me the fundamentals of effective research and clear

presentation, and for your generosity. Also thank you for getting me interested

in the topic of machine learning, which had a direct impact on my decision to

work on the project that led to this dissertation.

6

• Milad Hashemi, for providing helpful feedback on my research, especially for

writing the BranchNet paper, for helping me find an internship position at

Google, and for always being generous with your time.

• Faruk Guvenilir, for taking care of anything IT-related in the group, teaching

me everything IT-related, and for your high energy when discussing research

and when watching football!

• Ben Lin, for your humor that allowed me to cope with all the difficulties associ-

ated with graduate school, for always providing precise feedback on my research,

for listening to me talk about obscure C++ techniques, for being interested in

machine learning trivia, for all our pair-programming days when maintaining

Scarab, for our many cultural and historical discussions, and for getting through

the eventful Spring 2021 semester with me!

• Stephen Pruett, for teaching me about branch prediction, for teaching me the

importance of writing good scripts, for co-authoring all my papers, for your

persistence in making sure that all disagreements about our research directions

are resolved, for your appreciation of good software engineering practices, for all

the time we spent TAing together, for all our non-research related discussions

about movies, TV shows, politics, and sports, and for the numerous times that

you gave me a ride home late at night!

• Aniket Deshmukh, for not letting me remain the youngest HPS student, for

your impactful contributions to creating a new functional model for Scarab,

and for being willing to voice your honest opinion on research topics.

7

• Chester Cai, for re-introducing young positive energy in the group, for always

being willing to help, and most importantly, for our mutual love of fried chicken!

I worked with many people during my various internships who helped me learn

about computer architecture and machine learning from the industry perspective. I

thank Georgi Gaydadjiev, Sundar Dev, Alex Ramirez, Danny Tarlow, Hassan Abol-

hassani, Kulin Kothari, Ethan Schuchman, and Niket Choudhary.

My friends have been a constant source of support throughout my life. I

Thank:

• Yongkee Kwon, for always helping me and giving me good advice. You were

like an older brother to me and I learned a lot from you.

• Esha Choukse, for making graduate school fun and being a great friend inside

and outside of school.

• Ali Fakhrzadehgan, Majid Jalili, Sepideh Maleki, Kamyar Mirzazad, and Ma-

soomeh Jasemi, for your friendship throughout many years. I value all the time

we spent traveling, trying new restaurants, going to events, or simply talking

about nonsensical topics. I hope our friendship continues to grow.

• Behzad Eftekhari, for accepting me as your roommate, teaching me how to

live independently in the US, and teaching me about graduate school, which

inspired me to pursue my Ph.D.

• Hossein Ganjizadeh, for being a very loyal friend who helped me get accustomed

to the American culture, and for your unique sense of humor.

8

• Mohammad Amini, for being the best roommate I have ever had, and for your

friendship.

• Tian Tan, for teaching me about FPGAs, and Chinese food, and for being a

fun roommate.

• Sangkug Lym for all our discussions about machine learning and co-authoring

papers.

• Alex Hsu, for bailing me out before a paper submission deadline, where I was

struggling with counting gate delays.

• Arash Bassak, Hossein Safaei, and Ali Parsi, for your friendship and our many

shared fun memories in Malaysia.

• Amin Sheibani, and Salar Nosrati, for being good friends since high school and

keeping in touch with me after all these years.

I thank my girlfriend, Keiarra Ortiz-Cedeno, for your love and support through

this stressful last year of graduate school, being there for me when I needed it, and

motivating me to finish my work.

I would not be a student in a foreign country without the support of my

family. Thank you Maman Hayedeh and Baba Parviz for your constant support. You

taught me the value of hard work and perseverance from early childhood. There

are no words that can sufficiently describe my gratitude for your sacrifices. You

helped my siblings and me move abroad for better opportunities even though this

9

meant we could not visit you regularly. I also thank my brothers. Thank you to my

older brother, Khosro, for being a great older brother, a patient roommate, always

making everyone in the family laugh with your sense of humor, teaching me how

to live independently, and guiding me through early adulthood. Also, thank you

to my younger brother, Fereidoon, for being a great companion even when we lived

in different countries, talking to me about random pointless topics, and getting me

interested in rock climbing. Thank you to my grandparents for your love and support.

I hope hearing the news that I have graduated makes you happy. Rest in peace,

Bababozorg Bahram.

10

Using Convolutional Neural Networks to Improve Branch

Prediction

by

Siavash Zangeneh Kamali, Ph.D.

The University of Texas at Austin, 2022

SUPERVISOR: Yale Patt

The state-of-the-art branch predictor, TAGE, remains inefficient at identifying

correlated branches deep in a noisy global branch history. This dissertation argues

this inefficiency is a fundamental limitation of runtime branch prediction and not a co-

incidental artifact due to the design of TAGE. To further improve branch prediction,

we need to relax the constraint of runtime only training and adopt more sophisticated

prediction mechanisms. To this end, I propose using convolutional neural networks

(CNNs) that are trained at compile-time to accurately predict branches that TAGE

cannot. Given enough profiling coverage, CNNs learn input-independent branch cor-

relations that can accurately predict branches when running a program with unseen

inputs. I describe two practical approaches for using CNNs. First, I build on the

work of Tarsa et al. and introduce BranchNet, a CNN with a storage-efficient on-chip

inference engine tailored to the needs of branch prediction. At runtime, BranchNet

predicts a few hard-to-predict branches, while TAGE-SC-L predicts the remaining

11

branches. This hybrid approach reduces the MPKI of SPEC2017 Integer benchmarks

by 9.6% (and up to 17.7%) compared to a 64KB TAGE-SC-L without increasing the

prediction latency. Alternatively, instead of using BranchNet as a black-box predictor,

I use it to explicitly identify correlated branches and filter the global branch history

of TAGE to include only the outcomes of correlated branches. Filtering the branch

history leads to less allocation pressure and faster warmup time in TAGE, resulting

in improved prediction accuracy and better storage-efficiency. Filtering TAGE histo-

ries achieves a notable fraction of BranchNet’s accuracy improvements (average 3.7%

MPKI reduction, up to 9.4%) with a simpler predictor design.

12

Table of Contents

Acknowledgments 6

Abstract 11

List of Tables 17

List of Figures 19

Chapter 1. Introduction 21

1.1 The Problem . 21

1.2 Convolution Neural Networks for Branch Prediction 22

1.3 Contributions . 25

1.4 Thesis Statement . 27

1.5 Dissertation Organization . 27

Chapter 2. Background and Prior Work 29

2.1 Counter-Based Branch Predictors . 30

2.2 Perceptron-Based Branch Predictors 34

2.3 Identifying Correlated Branches in the Global History 36

2.4 Branch Predictors with Offline Training 39

2.5 Convolutional Neural Networks for Branch Prediction 40

2.6 Complementary Techniques to History-based Predictors 41

2.7 Machine Learning for Other Computer Architecture Prediction Tasks 42

2.8 Convolutional Neural Network Basics 43

2.8.1 CNN Building Blocks . 44

2.8.2 Training Algorithm . 47

13

Chapter 3. BranchNet: a Convolution Neural Network for Branch
Prediction 48

3.1 The Problem of Noise in the Global Branch History 48

3.1.1 Example: Uncorrelated Branches 49

3.1.2 Example: Nondeterministic Positions of Correlated Branches . 51

3.1.3 Example: Exponential Number of Correlated Branch Patterns . 52

3.1.4 Learning Prediction Functions to Overcome Noise 53

3.2 Motivation Example: Using Convolutional Neural Networks to Predict
a Noisy Branch . 53

3.2.1 Can We Predict Branch B Using the Global History? 54

3.2.2 Why Do State-of-the-Art Predictors Fail to Predict Branch B? 55

3.2.3 How Does a CNN Predict Branch B Accurately? 56

3.2.4 Does Offline Training Work? 56

3.2.5 Is Representativeness of Profiling Required? 58

3.2.6 Can a CNN Predict All Branches? 58

3.2.7 Can Other Machine Learning Models Predict Branches? 58

3.3 BranchNet . 59

3.3.1 BranchNet Building Blocks . 60

3.3.2 Big-BranchNet and Tarsa’s CNN 62

3.3.3 Prediction Strategy . 63

3.3.4 Training Process . 64

3.3.5 Results . 65

3.3.5.1 Evaluation Methodology 65

3.3.5.2 Measuring the Impact of Improving a Few Hard-to-Predict
Branches . 67

3.3.5.3 Comparison to Unlimited MTAGE-SC 68

3.3.5.4 Characteristics of Improved Branches 70

3.3.5.5 Comparison to Tarsa’s CNN 72

3.3.5.6 Comparison to Other Model Choices 73

3.4 Coverage vs. Representativeness . 76

3.4.1 Sensitivity of BranchNet to Coverage 77

3.4.1.1 Sensitivity to the Training Set Size 78

3.4.1.2 Quantifying Coverage 80

3.4.2 The Need for Representativeness to Train TAGE-SC-L 83

14

Chapter 4. Explicitly Identifying Correlated Branches Using Branch-
Net 86

4.1 BranchNet Architecture for Correlation Detection 87

4.1.1 Regularization to Discourage Useless Embedding Weights . . . 88

4.1.2 Minor Modifications to the BranchNet Architecture 89

4.1.3 Shortcomings of L1 Regularization 90

4.2 Putting Everything Together . 91

4.3 Methodology and Results . 93

4.3.1 Impact of Using Only Top Correlated Branches on Accuracy . . 93

4.3.2 Understanding the Identified Correlated Branches 96

4.3.2.1 Manual Source Code Cross-Examination 96

4.3.2.2 Correlated Branches vs. Dependent Branches 96

Chapter 5. Practical BranchNet Inference Engines 98

5.1 Prior Work: Tarsa’s Inference Engine 99

5.2 Case Studies of CNN Inference Engine Inefficiencies 102

5.2.1 Case Study 1: Qsort — Correlation with a Branch Count . . . 103

5.2.1.1 Why Does Tarsa’s CNN Not Reach 100% Accuracy? . 107

5.2.1.2 Sources of Storage-Inefficiency 108

5.2.2 Case Study 2: Qsort — Correlation with a Specfic Segment in
the History . 108

5.2.3 Case Study 3: Leela — Correlation with Branch Counts Again 112

5.2.4 Case Study 4: Leela — Inherently Complicated Branch Relations 114

5.2.5 Lessons From the Case Studies 117

5.2.5.1 Long History Lengths 117

5.2.5.2 Specialized Structures 117

5.2.5.3 Hardware-Aware Training Algorithms 118

5.2.5.4 Input Pre-Processing 119

5.2.5.5 Recurrent Neural Networks 120

5.3 Mini-BranchNet . 121

5.3.1 Design of the Inference Engine 122

5.3.2 On-chip Constraints . 127

5.3.3 System and ISA Requirements 129

15

5.4 Counter-BranchNet . 129

5.5 Results . 133

5.5.1 Mini-BranchNet . 135

5.5.2 Counter-BranchNet . 137

Chapter 6. Filtering Uncorrelated Branches in TAGE Histories Using
BranchNet 141

6.1 Filtered TAGE Design . 142

6.2 Evaluation Methodology . 148

6.3 Results . 151

6.3.1 Filtering Mechanism . 153

6.3.2 Number of Correlated Branches 155

6.3.3 Sensitivity Studies . 157

Chapter 7. Conclusion and Future Work 160

7.1 Conclusion . 160

7.2 Future Work . 162

Bibliography 164

16

List of Tables

3.1 Big-BranchNet and Tarsa-Float architecture knobs. 62

3.2 Inputs of SPEC workloads used to evaluate BranchNet. 66

3.3 Sensitivity of BranchNet to the hidden fully-connected layers. 73

3.4 Sensitivity of BranchNet to the slice history lengths. 74

3.5 Sensitivity of BranchNet to the pooling width. 74

3.6 Sensitivity of BranchNet to convolution width. 75

3.7 Sensitivity of BranchNet to number of convolution filters. 75

3.8 Sensitivity of BranchNet to embedding width. 76

3.9 Spearman Rank-Order Correlation between accuracy and coverage for
top 16 most improved branches of leela and mcf. 82

3.10 Increase in branch mispredictions when disabling TAGE-SC-L updates
after warm-up, compared to a TAGE-SC-L that is updated normally
without warm-up. 85

4.1 Breakdown of prediction accuracy of CNN models for most improved
hard-to-predict branches of leela. 94

4.2 Number of correlated branches and affectors. Br1-Br8 are the same as
Br1-Br8 in Table 4.1. To identify correlated branches, we use the best
configuration identified in Table 4.1. 97

5.1 Breakdown of Tarsa-Ternary inference engine storage requirements for
one static branch. 101

5.2 CNN case study 1: accuracy and storage of predictors. 106

5.3 CNN case study 2: accuracy and storage of predictors. 111

5.4 CNN case study 3: accuracy and storage of predictors. 113

5.5 CNN case study 4: accuracy and storage of predictors. 116

5.6 Mini-BranchNet architecture knobs. 126

5.7 Breakdown of the Mini-BranchNet inference engine storage require-
ments for one static branch. 127

5.8 Counter-BranchNet architecture knobs. 133

17

5.9 Progression of MPKI reduction of leela from Big-BranchNet to Mini-
Branchnet. 137

5.10 Accuracy of Mini-BranchNet and Counter-BranchNet for some noisy
branches of leela. 139

6.1 Storage Overhead of maintaining filtered histories. 147

6.2 Internal TAGE statistics for some of the most improved branches on
leela’s most representative simpoint. 154

6.3 Prediction accuracy of baseline 64KB TAGE-SC-L and filtered TAGE-
SC-L with packing filtering. Br1-Br8 are the same branches as the
branches in Table 4.1. 155

6.4 The selected number of correlated branches for each filtered history
and the total number of combined correlated branches. Filtered TAGE
supports up to a total of 16 filtered histories in this configuration. . . 156

18

List of Figures

2.1 Correlated branches based on dependence chain commonalities. . . . 37

2.2 Dataflow in a simple CNN branch predictor. 44

3.1 A noisy branch due to uncorrelated branches. 50

3.2 A noisy branch due to nondeterministic history positions. 51

3.3 A correlated branch that causes an exponential number of patterns. . 52

3.4 A program with a hard-to-predict branch (Branch B) and a trained
CNN that can accurately predict the branch. 54

3.5 Accuracy of predicting Branch B from Figure 3.4. N ∼ rand(5, 10) in
the test set. 57

3.6 High-level diagram of the BranchNet CNN architecture. 59

3.7 MPKI Reduction of using Big-BranchNet to predict a few noisy branches
along a 64KB TAGE-SC-L. 67

3.8 MPKI of MTAGE-SC and Big-BranchNet on SPEC2017 benchmarks. 68

3.9 Accuracy of most improved branches using Big-BranchNet. 71

3.10 MPKI Reduction of Big-BranchNet and Tarsa-Float. 72

3.11 MPKI reduction of Big-BranchNet vs. Recurrent Neural Network mod-
els. 77

3.12 Sensitivity of Big-BranchNet to the training set size. 79

3.13 Accuracy vs. Coverage for top 16 improved branches using Big-BranchNet. 81

3.14 MPKI of TAGE-SC-L with additional warm-up. 83

4.1 Embedding and convolution in BranchNet. 87

4.2 Example: interpreting embedding weights to identify the top correlated
branches. 91

4.3 MPKI Reduction of BranchNet and Filtered BranchNet models com-
pared to a 64KB TAGE-SC-L. 93

4.4 MPKI Reduction of Filtered BranchNet models using only top 16 cor-
related branches. 95

5.1 The convolutional layer of Tarsa-ternary. 99

19

5.2 All Tarsa-ternary inference optimizations. 101

5.3 Overview of Tarsa-ternary inference engine (N = maximum number of
noisy branches that fit within the engine). 102

5.4 Simplified pseudo-code of qsort. 103

5.5 Perfect custom predictor for the if-statement in line 18 of Figure 5.4. 105

5.6 Perfect custom predictor for the if-statement in line 2 of Figure 5.4. . 110

5.7 Simplified pseudo-code of a noisy branch in leela (case study 3). . . . 112

5.8 Simplified pseudo-code of a noisy branch in leela (case study 4). . . . 115

5.9 Mini-BranchNet inference engine. 122

5.10 BranchNet convolutional layer. 123

5.11 BranchNet 4-wide sum-pooling. 124

5.12 Mini-BranchNet vs. Counter-BranchNet. 130

5.13 Branch counting hardware for three correlated branches. 131

5.14 MPKI and IPC improvement of BranchNet and Tarsa’s CNN compared
to 64KB TAGE-SC-L. 135

5.15 Sensitivity of iso-latency Mini-BranchNet to its storage budget on
SPEC2017 benchmarks. 137

5.16 The MPKI reduction of iso-latency Mini-BranchNet and Counter-BranchNet
in three storage budgets. 138

5.17 Sensitivity of iso-latency Mini-BranchNet and Counter-BranchNet to
the storage budget. 139

6.1 Prediction using filtered TAGE. 142

6.2 Zeroing and packing filtering strategies. 143

6.3 Updating histories in filtered TAGE. 144

6.4 MPKI reduction and speedup of using filtered TAGE with a 64KB
TAGE-SC-L baseline. 151

6.5 MPKI Reduction of filtered TAGE compared to TAGE-SC-L. All fil-
tered TAGE use up to 32 active filtered histories and 3000 bits of history.153

6.6 Impact of history length on MPKI reduction of filtered TAGE. Filtered
TAGE is configured to support up to 32 filtered histories. 157

6.7 Impact of number of filtered histories on MPKI reduction of filtered
TAGE. Filtered TAGE uses 250-bit packing histories. 158

6.8 Impact of shrinking baseline TAGE-SC-L storage on filtered TAGE. . 159

20

Chapter 1

Introduction

1.1 The Problem

Branch prediction remains a major bottleneck in improving single-thread per-

formance. Even with TAGE-SC-L [65], the state-of-the-art branch predictor, many

SPEC2017 Integer benchmarks suffer from high branch mispredictions per kilo in-

structions (MPKI), resulting in significant loss of performance. Moreover, the branch

misprediction penalty worsens as processors move towards deeper and wider pipelines

[45, 49, 37, 74]. Unfortunately, fundamental breakthroughs in branch prediction have

become rare [48]. All predictors submitted to the 2016 Championship Branch Pre-

diction competition were variants of existing TAGE and Perceptron designs [65, 64,

30, 31, 56]. Branch prediction research needs new insights to further improve the

prediction accuracy.

Traditional branch predictors like TAGE [66] and Perceptron [34] are designed

to be updated at runtime. Thus, their update algorithms have to be simple, cheap,

and quick to adapt to execution phase behavior. While simplicity and adaptivity

are necessary for predicting most branches at runtime, limitations in training time

and processing power make it difficult for runtime branch predictors to learn complex

correlations in the branch history. To learn these correlations, it is necessary to adopt

21

more sophisticated prediction mechanisms that require more computationally-heavy

training algorithms.

An important subset of hard-to-predict branches for TAGE are those with

many uncorrelated branches in their global histories. These uncorrelated branches

produce redundant history bits (noise) that do not contribute to prediction accuracy.

Since state-of-the-art predictors do not have any mechanisms to distinguish corre-

lated branches from noise, they need to learn a prediction for each observable history

pattern. This behavior is problematic because the number of history patterns grows

exponentially with the number of redundant noisy bits. Thus, with enough uncor-

related branches in the history, the total number of observable history patterns will

exceed the memorization capacity of runtime predictors, which makes these branches

fundamentally hard to predict for state-of-the-art predictors.

1.2 Convolution Neural Networks for Branch Prediction

Convolutional Neural Networks (CNNs) address a key weakness of runtime

predictors: identifying correlated branches in noisy global histories. A CNN learns

to ignore uncorrelated branches and identify correlated branch patterns anywhere in

the history, enabling expressive prediction functions that remain efficient and accu-

rate even with long noisy histories. This increase in prediction capability, however,

comes at the cost of computationally-expensive training and reliance on large training

data. Therefore, it is not possible to train CNNs at runtime. Instead, CNN models

should be trained offline (i.e., compile-time) by profiling targeted applications. Of-

fline training works if a predictor can learn invariant branch relationships that are

22

true at all phases of a program with any inputs. By profiling runs of a program with

multiple inputs, one can collect diverse training examples to train powerful machine

learning models that can infer such invariant relationships. A key observation of

this dissertation is that the training algorithm of CNNs requires high coverage in its

training examples. In contrast, previous compile-time branch prediction techniques

relied on the representativeness of training inputs. Since achieving coverage is easier

than achieving representativeness, training CNNs offline is more viable than previous

compile-time techniques.

Tarsa et al. [82] are the first to propose using CNNs with offline training to

predict hard-to-predict branches. They show that (1) CNNs can identify individual

correlated branches in the global branch history, and (2) CNNs can be trained offline

to avoid their expensive training algorithms at runtime. However, they do not address

all challenges in using CNNs as branch predictors and their proposed CNN model is

impractical. First, while they empirically show that offline training is possible, they

do not identify that representativeness is not needed for offline training, which makes

it easier to adopt CNNs in practice. Second, their CNN inference engine requires an

impractical amount of storage. In this dissertation, I attribute this inefficiency to the

general-purpose nature of their CNN model and demonstrate that specialization is

the key to achieving high accuracy and storage efficiency for CNN branch predictors.

Most importantly, using a few detailed case studies, I show that CNN prediction

functions often count the occurrences of correlated patterns, which can be simplified

using specialized sum-pooling layers in the model. Using the sum-pooling layers and

other architectural changes (e.g., geometric history lengths), I design BranchNet,

23

a CNN model that is significantly more accurate and storage-efficient than Tarsa’s

CNN.

I propose using trained BranchNet models in two ways. The most straight-

forward way is to directly use BranchNet as a black-box branch predictor similar

to Tarsa’s CNN. I design practical and storage-efficient BranchNet inference engines

that are used along TAGE-SC-L at runtime. The rationale behind this hybrid ap-

proach is that in typical programs, a small number of static branches is responsible

for the majority of mispredictions. Thus, it is more storage-efficient to use the ex-

pensive BranchNet inference engines to predict only those static branches with noisy

histories, and use TAGE-SC-L for all the other branches.

I also propose a novel alternative way of using CNN as a tool to explicitly iden-

tify correlated branches, i.e., instead of using BranchNet models as black-box helper

predictors, we can examine the trained BranchNet models to explicitly identify the

minimum set of correlated branches that can be used to accurately predict branches

with noisy histories. At runtime, we use a modified TAGE that maintains filtered

histories. Filtered histories record only the outcomes of correlated branches for each

hard-to-predict branch. Because noisy bits are eliminated from the filtered histories,

TAGE can now more accurately predict these previously hard-to-predict branches.

This approach yields a notable fraction of BranchNet’s accuracy improvement with

only minor design changes to the baseline predictor.

24

1.3 Contributions

• I make a new case for branch prediction with offline training. I show that, unlike

previously proposed offline training techniques, CNNs rely less on the represen-

tativeness of the training data and more on their coverage. The key is exposing

enough control flow paths to detect input-independent branch correlations that

can be generalized to unseen inputs. Since achieving high coverage is easier

than gathering representative inputs, training CNNs offline is more practical

than prior compile-time branch prediction techniques.

• I demonstrate that counting the occurrences of correlated branch patterns is

useful for an important subset of hard-to-predict branches. With the help of a

sum-pooling layer, a CNN learns to count correlated branch patterns, which is

an efficient way of aggregating information in long global histories. However,

a tabled-based predictor (e.g., TAGE) relies on allocating predictor entries for

each history pattern, which is infeasible for long histories with noisy histories.

• I propose BranchNet, a CNN architecture tailored to branch prediction re-

quirements in two ways. One, BranchNet draws inspiration from traditional

branch predictors and uses geometric history lengths as inputs. Two, Branch-

Net uses sum-pooling layers to aggressively compress the information in the

global branch history. Because of its specialized design, BranchNet significantly

outperforms its predecessor CNN branch predictor. Big-BranchNet (an unreal-

istically large BranchNet configuration) reduces the average MPKI of SPEC2017

Integer benchmarks by 7.6% (up to 15.7% for the most improved benchmark)

25

compared to an unlimited MTAGE-SC baseline.

• I demonstrate that specialization is key for building storage-efficient and accu-

rate CNN branch predictor inference engines. In addition to the architectural

optimizations of BranchNet, I use a novel way to approximate wide convolution

filters and sum-pooling layers to build BranchNet inference engines. These ap-

proximations enable BranchNet to have the same prediction latency as TAGE-

SC-L (4 cycles) and be more storage-efficient. By using BranchNet inference

engines along with a 64KB TAGE-SC-L, we can reduce the MPKI by 9.6% (up

to 17.7%) and increase the IPC by 1.3% (up to 7.9%) over a 64KB TAGE-SC-L

baseline.

• I propose an alternative design for BranchNet inference engines where the convo-

lution layer is replaced by simple correlated branch counters. While this design

still uses CNNs during offline training to identify the correlated branches, the

inference engines do not need convolution tables and are much simpler to build.

This simplicity results in storage efficiency in lower total storage budgets.

• I show that even if on-chip inference engines are infeasible, neural networks are

still useful tools to learn information that can be used by simpler predictors. In

particular, I demonstrate that BranchNet models can explicitly identify corre-

lated branches at compile-time. I design a TAGE-based branch predictor which

uses the information extracted from BranchNet models to remove the uncor-

related branches from the global history. I explain why filtering uncorrelated

branches improves the prediction accuracy of TAGE and reduces its storage

26

needs. I show that compared to a 64KB TAGE-SC-L, an iso-latency filtered

TAGE reduces the branch MPKI by 3.7% on SPEC 2017 Integer benchmarks,

up to 9.4% on the most improved benchmark. To achieve the same order of

improvement without filtering, we need a 128KB TAGE-SC-L, which uses 40%

more storage than the iso-latency filtered TAGE and also incurs additional pre-

diction latency.

1.4 Thesis Statement

High coverage training sets and model specialization enable Convolutional

Neural Networks to learn efficient input-independent prediction functions that count

the occurrences of correlated branch patterns in a noisy branch history, resulting in

improved branch prediction accuracy, either through storage-efficient helper predic-

tors or by filtering the global branch history of conventional predictors.

1.5 Dissertation Organization

Chapter 2 explains the necessary background to understand this dissertation

and provides an overview of the related prior work. Chapter 3 describes the prob-

lem of noisy global branch histories for state-of-the-art predictors, demonstrates why

convolutional neural networks are a good solution to overcome noise, describes the ar-

chitecture of BranchNet, and evaluates the effectiveness of BranchNet as an abstract

software model without considering hardware limitations. This chapter also details

the difference between coverage and representativeness to justify why offline training

is viable for BranchNet but does not work for prior branch predictors. Chapter 4 de-

27

scribes how to use BranchNet as a tool to identify correlated branches. Chapter 5 uses

case studies to motivate why specialization is needed for accurate and storage-efficient

inference engines, proposes a practical design for BranchNet inference engines, and

evaluates its impact on accuracy. This chapter also describes the design of a sim-

pler inference engine design that works by counting previously identified correlated

branches. Chapter 6 describes how to harness the benefits of BranchNet by filtering

the global history of TAGE instead of using on-chip BranchNet inference engines.

While inference engines are ultimately more accurate, this alternative approach is

significantly easier to implement and adopt. Chapter 7 concludes the dissertation

and discusses potential future work.

28

Chapter 2

Background and Prior Work

From the early years of pipelined processor designs [6, 61, 19], control-flow

instructions have been a critical impediment to single-thread performance. High

performance relies on a steady supply of instructions to the processor to take advan-

tage of available hardware resources and extract instruction-level parallelism. With-

out control-flow instructions, achieving high instruction supply throughput is easily

achievable as instruction addresses are simply an ordered sequence of numbers, start-

ing from the initial value of the program counter. However, control-flow instructions

may change the program counter to any arbitrary address in the program. Thus, the

instruction supply unit in the processor cannot determine the correct fetch address

until the control-flow instruction is executed and the next instruction address is de-

termined. This problem is particularly worse for conditional branches, which cause

the fetch unit to wait until both the address and the outcome (whether the branch

was taken or not) are known. To mitigate this problem, processors use compile-time

or runtime mechanisms to predict the targets and the outcomes of branches. After

a correct prediction, the fetch unit fetches the correct target of the branch, and the

instruction supply is not disrupted. However, after an incorrect prediction, the fetch

unit fetches instructions from incorrect addresses (i.e., wrong-path), and should dis-

card all such wrong-path instructions. Therefore, high prediction accuracy is critical

29

for achieving high fetch bandwidth and performance. In particular, accurately pre-

dicting the direction of conditional branches has proven to be challenging, which is

the focus of this dissertation. For brevity, I use branch prediction as a shorter term

for conditional branch prediction.

The evolution of branch predictors is the result of decades of research towards

addressing a diverse set of challenges in accurately predicting branch directions. Some

prior work in this domain directly influences the design of state-of-the-art branch pre-

dictors, while some research directions are not adopted. Nonetheless, it is important

to understand all relevant attempts at improving branch prediction to put the contri-

butions of this dissertation in its proper context. This chapter discusses the related

prior work, organized by their role in the design of state-of-the-art branch predictors,

and provides the necessary background to the contributions of this dissertation.

2.1 Counter-Based Branch Predictors

Smith’s branch prediction strategies [73] are the first use of saturating counters

for branch prediction. Smith’s most accurate and practical strategy is to use a table

of 2-bit saturating counters, which the branch predictor accesses to determine the

likely direction of a given branch. The predictor uses a hash of the branch program

counter (PC) as the index to access the counter table. Given enough capacity, there

is a unique counter corresponding to each static conditional branch in the program.

The counter value for a given branch is incremented (saturated at 11) every time the

branch is taken, and the counter value is decremented (saturated at 00) each time the

branch is not taken. At prediction time, the predictor uses the most significant bit

30

of the counter as the prediction for the branch. Ignoring the marginal warm-up time,

this prediction mechanism is 100% accurate for branches that rarely change directions.

The 2-bit width of the counter also allows the predictor to ignore occasional outliers

in the branch pattern (e.g., a loop is almost always taken, except for the exit case).

This predictor is commonly referred to as the bimodal branch predictor.

Two problems significantly hinder the accuracy of the bimodal branch pre-

dictor. First, many branches continuously change directions, so learning the recent

outcomes of the branch does not necessarily provide any information about its future

outcomes. Second, multiple branches may easily alias into the same table entry (i.e.,

the hash of the branch program counters are the same), resulting in ineffectual train-

ing for the conflicting branches. Next generations of counter-based branch predictors

address these problems.

Lee and Smith [43] identify that prediction based on branch histories outper-

forms the bimodal predictor. The main insight is that short sequences of branch

outcomes are often repetitive. Thus, we can examine branch history patterns and

identify the most likely next outcome for each possible history pattern. For exam-

ple, if a branch is alternating between taken and not taken, the branch history looks

like ...NTNTNTNT , where N represents a not taken instance, and T represents a

taken instance. In this case, the likelihood of observing NTNT → N is higher than

NTNT → T . Using this observation, Lee and Smith’s predictor learns the most

likely branch patterns at compile time. At runtime, their predictor keeps an n-bit

branch history per static branch and predicts each branch by referring to its corre-

sponding branch history and the compile-time information about the likelihood of

31

branch patterns. While this approach is an improvement over saturating counters,

there are two key problems: compile-time training relies on access to representative

branch patterns, and not all branches in a program have similar branch patterns. Yeh

and Patt [88] solve these two problems by designing an adaptive two-level predictor.

The two-level branch predictor [88] uses a two-step prediction strategy to learn

branch history patterns at runtime. First, a history register keeps track of the most

recent outcomes of branches. Second, the predictor uses the history register as an

index to access a table of 2-bit saturating counters. The two-level predictor uses

and updates the counters in the same way as Smith’s saturating counters [73]. The

table of counters is called the pattern history table (PHT). In effect, PHT learns

the most likely next outcomes for each branch history, but unlike Lee and Smith’s

methodology [43], the patterns are adaptable to the current behavior of a program.

Follow-up studies [89, 90] introduce three design choices for the PHT: a single PHT

for all branches (Global), a unique PHT per branch (Per-Address), or a fixed number

of PHTs that are used based on a hash of the branch PC (Per-Set). Orthogonal to

the PHT choice, the same three choices are available for the history register, resulting

in 3 × 3 = 9 total design choices. For the total storage size of 128K bits, Yeh and

Patt found global branch histories with Per-Set PHTs to be the most cost-effective.

The gshare predictor (designed by McFarling [46]) further improves the two-

level predictor. Gshare uses a two-level predictor with a global branch history and

a global PHT as the baseline, but it uses the exclusive OR of the branch PC and

the branch history as the index into the PHT. In effect, this simple modification

enables the cost-efficiency of a global two-level predictor, with the additional benefit

32

of separating the 2-bit counters in the PHT by the branch PC. Similar to Gshare,

several predictors [75, 42, 50, 11, 18] propose additional modifications to the two-level

predictor, which improve the storage efficiency and reduce the destructive aliasing

among branches.

A key improvement in counter-based predictors is based on a theoretical ob-

servation by Chen et al. [15], which states that branch prediction can be viewed

through the lens of the PPM compression algorithm [16]. The key insight is that the

two-level predictor and its follow-ups are attempts at learning branch history patterns

across all program branches in the most cost-effective manner. Based on this insight,

Michaud [47] proposes the PPM-like branch predictor. The PPM-like predictor ap-

proximates the PPM compression algorithm by using the combination of a bimodal

table and multiple tagged PHTs associated with different history lengths. To make a

prediction, the bimodal table and all the PHTs are looked up in parallel. The match-

ing PHT with the longest history length provides the chosen prediction. Note that

since the PHT entries are tagged, a PHT does not always provide a prediction. If no

PHT provides a prediction, the bimodal predictor is used. The update mechanism

inserts new PHT entries at longer history lengths only when the current prediction

is inaccurate. As a whole, the PPM-like predictor tries to use only as many history

bits as needed, resulting in better storage efficiency.

Seznec and Michaud [66] refine the idea of the PPM-like predictor and in-

troduce TAGE. While the core mechanism is similar (a bimodal predictor with a

sequence of tagged PHTs with different history lengths), TAGE improves the inser-

tion and replacement policy and slightly modifies the prediction mechanisms to avoid

33

useless entries. TAGE is often considered the last major breakthrough in counter-

based branch predictors. BATAGE [48] is an alternative TAGE-like predictor that

improves the prediction accuracy of TAGE without a statistical corrector. However, it

does not improve the accuracy compared to TAGE-SC-L [65]. The bias-free predictor

[24] removes biased and redundant branches from branch histories, while the TAGE

component remains unchanged. The inner-most loop iteration (IMLI) counters [67]

are new inputs to branch predictors that are helpful when the outcomes of branches

are correlated with the loop iteration counters. The statistical corrector of TAGE-

SC-L uses IMLI counters and a history of all branches with the same IMLI counter

as additional input features. In summary, while complementary improvements have

existed, TAGE is the main component in state-of-the-art branch predictors.

2.2 Perceptron-Based Branch Predictors

The Perceptron branch predictor, designed by by Jimenez and Lin [34], uses

a novel alternative approach to counter-based branch prediction. A perceptron [8] is

a single-layer neural network that learns a linear function of its inputs to classify the

input space into a binary outcome. In the case of the Perceptron branch predictors,

the inputs are the branch history bits, and the output is the direction of the next

branch. The perceptron output is the dot product of all the input bits and their

corresponding weights, added to a bias weight (the history bits are treated as -1

and +1 when computing the dot product). The sign of the output determines the

prediction. The weights (including the bias) are incremented or decremented to move

the output towards a more positive or negative value depending on the actual direction

34

of the branch after it is executed. The result is that Perceptron identifies the linear

correlation value of each history bit to the outcome.

The Perceptron predictors suffers from two major weaknesses. First, single-

layer neural networks cannot learn nonlinear functions of the inputs, which makes

them fundamentally incapable of learning many history patterns. This problem

can only be solved by using multi-layer neural networks, which have a much more

computationally-expensive training algorithm. Second, the position of branches in

the history may be nondeterministic. Thus, learning a correlation with a history bit

may not always be the right approach. Follow-up work on Perceptron attempt to

solve the second problem.

Path-based neural predictor [35] changes the perceptron predictor to also use

branch program counters as input (the term path history refers to some representa-

tion of program counters of the branches in the global history). In this design, the

perceptron weights are associated with both the position of the branch in the his-

tory and the program counter of the branch, i.e., branch PCs select the perceptron

weights to use as inputs to the dot product. Thus, the path-based neural predictor can

identify correlation for branches with nondeterministic positions in the history. The

piecewise-linear predictor [36] is a generalization of the original Perceptron and the

path-based neural predictor that further improves the accuracy by allowing different

path weights per each static branch.

The O-GEHL predictors [63, 62] is a perceptron-based predictor that is built

of multiple weight tables, where each table is accessed by a hash of the branch address

and the history register. Each table uses a different history length, where the history

35

lengths form a geometric sequence. Since individual weights do not correspond to

history bits, instead of performing a dot product, the weights are simply summed

together. Tarjan and Skadron [80] generalize this concept and introduce the hashed

perceptron, which refers to the family of perceptron-based predictors that use hashes

of the branch history to access weight tables. The most recent perceptron-based

branch predictor is the Multiperspective Perceptron [30], which is a hashed perceptron

that uses a collection of novel and exotic input features in addition to the traditional

branch history and path.

It is important to note that the high accuracy of perceptron-based predictors

is mainly due to their better scalability with longer branch history lengths. However,

TAGE has achieved better storage efficiency and scalability and is now the most

accurate single-component branch predictor. TAGE-SC-L [65], the most accurate

runtime branch predictor, uses TAGE as its main component and uses a perceptron-

based (GEHL) component as a statistical corrector that sometimes overrides TAGE’s

prediction.

2.3 Identifying Correlated Branches in the Global History

Both counter-based and perceptron-based predictors use the global branch

history and the path history as their main input. Global histories are effective because

the outcome of many branches is correlated to the outcome of future branches. Evers

et al. [20] comprehensively analyze branch correlation and predictability for two-

level branch predictors. They show that typically only a few branches in the history

matter for prediction accuracy. For each branch in the program, they compute a

36

linear correlation coefficient between the branch and all other branches in their global

history. Then they select up to 3 top correlated branches that can most accurately

predict the outcome of each branch. Their results show that three correlated branches

are sufficient to be as accurate as the g-share predictor [46], which was the best branch

predictor at the time. Unfortunately, their brute-force correlation detection algorithm

is not computationally feasible when identifying significantly more correlated branches

in much longer global histories of current-day branch predictors. This dissertation

instead uses convolutional neural networks, which are effective at identifying as many

correlated branches as needed in longer global histories.

Evers et al. [20] also attempt to identify the nature of correlated branches.

They observe that correlation among static branches is often due to some commonality

in the dependence chain. Figure 2.1 provides examples of two common scenarios:

when the outcome of a branch impacts the outcome of the next branch (affectors),

and when the outcomes of two branches are at least partially based on the same

condition (forerunners). The terms affectors and forerunners were coined by Thomas

et al. [83].

Affector branches

1 x = 0
2 i f (some cond i t i on) {
3 x = 1
4 }
5

6 i f (x == 1) { . . . }

Forerunner Branches

1 x = some i n t e g e r
2 i f (x > 0) {
3 . . .
4 }
5

6 i f (x <= 0) { . . . }

Figure 2.1: Correlated branches based on dependence chain commonalities.

37

Thomas et al. [83] design a runtime branch predictor that tracks dataflow

dependencies among branches and filters the global history to contain only affector

branches. By filtering the history, they improve the prediction accuracy of two con-

temporary branch predictors, YAGS [18] and Perceptron [34]. Sazeides et al. [60]

provides additional analysis on the same approach. While the key insight of this line

of prior work is in line with this dissertation, there are several limitations in using

dependence chains for identifying correlated branches. First, not all branches in the

dependence chain are correlated, and not all correlated branches appear in the depen-

dence chain. Second, there is no mechanism to rank the most correlated branches in

the dependence chain. On the other hand, a machine learning approach can directly

learn which branches matter the most and rank them accordingly, which is much

more suitable for aggressively eliminating all uncorrelated branches.

The Spotlight [84] branch predictor uses profiling to identify a contiguous win-

dow in the global history that contains the most correlated branches. This approach

is not sufficient for two fundamental reasons. One, correlated branches may appear

in nondeterministic positions in the global history. Two, the correlated branches may

not show up in a contiguous window in the global history.

The bias-free predictor [24] identifies two types of potentially uncorrelated

branches and does not insert them into the history. First, it filters out conditional

branches that never change directions, which are by definition uncorrelated. Second,

it only maintains the latest outcome of each static branch in the history. While the

Bias-free predictor is a step in the right direction, it cannot eliminate all uncorrelated

branches. Many uncorrelated branches are not biased, which the bias-free predictor

38

does not eliminate. To completely eliminate noise from the history, we need a filtering

mechanism that eliminates all uncorrelated branches.

2.4 Branch Predictors with Offline Training

Many prior studies propose using offline profiling to improve branch prediction.

Some train static predictors that simply learn the statistical bias of branches, which is

useful for compile-time optimizations, but not for predicting hard-to-predict branches

[40, 10, 54, 91]. Some work use profiling to train application-specific predictors,

resulting in a comparable accuracy to contemporary dynamic branch predictors [32,

69, 81, 77, 84]. Among them, Spotlight [84] is a gshare-like predictor that uses

profiling to identify the most useful fragment of the global branch history. However,

Spotlight is still susceptible to shifts in the history and cannot identify correlated

branches that appear in nondeterministic positions in the history. Spotlight’s training

mechanism also relies on exhaustively comparing all possible views of history, which

does not scale when training more complicated predictors with long histories. Similar

to Spotlight, most prior predictors are either too simple to help with hard-to-predict

branches or there is no known way to use them in conjunction with state-of-the-art

online predictors. As a result, until recently, the conventional wisdom was that branch

prediction using offline training is a dead-end. This dissertation challenges this notion

by proposing and analyzing offline training with multi-layer neural networks.

Representativeness vs. Coverage. In addition to the low accuracy of prior

predictors, another challenge with offline training was that prior training mechanisms

relied on the repetition of exact history patterns (they needed representativeness).

39

Thus, prior work could only perform well when the input sets used for profiling were

representative of future runs, which is challenging. For example, for Spotlight to be

effective, the positions of correlated branches in the global history should be exactly

the same during profiling and at runtime. However, the positions of branches that

appear deep in the global history are rarely generalizable to other inputs, especially

for the hard-to-predict branches of state-of-the-art runtime predictors. In contrast,

deep learning does not need representative input sets; it just needs enough coverage

in the training set to expose generalizable input-independent relationships between

branches. As long as the training set includes enough examples of different branch

behavior (i.e., different program phases that exercise different control flows), deep

learning algorithms can identify input-independent correlations that are always true.

I use coverage to denote the notion that the training set contains examples from all

possible branch behaviors. Section 3.4 defines and analyzes coverage in the context

of CNN branch predictors.

2.5 Convolutional Neural Networks for Branch Prediction

Tarsa et al. [82] are the first to propose using Convolutional Neural Networks

(CNNs) with offline training to predict hard-to-predict branches. Their results show

that (1) CNN branch predictors could identify individual correlated branches in the

global branch history, and (2) that CNNs could be trained offline to avoid their

expensive training algorithms at runtime. This dissertation builds on the insights

proposed by their approach, further analyzes the importance of offline training, tailors

their CNN architecture to branch prediction, and studies alternative ways of using

40

CNNs for branch prediction. I will refer to this prior work as Tarsa’s CNN and provide

more details of its contributions throughout this dissertation and contrast their work

with mine.

2.6 Complementary Techniques to History-based Predictors

In general, the remaining branch mispredictions are due to branches that are

hard to predict for very different reasons. Because a one-size-fits-all solution is no

longer viable, recent research in branch prediction can be viewed as complementary

techniques that need to work together.

Some proposed branch predictors use specialized predictors for a particular

subset of hard-to-predict branches. Adileh et al. [3] propose extensions to the ISA to

completely eliminate mispredictions of probabilistic branches. The key idea is that the

correctness of the program does not depend on the outcomes of each dynamic instance

of a probabilistic branch. Instead, the past outcomes of probabilistic branches can

be buffered and used as a correct prediction. Farooq et al. [21] design a specialized

branch predictor for simple data-dependent branches. The compiler searches the

dependence chain of branches at compile time and detects if there is a single store-

load pair leading to the branch. For such cases, the direction of the branch can be

pre-computed when the store executes, saved in a data structure, and used as the

prediction for the branch.

An important body of prior work is pre-computing branch outcomes instead

of predicting them [94, 95, 58, 13, 12, 68]. Among recent proposals, Srinivasan et al.

[76] propose Slipstream 2.0, which is an improved Slipstream [78] processor that runs

41

ahead of the main core, pre-computes branch directions in a shortened version of the

program, and sends the pre-computed directions back to the main core to be used as

predictions. Pruett and Patt [55] also use pre-computation, but instead of shortening

the whole program, their predictor extracts lightweight dependence chains for hard-

to-predict branches and executes them on a small dedicated engine in the main core.

Pre-computation is promising, especially for data-dependent branches, however, im-

proving the prediction accuracy of the baseline history-based branch prediction still

remains critical and complements the pre-computation-based predictors.

2.7 Machine Learning for Other Computer Architecture Pre-
diction Tasks

Branch prediction is not the only prediction task that can be improved with

machine learning. Prior work has used machine learning to improve cache replacement

policy, memory controller scheduling, and data prefetching. While these prediction

tasks have different requirements and concerns from branch prediction, some key

insights may transfer among prediction tasks.

Ipek et al. [29] use reinforcement learning to optimize the scheduling poli-

cies of a DRAM memory controller. While reinforcement learning is not a natural

formulation for branch prediction, this work is a good example of adapting simple

table-based machine learning methods to the practical constraints of a processor.

Shi et al. [71] use deep learning to learn cache replacement strategies. Using

a heavy-weight, they discover two key insights about the requirements of an accurate

cache replacement policy: a long control-flow history is useful for cache replacement,

42

and only a few program counters in the history provide all the necessary information.

Using these insights, they develop a practical runtime mechanism that improved the

cache replacement policy. This work is a good example of how insights learned from

computationally-expensive neural networks may be used to develop simpler mecha-

nisms.

Hashemi et al. [25] demonstrate that Long Short-Term Memories (LSTMs)

are in theory capable of learning access patterns to prefetch memory locations. Shi

et al. [72] improve their model and show that there is headroom to reduce the size

of deep learning models by taking advantage of the inherent properties of a given

prediction task.

Pythia [7] is a table-based reinforcement learning data prefetcher. Pythia is

another example of a simple and practical adaptation of a classical machine learning

technique to the constraints of microarchitecture design.

2.8 Convolutional Neural Network Basics

Convolutional Neural Networks (CNN) are state-of-the-art in both image clas-

sification [79, 26] and sequential tasks like natural language understanding [87]. When

used as a branch predictor, a CNN first identifies important branch patterns in the

global history and then classifies the branch as taken or not taken using the identified

patterns.

This section provides a high-level description of a simple CNN branch predic-

tor. The goal is to introduce the terminology and provide an intuition for how the

43

Transformed
History

2-channel
Convolution

Layer Outputs

Pooling
Layer

Outputs

Fully-Connected
Neuron
Output

history
length

One-hot
Vector

Global
Branch/Path

History

Convolution
Width

Pooling
Width

Figure 2.2: Dataflow in a simple CNN branch predictor.

CNN components work together to predict branches.

2.8.1 CNN Building Blocks

Figure 2.2 shows the data flow for branch prediction using a simple CNN. The

CNN takes the global branch and path history (program counters and directions of

branches) as input, operates on the input using a sequence of operations, and finally

produces a prediction. The critical operations are referred to as layers. The layers

operate using a collection of trainable parameters (weights). The combination of the

CNN layers and their trained parameters form a CNN model.

Input as one-hot vectors. CNNs assume that the magnitude of each input

conveys information about the input. For example, the inputs to a CNN image

classifier convey the color intensity of an image at each pixel. However, the inputs

to a branch predictor are branch program counters and directions, whose magnitudes

convey nothing about the branches. Thus, we need to represent branches in a format

that makes it easier for CNNs to distinguish different program counters. One solution

is to represent components in the history as one-hot vectors.

44

Input as embeddings. Embeddings are the state-of-the-art method of con-

verting discrete inputs to vectors of real numbers that are more suited as inputs to

neural networks [23]. Embeddings are implemented as a 2-dimensional table, where

each discrete value of an input corresponds to a row in the table. If the input to

a neural network is a sequence of discrete inputs, an embedding table can be used

to convert them to a sequence of vectors of trainable real-number values. For large-

enough discrete numbers, embeddings often lead to a more efficient solution than

simply using one-hot vectors.1 For example, Hashemi et al. [25] use embeddings to

represent PC and memory addresses in a model for data prefetching, which is very

similar to a branch predictor that represents each branch using its PC and direc-

tion. Thus, as an alternative to one-hot-vectors, CNN branch predictors may use

embeddings to feed the branch history into the subsequent layers.

Convolutional layers. At a high level, a convolution layer identifies the

occurrences of features in its input [41, 23]. The set of weights that are trained

to identify a feature is called a filter. The convolution width controls the number

of neighboring items that form a feature. For branch prediction, the neighboring

items are the neighboring entries in the branch/path history. Applying a filter to the

inputs produces an output channel. For branch prediction, each filter identifies the

presence of a specific correlated branch pattern in the history and marks its location

by outputting a non-zero value to the corresponding output channel for the filter.

1E.g., representing a 12-bit program counter as a one-hot vector requires 212 = 4096 trainable
weights for a 1-wide convolution filter, but embeddings can still be effective with much fewer weights
(e.g., 32).

45

Sum-pooling layers. A sum-pooling layer reduces the computational re-

quirements of subsequent layers by combing the neighboring outputs of the convolu-

tion output channel into a sum [23]. The pooling width defines the number of neigh-

boring outputs that are summed together. Effectively, the outputs (i.e. generated

sums) of a sum-pooling layer indicate the occurrence counts of the feature identified

in each channel. Sum-pooling reduces the computational needs of the next CNN

layer at the cost of discarding fine-grained positions of identified features. This is

often a good trade-off for branch prediction because the exact positions of correlated

branches do not matter.

Fully-connected layers. A fully-connected layer is made of multiple neurons,

where each neuron learns a linear function of all its inputs [23]. It is possible to

cascade fully-connected layers to learn nonlinear functions of convolution outputs.

For branch prediction, the fully-connected layers map the identified feature counts to

a prediction.

Activation Functions. Activation functions are non-linear element-wise

transformations that are used by convolution and fully-connected operators. Without

activation functions, neural networks cannot learn non-linear functions. I use ReLU

[53], Sigmoid, and Tanh (hyperbolic tangent) activations throughout this dissertation.

Batch Normalization. A batch normalization operation normalizes each

output channel to a standard normal distribution using the mean and the variance of

its outputs during training [28]. While the normalization operation does not directly

add to the prediction capability of a neural network, it has been shown to guide the

optimization algorithms toward better solutions and mitigates overfitting. In this

46

dissertation, I use a normalization operation before the activations in convolutional

and fully-connected layers.

2.8.2 Training Algorithm

CNNs are trained using a large set of input and expected output pairs (the

training set) that define the desired behavior of the model. Conceptually, the training

algorithm constantly iterates through the examples in the training set and identifies

consistent signals for producing the expected output. Since this algorithm (Stochastic

Gradient Descent [57] using Backpropagation [59]) is computationally expensive, the

training has to be done offline using profiling. Thus, a good training set for branch

prediction should contain examples from multiple input sets and exercise different

control flow paths, which enables the CNN to learn invariant branch relationships.

47

Chapter 3

BranchNet: a Convolution Neural Network for

Branch Prediction

This chapter describes BranchNet, a Convolutional Neural Network (CNN)

that can accurately predict a category of branches that are fundamentally hard to

predict for state-of-the-art runtime branch predictors.1 In particular, using offline

training, BranchNet can identify correlated branches even in the presence of noise

in the global history. BranchNet is the central component of all the contributions

of this dissertation and can be used directly using on-chip inference engines or as a

tool to explicitly identify correlated branches that can enable other branch prediction

techniques.

3.1 The Problem of Noise in the Global Branch History

As explained in Chapter 2, not all branches in the global branch history are

correlated to the next branch outcome. In this section, I explain how the existence

of uncorrelated branches in the branch history is harmful to state-of-the-art runtime

branch predictors. For brevity, I use noise to generally refer to all the uncorrelated

1The main contributions of this chapter have been previously published in a paper that I co-
authored [92].

48

branches that are not useful for accurate branch prediction, and I use noisy branch

to denote a branch that is hard to predict due to excessive noise in its history.

The root cause of the difficulty in predicting noisy branches is that the storage

requirements of state-of-the-art runtime branch predictors grow exponentially with

the addition of each noisy bit in the history. Despite differences in their prediction

mechanism, both TAGE [66] and the hashed Perceptron [80] work by hashing the

global branch and path history into one or more indices to access prediction tables.

Ideally, the predictors would allocate unique table entries for each history pattern they

observe. In practice, they employ storage-saving mechanisms to avoid redundant al-

locations for the most common branch behaviors (e.g. TAGE uses an approximation

of PPM compression [16]). However, when the global history is noisy, i.e., uncorre-

lated branches constantly change directions or branches appear in nondeterministic

positions in the history, these storage-saving mechanisms do not work well, requiring

the online predictors to allocate unique entries for all possible history patterns. The

number of entries required to remember all history patterns is an exponential func-

tion of the history size. When these entries are not available, the predictors cannot

produce accurate predictions. Even if capacity were available, the runtime predictors

would require a long time to warm up the large number of table entries, and can

never generalize their predictions to unseen history patterns.

3.1.1 Example: Uncorrelated Branches

Figure 3.1 uses a simple example to demonstrate the impact of noise because

of uncorrelated branches. In the example program, the direction of the branch in

49

1 i n t x = rand () ;
2 i n t y1 = rand () , y2 = rand () , y3 = rand () ;
3
4 i f (x > 0) { . . . } // c o r r e l a t e d branch
5
6 i f (y1 > 0) { . . . } // unco r r e l a t ed branch
7 i f (y2 > 0) { . . . } // unco r r e l a t ed branch
8 i f (y3 > 0) { . . . } // unco r r e l a t ed branch
9

10 i f (x > 0) { . . . } // example branch

b3 b2 b1 b0

b3 0 0 0

Global History

Global History
Without Noise

2 Patterns = {0000, 1000}

16 Patterns = {0000, 0001, ..., 1110, 1111}

Figure 3.1: A noisy branch due to uncorrelated branches.

line 10 can be perfectly predicted by knowing the direction of the first branch in line

4. In theory, a two-level predictor needs only two prediction counters to predict this

branch: one counter to learn the outcome if the branch in line 4 is not taken, and one

counter if it is taken. Unfortunately, due to the presence of intermediate uncorrelated

branches, a two-level predictor with a 4-bit global history needs 16 counters to learn

a prediction for each possible history pattern: {0000, 0001, 0010, ... 1111}. But if

the history had no noise (e.g., if branches in lines 6-8 were always not taken), the

total number of patterns would be two {0000, 1000}, which is the ideal case. While

the state-of-the-art runtime branch predictors are more complicated than a simple

two-level predictor, the exponential growth of history patterns remains a problem.

50

1 i n t x = rand () ;
2 i f (x > 0) { . . . } // c o r r e l a t e d branch
3
4 i n t N = rand () ;
5 f o r (i n t i = 0 ; i < N; ++i) {
6 . . . // unre la t ed computation
7 }
8
9 i f (x > 0) { . . . } // example branch

Global History
if N = 0 . . if(x) T. . .

Global History
if N = 1 . if(x) N T. . .

Global History
if N = 2 if(x) N N T. . .

Global History
if N = 3 N N N T. . if(x)

Global History
if N = 4 N N N T. if(x) N

Figure 3.2: A noisy branch due to nondeterministic history positions.

3.1.2 Example: Nondeterministic Positions of Correlated Branches

Figure 3.2 demonstrates noisy history bits that result in nondeterministic po-

sitions of correlated branches in the history. In this example, instead of having un-

correlated branches that may change directions, there is a loop that iterates for a

random number of iterations. Each iteration of the loop inserts a not taken instance

of the loop branch (represented by N) in the history, ended with a taken instance

(represented by T). As a result, the correlated branch (represented by if(x)) appears

in different positions in the global history. Not only does this introduce redundant

history patterns, but it also causes prediction mechanisms like the Original Percep-

51

1 i n t x = 0 ;
2 i n t N = rand () ;
3 f o r (i n t i = 0 ; i < N; ++i) {
4 i f (some cond i t i on) {
5 x += 1 ;
6 }
7 }
8
9 i f (x > 2) { . . . } // example branch

Assuming 4 loop
iterations

N 0 T0NN 00N

N 1 T0NN 00N

N 0 T1NN 00N

N 1 T1NN 00N

N 1 T1NN 11N

24 = 16 Total Patterns

Figure 3.3: A correlated branch that causes an exponential number of patterns.

tron to not reliably identify the correlated branches. An accurate predictor has to

identify correlated branches using their program counters regardless of their positions

in the history.

3.1.3 Example: Exponential Number of Correlated Branch Patterns

Figure 3.3 shows a case where correlated branches have noisy behavior. The

branch in line 4 is the correlated branch that determines if the variable x is incre-

mented or not. The loop branches (indicated by N for each fall-through loop instance,

and T for the exit case) are not noisy because they do not produce redundant his-

tory patterns. Despite the lack of noise, the total number of history patterns is an

52

exponential function of the number of loop iterations. This is an example where the

correlated branches produce history patterns beyond the capacity of state-of-the-art

branch predictors.

3.1.4 Learning Prediction Functions to Overcome Noise

To predict noisy branches, we need an alternative prediction mechanism that

can ignore any noise in the history and is resilient to nondeterministic history posi-

tions and an exponential number of history patterns. This dissertation demonstrates

that a suitable prediction function is a 3-step process. First, the prediction function

identifies the correlated branches using their program counters regardless of their

positions, and thus can ignore noisy uncorrelated branches. Second, the prediction

function aggregates the information across long global histories by simply counting

the occurrences of correlated patterns, which often reduces an exponential number of

history patterns to only a few representative counts with only negligible loss of in-

formation. Third, the prediction function should be able to learn arbitrary functions

of the aggregated view of the correlated branches. The rest of this chapter demon-

strates that convolutional neural networks are suitable for learning these prediction

functions.

3.2 Motivation Example: Using Convolutional Neural Net-
works to Predict a Noisy Branch

This section uses the source code in Figure 3.4 to show how CNNs can predict

otherwise hard-to-predict branches. The code is a simplified version of a hot segment

53

1 i n t x = 0 ;
2 f o r (i n t i = 0 ; i < N; ++i) {
3 i f (random condit ion (alpha)) { // Branch A
4 x += 1 ; // x increments i f Branch A i s not taken
5 }
6 }
7
8 unco r r e l a t ed f un c t i on () ;
9

10 f o r (i n t j = 0 ; j < x ; ++j) { // Branch B
11 . . .
12 } // e x i t s when Branch B i s taken

Branch
History

Convolutional
Layer

Outputs

Sum Pooling
Layer

Outputs

Final
 Fully-connected

Neuron
PC Direction

X 1
B 0

X
1A
1

1
A 0

X
A 0

Channel 0 Channel 1

0 0
1 0

0

0
00
00

1

0 1
1 2

Predict
Taken

If Greater or
Equal

0

Youngest
Branch

Uncorrelated
Branches

Figure 3.4: A program with a hard-to-predict branch (Branch B) and a trained CNN
that can accurately predict the branch.

of the benchmark leela, which is responsible for a significant fraction of the total

number of mispredictions.

3.2.1 Can We Predict Branch B Using the Global History?

Branch B is the exit branch of the second loop in the source code. The number

of iterations of the second loop equals the variable x, which is set by the first loop.

54

Branch B is taken only if the variable j (the loop variable) is equal to the variable

x. There is enough information in the global history to infer the values of x and j :

x equals the number of not taken instances of Branch A in the history, and j equals

the number of not taken instances of branch B. Thus, in theory, a branch predictor

should be able to predict this branch accurately.

3.2.2 Why Do State-of-the-Art Predictors Fail to Predict Branch B?

Unfortunately, state-of-the-art predictors have no way of knowing which branches

in the global history are useful for prediction. Thus, as explained in Chapter 2, they

hash the whole global history and attempt to learn a prediction for the history pattern

as a whole. However, due to the large number of loop iterations, the probabilistic

nature of the correlated branches, and the uncorrelated branches close to Branch B,

the number of observable history patterns for Branch B is beyond what online predic-

tors can predict. For example, if N=10, and uncorrelated function has 20 conditional

branches, a TAGE-like predictor has to allocate storage for at least 10×2(10+20) history

patterns. This amount of storage is infeasible. As a result, Multi-Perspective Per-

ceptron and TAGE-SC-L predict branch B with 81% accuracy, which is only slightly

more accurate than always predicting not taken with 78% accuracy.

Note that even if a runtime table-based predictor has enough storage to re-

member all history patterns it sees, it will take a long time to warm up and can never

generalize its predictions to the history patterns it has not seen.

55

3.2.3 How Does a CNN Predict Branch B Accurately?

A CNN can directly infer the values of variables x and j from the global

history, allowing it to predict Branch B both accurately and efficiently. Figure 3.4

shows the outputs of a manually trained CNN that predicts the direction of Branch

B 100% accurately. The input on the left is a snapshot of the global history before

predicting branch B. The program counters of branches that are not involved in the

prediction (i.e. uncorrelated branches) are marked as X. The history is encoded as

one-hot vectors2 (not shown in the figure for brevity) and fed into a convolutional

layer. The convolution width is 1 and there are 2 channels. Channel 0 is trained to

identify the not-taken instances of Branch B. Channel 1 is trained to identify not-

taken instances of Branch A. For this example, the CNN uses a sum-pooling layer

as wide as the history. Thus, the outputs of sum-pooling are simply the counts of

not taken instances of Branch A and Branch B, which equal the values of variables j

and x right before the branch executes. The final fully-connected neuron is trained to

predict taken only if j ≥ x (sum-pooled channel 0 ≥ sum-pooled channel 1), resulting

in 100% prediction accuracy.

3.2.4 Does Offline Training Work?

Thus far, I have shown that a manually configured CNN can predict Branch

B. Now, I show that we can train a CNN offline using profiling. Suppose the random

condition in line 3 of Figure 3.4 is set using a Bernoulli distribution that is true with

2As Section 2.8.1 explains, one can replace one-hot transformations with trainable embeddings
for a more efficient representation of branches.

56

0.2 0.4 0.6 0.8 1.0
 in the Test Set

0

20

40

60

80

100

Te
st

 S
et

 A
cc

ur
ac

y
(%

)

CNN with training set 3: = 0.5, N ~ rand(1,4)
CNN with training set 2: = 1.0, N ~ rand(5,10)
CNN with training set 1: = 1.0, N = 10
64KB TAGE-SC-L with runtime training

Figure 3.5: Accuracy of predicting Branch B from Figure 3.4. N ∼ rand(5, 10) in
the test set.

probability α, and N is set using a uniform distribution with adjustable minimum and

maximum. I collected three different training sets for Branch B with three program

inputs: (1) N = 10, α = 1, (2) N ∼ rand(5, 10), α = 1, and (3) N ∼ rand(1, 4),

α = 0.5. I then evaluated the accuracy of CNNs trained on each of the three training

sets on runs of the program with N ∼ rand(5, 10) and α ranging from 0.2 to 1. I

also evaluated the accuracy of a 64KB TAGE-SC-L (with normal runtime training)

on the same test sets. Figure 3.5 shows the results. We see that CNNs trained using

sets (1) and (2) perform even worse than TAGE-SC-L, especially when α < 1. These

two training sets do not expose input-independent branch relationships to the CNN.

When training with the set (1), the CNN likely learns that the length of the second

loop is always 10, which is not true. When training with the set (2), since Branch A

is always not taken, the CNN might learn that the length of the second loop equals

the length of the first loop, which is true only when α = 1. However, the branch

behavior in the set (3) is diverse enough to expose the input-independent correlation.

57

Thus, the CNN trained with the set (3) can predict Branch B with 100% accuracy

for runs with any value of α.

3.2.5 Is Representativeness of Profiling Required?

No! Note that the range of N in the set (3) (N ∼ rand(1, 4)) does not

overlap with the range of N on evaluation runs (N ∼ rand(5, 10)) at all. Yet, the

trained model still generalizes perfectly to history patterns it has not seen. The key

criterion for a good training set is good coverage of different branch behaviors, not

representativeness of history patterns.

3.2.6 Can a CNN Predict All Branches?

A CNN is only accurate if there exist persistent branch relationships that are

independent of input data and program phase behavior. Sometimes no branch in the

global history can provide any information about the outcome of the target branch.

For example, some branches depend on data that was stored in memory long before

the branch executes. In this case, there is nothing in the recent branch history that

is correlated to the data in memory. Using only global branch history as input, it is

impossible to learn any branch prediction strategy offline. Thus, the baseline runtime

branch predictor is still needed to predict these branches.

3.2.7 Can Other Machine Learning Models Predict Branches?

Any sophisticated learning model can learn invariant branch relationships from

large training sets. For example, Recurrent Neural Networks (RNNs) can also predict

58

the same type of hard-to-predict branches as BranchNet. While this Chapter pro-

vides some quantitative comparison of different types of neural networks, the focus of

this dissertation is on using convolutional neural networks because of a clearer path

towards practical inference engines. Section 5.2.5.5 discusses the problems of using

RNNs as inference engines.

3.3 BranchNet

Having described the general principles behind using CNNs for branch pre-

diction, I now present BranchNet. BranchNet refers to a family of CNN models,

with configurable parameters and design features. The goal of this section is to show

the available headroom in using CNNs for branch prediction. Thus, this section

introduces Big-BranchNet, a version of BranchNet that is optimized for prediction

accuracy and does not have a practical on-chip inference engine. This section also de-

tails the training process of BranchNet and shows the results of using Big-BranchNet

for predicting noisy branches compared to a TAGE-based baseline.

PC
 a

nd
 P

at
h

H
is

to
ry

Inputs

H1

H5

Em
be

dd
in

g

(H5)

1D
 C

on
vo

lu
tio

n

(H5, E)

Su
m

 P
oo

lin
g

(H5, C5)

 (H1) (H1, E) (H1, C1)

H
id

de
n

Fu
lly

-c
on

ne
ct

ed
 L

ay
er

(H5/P5, C5)

(H1/P1, C1)

Si
ng

le
 S

ig
m

oi
d

(N)

Slice 1

Slice 5

Feature Extraction Classification

Prediction

Figure 3.6: High-level diagram of the BranchNet CNN architecture.

59

3.3.1 BranchNet Building Blocks

Figure 3.6 shows a high-level diagram of BranchNet. The model is composed

of 5 feature extraction sub-networks and two fully-connected layers. I call each feature

extraction sub-network a slice.3 Each slice uses an embedding layer, a convolution

layer, and a sum-pooling layer to extract features out of the branch history. Different

slices operate on different history lengths, with the history lengths forming a geometric

series. The benefits of using geometric history lengths are well studied for branch

predictors [62]. Finally, the outputs of the slices are concatenated and fed into two

sequential fully-connected layers to make a prediction.

The following paragraphs explain the functionality of all major components of

the model. Note that BranchNet is defined in terms of a set of architecture knobs that

determine the size of the model. Typically increasing the size of the model results in

better prediction accuracy albeit with diminishing returns.

History Format. To represent each branch, the least significant bits of its

program counter and its direction are concatenated and treated as an integer. Thus,

if we use p bits of PC, and a history size of H for a slice, the input history is a

1-dimensional array of H integers, ranging from 0 to 2p+1 − 1.

Embedding Layers. Embeddings transform each branch in the input his-

tory to a dense vector of numbers. The size of the embedding vectors is controlled

by knob E . Note that as mentioned in Section 2.8.1, we could have used one-hot

3In deep learning, sub-networks in a larger neural network are often called branches. I avoid this
terminology and use the term ”slice” to avoid confusion with branch instructions.

60

encodings instead of the embeddings, but I found that using embeddings improved

the convergence and training time of BranchNet.

Convolutional Layers. Ci denotes the number of output channels for slice

i and K denotes the convolution width. With more output channels, BranchNet can

learn more correlated features in the branch history. With a larger K , BranchNet can

identify longer sequences of correlated branches. BranchNet always uses a convolution

stride of 1. The convolution operation is followed by batch normalization and ReLU

activations. Since BranchNet has only a few layers, the choice of activation does not

significantly impact its training quality. Thus, even though using ReLU activations

slightly improves the training time compared to using Tanh or Sigmoid functions,

it does not significantly impact the accuracy if the model is always trained until

convergence.

Sum-Pooling Layers. In each slice, a sum-pooling layer down-samples the

convolution outputs with a width and stride of Pi . BranchNet uses geometric pooling

widths proportional to the history lengths of each slice. Larger pooling widths for

longer history lengths work well because branches become noisier deeper into the

history. By eliminating fine-grained positions of the identified features, wide sum-

pooling layers make BranchNet resilient against shifts in history.

Fully-connected Layers. The first fully-connected layer consists of N neu-

rons. Each neuron is connected to the outputs of all slices. The fully-connected

neurons are followed by batch normalization and ReLU activation functions. The fi-

nal fully-connected layer is made of a single neuron with a Sigmoid activation function

to make the final prediction.

61

Table 3.1: Big-BranchNet and Tarsa-Float architecture knobs.

Knob Big-BranchNet Tarsa-Float
H: History sizes 42,78,150,294,582 200
C: Convolution channels 32,32,32,32,32 32
P: Pooling widths 3,6,12,24,48 1
p: Branch PC width 12 7
E: Embedding dimensions 32 N/A
K: Convolution width 7 1
N: Hidden neurons 128, 128 N/A

3.3.2 Big-BranchNet and Tarsa’s CNN

BranchNet can be viewed as a generalization of Tarsa’s CNN.

The reasoning behind using BranchNet for branch prediction is equally true for

Tarsa’s CNN, the first CNN branch predictor that I described in Section 2.5. In fact,

the architecture knobs of BranchNet can be configured to be the same architecture as

Tarsa’s CNN. Thus, BranchNet can be considered a generalization of Tarsa’s CNN.

Table 3.1 reports the architecture knobs for Big-BranchNet and Tarsa’s CNN (denoted

by Tarsa-Float).

The major differences between Big-BranchNet and Tarsa’s CNN are as follows.

(1) Through using multiple slices, BranchNet uses geometric history lengths. This is

a good example of how we can adapt insights from conventional branch predictors

to CNN models. (2) Big-BranchNet uses pooling widths that are proportional to the

history length. In contrast, Tarsa’s CNN does not use any pooling. The pooling layer

enables Big-BranchNet to efficiently aggregate information across longer histories and

it results in smaller fully-connected layers. After sum-pooling, the size of the fully-

connected layer inputs is 1920. While the size of the fully-connected layer inputs of

62

Tarsa’s CNN is 6400. (3) BranchNet uses wide convolution layers (each filter examines

a 7-branch window). Tarsa’s convolution filters examine one branch at a time. (4)

Big-BranchNet uses hidden fully-connected layers.

At the first glance, it may seem like that Big-BranchNet is just a bigger and

more accurate version of Tarsa’s CNN. However, the design differences of Branch-

Net (namely geometric history lengths, sum-poolings, and wide convolutions) enable

better storage-efficiency for building practical inference engines. This is described in

detail later in Chapter 5. For now, this chapter investigates the prediction accuracy

without considering the size and the storage efficiency of the models.

3.3.3 Prediction Strategy

BranchNet as a Helper Predictor. Compared to traditional runtime pre-

dictors, BranchNet is a complex and costly prediction mechanism. For noisy branches,

using BranchNet is cost-efficient. For other branches, BranchNet does not provide

any value because the baseline runtime predictor already predicts those branches ac-

curately, or because the branch is hard to predict for some reason other than noisy

history bits. Thus, BranchNet is not used as a replacement for state-of-the-art run-

time predictors. Instead, BranchNet is added as a helper predictor to the runtime

predictors and provides predictions for only the branches that benefit the most from

BranchNet.

Per-Branch Models. There are two general choices in using CNNs as helper

predictors: a CNN model responsible for predicting all noisy branches, or a collection

of CNN models where each model is responsible for predicting one noisy branch. The

63

latency of evaluating small per-branch models is less than evaluating a big global

model. On the other hand, a global model may be more storage-efficient because dif-

ferent branches may be correlated with similar history patterns. In this dissertation,

I use per-branch BranchNet models to optimize for the prediction latency.

3.3.4 Training Process

The prediction capability of BranchNet comes at the cost of computationally-

expensive training and the need for large training data. Therefore, it is not possible

to train BranchNet at runtime. Instead, BranchNet uses offline (i.e., compile-time)

training by profiling targeted applications. Offline training works if a predictor can

learn invariant branch relationships that are true at all phases of a program with

any inputs. By profiling runs of a program with multiple inputs, one can collect

diverse training examples to train powerful machine learning models that can infer

such invariant relationships. After offline training, one can attach the trained models

(i.e., the collection of weights that represent the branch relationships) to the program

binary. At runtime, the branch predictor uses the trained models to predict the

directions of these hard-to-predict branches without further training.

Step-by-Step Process. First, profile the target program with a diverse set

of inputs and collect example branch traces. Divide the profiled traces into two

mutually exclusive sets: the training set and the validation set. Measure the MPKI

of the baseline runtime predictor (e.g., TAGE-SC-L) on the validation set and identify

the 100 most mispredicting branches. Train a BranchNet model for each of the 100

most mispredicting branches using the branch traces from the training set. Measure

64

the MPKI of the trained BranchNet models on the validation set. Compute the

MPKI reduction compared to the baseline predictor for all 100 branches. Select the

most improved branches and mark them to be predicted by BranchNet. When using

BranchNet inference engines (Chapter 5), the number of selected BranchNet models

is limited by the capacity of the engine. For this dissertation, I also produce a test

set: a third set of branch traces generated with input data different from the training

set and the validation set. I use the test set to report the final accuracy of BranchNet.

3.3.5 Results

This section shows the effectiveness of BranchNet on SPEC2017 Integer Speed

Benchmarks. I chose SPEC benchmarks because of access to various inputs for the

same benchmark. Having a diverse set of inputs for each benchmark is necessary to

test the generalization of offline training to unseen data. While this section does not

show the results for any practical branch predictor, Big-BranchNet results demon-

strate the available headroom of branch prediction with offline deep learning.

3.3.5.1 Evaluation Methodology

I run each SPEC2017 Integer Speed benchmark using inputs provided by SPEC

(train and ref inputs) and Alberta inputs [5]. I collect up to 10 branch traces from

each workload’s representative regions using SimPoints [70]. I then train BranchNet

models using the process described in Section 3.3.4. Table 3.2 shows the partitioning

of inputs to generate the datasets needed for offline training. All numbers reported

in this section refer to measurements on the test set (the SPEC ref inputs), adjusted

65

Table 3.2: Inputs of SPEC workloads used to evaluate BranchNet.

Inputs Purpose
The training set Alberta Training BranchNet models
The validation set SPEC train Identifying best BranchNet branches
The test set SPEC ref Final evaluation of accuracy

according to SimPoint weights. I do not use SimPoint weights during training to

encourage a general solution that works even for infrequent phases. My training

infrastructure takes about 1 hour and 20 minutes on 4 Nvidia GTX 1080 Ti GPUs

to train all BranchNet models for a given benchmark and evaluate the BranchNet

models on all validation set and test set traces. Training could be easily sped up

with more GPUs since BranchNet models are trained in parallel. The evaluation

infrastructure is open-sourced and available on GitHub [1].

I make a slight adjustment to the training and validation inputs of gcc and

xz. As part of their inputs, these two benchmarks have high-level control flags (opti-

mization settings and compression level, respectively). Since these control flags likely

do not change frequently in deployment, it is reasonable to train specialized CNN

models targeting runs with certain execution flags. The data inputs remain different

in training, validation, and test sets.

The Adam optimizer [39] with a binary cross-entropy loss is used for training.

Training is always done for 4000 steps regardless of the training set size. The training

batch size is 2048. The training steps are divided into groups of 1000 steps each

with learning rates of 0.1, 0.02, 0.004, and 0.0008, respectively. The same training

hyperparameters are used for training BranchNet and Tarsa’s CNN.

I use arithmetic mean to report the average MPKI of a collection of bench-

66

mcf
leela xz

deepsjeng
omnetpp gcc

exchange2
x264

perlbench

xalancbmk
mean

0.0

2.5

5.0

7.5

10.0

12.5

15.0

M
PK

I

Improvements with 8 Big-BranchNet models
Improvements with 25 Big-BranchNet models
Improvements with 50 Big-BranchNet models
Remaining Mispredictions

12.6%

34.0%
23.7% 17.1% 20.3%

2.5% 2.7% 8.6%
0.0% 0.0%

19.1%

MPKI Reduction with 50 Big-BranchNet models (%)

Figure 3.7: MPKI Reduction of using Big-BranchNet to predict a few noisy branches
along a 64KB TAGE-SC-L.

marks. The mean MPKI reduction is the relative MPKI of reduction of the mean

MPKI of a given configuration compared to the mean MPKI of the baseline.

3.3.5.2 Measuring the Impact of Improving a Few Hard-to-Predict Branches

Figure 3.7 shows the potential of using Big-BranchNet to predict the top few

noisy branches that benefit the most from CNNs. Each bar shows the MPKI of 64KB

TAGE-SC-L when running SPEC2017 Integer Speed benchmarks. The segments in

each bar show the mispredictions that could be avoided if we use Big-BranchNet to

predict up to 8, 25, or 50 static branches. The figure demonstrates that for most

benchmarks, predicting 8 branches with Big-BranchNet is sufficient for significant

overall MPKI reduction, and often predicting more than 25 branches with CNNs has

diminishing returns. This result justifies the hybrid approach of using BranchNet to

67

mcf
leela xz

deepsjeng gcc
omnetpp

exchange2
x264

perlbench

xalancbmk
mean

0.0

2.5

5.0

7.5

10.0

12.5

15.0

M
PK

I

64KB TAGE-SC-L
Unlimited GTAGE
Unlimited GTAGE-SC, No local Components
Unlimited MTAGE-SC
Unlimited MTAGE-SC Warmed Up
Unlimited MTAGE-SC + Big-BranchNet

5

0

5

10

15

20

25

N
or

m
al

iz
ed

 M
PK

I R
ed

uc
tio

n
(%

)
O

ve
r U

nl
im

ite
d

M
TA

G
E-

SC

6.5%

15.7%

8.7%

3.8%

0.0%
1.3%

0.1%
1.5%

0.0% 0.0%

7.6%

Figure 3.8: MPKI of MTAGE-SC and Big-BranchNet on SPEC2017 benchmarks.

predict a few noisy static branches and using state-of-the-art runtime predictors for

all other branches.

Note that since the same input signals for TAGE-SC-L and Big-BranchNet, the

difference in prediction accuracy is mainly due to the capability of CNNs in identifying

useful information in the global history. Thus, the 19.1% reduction in MPKI can be

interpreted as an approximation for the fraction of branch mispredictions due to

noisy history. The remaining mispredictions are due to data-dependent or inherently

unpredictable branches.

3.3.5.3 Comparison to Unlimited MTAGE-SC

Figure 3.8 shows the MPKI reduction of using Big-BranchNet along with

MTAGE-SC, the best predictor in the unlimited storage category of CBP 2016 [64].

68

Adding Big-BranchNet to MTAGE-SC reduces the average MPKI from 3.42 to 3.16

(7.6% reduction). On average, BranchNet improves the prediction accuracy on 19

static branches per benchmark, varying from 71 improved static branches in leela to

no improved branches in gcc, xalancbmk, and perlbench.

There is a large variance in MPKI reduction among the ten benchmarks. In

general, high-MPKI benchmarks tend to have hard-to-predict branches that are more

suitable for BranchNet. In particular, the MPKI of benchmarks leela, xz, mcf, and

deepsjeng are reduced significantly. On the other hand, the MPKI reduction on om-

netpp is small since the main hard-to-predict branches in omnetpp are data-dependent

branches, which BranchNet cannot improve. Even worse, there is almost no MPKI

gain for gcc. Gcc contains many static branches that equally contribute to the total

MPKI because of its large code footprint and many execution phases. Our current

methodology cannot improve such benchmarks significantly. Exchange2, x264, perl-

bench, and xalancbmk do not have many hard-to-predict branches, so there is little

opportunity for BranchNet.

To better understand the limitations of TAGE-SC, Figure 3.8 also shows the

MPKI of MTAGE-SC without certain key components (GTAGE is the global his-

tory component of MTAGE). Most of the accuracy gap between TAGE-SC-L and

MTAGE-SC is due to the larger size of the global history TAGE and the Statistical

Corrector. This means that high-MPKI benchmarks exert high allocation pressure

on the predictor tables, which is a sign that their global histories are indeed noisy.

The local history components are also significant for a few benchmarks.

I also evaluated MTAGE-SC with an additional warm-up phase of 20 million

69

instructions. The MPKI improvement due to warm-up is not significant.

3.3.5.4 Characteristics of Improved Branches

To better understand why BranchNet outperforms TAGE predictors, I have

examined the source code of some of the most improved branches in mcf and leela. I

describe my observations on the nature of these branches.

Most mispredicting branches of mcf appear in the qsort function. Branches

in the comparison function are naturally hard to predict as they depend on data

in an unsorted array. BranchNet does not improve these data-dependent branches.

However, there are many branches in the body of qsort that depend on the results

of these comparisons. TAGE does not learn these relationships because of the noisy

nature of the history when running qsort. BranchNet, on the other hand, learns to

ignore the noise.

Leela spends most of its execution time evaluating the properties of a Go

board. The directions of most mispredicting branches are functions of these proper-

ties. In theory, many of these branches should be predictable because there are often

other branches in the global history that depend on a shared property. However,

there are also many uncorrelated branches, which make the history too noisy. Again,

BranchNet circumvents the noisy history by only counting the correlated branches.

Although the exact forms of the necessary prediction functions vary (e.g., the num-

ber of required filters, the nonlinear function, the minimum history length), they are

conceptually similar to the example provided in Section 3.2.

Figure 3.9 shows the accuracy of the 16 most improved branches of leela and

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Most Improved Branches of leela

0
20
40
60
80

100
A

cc
ur

ac
y

(%
)

64KB TAGE-SC-L Unlimited MTAGE-SC Big-BranchNet

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Most Improved Branches of mcf

0
20
40
60
80

100

A
cc

ur
ac

y
(%

)

0.0

0.1

0.2

0.3

M
PK

I R
ed

uc
tio

n
O

ve
r M

TA
G

E-
SC

0.0

0.1

0.2

0.3

M
PK

I R
ed

uc
tio

n
O

ve
r M

TA
G

E-
SC

Figure 3.9: Accuracy of most improved branches using Big-BranchNet.

mcf compared to unlimited MTAGE-SC. The branches are sorted using MPKI re-

duction from left to right. In many cases, Big-BranchNet improves the prediction

accuracy to almost 100%. For example, take the fourth branch in leela and the top

two branches in mcf, BranchNet improves their accuracies from 79.1%, 73.9%, and

67.4% to 99.98%, 98.4%, and 98.6%. Even with its large storage budget, MTAGE-

SC predicts the same branches with much lower accuracy (91.4%, 78.9%, and 82.6%

respectively). Note that even if BranchNet cannot predict these branches 100% ac-

curately, any improvement in accuracy results in high MPKI reduction because these

branches are among the most frequently mispredicted branches.

71

5
0
5

10
15
20
25
30
35

M
PK

I R
ed

uc
tio

n
(%

)
Tarsa-Float vs 64KB TAGE-SC-L
Big-BranchNet vs 64KB TAGE-SC-L

m
cf

le
el

a xz

de
ep

sj
en

g

om
ne

tp
p

gc
c

ex
ch

an
ge

2

x2
64

pe
rlb

en
ch

xa
la

nc
bm

k

m
ea

n2
0
2
4
6
8

10

M
PK

I R
ed

uc
tio

n
(%

)

Tarsa-Float vs Unlimited MTAGE-SC
Big-BranchNet vs Unlimited MTAGE-SC

Figure 3.10: MPKI Reduction of Big-BranchNet and Tarsa-Float.

3.3.5.5 Comparison to Tarsa’s CNN

Figure 3.10 shows the MPKI reduction of Big-BranchNet and Tarsa’s CNN

compared to 64KB TAGE-SC-L (the top figure) and Unlimited MTAGE-SC (the

bottom figure). Both CNN models are impractical as inference engines. However,

note that Big-BranchNet is much more accurate than Tarsa’s CNN due to an archi-

tecture that is more tailored toward the needs of branch prediction. Also, note that

the difference between Big-BranchNet and Tarsa-Float is more prominent when com-

pared to an unlimited MTAGE-SC baseline. This result means that the improved

accuracy due to Tarsa-Float can also be achieved by increasing TAGE’s capacity,

while Big-BranchNet’s accuracy improvements cannot be replicated with increased

TAGE capacity. Since Tarsa’s CNN and BranchNet’s prediction mechanisms are fun-

damentally the same, the higher accuracy of Big-BranchNet is only the consequence

of different architectural choices. Big-BranchNet has a higher capacity to learn com-

72

Table 3.3: Sensitivity of BranchNet to the hidden fully-connected layers.

MPKI Reduction
Configuration leela mcf xz deepsjeng average
Hidden neurons = {} 20.2% 5.7% 10.2% 13.8% 11.7%
Hidden neurons = {128} 31.1% 10.4% 18.0% 17.9% 18.7%
Hidden neurons = {32, 32} 32.1% 10.8% 19.5% 18.1% 19.5%
Hidden neurons = {128, 128} (Big-BranchNet) 33.3% 11.4% 20.1% 18.5% 20.2%

plicated prediction functions. The next section analyzes which design choices are the

most important for optimizing the accuracy.

3.3.5.6 Comparison to Other Model Choices

Sensitivity to CNN architecture. This section reports the sensitivity of

the MPKI reduction of Big-BranchNet to its architecture knobs. To save time and

computing resources, I only ran the sensitivity studies on benchmarks leela, mcf, xz,

and deepjseng, which are improved the most by BranchNet.

Table 3.3 shows that the hidden fully-connected layers are critical for achieving

Big-BranchNet’s high accuracy. Without any hidden layers, the MPKI reduction of

the CNN model is 40% less than Big-BranchNet. The number of layers and the

number of neurons per layer are also important factors for achieving high accuracy.

Table 3.4 shows that the slices with longer histories are critical for high ac-

curacy. In fact, Big-BranchNet is not the most accurate configuration as its history

is not as long as it could be. Furthermore, the last two configurations show that a

single-slice design is not as accurate as a multi-slice design with geometric history

lengths. Note that I increased the number of convolution filters to match the total

number of filters across the five slices of Big-BranchNet. Geometric history lengths

73

Table 3.4: Sensitivity of BranchNet to the slice history lengths.

MPKI Reduction
Configuration leela mcf xz deepsjeng average
Histories = {42,78,150} 29.1% 8.1% 11.5% 9.9% 15.0%
Histories = {42,78,150,294} 32.1% 10.4% 18.2% 13.9% 18.5%
Histories = {42,78,150,294,582} 33.3% 11.4% 20.1% 18.5% 20.2%
(Big-BranchNet)
Histories = {42,78,150,294, 582, 870} 33.9% 11.6% 21.5% 20.0% 20.9%
Histories = {582}, 160 convolution filters 30.3% 8.4% 16.2% 17.8% 17.3%
Pooling width = 48
Histories = {582}, 160 convolution filters 30.5% 10.3% 18.1% 17.8% 18.5%
Pooling width = 3

allow the training algorithm to more easily distinguish correlated branches based on

their coarse-grained distance to the noisy branch.

Table 3.5 shows that geometric pooling width proportional to the geometric

history lengths is the correct design choice. The rationale is that the farther the

correlated branch is, the more nondeterministic its position is in the history. Thus, a

wider pooling width helps ignore the nondeterministic positions. But, BranchNet still

benefits from smaller pooling widths for slices with shorter history lengths. Pooling

widths proportional to the history lengths is a good middle ground that maximizes

the accuracy.

Table 3.5: Sensitivity of BranchNet to the pooling width.

MPKI Reduction
Configuration leela mcf xz deepsjeng average
Pooling Widths = {36,36,36,36,36} 32.4% 9.8% 17.0% 18.0% 18.6%
Pooling Widths = {3,3,3,3,3} 32.2% 11.1% 19.3% 17.9% 19.5%
Pooling Widths = {12,24,48,96,192} 33.2% 10.3% 20.0% 17.9% 19.7%
Pooling Widths = {1,2,4,8,16} 33.1% 11.3% 20.0% 18.4% 20.1%
Pooling Widths = {3,6,12,24,48} 33.3% 11.4% 20.1% 18.5% 20.2%
(Big-BranchNet)

74

Table 3.6: Sensitivity of BranchNet to convolution width.

MPKI Reduction
Configuration leela mcf xz deepsjeng average
Convolution width = 1 30.5% 10.5% 17.5% 17.6% 18.4%
Convolution width = 4 32.6% 11.1% 19.5% 18.2% 19.7%
Convolution width = 7 (Big-BranchNet) 33.3% 11.4% 20.1% 18.5% 20.2%
Convolution width = 10 33.5% 11.5% 20.9% 18.6% 20.5%

Table 3.7: Sensitivity of BranchNet to number of convolution filters.

MPKI Reduction
Configuration leela mcf xz deepsjeng average
8 filters per slice 32.1% 11.0% 19.6% 18.1% 19.6%
16 filters per slice 32.7% 11.2% 20.0% 18.1% 19.9%
32 filters per slice (Big-BranchNet) 33.3% 11.4% 20.1% 18.5% 20.2%
64 filters per slice 33.7% 11.5% 20.1% 18.6% 20.4%

Table 3.6 shows the impact of the convolution width on BranchNet’s accuracy.

A wider convolution width allows the model to easier distinguish branch patterns

when their order is relevant in a very small window. This result justifies the choice

of wide convolution filters compared to Tarsa’s CNN.

Table 3.7 shows the impact of the number of convolution filters on BranchNet’s

accuracy. While adding more convolution filters generally improves the accuracy, it

has diminishing returns. Convolution filters are essential for detecting distinct branch

patterns. The fact that BranchNet remains accurate with such a low number of

convolution filters shows that the model uses only a few correlated branch patterns

to make accurate predictions.

Table 3.8 shows that BranchNet is not sensitive to the embedding dimensions

and an embedding table with 32 dimensions is sufficient for high accuracy.

75

Table 3.8: Sensitivity of BranchNet to embedding width.

MPKI Reduction
Configuration leela mcf xz deepsjeng average
Embedding Width = 32 (Big-BranchNet) 33.3% 11.4% 20.1% 18.5% 20.2%
Embedding Width = 64 33.2% 11.2% 20.1% 18.5% 20.1%
Embedding Width = 128 33.2% 11.3% 20.1% 18.3% 20.1%

Big-BranchNet vs. Recurrent Neural Networks. Instead of CNNs, we

can use Recurrent Neural Networks (RNNs) to learn branch prediction functions.

Like CNNs, RNNs can isolate correlated branches and ignore any noise. RNNs are

typically used for sequential tasks whether the order of individual items in a sequence

of items conveys significant information (e.g., RNNs are commonly used for language

translation, where the order of words in sentences conveys grammatical information).

While it is intuitive to think that sequential processing is also useful for branch predic-

tion, Figure 3.11 shows that Big-BranchNet is more accurate than LSTM and GRU

models sized similarly to Big-BranchNet. I have observed that the fine-grain order

of branches either does not matter or can be efficiently captured by wide convolution

filters. Furthermore, CNN models are faster to train than RNN models. Finally, I see

a clearer path for practical inference engines for CNNs compared to RNNs (discussed

in Chapter 5.2.5.5). Thus, in this dissertation, I focus only on convolutional neural

networks.

3.4 Coverage vs. Representativeness

Using offline training for branch prediction has traditionally been difficult be-

cause of the reliance of prior work on the representativeness of the profiled programs

76

m
cf

le
el

a xz

de
ep

sj
en

g

om
ne

tp
p

gc
c

ex
ch

an
ge

2

x2
64

pe
rlb

en
ch

xa
la

nc
bm

k

m
ea

n

0
5

10
15
20
25
30
35

M
PK

I R
ed

uc
tio

n
(%

)

CNN (Big-BranchNet)
LSTM
GRU

Figure 3.11: MPKI reduction of Big-BranchNet vs. Recurrent Neural Network mod-
els.

(Section 2.4). However, BranchNet is easier to adopt because it needs high coverage

in the training set, not representativeness. While providing an extract metric for the

coverage and the representativeness of a training set is not straightforward, I aim to

showcase this distinction using two ways. One, I show the sensitivity of BranchNet to

an imperfect metric of coverage. Two, I show the ineffectiveness of training TAGE-

SC-L offline with high-coverage but not representative training sets to differentiate

between the training mechanisms of CNNs and table-based predictors.

3.4.1 Sensitivity of BranchNet to Coverage

Ideally, a high coverage value should imply that there are enough examples in

the training set to expose input-independent branch behavior to BranchNet. However,

defining a precise metric with this definition is not straightforward. One option is to

use branch coverage metrics commonly used for software testing, e.g., the fraction of

the branches that are executed at least once, or the fraction of conditional branches

77

that were both taken and not taken at least once. The problem with such metrics is

that they do not say anything about the occurrence of longer branch patterns (either

different static branches or different dynamic instances of the same branch). For

example, suppose a loop in the training set is always executed for exactly one iteration.

According to software testing coverage metrics, the training set has 100% coverage

as the loop branch is not taken at least once and taken at least once. However,

this may not be enough to expose input-independent branch behavior for cases when

the loop is never executed or is executed for more than one iteration. On the other

extreme, capturing all possible branch patterns to define coverage is also not feasible

(exponentially high number of total possible patterns) and not useful, because the

whole point of offline training for BranchNet is that the training set does not need to

include exactly the same branch patterns as the test set. Nonetheless, I will attempt to

show the sensitivity of BranchNet to training set coverage through imperfect proxies

or metrics.

3.4.1.1 Sensitivity to the Training Set Size

An imperfect but convenient way to demonstrate the impact of coverage on

prediction accuracy is to artificially limit the training to only a subset of available

training examples. Figure 3.12 shows the MPKI reduction of BranchNet over unlim-

ited MTAGE-SC using different training set sizes. Training with all the SimPoints

of one program provides much better coverage of branch behavior compared to using

only one SimPoint, which improves the generalization of the trained models. Simi-

larly, using more than one input further improves the MPKI reduction.

78

1 input

1 sim
point

1 input

2 sim
points 1 input

3 sim
points 1 input

4 sim
points

1 input

all si
mpoints

2 input

all si
mpoints

3 input

all si
mpoints

0
5

10
15
20
25
30
35
40

M
PK

I R
ed

uc
tio

n
(%

)

leela mcf

Figure 3.12: Sensitivity of Big-BranchNet to the training set size.

The first left-most data points corresponding to benchmark leela also make

another strong case that BranchNet relies on Coverage for training. The first data

point with the lowest accuracy uses the SimPoint with the largest weight (i.e., most

representative region) of the training traces. But as more SimPoints are added to the

training set, the accuracy of BranchNet improves. In fact, the biggest jump in MPKI

reduction is when the least representative regions of the training trace (SimPoints

with the smallest weights) are added to the trace. This sudden jump in accuracy

shows that the key to learning input-independent behavior is exposing less frequently

occurring patterns to the training set for better coverage.

Note that Alberta inputs for mcf are randomly generated and have no con-

nections to the SPEC ref input. It is quite unlikely that all Alberta inputs for mcf

are representative of the SPEC ref input. But BranchNet can infer persistent branch

relationships from these randomly generated inputs to improve the accuracy of mcf

on other inputs.

It is also worth noting the different sensitivity of leela and mcf to the training

79

set size. While BranchNet’s accuracy for leela is significantly increasing with using

more SimPoints, BranchNet’s accuracy for mcf is mainly sensitive to the number

of inputs. This difference is because SimPoints of leela generally cover the same

region of the code with different runtime behavior, but SimPoints of mcf either cover

completely different code regions (which does not improve the coverage for many noisy

branches) or cover regions with predictable branch behavior. Thus, better coverage

of mcf is achieved only with more program inputs.

3.4.1.2 Quantifying Coverage

Here, I use an imperfect metric to quantify coverage to demonstrate the corre-

lation between BranchNet’s accuracy and the training set coverage. I define coverage

in terms of branch patterns in the training set and the test set and the maximum

history length of BranchNet. Since I use a separate BranchNet model for each noisy

branch, I also use a per-branch coverage metric. Coverage is defined as follows:

Coverage = 1− |Stest − Straining|
|Stest|

Stest is the set of all branch-direction pairs that appear in the history of the

noisy branch in the test set (using the maximum history length of BranchNet). Sim-

ilarly, Straining is the set of all branch-direction pairs in the training set.

Using this definition, full coverage means that any branch-direction pair in the

test set also appear at least once in the training set. No coverage means that none

of the test set branch-direction pairs appear in the training set. This is an imperfect

measure for coverage because it does not say anything about the order of branches

80

in the history, the number of appearances of branches in each history instance, and

the frequency of observing the branches across the dataset. Still, I use this metric as

partial evidence for the relationship between coverage and prediction accuracy.

Figure 3.13 shows how BranchNet accuracy changes as the training set cov-

erage changes. The training sets used to generate these data points are the same as

the training sets used in Figure 3.12. The correlation between accuracy and coverage

is clearer in the case of leela. For each branch, as coverage increases, the accuracy

also tends to increase. Note that the correlation is not linear. In the case of mcf,

this coverage metric is insufficient to explain the training quality. Many data points

have equal coverage values despite having different training sets and different test

set accuracies. Thus, it is hard to concluded any statistically significant observations

using only a limited number of data points and an imperfect coverage metric.

Table 3.9 reports the Spearman Rank-order Correlation between the accu-

racy and coverage of the same 16 branches in leela and mcf. Spearman Rank-order

measures the monotonicity of accuracy and coverage. The results convey the same in-

70 75 80 85 90 95 100
Coverage (%)

65
70
75
80
85
90
95

100

A
cc

ur
ac

y
(%

)

leela

70 75 80 85 90 95 100
Coverage (%)

65
70
75
80
85
90
95

100

A
cc

ur
ac

y
(%

)

mcf

Figure 3.13: Accuracy vs. Coverage for top 16 improved branches using Big-
BranchNet.

81

Table 3.9: Spearman Rank-Order Correlation between accuracy and coverage for top
16 most improved branches of leela and mcf.

leela mcf
Correlation p-value Correlation p-value

Branch 1 0.79 0.04 0.29 0.53
Branch 2 0.89 0.01 0.87 0.01
Branch 3 0.57 0.18 -0.29 0.53
Branch 4 0.96 0.00 0.00 1.00
Branch 5 0.75 0.05 0.93 0.00
Branch 6 0.96 0.00 -0.39 0.39
Branch 7 0.75 0.05 0.93 0.00
Branch 8 0.96 0.00 -0.54 0.21
Branch 9 0.57 0.18 -0.15 0.74
Branch 10 1.0 0.0 0.93 0.00
Branch 11 0.89 0.01 0.85 0.02
Branch 12 0.96 0.00 0.15 0.74
Branch 13 0.93 0.00 0.30 0.52
Branch 14 0.96 0.00 0.58 0.17
Branch 15 0.89 0.01 0.93 0.00
Branch 16 1.0 0.0 0.15 0.74

formation as Figure 3.13, coverage and accuracy are strongly correlated in the case of

leela with most branches having a small p-value. But in the case of mcf, the p-values

are often big values, which means that we cannot reach any statistically significant

conclusions.

The problem with using the simple coverage metric for mcf is that most of its

noisy branches appear in qsort, which is a recursive function. The recursive nature

means that branches that appear in the history all belong to the same function and

it is likely to observe all the branches even in a small training set. Thus, most

mcf branches have 100% coverage using only one training input. In contrast, leela

branches never reach 100% coverage using the same metric. Thus, to better study the

impact of coverage for mcf, we either need a more precise measure of coverage that

82

m
cf

le
el

a xz

de
ep

sj
en

g

om
ne

tp
p

gc
c

ex
ch

an
ge

2

x2
64

pe
rlb

en
ch

xa
la

nc
bm

k

m
ea

n6
4
2
0
2
4
6
8

M
PK

I R
ed

uc
tio

n
(%

)

Runtime warmup by repeating the test set SimPoints (exactly representative)
Runtime warmup using 200 million previous instructions (almost representative)
Offline Warmup with 1 training set input (low coverage)
Offline Warmup with 3 training set inputs (high coverage)

Figure 3.14: MPKI of TAGE-SC-L with additional warm-up.

takes the order and counts of branches into account, or reduce the experimental noise

by using more data points. I leave a more detailed study on quantifying coverage for

future work.

3.4.2 The Need for Representativeness to Train TAGE-SC-L

Unlike BranchNet, TAGE-SC-L predicts branches by learning predictions for

specific branch history patterns. This means training the predictor on unrepresenta-

tive input sets is harmful even if the training set as a whole has high coverage. To

demonstrate this distinction, Figure 3.14 shows the MPKI reduction of TAGE-SC-L

with 4 different warm-up scenarios. First, I warm up TAGE-SC-L by repeating the

test set SimPoints in the simulator. This method is unrealistic but is a good approx-

imation of achievable speedup with representative training sets. Second, I warm up

83

TAGE-SC-L by using 200 million instructions before each test set SimPoints, simulat-

ing the realistic impact of warm-up on TAGE-SC-L. Finally, I warm up TAGE-SC-L

on 1 or 3 inputs from the BranchNet training set. The results show that warming up

on the training set almost always reduces the accuracy of TAGE-SC-L, which sup-

ports the assertion that TAGE-SC-L relies on exact representativeness. Note that,

unlike BranchNet, training TAGE-SC-L with 3 inputs (more coverage) results in worse

accuracy compared to training with 1 input.

In the above experiments, after the warm-up is finished, TAGE-SC-L is up-

dated using its runtime training algorithm as usual. So the change in accuracy is

mainly due to the initial state of TAGE-SC-L after the warm-up phase finishes. If

the warm-up phase is representative, TAGE-SC-L does not need any further time in

allocating and updating the relevant prediction counters, resulting in improved over-

all accuracy. If the warm-up phase is not representative, TAGE-SC-L needs time to

first deallocate useless entries and allocate and update relevant entries, resulting in

decreased overall accuracy. But in both cases, TAGE-SC-L quickly adapts to the test

set SimPoints and becomes very accurate. Thus, the impact of warm-up strategies

on overall accuracy is not dramatic.

To more clearly isolate the difference between warm-up strategies. I repeat the

experiments but I stop updating TAGE-SC-L table entries after the warm-up phase

is over. Since TAGE-SC-L does not get the opportunity to re-train according to the

test set patterns on the fly, these experiments better demonstrate the difference in the

representativeness of the training sets. Table 3.10 reports the increase in branch mis-

predictions. Unsurprisingly, not updating TAGE-SC-L after warm-up always results

84

Table 3.10: Increase in branch mispredictions when disabling TAGE-SC-L updates
after warm-up, compared to a TAGE-SC-L that is updated normally without warm-
up.

m
cf

le
el
a

x
z

d
ee
p
sj
en
g

o
m
n
et
p
p

gc
c

Warmup with same Simpoints 1.4x 1.1x 1.4x 2.1x 9.9x 4.3x
Warmup with previous region 1.7x 1.1x 1.3x 2.3x 11.7x 4.8x
Warmup with 1 training set input 1.4x 1.4x 1.8x 3.8x 39.2x 14.4x
Warmup with 3 training set inputs 1.7x 1.4x 3.0x 3.2x 49.5x 22.6x

ex
ch
an

g
e2

x
26
4

p
er
lb
en
ch

x
al
an

cb
m
k

m
ea
n

Warmup with same Simpoints 4.6x 2.2x 4.2x 3.1x 2.1x
Warmup with previous region 5.7x 8.6x 3.3x 7.1x 2.6x
Warmup with 1 training set input 108.4x 3.6x 29.8x 140.1x 8.6x
Warmup with 3 training set inputs 115.9x 3.1x 37.7x 223.1x 11.2x

in more branch mispredictions compared to the baseline. But, warming up with the

same input set is an order of magnitude more effective than warming up with different

training set inputs. Again, unlike BranchNet, warming up with more training input

sets results in less accuracy. This shows that the training of TAGE-SC-L relies on

representativeness, in contrast to BranchNet, which relies on coverage.

85

Chapter 4

Explicitly Identifying Correlated Branches Using

BranchNet

So far, this dissertation has described BranchNet as a branch predictor model

to directly predict noisy branches. This chapter investigates a different way of us-

ing BranchNet models. Instead of using BranchNet as a black-box predictor, the

trained BranchNet models are examined to explicitly identify correlated branches.

This information can then be used to improve BranchNet by customizing its on-chip

inference engines (Chapter 5) or improve traditional runtime branch predictors by

filtering the global branch history (Chapter 6). This Chapter explains the process

and the rationale of using BranchNet for identifying correlated branches.

First, I describe how examining the embedding table in a trained BranchNet

model reveals which branches in the history are truly needed for accurate prediction

(i.e., which branches are correlated). Second, I describe the modifications to the

BranchNet architecture and training process to interpret the trained weights in the

embedding table. Finally, I demonstrate the results of correlation extraction on SPEC

2017 benchmarks.

86

PC , Dir 1

PC , Dir 1

PC , Dir 3

Embedding Table

Embedding Weights
for PC, Dir 1

Embedding Weights
for PC, Dir 2

Embedding Weights
for PC, Dir 3

Weights for one
convolution filter

The Output of the
Dot Product

Figure 4.1: Embedding and convolution in BranchNet.

4.1 BranchNet Architecture for Correlation Detection

Figure 4.1 shows the embedding lookup and the convolution operation for

a single branch window in a BranchNet model. The embedding table is simply a

collection of weights organized as a 2-dimensional array. Each row in the table holds

the weights that represent the value of a given branch. Branches are identified by

their program counters and directions. BranchNet uses the least significant 12 bits

of PC, so the table contains 212+1 = 213 rows. The figure shows a convolution for a

3-wide branch window. The PC and direction of each branch are used as an index

to lookup the embedding tables and the embedding weights for the three branches

are gathered together. Then, the convolution output is computed by taking the dot

product of the embedding weights and the convolution filter weights.

During training, the embedding and convolution weights are trained together

to gradually detect the best branch patterns that can be used to predict the branch

87

accurately. Once the model is fully trained, we can examine the embedding table

to detect which branches are actually used by the CNN model. If the embedding

weights corresponding to a branch are all zeros, the branch contributes nothing to

the convolution outputs, i.e., the CNN model deems that branch useless for prediction

accuracy. Thus, to know which branches are actually used by the CNN model, we

can simply scan each row in the embedding table and identify which branches have

non-zero embedding weights.

4.1.1 Regularization to Discourage Useless Embedding Weights

To prime a model for information extraction, we need to adjust the training

algorithm such that the neural network is encouraged to find the information of

interest. In the case of identifying correlated branches, it is important to incentivize

the training algorithm to use only as many branches as needed to make a prediction,

otherwise the neural network will use any small correlation that might exist between

branches, regardless of their small contribution to the overall prediction accuracy.

I use L1 regularization [23] to incentivize the network to use fewer branches. L1

Regularization is a technique that gradually decreases the magnitudes of network

weights throughout the training process. As a result, only the weights that are truly

needed for prediction accuracy can maintain non-zero values.

L1 regularization is implemented by adding a penalty term to the training loss

function. The loss function can be any function that is a measure of how well the

model is behaving. During training, the weights are adjusted step-by-step to minimize

the loss function. By default, BranchNet uses the Cross Entropy Loss function that

88

maximizes the prediction accuracy (i.e., the smaller the value of the loss, the more

accurate the model is on the training set). This means that as long as a static branch

is slightly correlated and can improve the overall accuracy, the embedding weights

may be trained to have non-zero values. To avoid this, I add L1 regularization of the

embeddings weights to the loss function of BranchNet:

Loss Function = CrossEntropyLoss+ λ
∑

|Wembedding|

The second component is the L1 regularization term which is the sum of the abso-

lute values of all embedding weights, multiplied by coefficient λ. The regularization

coefficient controls how much we value minimizing the embedding weights relative to

the model accuracy. The best coefficient value is typically found empirically through

trial and error.

4.1.2 Minor Modifications to the BranchNet Architecture

Removing branch aliasing: BranchNet uses the 12 least significant bits of

branch PC along with the branch direction as the index into the embedding tables.

This works fine for general prediction accuracy, but multiple branches may alias to the

same embedding index. To avoid any potential aliasing, before starting the training

process, I assign a unique index to each PC and direction pair in the validation set

traces. Then, I transform the history to use these unique indices. After the training

is done, I can then reliably associate each embedding row with a unique branch and

direction pair. In the test set traces, I map any branch and direction pair that was

not observed during training to index 0.

89

Modifications to BranchNet: Since the goal of this section is to demon-

strate the ability of neural networks to detect correlation, I use a large configuration

of BranchNet without optimizing for training time. I use the following architecture

knobs: a single 600-branch history slice, 256 convolution channels, pooling width of

3, embedding width of 128, and three hidden 256-neuron fully-connected layers. The

rest of the architecture is the original Big-BranchNet. In Chapter 6, I will revisit the

model configuration to balance correlation detection and training time.

4.1.3 Shortcomings of L1 Regularization

While L1 regularization empirically works well in my evaluations, it is an indi-

rect way to enforce a limit on the number of correlated branches. The regularization

coefficient (λ) is an arbitrary number that dictates the aggressiveness of penaliz-

ing useless weights, i.e., the number of non-zero embedding rows after training with

L1 regularization is unpredictable. To compensate for this unpredictability, we sort

branches by their embedding values and pick the top branches. However, in theory,

the most useful branches may not be among those branches with the highest em-

bedding values. Embedding values are simply proxies that happen to work well in

practice. Furthermore, the best value of λ can only be found empirically through

trial and error, which may not be desirable in environments with constantly changing

model requirements.

Perhaps a more robust approach is to use learning methods that more directly

identify the most important branches. For example, data-driven pruning algorithms

[27] may be more effective than using L1 regularization. Alternatively, interpretable

90

Embedding Table

Index 0
Index 1
Index 2

Index N

.

.

.

.

-0.2 0.1 -0.1 0 0 0.1

1.2 3.5 -2.4 0.1 0.1 0.2

0 0 0.2 -0.1 0.1 0

0.1 0 0 -0.2 0 0.3

.

.

.

.

0.6

0.4

7.5

0.5

Correlation
Scores

Sort and
find top N

3.7Index 3 0.2 0.1 0 -0.9 1.3 1.2
Index 1 :
Index 3 :

Top
Branches
(PC, dir)

(0x400100, T)
(0x410200, NT)

Figure 4.2: Example: interpreting embedding weights to identify the top correlated
branches.

machine learning approaches [51] can be used, where either the model is designed

with inherent interpretability, or model-agnostic techniques are used to understand

the behavior of a model. Since I show that L1 regularization is effective at identifying

good correlated branches, I leave the evaluation of alternative techniques for future

work.

4.2 Putting Everything Together

Figure 4.2 shows how we examine the trained embedding weights to identify

top correlated branches. We first compute the sum of the absolute values of the

embedding weights in each row. We then use this sum as a score for the usefulness

of each row in the embedding table. The higher the score, the more likely it is

that the embedding row is contributing to the prediction outcome. We then sort

the embedding indices by their scores and select the top embedding indices with

91

Algorithm 1 Identifying top N correlated branches for a predicting a given hard-to-
predict branch.

1: Scan the validation set traces and assign a unique index to each (PC, dir)
2: for λ in [5e-6, 1e-5, 2e-5] do
3: Train a BranchNet model for each branch, L1-regularization coefficient = λ
4: Compute the magnitude of embedding weights for each branch index
5: Save the top N PC,dir pairs with the highest embedding magnitudes
6: Force all other embedding weights to be zero
7: Continue the training process with L1-regularization coefficient = 0
8: Compute the prediction accuracy on the validation set
9: end for
10: Pick the top N PC,dir pairs for the training with the λ that led to the highest

validation accuracy

the highest scores. Next, we look up the mapping that we generated during trace

generation for converting each embedding index back to its corresponding unique

branch. Now, we have the top correlated branches in the form of PC and direction

pairs.

Algorithm 1 summarizes the step-by-step process to detect top correlated

branches for predicting a given hard-to-predict branch. We first train a different

model for each of the three values of λ as the L1 regularization coefficient.1 Once the

models are trained, we scan the embedding tables and identify the top branches with

the highest embedding magnitudes (sum of absolute values of embedding weights).

Since branches that are not selected as the top correlated branches may still have non-

zero embedding weights, we force their embedding weights to be zeros for the rest

of the training. Then, we fine-tune the model to adapt to the filtered out branches

1The choice of best values of λ is arbitrary, so we empirically found three candidate values for λ
with the best results for a few branches.

92

le
el

a xz

om
ne

tp
p

de
ep

sj
en

g

m
cf

x2
64 gc

c

ex
ch

an
ge

2

pe
rlb

en
ch

xa
la

nc
bm

k

m
ea

n

0
5

10
15
20
25
30
35
40
45

M
PK

I R
ed

uc
tio

n
(%

)
Big-BranchNet
Filtered Big-BranchNet - Using Only Top 32 Correlated Branches
Filtered Big-BranchNet - Using Only Top 16 Correlated Branches
Filtered Big-BranchNet - Using Only Top 8 Correlated Branches
Filtered Big-BranchNet - Using Only Top 4 Correlated Branches

Figure 4.3: MPKI Reduction of BranchNet and Filtered BranchNet models compared
to a 64KB TAGE-SC-L.
and maximize the accuracy without any regularization penalty. Finally, we record

the validation accuracy after fine-tuning and select the top correlated branches from

the training with a λ that resulted in the highest validation accuracy.

4.3 Methodology and Results

Offline training is done with the same methodology as Section 3.3.5. That is,

I use Alberta Workloads [5] to generate branch traces used for offline training, SPEC

train inputs for selecting the most improved hard-to-predict branches, and SPEC

reference inputs to report the final results.

4.3.1 Impact of Using Only Top Correlated Branches on Accuracy

Figure 4.3 demonstrates the effectiveness of our approach in identifying the

most correlated branches. The left-most bar is the MPKI reduction of BranchNet for

93

Table 4.1: Breakdown of prediction accuracy of CNN models for most improved hard-
to-predict branches of leela.

Big CNN CNN CNN CNN TAGE-
BranchNet Top 32 Top 16 Top 8 Top 4 SC-L

Br1 90.59% 86.72% 85.08% 82.59% 81.18% 77.92%
Br2 99.22% 98.76% 98.66% 98.14% 93.85% 89.21%
Br3 99.67% 99.70% 99.70% 99.69% 99.70% 76.06%
Br4 99.96% 99.96% 99.96% 99.95% 95.88% 75.65%
Br5 85.42% 80.11% 77.07% 72.85% 67.29% 66.85%
Br6 88.23% 86.56% 85.32% 82.93% 80.53% 67.40%
Br7 99.39% 99.22% 99.17% 99.06% 97.15% 89.21%
Br8 86.29% 83.76% 81.86% 80.01% 78.10% 68.33%

SPEC 2017 Integer benchmarks compared to a 64KB TAGE-SC-L. The other bars

show the MPKI reduction of modified BranchNet models that are trained to use only

the top 32, 16, 8, or 4 correlated static branches. The results show that many of the

hard-to-predict branches that BranchNet improves can be accurately predicted using

only 16 or 32 static branches. BranchNet’s benefit drops when limited to only 8 or 4

static branches, but there is still room for improving prediction even when using only

4 highly correlated static branches.

Table 4.1 shows the prediction accuracy of the most improved hard-to-predict

branches of benchmark leela using BranchNet, filtered BranchNet using top 32, 16, 8,

or 4 branches, and 64KB TAGE-SC-L. In each row, an entry is colorcoded to highlight

the minimum number of correlated branches that BranchNet needs to maintain a

similar accuracy to big-BranchNet. Br3, Br4, and Br7, color-coded in green, can be

predicted almost as accurately as BranchNet with only the top 4 or top 8 correlated

branches. The rest of the branches, color-coded in red, generally benefit from having

more than 8 correlated branches in the global history. Br1, Br5, Br6, and Br8 observe

94

de
ep

sj
en

g

le
el

a xz

om
ne

tp
p

m
cf gc
c

ex
ch

an
ge

2

xa
la

nc
bm

k

x2
64

pe
rlb

en
ch

m
ea

n

0

5

10

15

20

25

30

M
PK

I R
ed

uc
tio

n
(%

) = 0.1
 = 0.001
 = 0.0001

 = 0.00001
 = 0.0000001
 = 0.0

Figure 4.4: MPKI Reduction of Filtered BranchNet models using only top 16 corre-
lated branches.

non-negligible drop in accuracy even when using top 32 correlated branches.

Figure 4.4 shows how L1 regularization impacts the effectiveness of identifying

the most correlated branches. Note that regularization is only active during the first

training phase, and the model is fine-tuned without regularization after all branches

except the top 16 are filtered. Training without any regularization (λ = 0) results

in the lowest MPKI reduction, meaning that without regularization, the embedding

magnitudes are not a good metric for identifying the top correlated branches. A

similar problem exists to a lesser extent if the coefficient is too small (λ = 0.0000001).

If the coefficient is too big (λ = 0.1), the trained model is not as accurate as it can

be, resulting in sub-optimal correlated branches.

95

4.3.2 Understanding the Identified Correlated Branches

4.3.2.1 Manual Source Code Cross-Examination

To verify whether the correct static branches are identified as correlated, I

looked at the source code and the compiled binary of a few example branches. For

two of the green branches in Table 4.1, I was able to manually identify 100% accurate

prediction strategies based on the execution dataflow. Then, I verified that the static

branches needed by the manually identified prediction functions are among the highly

correlated branches identified by BranchNet. While two examples do not prove opti-

mality, they provide evidence that the machine learning model can learn true branch

correlations.

I also examined the source code corresponding to some red branches in Ta-

ble 4.1 but was not able to manually identify any accurate prediction strategies. The

correlated branches identified by BranchNet were also not necessarily in the depen-

dence chains of the hard-to-predict branches. I hypothesize that the CNN model is

combining signals from lots of slightly correlated branches to make a prediction, which

improves the prediction accuracy compared to TAGE-SC-L but is not sufficient for

100% accuracy. Still, using a few somewhat correlated branches is better than using

a lot of completely uncorrelated branches. Thus, our correlation extraction algorithm

is still useful for improving branch prediction accuracy.

4.3.2.2 Correlated Branches vs. Dependent Branches

As explained in Section 2.3, Thomas et al. proposed using dependence chains

to identify affector branches to filter the branch predictor’s history. An affector branch

96

Table 4.2: Number of correlated branches and affectors. Br1-Br8 are the same as
Br1-Br8 in Table 4.1. To identify correlated branches, we use the best configuration
identified in Table 4.1.

Affectors Correlated Branches Both
Br1 8 24 4
Br2 104 13 5
Br3 55 4 1
Br4 64 7 5
Br5 12 28 3
Br6 43 24 4
Br7 25 7 3
Br8 44 25 3

is a branch in the global history that guards any instruction in the dependence chain

of the branch we want to predict, i.e., the execution of an affector branch changes

the dataflow leading to the branch we want to predict. To compare the overlap of

affectors with correlated branches, for each hard-to-predict branch, I collected the

PCs of all affectors in a history length equivalent to BranchNet. I also collected the

minimum number of identified correlated branches that led to a high prediction accu-

racy. Table 4.2 summarizes the results for the most improved branches of leela. The

results show that although there is often some overlap between correlated branches

and affectors, they are not the same, and affectors include many branches that are

not useful for accurate branch prediction.

97

Chapter 5

Practical BranchNet Inference Engines

This chapter demonstrates specialized low-latency and storage-efficient infer-

ence engines for BranchNet models.1 For some of the most hard-to-predict branches,

BranchNet inferences engines are more accurate and more storage-efficient than TAGE-

SC-L. A key contribution of this chapter is that achieving this high accuracy and

storage-efficiency is only possible by specializing the model and the inference engines

to the requirements of branch prediction.

I first present a few case studies of hard-to-predict noisy branches from SPEC

2017 Integer benchmarks. Using these case studies, I highlight the inefficiencies of

Tarsa’s CNN (which is a more straightforward adoption of CNNs for branch predic-

tion) and showcase the room for improvement. Then, I present Mini-BranchNet, a

variant of BranchNet models with practical and storage-efficient inference engines. I

also propose an alternative inference engine, Counter-BranchNet, which uses corre-

lated branch counters instead of convolution slices. Counter-BranchNet is slightly less

accurate than Mini-BranchNet but is simpler to build. Combining Mini-BranchNet

and Counter-BranchNet further improves the total MPKI reduction.

1The main contributions of this chapter have been previously published in papers that I co-
authored [92, 93].

98

PC, dir One-hot
representation

Convolution
Weights

Batch
Normalization

and
Ternarized

Tanh

(a) Tarsa-Ternary Training

PC, dir 256x2
LUT

Convolution
Table

256-dim8 bits

8 bits

One branch
in the history

-1 or 0 or +1

-1 or 0 or +1

One branch
in the history

(b) Tarsa-Ternary Inference

Figure 5.1: The convolutional layer of Tarsa-ternary.

5.1 Prior Work: Tarsa’s Inference Engine

As the first people to use CNNs for branch prediction, Tarsa et al. [82] pro-

posed an inference engine design for their CNN model. To reduce the size of the

inference engine, they ternarized the model, i.e., all bits and intermediate outputs

can have only three values: -1, 0, or +1. Hence, I refer to this ternarized version

of Tarsa’s CNN as Tarsa-ternary. Furthermore, Tarsa-ternary also uses a buffer to

pre-compute all convolution outputs as branches are inserted into the history. This

is possible because the output of the convolutional layer is independent of history

positions. With these two techniques, Tarsa-ternary requires 5.125KB of storage per

branch.

Convolution Table Lookups. A convolution operation on a single branch

in the history involves a dot product operation. Figure 5.1 shows how Tarsa-ternary

computes one convolution output. Tarsa-ternary eliminates all the arithmetic oper-

99

ations in two steps. During training, it adds a ternarizer to approximate the output

of the activation function (normally a real number between -1 and +1) using three

integers: -1, 0, or + 1 (Figure 5.1a). After training is done, for each possible branch

index, the convolution output (one-hot representation + dot product + normaliza-

tion + ternarized Tanh) is pre-computed, which results in either -1, 0 or +1. These

ternary values are then stored in a small table that the Tarsa-ternary inference engine

looks up to get the convolution output for each branch hash (Figure 5.1b). No arith-

metic operation is needed at runtime, eliminating a 256-dimensional inner product

per convolution operation, the normalization operation, and the activation function.

Pre-computing the Convolutional Outputs. Computing all 32 convolu-

tion channels across a 200-branch history requires 6400 convolution operations per

branch prediction. Even when using table lookups, designing a high throughput in-

ference engine under these requirements is too expensive. Thus, instead of doing all

these operations at prediction time, Tarsa-ternary processes incoming branches one

at a time and buffers their convolution outputs for future use. I call these buffers

Convolutional Histories.

Figure 5.2 shows all optimizations needed to make Tarsa-ternary a small and

somewhat practical (although still storage-inefficient) in one picture as explained in

the two above paragraphs.

Figure 5.3 shows the block diagram of a Tarsa-ternary inference engine that

can predict up to N static branches in a program. The history pipeline maintains

the convolutional histories of all 32 Tarsa-ternary models. To make a prediction,

the prediction pipeline simply selects the convolutional histories corresponding to the

100

Branches
In History

Convolution
Outputs

Fully-
Connected

Output

(a) All high-level operations need for
predicting one branch using Tarsa-Ternary

Incoming
Branch

Pre-computed
Convolutional

History

ternarized

Table Lookup

(b) Operations needed for each incomin
branch in the Tarsa-ternary inference engine

Figure 5.2: All Tarsa-ternary inference optimizations.

next branch and computes only the fully-connected layer. If a branch does not reside

in the inference engine, the baseline predictor, TAGE-SC-L is used to produce the

final prediction.

Storage Cost. Table 5.1 shows the breakdown of storage needed to predict a

single hard-to-predict branch using the Tarsa-ternary inference engine. Note how de-

spite all the optimizations, Tarsa-ternary is still a very expensive model with 5.125KB

total storage for predicting only one noisy branch.

Table 5.1: Breakdown of Tarsa-Ternary inference engine storage requirements for one
static branch.

Using Architecture Knobs Total Storage
Convolution Tables 2C0(2

h+1) 2 KB
Convolutional History Buffers 2C0H0 1.5625 KB
Fully-connected weights 2C0H0 1.5625 KB

Latency. The convolutional layer has the least impact on latency since all

arithmetic is replaced with a table lookup and all operations along the long global

101

Branch 1
Convolution

Table

Incoming
PC,Dir

Weight
Table

PC of the Next
Branch

Fully-connected
Layer

Prediction

Convolutional
Histories

Hit / Miss

PC in Inference
Engine?

Branch ID

Prediction PipelineHistory Pipeline

Branch N
Convolution

Table

TAGE-SC-L

Figure 5.3: Overview of Tarsa-ternary inference engine (N = maximum number of
noisy branches that fit within the engine).

branch history are pre-computed. On the other hand, the fully-connected layer needs

to compute a dot product of vectors of size 6400 (32 channels of 200 elements each).

Even after ternarization, this remains a high-latency operation. Thus, A good direc-

tion for reducing the latency of the inference engine is to reduce the size of the inputs

to the fully-connected layer.

5.2 Case Studies of CNN Inference Engine Inefficiencies

This section uses a few case studies to delve into the inefficiencies of Tarsa-

Ternary. The example branches are all taken from SPEC 2017 Integer benchmarks

(mcf and leela). I use the most representative SimPoint of the benchmarks with

SPEC ref inputs to report the prediction accuracy. For each example, I present a

custom predictor that predicts the branch almost perfectly. Then, I show why a CNN

102

1 void qso r t (void ∗ a , s i z e t n , . . .) {
2 i f (n < 7) {
3 i n s e r t i o n s o r t (a , n , . . .) ;
4 re turn ;
5 }
6
7 // s t a r t p a r t i t i o n i n g
8 f o r (i n t i = 0 to n) {
9 i f (a [i] < pivot) {

10 . . . // i n s e r t a [i] in the l e f t p a r t i t i o n
11 }
12 i f (a [i] > pivot) {
13 . . . // i n s e r t a [i] in the r i gh t p a r t i t i o n
14 }
15 }
16 // f i n i s h e d p a r t i t i o n i n g
17
18 i f (s i z e o f the l e f t p a r t i t i o n > 1) {
19 qso r t (. . .) // r e cu r s e on the l e f t p a r t i t i o n
20 }
21 i f (s i z e o f the r i gh t p a r t i t i o n > 1) {
22 qso r t (. . .) // r e cu r s e on the r i g h t p a r t i t i o n
23 }
24 }

Figure 5.4: Simplified pseudo-code of qsort.

model can predict the branch much more accurately than TAGE. Finally, I identify

inefficiencies in Tarsa-Ternary by contrasting it to the targeted custom predictor,

which predicts with higher accuracy, lower latency, and better storage-efficiency.

5.2.1 Case Study 1: Qsort — Correlation with a Branch Count

Figure 5.4 shows a simplified pseudo-code for SPEC’s implementation of qsort

with two noisy branches highlighted in yellow. Qsort is a C library function for in-

place sorting, typically implemented using the Quicksort algorithm. The Figure does

103

not show all of the implementation details required for high performance but captures

the branch behavior of the two example branches. I chose qsort for the first two case

studies because it is hot code in mcf, and because it contains several branches that

have sophisticated correlations with the branch history in the presence of noise. Both

highlighted noisy branches can theoretically be predicted 100% accurately; however,

both are predicted poorly by TAGE-SC-L. This case study focuses on the noisy branch

highlighted in line 18.

After the partitioning phase of qsort is done (lines 7-16), the algorithm decides

whether to recursively call qsort on each partition (lines 19 and 22). In this case study,

we focus on the branch in line 18 of Figure 5.4. Assume that for each if-statement, the

taken direction of the guard branch skips the body. TAGE-SC-L predicts this branch

with 94.7% accuracy, which is only slightly better than the static bias of the branch

(92.7% not-taken). However, we know the branch will be not-taken (i.e., qsort will

be recursively called) only if the partition has at least two items in it. Therefore, the

size of the partition can be used to predict the branch with 100% accuracy — predict

not-taken only if the partitioning phase has inserted at least two items in the left

partition (i.e., line 10 was executed at least 2 times). We can use the branch history

to determine the number of times line 10 was executed. If the count reaches two,

then we know there are at least two elements in the left partition and the branch at

line 18 should be predicted not-taken (or taken if the count is less than two). Note,

there are two caveats to this approach. First, the predictor must know when the

partitioning phase begins to initialize the count to zero. Second, once compiled, the

resulting assembly code for Figure 5.4 contains 3 branches (instead of just one) that

104

1 i n t l e f t p a r t i t i o n s i z e ;
2

3 void update (n e x t e x e c u t i o n l i n e) {
4 switch (n e x t e x e c u t i o n l i n e) {
5 case q so r t : : l i n e 7 : l e f t p a r t i t i o n s i z e = 0 ;
6 case q so r t : : l i n e 1 0 : l e f t p a r t i t i o n s i z e += 1 ;
7 }
8 }
9

10 bool pred () {
11 r e turn (l e f t p a r t i t i o n s i z e < 2) ;
12 }

Figure 5.5: Perfect custom predictor for the if-statement in line 18 of Figure 5.4.

guard the execution of line 10. Therefore, the branch predictor should isolate more

than one branch to count the number of elements inserted into the left partition.

Figure 5.5 defines the update and prediction algorithm for a targeted branch

predictor that implements a perfect prediction strategy for this case study. It con-

sists of three components: the predictor state (left partition size), an update al-

gorithm that updates the state every time a branch is fetched, and a prediction

function. To implement this algorithm in hardware, we require a 2-bit saturating

counter for left partition size, a single register to track the PC of the branch lead-

ing to qsort::line7, and 3 registers used to track the PCs of branches that guard

qsort::line10, amounting to 198 bits of storage.

Even though this simple prediction algorithm exists, TAGE cannot predict

this branch accurately because it cannot distinguish the correlated branches in the

history (line 9) from the uncorrelated ones (all other branches). As a result, the

105

pollution in the branch history creates too many patterns for TAGE to memorize,

resulting in low accuracy.

A CNN, however, uses a convolution layer that acts as a filter for identify-

ing correlated branches and removes uncorrelated branches. Once the uncorrelated

branches have been removed, the fully-connected layers can easily check the size of

the partition by counting the not-taken occurrences of branches corresponding to

line 9. Both the ternary and the floating-point version of Tarsa’s CNN predict this

branch with high accuracy (99.35% and 99.7% respectively). Note, however, that we

only want to calculate the size of the most recent partition in the history. Our tar-

geted solution handled this by resetting the counters before the partitioning began.

Tarsa’s CNN, however, must learn on its own which regions of the history register

are important. This leads to inefficiency in Tarsa-Ternary compared to my custom

predictor.

Unfortunately, the high prediction accuracy of Tarsa’s CNN comes at a high

storage cost. Table 5.2 compares the accuracy and storage of TAGE, Tarsa’s CNN,

Big-BranchNet, and custom logic. The Custom Predictor is what was defined in

Figure 5.5. I do not quantify the storage cost of TAGE per branch because the per-

branch storage usage is dynamic and depends on the allocation pressure from other

Table 5.2: CNN case study 1: accuracy and storage of predictors.

TAGE Tarsa Tarsa Big-BranchNet Custom
Ternary Float Float Logic

Accuracy 94.7% 99.35% 99.7% ∼100.0% 100%
Size N/A 5.1 KB 82 KB 17.7 MB 198 bits

106

branches. Even though Tarsa’s CNN is much more accurate than TAGE, it is far

from perfect and requires unnecessarily large storage.

5.2.1.1 Why Does Tarsa’s CNN Not Reach 100% Accuracy?

Identifying the most immediate partitioning phase in the global branch his-

tory is a highly non-linear task. Thus, Tarsa’s CNN with only one fully-connected

layer cannot ever learn to predict this branch optimally. The CNN compensates for

this inability by learning to use any correlated branch in the history to improve its

accuracy. For example, if the sizes of left and right partitions are correlated in the

training set, the CNN will use the right partition size for prediction. In general,

this overfitting may lower prediction accuracy at runtime, but in this case, such a

data-driven approach is sufficient for > 99% accuracy.

Another source of inaccuracy may be the existence of data-dependent corre-

lated branches. For example, qsort chooses its partitioning pivot based on heuristics

to increase the likelihood of balanced partitions. Thus, it may be that the training

algorithm learns to also use the size of the right partition as a signal for predicting

the size of the left partition. Such high-quality but occasionally unreliable signals in

the history may lead the training algorithm to overfit to a non-optimal solution.

Finally, a disadvantage of a CNN compared to the optimal algorithm is the

relatively small history length. We measured the minimum history length to identify

that at least two items have been inserted into the left partition in our test set.

The median distance is 30 branches, the 99th percentile is 156, and the maximum

distance is 710. Since the history length of Tarsa’s CNN is 200 branches, it cannot

107

accurately determine the correct size of the partitions. In this case, however, a 200-

branch history happens to be enough for determining whether the partition has more

than one element or not, which is all that is needed for correct prediction. In general,

sometimes a very long history is needed to capture all required correlated branches

to maximize prediction accuracy.

5.2.1.2 Sources of Storage-Inefficiency

As described earlier, Tarsa’s CNN model is incapable of learning the optimal

prediction algorithm and instead relies on using any correlated branches in the his-

tory. Thus, it needs many convolution filters to identify all useful correlated branches.

Moreover, some degree of over-parameterization is necessary for convergence when

training multi-layer neural networks [4], which by definition implies sub-optimal pre-

dictor size. This factor can be somewhat alleviated with post-training network prun-

ing.

Another source of storage-inefficiency is the fully-connected layer, which is a

much more general function than needed. Note that the inference engine not only

needs to store all the fully-connected weights but also should buffer the convolution

outputs that feed the fully-connected layer. In our custom design, this was replaced

by incrementing a 2-bit saturating counter at the appropriate times.

5.2.2 Case Study 2: Qsort — Correlation with a Specfic Segment in the
History

A common technique for speeding up quick-sort is to switch sorting algorithms

once a partition is smaller than some threshold. Line 2 in Figure 5.4 is the if-statement

108

that controls this switch. This branch is very hard-to-predict for TAGE with 66.4%

accuracy (the static bias of the branch is 56.2% taken).

At the first glance, this branch may seem as predictable as the branch in case

study 1. For all recursive calls to qsort, the value of n is produced by the partitioning

phase in the caller instance of qsort. Thus, similar to case study 1, a branch predictor

can determine n by tracking insertions into the left and right partitions. However,

this prediction task is much more difficult than the prediction task in case study

1 because the caller instance of qsort may appear arbitrarily deep into the branch

history. A single fully-connected layer, especially if ternarized, is too simple to learn

this behavior. As a result, the accuracy of the ternary and the floating-point version

of Tarsa’s CNN are 82.4% and 88.4% respectively.

The poor accuracy of Tarsa’s CNN does not mean that CNNs cannot predict

this branch accurately. Big-BranchNet predicts this branch with 98.2% accuracy,

albeit at the cost of a 17.7MB model. Of course, such a large prediction model is

not helpful at runtime. The more interesting question is whether a CNN can be

accurate and cost-efficient at the same time (recall the goal of this Chapter is to

design cost-efficient BranchNet inference engines).

Figure 5.6 shows an accurate and cost-efficient custom algorithm for predicting

this branch by observing the incoming branch stream. First, similar to Figure 5.5,

it tracks insertions into the left and right partitions using saturating counters (lines

7-12). After the partitioning, the algorithm produces a prediction for the if-statement

in qsort::line2 of the right partition and pushes the prediction in a prediction stack

(lines 16-19). Furthermore, before a recursive call on either the left or right partition,

109

1 i n t l e f t p a r t i t i o n s i z e , r i g h t p a r t i t i o n s i z e ;
2 bool l e f t r e c u r s i o n ;
3 stack<int> r i g h t p a r t i t i o n p r e d i c t i o n s ;
4
5 void update (n e x t e x e c u t i o n l i n e) {
6 switch (n e x t e x e c u t i o n l i n e) {
7 // Determining p a r t i t i o n s i z e s
8 case q so r t : : l i n e 7 :
9 l e f t p a r t i t i o n s i z e = 0 ;

10 r i g h t p a r t i t i o n s i z e = 0 ;
11 case q so r t : : l i n e 1 0 : l e f t p a r t i t i o n s i z e += 1 ;
12 case q so r t : : l i n e 1 3 : r i g h t p a r t i t i o n s i z e += 1 ;
13
14 // Push the p r ed i c t i on f o r the r i gh t
15 // p a r t i t i o n in a stack
16 case q so r t : : l i n e 1 6 :
17 i f r i g h t p a r t i t i o n s i z e > 1 :
18 pred = (r i g h t p a r t i t i o n s i z e > 6) ;
19 r i g h t p a r t i t i o n p r e d i c t i o n s . push (pred) ;
20
21 // Update l e f t r e c u r s i o n be f o r e each c a l l
22 case : q so r t : : l i n e 1 9 : l e f t r e c u r s i o n = true ;
23 case q so r t : : l i n e 2 2 : l e f t r e c u r s i o n = f a l s e ;
24 }
25 }
26
27 bool pred () {
28 i f l e f t r e c u r s i o n :
29 re turn (l e f t p a r t i t i o n s i z e > 6) ;
30 e l s e :
31 re turn r i g h t s t a c k . pop () ;
32 }

Figure 5.6: Perfect custom predictor for the if-statement in line 2 of Figure 5.4.

110

it sets the flag left recursion accordingly (lines 22-23). Finally, to make a prediction,

if the left recursion flag is set, it simply uses the size of the left partition to make a

prediction, otherwise, it pops a prediction off the stack. This algorithm fails when

predicting the root of the recursion tree, but is otherwise completely accurate. To

implement this algorithm in hardware, the predictor needs 11 registers to track the

PC-direction pairs, two 3-bit counters for determining the left and right partition

sizes, and a 64-entry stack (1-bit per entry) used to hold the predictions for the right

partition, amounting to a total of 609 bits.

Similar to the previous case study, representing this optimal algorithm by a

CNN is unrealistic because of insufficient history length. This case study is even more

difficult because if qsort is entered because of a recursive call on the right partition, the

global branch history is polluted with an unknown number of partitioning branches

because of the earlier recursion on the left partition. For predicting 90% of the

instances of this branch in qsort, the optimal algorithm discards up to 641 youngest

branches in the global history. Table 5.3 summarizes the results and shows the gap

between Tarsa-ternary and bigger CNNs and the custom predictor. The inability

of Big-BranchNet to reach the accuracy of the optimal predictors shows that CNNs

may not be suitable to learn very complicated relationships. It is more likely that

Table 5.3: CNN case study 2: accuracy and storage of predictors.

TAGE Tarsa Tarsa Big-BranchNet Custom
Ternary Float Float Logic

Accuracy 66.4% 82.4% 88.4% 98.2% 100%
Size N/A 5.1 KB 82 KB 17.7 MB 609 bits

111

1 void add g l oba l c ap tu r e s (i n t& x , . . .) {
2 whi le (. . .)
3 i f (. . .)
4 x += 1 ;
5 }
6 void s a v e c r i t i c a l n e i g h b o u r s (i n t& x , . . .) {
7 whi le (. . .)
8 i f (. . .)
9 x += 1 ;

10 }
11 void add pattern moves (i n t& x , . . .) {
12 whi le (. . .)
13 i f (. . .)
14 x += 1 ;
15 }
16
17 void play random move (. . .) {
18 i n t x = 0 ;
19 add g l oba l c ap tu r e s (&x , . . .) ;
20 s a v e c r i t i c a l n e i g h b o u r s (&x , . . .) ;
21 add pattern moves(&x , . . .) ;
22
23 . . .
24
25 f o r (i n t i = 0 to x) { . . . }
26 }

Figure 5.7: Simplified pseudo-code of a noisy branch in leela (case study 3).

Big-BranchNet is picking correlated but not perfect signals from the near history, as

opposed to the optimal strategy of identifying the partitioning phase of the parent

node in the recursion tree.

5.2.3 Case Study 3: Leela — Correlation with Branch Counts Again

This case study covers the same hard-to-predict branch that was the inspi-

ration for the example used in Section 3.2. The pseudo-code of the branch and its

112

correlated branches is shown in Figure 5.7. The noisy branch (highlighted in yellow)

is the exit branch of a loop that iterates for a variable number of iterations. The

number of loop iterations depends on a variable that starts with 0 at the start of

the function and is occasionally incremented by three functions: add global captures,

save critical neighbours, and add pattern moves. At a high level, each function con-

sists of a loop that sometimes increments the variable of interest. Thus, in theory,

the branch could be predicted by counting the loop branch itself and the branches

corresponding to the if statements in three functions. Thus, a perfect predictor con-

sists of two counters that are reset at the beginning of play random move(), with one

counter incremented with each iteration of the for loop (line 25), and one counter

incremented every time x is incremented (lines 4, 9, and 14). The predictor can

then predict the noisy branch 100% accurately by comparing the two counters with

the total storage cost of 2030 bits (the high-level if statements result in 29 branches

after all compiler optimizations are applied, which increases the total storage cost).

Table 5.4 summarizes the results. A CNN could learn to mimic a similar prediction

strategy and achieve high accuracy (100% in the case of Big-BranchNet, and 98.4%

in the case of Tarsa-Ternary). The small inaccuracy of Tarsa-Ternary is probably

due to difficulties in identifying the most relevant region in the history. The fact that

there are so many correlated branches that need to be tracked together also make the

Table 5.4: CNN case study 3: accuracy and storage of predictors.

TAGE Tarsa Tarsa Big-BranchNet Custom
Ternary Float Float Logic

Accuracy 77.5% 98.4% 99.6% ∼100.0% 100%
Size N/A 5.1 KB 82 KB 17.7 MB 2030 bits

113

training process more difficult.

5.2.4 Case Study 4: Leela — Inherently Complicated Branch Relations

Figure 5.8 highlights one of the most mispredicting branches of Benchmark

leela. 64KB TAGE-SC-L predicts this branch 89.4% accurately (the branch bias

is 80.2% not taken). Among the case study noisy branches, I found it the most

difficult to design a custom predictor for this branch. The problem is that the branch

dependence chain is both complicated and insufficient for perfect prediction accuracy.

Still, I developed a heuristic that predicts this branch almost as accurately as Big-

BranchNet, which I will use as a reference for a cost-efficient predictor.

The function play random move is responsible for deciding the next move in

an AI for the game of Go. First, using functions add global captures,

save critical neighbours, and add pattern moves, it creates a list of candidate next

moves. Then the function iterates over all candidate moves to assign a score that

helps the AI decide which move to take. As part of the score, the AI needs to know

whether a candidate move is a neighbor to the last move that was taken on the

board (The last move’s position is an input argument of play random move). So, the

function compares each candidate move against all the neighbors of the last move.

This comparison is hard to predict for TAGE.

To design a custom predictor, I examined the source code of the three inner

functions and made an observation. The candidate moves inserted by

add global captures and save critical neighbours are most likely (but not definitely)

not the neighbors of the last move. On the other hand, the candidates moves inserted

114

1 void add g l oba l c ap tu r e s (i n t& x , . . .) {
2 whi le (. . .)
3 i f (. . .)
4 cand ida t e move l i s t . append (. . .)
5 }
6 void s a v e c r i t i c a l n e i g h b o u r s (i n t& x , . . .) {
7 whi le (. . .)
8 i f (. . .)
9 cand ida t e move l i s t . append (. . .)

10 }
11 void add pattern moves (i n t& x , last move) {
12 f o r (move in ne ighbors (last move))
13 i f (. . .)
14 cand ida t e move l i s t . append (move)
15 }
16
17 void play random move (last move , . . .) {
18 cand ida t e move l i s t = []
19 add g l oba l c ap tu r e s (cand ida t e move l i s t , . . .) ;
20 s a v e c r i t i c a l n e i g h b o u r s (cand ida t e move l i s t , . . .) ;
21 add pattern moves (cand ida t e move l i s t , last move , . . .) ;
22
23 f o r (candidate move in cand ida t e move l i s t) {
24 f o r (l a s t move ne ighbor in ne ighbors (last move)) {
25 i f (candidate move == las t move ne ighbor) break ;
26 . . .
27 }
28 }
29 }

Figure 5.8: Simplified pseudo-code of a noisy branch in leela (case study 4).

115

by add pattern moves are by definition neighbors of the last move. Thus, a simple

prediction heuristic is to identify which inner function was responsible for inserting

the candidate move that the noisy branch is currently examining. If the candidate

move was inserted by add global captures and save critical neighbours, the heuristic

predicts that the noisy branch is never taken (not a neighbor). If the candidate move

was inserted by add pattern moves, the heuristic predicts that the noisy branch is

taken only if the current iteration count of the for loop in line 24 is the same as the

iteration count of the for loop in line 12 at the time that the candidate move was

inserted. This custom prediction strategy achieves a 98.8% accuracy with 1082 bits

of storage.

While the custom predictor is smaller than the custom predictor for Case Study

3, the logic needed to implement this predictor is much more complicated, thus, a more

complicated CNN model is needed to learn a similar prediction function. Associating

the iteration counts of the loops in lines 12 and 24 is a much more complicated

(and nonlinear) task than counting correlated branches. My custom predictor uses

a dynamic vector that maintains the loop counts of the candidate moves inserted

by add pattern moves. This highly dynamic and control-flow-dependent behavior is

hard to represent with fully-connected neural networks (the model needs to have many

Table 5.5: CNN case study 4: accuracy and storage of predictors.

TAGE Tarsa Tarsa Big-BranchNet Custom
Ternary Float Float Logic

Accuracy 89.4% 85.8% 91.8% 99.3% 98.8%
Size N/A 5.1 KB 82 KB 17.7 MB 1082 bits

116

layers and many neurons). Thus, a simple CNN like Tarsa-Ternary is not capable

of predicting this noisy branch at all. Table 5.5 summarizes the results. Tarsa-

ternary is less accurate than TAGE-SC-L because the required prediction function

is too complicated to represent in the ternarized version of Tarsa’s CNN. Tarsa-

Float is more accurate than TAGE-SC-L, but it still is nowhere close to the optimal

accuracy. I believe the main limiting factor is that Tarsa’s CNN does not have

any hidden fully-connected layers, which are needed for learning non-linear branch

correlations. However, not only Big-BranchNet can predict this branch accurately,

it is even more accurate than the custom-designed predictor. I speculate that Big-

BranchNet picks up on some signals that sometimes identify whether the candidate

moves of add global captures and save critical neighbours are neighbors.

5.2.5 Lessons From the Case Studies

5.2.5.1 Long History Lengths

Case study 2 showed that some branches benefit from longer history lengths,

but naively increasing the history length is impractical because of inference hardware

constraints. BranchNet uses a longer history length than Tarsa by using geometric

history lengths and an aggregation function (sum-pooling) to cheaply cover longer

histories.

5.2.5.2 Specialized Structures

In both case studies, CNNs are worse than custom predictors in terms of both

accuracy and storage-efficiency. This is because the CNN must learn functions that

117

the custom logic was directly programmed to perform. On the other hand, the custom

predictors are not general enough to deploy in an actual branch predictor. What we

need is a predictor that is general enough to learn to predict branches in new algo-

rithms, but contains enough custom logic that it does not need to re-learn functions

that are common among many branches. If we implement custom structures targeted

toward common operations, we can bridge the gap between a trainable predictor

and our custom solutions. A key challenge will be finding ways to plug the custom

logic into the network during training. Network designers may need to use functions

that work with backpropagation, or use regularization, pruning, and/or post-training

transformations to steer neurons toward the targeted custom hardware. For exam-

ple, since branch counting was a common aggregation strategy for information in

the global history, BranchNet uses sum-pooling layers. Mini-BranchNet inference

engines also support sliding sum-pooling (Section 5.3), which is an approximation

strategy to reduce the storage cost of the predictor. I also propose an alternative to

Mini-BranchNet which further specializes BranchNet by replacing convolutions with

branch counters (Section 5.4).

5.2.5.3 Hardware-Aware Training Algorithms

As discussed throughout this paper, on-chip branch predictors have tight la-

tency and storage constraints that must be obeyed. This makes quantization, pruning,

and regularization very important. Tarsa et al. use the training algorithm of Cour-

bariau et al. [17] to ternarize their CNN models. However, unlike the binarized neural

networks studied by Courbariau et al., branch prediction accuracy significantly drops

118

with quantization. This is partially because Tarsa’s CNN is many orders of magni-

tude smaller than the CNN models that are evaluated in prior quantization work,

increasing the likelihood of converging to bad local optimum solutions [4]. A more

effective training strategy is to initially over-provision the network, then gradually

regularize and prune the network to meet the hardware constraints. Such approaches

are well studied in prior work [85, 14, 86], albeit on larger models and more flexi-

ble inference engines. Hardware-aware training algorithms would allow us to use an

over-parameterized network to assist with training, while still fitting in the predefined

hardware budget for inference. For example, let us revisit case study 1. In theory,

a 1-filter CNN can predict the branch almost perfectly; however, training a 1-filter

CNN results in only 93.0% accuracy, with a 2-filter CNN reaching 97.5%, and a 3-

filter CNN reaching 99.7%. Now, if we over-parameterize the CNN with 4 filters, then

use regularization to penalize redundant filters and prune the unused filters, we can

achieve 99.7% accuracy with only 2 filters. Based on this observation, to train quan-

tized Mini-BranchNet (Section 5.3) and Counter-BranchNet (Section 5.4) models, I

over-provision the hidden neurons and prune out the least needed neurons.

5.2.5.4 Input Pre-Processing

Branch history is a convenient method of providing recent control-flow infor-

mation to a branch predictor. The trade-off is that it also contains unnecessary and

obfuscated information, some of which may not be easy for a CNN to filter out. In-

stead of relying on the CNN to filter out all the noise, we can use other methods to

pre-process the history before feeding it into the CNN predictor. For example, let us

119

reconsider case study 1. If the algorithm for identifying the relevant region in the his-

tory was produced through other means (e.g., through an intermediate training phase

with Big-BranchNet), the role of the CNN would be to simply count the insertions

into the partition up to a threshold. This task would only need 1 convolution layer

and, in ideal training conditions, can be learned by a single fully-connected layer,

resulting in a CNN with only a 0.21KB of storage with approximately 99.94% accu-

racy (the remaining inaccuracy is due to limited history length). While I have done

preliminary experiments on generalizing this approach, I leave a more comprehensive

study on input-preprocessing for future work.

5.2.5.5 Recurrent Neural Networks

The most expensive component of a CNN branch predictor is the fully-connected

layer. The fully connected layer is responsible for combining all of the signals ex-

tracted from the history by the CNN layer into a final prediction. To accomplish

this, the hardware must buffer all signals produced by the CNN layer, producing

buffers that require storage proportional to the length of the branch history register.

An alternative approach would be to use Recurrent Neural Networks (RNNs). An

ideal RNN branch predictor would process branches one at a time, updating its hid-

den state as branches are fetched. Sequential processing can simplify prediction tasks

that rely on the order of branches in the history. For example, identifying the parti-

tioning region of the case studies using RNNs is a relatively trivial task, or keeping

track of loop iteration counts (case study 4) is easier with sequential processing.

However, designing a storage-efficient inference engine for RNNs is not trivial.

120

The two design optimizations of Tarsa’s CNN are not applicable. Most importantly,

pre-computing and buffering partial RNN outputs is not as cheap as doing the same

for CNNs. Unlike the convolution operation in a CNN, the intermediate output of

an RNN is position-dependent. If we were to pre-compute the RNN outputs for

models trained with fixed history lengths, we need to assume each incoming branch

could potentially start a new history sequence, which results in the need to maintain

the state of hundreds of RNNs for predicting a single branch. Thus, I do not see a

clear path for designing practical inference engines for RNN models with fixed history

lengths.

A more practical approach is perhaps using RNNs with variable history lengths.

In particular, inspired by the custom predictor in Case Studies 1, 2, and 4, we can

associate the start of a history sequence with a static instruction. I call this static

instruction a history marker. The occurrence of a marker resets the state of the RNN

predictor, and other incoming branches would simply update the RNN state. At pre-

diction time, fully-connected layers will make a prediction based on the RNN state.

Even if this approach works, it relies on developing an automated method to identify

good markers for each noisy branch. I leave the design of practical RNN inference

engines for future work.

5.3 Mini-BranchNet

Mini-BranchNet is a smaller variant of BranchNet that I co-designed with an

inference engine that could work as a practical branch predictor. For the most part,

Mini-BranchNet is similar to Big-BranchNet with architecture knobs that I tuned

121

Branch 1
Slices

Branch 41
Slices

Hash of 3
Most Recent

Branches

Weight
Table

PC of the
Target Branch

Fully-connected
Layers

Prediction

Convolutional
Histories Hit / Miss

PC in
BranchNet?

Branch ID

Prediction PipelineHistory Pipeline

TAGE-SC-L

Figure 5.9: Mini-BranchNet inference engine.

to minimize storage and latency overheads. In the rest of this section, I describe

key optimizations in designing the inference engine for Mini-BranchNet and some

modifications to the BranchNet CNN architecture. Some of these optimizations were

first proposed by Tarsa et al. [82] (explained in Section 5.1).

5.3.1 Design of the Inference Engine

Optimization 1: Maintaining Convolutional Histories. Similar to Tarsa’s

inference engine, the Mini-BranchNet inference engine pre-computes convolution out-

puts and stores the results in buffers that I call convolutional histories. Without this

optimization, the predictor would need to compute 4865 convolution operations for

each prediction. With this optimization, the engine computes 521 convolution opera-

tions every time that a branch is inserted into the global history. One difference with

122

PC, dir

PC, dir

PC, dir

Input
Branches Embedding

Table
Convolution

Weights

Batch
Normalization

and ReLU

(a) Big-BranchNet Training and Inference

PC, dir

PC, dir 256x32
LUT

PC, dir

Input
Branches

Embedding
Table

Convolution
Weights

Batch
Normalization
and Binarized

Sigmoid

(b) Mini-BranchNet Training

hash

PC, dir

PC, dir 256x1
LUT

PC, dir

Input
Branches

Convolution
Table

(c) Mini-BranchNet Inference

hash

7x32

1x328

13

8
0 or 1

8192x32
LUT

7-wide
window

3-wide
window

3-wide
window

Figure 5.10: BranchNet convolutional layer.

Tarsa’s inference engine is that the sum-pooling operation is also pre-computed, so

the addition of the sum-pooling layer does not directly impact the prediction latency.

Figure 5.9 shows the block diagram of a Mini-BranchNet inference engine that can

predict up to 41 static branches in a program.

Optimization 2: Replacing Convolutions with Table Lookups. This

optimization is also similar to Tarsa’s inference engine, with the difference that

Mini-BranchNet convolution windows cover three neighboring branches, not just one

branch. Storing the pre-computed convolution outputs for all possible 3-branch com-

binations is not feasible. Thus, I slightly change the architecture of Mini-BranchNet

123

+

Running
Sum

-

Pooling
Layer

Outputs

Latest
Convolution

Output

+

Running
Sum

Latest
Convolution

Output

Sum
Controller

Clear
Sum

Enqueue

(b) Mini-BranchNet Inference Engine Precise Pooling

(c) Mini-BranchNet Inference Engine Sliding Pooling

(a) Big-BranchNet Sum-pooling

Convolution
Layer

Outputs

+

+

Pooling
Layer

Outputs

Pooling
Layer

Outputs

Figure 5.11: BranchNet 4-wide sum-pooling.

to hash the neighboring branches to approximate the convolution operation across

three branches. Figure 5.10a shows how Big-BranchNet computes one convolution

output. Figure 5.10b shows how Mini-BranchNet computes one convolution output

during training. Figure 5.10c shows the inference engine hardware for one convolu-

tion operation, which is simply a lookup table like Tarsa’s CNN. The convolutional

layer of Mini-BranchNet uses binarized sigmoid activations, resulting in either 0 or 1,

which is another minor difference between Tarsa’s CNN and Mini-BranchNet.

Optimization 3: Using Running Sum Registers. Figure 5.11a shows the

sum-pooling operation of Big-BranchNet. Mini-BranchNet inference engine uses two

124

designs to compute the sum-pooling outputs. For shorter history slices, the engine

implements precise pooling (Figure 5.11b). Precise pooling uses a buffer and a running

sum register to constantly compute the output of the most recent pooling window and

inserts the pooling outputs into a second set of buffers. As a result, this second set

of buffers contains the pooling outputs of overlapping windows. At prediction time,

only 1 out of P pooling outputs (recall P = pooling width) are fed into the next

layer. The buffer space needed to implement precise pooling grows linearly with the

history size. To reduce storage needs for longer history slices, the Mini-BranchNet

inference engine uses sliding pooling (Figure 5.11c). Sliding pooling accumulates the

pooling output of a window over multiple cycles and inserts the output in the pooling

buffer once every P cycles. The trade-off is that at prediction time, the most recent

convolution outputs may not have formed a complete pooling window. Thus, some of

the most recent branches in the history are not used for prediction, and in general, the

pooling windows have nondeterministic boundaries. In practice, this is not a problem

because I only use sliding poolings in long-history slices of Mini-BranchNet, which do

not rely on fine-grained positions of identified features because of their proportionally

wide pooling widths. To account for sliding poolings during training, I randomly

discard some of the most recent branches (0 to P − 1 branches) that are fed into the

long-history slices. This randomization makes the training algorithm resilient against

nondeterministic pooling boundaries at runtime.

Optimization 4: Quantizing Fully-connected Layers. Mini-BranchNet

uses fixed-point arithmetic to compute the outputs of the fully-connected layers. I

empirically found that using 3 or 4 bits of precision (denoted by architecture knob

125

Table 5.6: Mini-BranchNet architecture knobs.

Knob Mini- Mini- Mini- Mini- Tarsa-
BranchNet BranchNet BranchNet BranchNet Ternary

2KB 1KB 0.5KB 0.25KB 5.125KB
H: History sizes 37,77,152,302,603 37,77,152,302,603 37,77,152,302,603 44,92,182 200
C: Convolution 4,5,5,4,4 3,3,4,4,3 3,3,3,2,2 2,2,2 32
channels
P: Pooling widths 7,15,30,60,120 7,15,30,60,120 7,15,30,60,120 7,15,30 N/A
Use Precise pooling Y,Y,Y,N,N Y,Y,N,N,N Y,Y,N,N,N Y,Y,N N/A
p: Branch PC bits 12 12 12 12 7
h: Convolution 8 8 7 7 N/A
hash width
E: Embedding 32 32 32 32 N/A
dimension
K: Convolution 3 3 3 3 1
width
N: Hidden neurons 10 8 6 4 N/A
q: Fully-connected 4 3 3 3 2
quantization

q) is sufficient for the sum-pooling outputs and the first fully-connected weights.

The outputs of the first fully-connected layers need even less precision and can be

binarized. I replace ReLU activations with Tanh to restrict the layer outputs to be

between -1 and 1, which helps with quantization [17]. I also insert batch normalization

and Tanh after the sum-pooling layer to stabilize the inputs to the fully-connected

layers. After training is done, I fuse the batch normalization operations with the fully-

connected dot products to eliminate their latency. Since the hidden fully-connected

outputs are binarized, I use a lookup table to eliminate the arithmetic operations of

the last layer.

Optimal Architecture Knobs. It is not storage-efficient to use the same

architecture knobs for all hard-to-predict branches. Some branches need larger CNN

models for good prediction accuracy, while some can be predicted well with much

smaller storage budgets. Thus, Mini-BranchNet comes in 4 model configurations

with varying storage budgets per branch. Table 5.6 reports the architecture knob

126

Table 5.7: Breakdown of the Mini-BranchNet inference engine storage requirements
for one static branch.

Using Architecture Knobs 2KB 1KB 0.5KB 0.25KB
Config Config Config Config

Convolution
Tables

∑
(Ci2

h+1) 0.69KB 0.53KB 0.20KB 0.09KB
Precise Pooling
Buffers

∑
(Ci(5 + Pi + q(1 +Hi − Pi))) 0.54KB 0.11KB 0.11KB 0.09KB

Sliding Pooling
Buffers

∑
(Ci(7 + log2(Pi) + q(Hi/Pi))) 0.04KB 0.04KB 0.03KB 0.01KB

Fully-connected
Weights qN

∑
(Ci(Hi/Pi) + 2N 0.68KB 0.29KB 0.16KB 0.06KB

values for each configuration.

5.3.2 On-chip Constraints

Storage. Table 5.7 shows the breakdown of storage needed to predict a single

hard-to-predict branch using the Mini-BranchNet inference engine.

Prediction Latency. Modern processors typically have two tiers of branch

predictors: a less accurate light-weight predictor that provides early single-cycle pre-

dictions and a heavy-weight predictor that can later correct the prediction if necessary

[33]. BranchNet is a heavy-weight predictor with multi-cycle latency.

The critical path of updating the convolutional histories consists of hashing

the most recent branches, the convolution table look-up, an addition (7-bit running

sum), quantization, and insertion into a convolution history buffer. Using CACTI

[52] for the table lookups and counting the gate delays of the arithmetic operations,

the update latency is roughly equal to the latency of a 64-bit Kogge-Stone adder (21

gate delays). Since 64-bit additions are single-cycle operations in modern processors

127

[22], Mini-BranchNet updates are estimated to be single-cycle operations. The critical

path of the prediction pipeline for a 2KB Mini-BranchNet model includes the weight

table look-up, the selection of the convolutional history, and a forward pass of the

fully-connected layers (a 4-bit multiply, a 110-input 8-bit adder tree, a comparison,

and accessing a 1024-entry table). The prediction latency is roughly 4 times the

latency of a 64-bit Kogge-Stone adder. The latency of a 64KB TAGE-SC-L is 1.1

times the latency of the Mini-BranchNet inference engine.2 Thus, I conservatively

estimate both Mini-BranchNet and 64KB TAGE-SC-L are 4-cycle predictors.

Recovery. At the time of a pipeline flush, the convolutional histories and

accumulator registers can easily be recovered using a mechanism similar to what

already exists to restore long global histories. Extra shadow space is reserved in each

register to hold the n most recently shifted out entries of each register. This allows

us to recover the state of the predictor by shifting back the lost state, as long as

we restrict our design to allow n branches in flight. The values of the sum-pooling

counters need to be checkpointed.

Why Is Mini-BranchNet More Storage-Efficient than Tarsa’s CNN?

The sum-pooling layers are critical in enabling BranchNet to be more storage-efficient

and have lower prediction latency. Without sum-poolings, each convolutional history

in Tarsa-Ternary has to buffer 200 ternary values (proportional to history length). In

contrast, Mini-BranchNet’s convolutional histories using sliding sum-poolings need

2The critical path of TAGE-SC-L: accessing banked TAGE tables, tag comparisons, TAGE mux
tree (with a depth of log(n)), selection logic for alternative prediction and the loop predictor, ac-
cessing the statistical corrector GEHL tables, a 20-input 6-bit adder tree, and final selection logic.

128

to buffer only five 4-bit values (independent of history length). Because of the large

storage and latency savings of using sum-poolings, Mini-BranchNet can use longer

history lengths and a second fully-connected layer (necessary for higher accuracy),

while remaining smaller and faster than Tarsa-Ternary.

5.3.3 System and ISA Requirements

Mini-BranchNet requires collaboration across the software stack for loading

trained Mini-BranchNet models to the on-chip unit at runtime. I envision an ap-

proach where the program is modified to load trained BranchNet models into the

on-chip inference engines at the beginning and the operating system (OS) is respon-

sible for managing the state of the engines during context switches. The ISA should

provide BranchNet instructions that the program and OS use to enable, disable, or

update the on-chip engine. As a design choice, these instructions may be implemented

as non-blocking instructions to hide the overhead of loading BranchNet models. Lee

et al. [44] proposed a similar approach for using the OS to save and restore the state of

runtime branch predictors during context switches, albeit for a different goal of miti-

gating context switch penalties on branch prediction accuracy. I leave a more detailed

analysis and evaluation of System and ISA requirements or alternative approaches to

future work.

5.4 Counter-BranchNet

In this section, I introduce Counter-BranchNet, which is a variant of Branch-

Net that uses the correlated branch information to process the branch history. By

129

Embedding
Table

+
Branch
History

Embedded
History

Convolution
Operation

Counting
(Sum-pooling)

Convolution
weights

+
Branch
History

Comparison Counting

Correlated
PC,Direction

=
=
=
=
=
=

One Convolution Channel in Mini-BranchNet

Couting One Branch in Counter-BranchNet

+

+

Figure 5.12: Mini-BranchNet vs. Counter-BranchNet.

explicitly tracking the most correlated branches, using Counter-BranchNet alongside

Mini-BranchNet improves the total MPKI reduction.

Counter-BranchNet replaces the convolutional and sum-pooling layers with

customized structures for counting just the most correlated branches. As long as

there are only a few correlated branches, this would result in a smaller and more

accurate inference engine compared to the Mini-BranchNet inference engine. Fig-

ure 5.12 compares Mini-BranchNet and Counter-BranchNet at a high level. Note

that using Counter-BranchNet relies on knowing which branches need to be counted

in the history (counting all static branches is expensive). Thus, Counter-BranchNet

130

PC, Direction

Incoming
Branch

Correlated
Branch 1
Counters

Correlated
Branch
Table

+

-

Global History Buffer
(Shared among all

correlated branches)

Counter

D
ec

od
er

D
ec

od
er

+

-

Counter

D
ec

od
er

+

-

Counter

+

-

Counter

+

-

Counter

+

-

Counter

Correlated
Branch 2
Counters

Correlated
Branch 3
Counters

Figure 5.13: Branch counting hardware for three correlated branches.

needs a primary training pass, where a Big-BranchNet model is used to identify the

most correlated branches (as explained in Chapter 4). After the correlated branches

are identified, Counter-BranchNet is then trained from scratch to learn an accurate

prediction function based on the counts of the correlated branches.

The design of the inference engine is similar to Mini-BranchNet. Most impor-

tantly, the inference engine of Counter-BranchNet still processes branches as they are

inserted into the history. The key difference is that instead of accessing convolution

tables to determine the value of an incoming branch, we compare the incoming branch

131

PC and direction to the PC and directions of correlated branches. Figure 5.13 shows

how a simple inference engine can maintain the counts of a correlated branch. The

Correlated Branch Table assigns a unique positive index for correlated branches and

assigns zero to all uncorrelated branches. For example, if there are three correlated

branches like in the figure, the branch index is a 2-bit number, with a value of 1, 2,

or 3 for the three correlated branches, or the value of 0 for all other branches. These

branch indices are pushed in a queue that needs to be as long as the history length. At

counter boundaries (Figure 5.13 uses 3-wide counters with a history length of 6), the

branch indices are fed into binary decoders. The decoders control how the counters are

updated to maintain the correct count of each correlated branch in its corresponding

branch window. These counters are then used as inputs to quantized fully-connected

layers, which are the same as the fully-connected layers of Mini-BranchNet.

Similar to Mini-BranchNet, Counter-BranchNet uses multiple slices with geo-

metric history lengths and pooling widths (pooling width is the window of history that

each counter tracks). Even though there are no convolution operations in Counter-

BranchNet, I still use channel to refer to the counters corresponding to one corre-

lated branch in one history slice. For storage optimizations, I train the model in two

phases. First, I train with all available channels with some regularization penalty on

the fully-connected layers. Second, I prune out the slices with the least corresponding

fully-connected weight magnitudes. This is a common pruning technique for neural

networks in general.

This design could be much smaller than Mini-BranchNet if there are only a

few correlated branches. Correlated Branch Table only needs to be as large as the

132

Table 5.8: Counter-BranchNet architecture knobs.

Knob Counter- Counter- Counter- Counter-
BranchNet BranchNet BranchNet BranchNet

0.1KB 0.35KB 0.8KB 1.0KB
History sizes 35,150,300 35,150,600 36,75,150,300,600 36,75,150,300,600
Pooling widths 7,30,60 7,30,120 6,15,30,60,120 6,15,30,60,120
Number of Correlated branches 4 16 32 32
Counter channels after pruning 4 15 30 45
Hidden neurons 5 5 6 5
Counter bits 4 4 4 4
Fully-connected 6 6 6 6
quantization bits

maximum number of correlated branches. The global history buffer is shared among

all correlated branches (in contrast with Mini-BranchNet, where each convolution

channel requires its own buffer). Since correlated branches are sparse in the history,

no normalization is needed after the counter values (Mini-BranchNet normalizes the

values of the counters and quantizes them to a smaller range). Table 5.8 summarizes

the configurations that I use for evaluation, along with the total storage costs.

5.5 Results

I use the same methodology as Section 3.3.5 to create the training set, the

validation set, and the set to train Mini-BranchNet and report the results. The

training hyperparameters are almost the same, except that I use the quantization

algorithm of Courbariaux et al. [17] during training. I found the training process

for quantized small Mini-BranchNet models to be unstable, so I train each model

in multiple phases. In the first phase, I train all layers. At the end of the first

phase, I convert the convolution layers to lookup tables and freeze the tables (i.e.,

the convolution tables will not be trained further). Then I fine-tune the rest of the

133

layers and gradually freeze the next layer until the whole model is trained.

Training Counter-BranchNet models is similar with the following differences.

First, I use the results of Section 4.3 to identify the most correlated branches for each

noisy hard-to-predict branch. Then, I train Counter-BranchNet without quantization.

Then, I prune out the least impactful channels and fine-tune the model. Finally, I

quantize the fully-connected layers and fine-tune the model again.

I evaluate the IPC of benchmarks using Scarab [2], an execution-driven, cycle-

level simulator for x86-64 processors, which accurately models branch misprediction

behavior by fetching and executing wrong-path instructions. I use a 4KB gshare

predictor as the single-cycle lightweight predictor and TAGE-SC-L and BranchNet as

4-cycle late predictors. If the prediction of the late predictor disagrees with the early

predictor, Scarab flushes the frontend and re-fetches the instructions after the branch

using the new prediction. I configure the processor to resemble a high-performance

processor: 6-wide fetch, 512-entry ROB, 2MB L2 Cache in a two-level cache hierarchy,

10-stage frontend pipeline, execution latency similar to an Intel Skylake processor [22],

and DDR4 main memory simulated with Ramulator [38].

Similar to previous chapters, to report the average MPKI reduction, I first

compute the arithmetic mean of MPKI with and without a CNN predictor. Then,

I compute the relative MPKI reduction of the average. To report the average IPC

improvements, I compute the speedup of each benchmark, then compute the geo-

metric mean of all the benchmark speedups, and convert the speed to relative IPC

improvement.

134

10

0

10

20

30

40

R
el

at
iv

e
M

PK
I

R
ed

uc
tio

n
(%

)

Tarsa-Ternary
148.6 KB Tarsa-Float Mini-BranchNet

iso-storage
Mini-BranchNet
iso-latency Big-BranchNet

mcf
leela xz

deepsjeng gcc
omnetpp

exchange2
x264

perlbench

xalancbmk
mean

0

2

4

6

8

10

R
el

at
iv

e
IP

C
Im

pr
ov

em
en

t (
%

) 19.0%

Figure 5.14: MPKI and IPC improvement of BranchNet and Tarsa’s CNN compared
to 64KB TAGE-SC-L.

5.5.1 Mini-BranchNet

Figure 5.14 shows the MPKI and IPC improvement of different configurations

of BranchNet and Tarsa’s CNN compared to a 64KB TAGE-SC-L baseline. I disabled

the local history components of the Statistical Corrector because realistic processors

avoid maintaining speculative local histories because of design challenges. For each

Mini-BranchNet storage budget, I tried all possible assignments of top hard-to-predict

branches to configurations and used the best combination of models across all SPEC

benchmarks.

I evaluated BranchNet in three settings. The iso-storage setting pairs an

8KB Mini-BrachNet (one 2KB model, one 1KB model, seven 0.5KB models, and

135

six 0.25KB models) with a 56KB TAGE-SC-L,3 showing 5.5% average MPKI reduc-

tion, up to 9.5%, and 0.6% average IPC improvement, up to 3.9%. The iso-latency

setting pairs a 32KB Mini-BranchNet (eight 2KB models, seven 1KB models, ten

0.5KB models, and sixteen 0.25KB models) with the baseline 64KB TAGE-SC-L,

showing 9.6% MPKI reduction on average (up to 17.7%) and a geometric mean of

1.3% IPC Improvement (up to 7.9%). Finally, the Big-BranchNet setting shows the

opportunity if it were possible to get the full benefits of floating-point BranchNet

models with a 4-cycle latency at runtime: 2.9% average speedup, up to 19.0% for the

best benchmark.

I evaluated both configurations of Tarsa’s CNNs: Tarsa-Float and Tarsa-

ternary. Tarsa-ternary is analogous to iso-latency Mini-BranchNet but with a much

larger storage budget (5.125KB per branch, up to 29 static branches). Mini-BranchNet

architecture and optimizations allow it to use longer histories and a deeper network

with less storage. Thus, as Figure 5.14 shows, BranchNet is significantly more accu-

rate than Tarsa’s CNN.

Figure 5.15 shows the sensitivity of iso-latency Mini-BranchNet to its storage

budget. Since storage more than 32KB shows diminishing returns, I chose 32KB as

the budget for iso-latency Mini-BranchNet.

Table 5.9 illustrates the negative impact of various constraints and approxima-

tions needed to make Mini-BranchNet practical. Quantization of convolution layers

has the least significant impact on MPKI reduction, which agrees with our intuition

3I built the 56KB TAGE-SC-L by decreasing the number of table entries and tag bits of TAGE.

136

1 8 16 24 32 40 48
Total Mini-BranchNet Storage (KB)

0.0
2.5
5.0
7.5

10.0
12.5

SP
EC

20
17

 A
ve

ra
ge

M
PK

I R
ed

uc
tio

n
(%

)

Figure 5.15: Sensitivity of iso-latency Mini-BranchNet to its storage budget on
SPEC2017 benchmarks.

Table 5.9: Progression of MPKI reduction of leela from Big-BranchNet to Mini-
Branchnet.

Big-BranchNet: No branch capacity limit 35.8 %
Big-BranchNet: Same branches as Mini-BranchNet 25.1 %
Mini-BranchNet: Floating-point 20.0 %
Mini-BranchNet: Quantized convolution 18.7 %
Mini-BranchNet: Fully-quantized 15.7 %

that the role of the convolution layer is to simply identify correlated branch patterns,

so a binary output should be sufficient.

Note: these sensitivity studies were done with a slightly different training

setup, resulting in lower MPKI reduction compared to Figure 5.14.

5.5.2 Counter-BranchNet

Figure 5.16 shows the MPKI reduction of iso-latency inference engines in

three settings: using only Mini-BranchNet models, using only Counter-BranchNet,

137

0

5

10

15

20

M
PK

I R
ed

uc
tio

n
(%

)

Total Storage Budget = 4KB
Only Mini-BranchNet
Only Counter-BranchNet
Both

0

5

10

15

20

M
PK

I R
ed

uc
tio

n
(%

)

Total Storage Budget = 12KB
m

cf

le
el

a xz

de
ep

sj
en

g

om
ne

tp
p

gc
c

ex
ch

an
ge

2

x2
64

pe
rlb

en
ch

xa
la

nc
bm

k

m
ea

n

0

5

10

15

20

M
PK

I R
ed

uc
tio

n
(%

)

Total Storage Budget = 20KB

Figure 5.16: The MPKI reduction of iso-latency Mini-BranchNet and Counter-
BranchNet in three storage budgets.

or mixing both to maximize the accuracy.4 In each configuration, I use dynamic pro-

gramming to figure out the best model architecture (Mini-BranchNet and Counter-

BranchNet) and the best model size to assign to each static noisy branch. The results

show that the best inference engine depends on the storage budget. Counter-based

inference engines are more storage-efficient at lower storage budgets where a few small

4To save computation time, the mixed approach uses 0.1KB Counter-BranchNet, 0.35 Counter-
BranchNet, 0.5KB Mini-BranchNet, 1.0KB Mini-BranchNet, and 2.0KB Mini-BranchNet.

138

1 4 8 12 16 20 24 28 32
Total Inference Engine Storage (KB)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

In
te

ge
r S

PE
C

 2
01

7
A

ve
ra

ge
 M

PK
I R

ed
uc

tio
n

(%
)

Only Mini-BranchNet
Only Counter-BranchNet
Both

Figure 5.17: Sensitivity of iso-latency Mini-BranchNet and Counter-BranchNet to the
storage budget.

Table 5.10: Accuracy of Mini-BranchNet and Counter-BranchNet for some noisy
branches of leela.

Model Mini-BranchNet Counter-BranchNet
Storage 0.25KB 0.5KB 1.0KB 2.0KB 0.1KB 0.35KB 0.8KB 1.0KB
Br1 93.9% 97.5% 99.0% 99.3% 99.95% 99.73% 99.87% 99.93%
Br2 (case study 3) 92.7% 95.9% 97.1% 98.7% 71.8% 99.8% 99.7% 99.8%
Br3 (case study 4) 88.4% 91.5% 93.0% 94.4% 81.3% 88.2% 91.6% 91.4%
Br4 74.9% 77.4% 77.5% 79.9% 71.8% 74.6% 76.6% 75.9%

models can achieve significant MPKI reduction. At higher storage budgets, we can

afford the cost of Mini-BranchNet models to achieve higher accuracy. Mixing both

models gets the benefits of both inference engines and maximizes the accuracy at all

storage budgets. Figure 5.17 shows the sensitivity across more storage budgets.

Table 5.10 reports the accuracy of some of the most improved branches of

leela. Counter-BranchNet is both more accurate and more storage-efficient in pre-

dicting Br1 and Br2. Mini-BranchNet is more accurate and more storage-efficient in

predicting Br3 and Br4. The difference is explained by examining the source code of

the branches. Br1 and Br2 have simple branch relationships that could be perfectly

139

replicated by counting a few correlated branches and learning a simple prediction

function. Br2 is the same branch as Case Study 3 in Section 5.2.3 that can be pre-

dicted accurately with a simple custom predictor. On the other hand, Br3 and Br4

have complicated branch relationships that cannot be represented by counting cor-

related branches. Br3 is the same branch as Case Study 4 in Section 5.2.4, where

the branch relationship was much more complicated than what a small neural net-

work could learn. Br4 is even more complicated and I could not find any obvious

prediction function to improve its accuracy. Still, 2KB Mini-BranchNet marginally

improves its accuracy compared to 64KB TAGE-SC-L, which contributes to the over-

all MPKI reduction but Counter-BranchNet is less accurate than TAGE-SC-L. In

summary, Counter-BranchNet is more effective at smaller storage budgets for pre-

dicting branches with simple prediction functions but Mini-BranchNet is better to

maximize the accuracy at higher storage budgets.

Takeaway: While the improvements of the counter-based BranchNet are not

groundbreaking, it is simpler to build and is more storage-efficient with smaller stor-

age budgets. Further investigation and analysis are needed to understand if the

counter-based design can be improved to accurately predict branches with more com-

plicated branch relationships. Nonetheless, Counter-BranchNet provides insight into

how BranchNet works and how there is room for simplifying the inference engine to

ease adoption.

140

Chapter 6

Filtering Uncorrelated Branches in TAGE

Histories Using BranchNet

Chapter 5 described practical BranchNet inference engines to predict noisy

branches. While using on-chip inference engines is the most effective way of using

BranchNet for maximizing the prediction accuracy, it requires significant engineering

effort for adoption in practice. In this chapter, I propose an alternative approach for

using BranchNet. Instead of using BranchNet as a black-box predictor, I examine

trained CNN models to explicitly identify correlated branches. Using this informa-

tion, I filter the global branch history of TAGE to include only the outcomes of

correlated branches. Eliminating all the noise from the history significantly reduces

the total number of history patterns observable by TAGE. Thus, filtering the branch

history leads to less allocation pressure and faster warmup time in TAGE, resulting

in improved prediction accuracy and better storage-efficiency.

The process of explicitly identifying correlated branches was already discussed

in Chapter 4. This chapter introduces Filtered TAGE, a slightly modified TAGE

branch predictor with filtered global branch histories for a few noisy branches that

benefit the most from filtering. This section details the predictor design, discusses

the system and ISA requirements of filtered TAGE, and evaluates the improvements

141

Global History

Filtered History
Filtered History
Filtered History
Filtered History

Br1 PC
Br2 PC
Br3 PC
Br4 PC

hit / miss

Fetch
Branch PC TAGE-SC-L

Prediction

Global History

Filtered History
Filtered History
Filtered History
Filtered History

Br1 PC
Br2 PC
Br3 PC
Br4 PC

hit / miss

Fetch
Branch PC

TAGE-SC-L

Prediction

TAGE

(a) Partitioned Design

(b) Shared Design

Figure 6.1: Prediction using filtered TAGE.

due to filtered TAGE.

6.1 Filtered TAGE Design

Prediction: In addition to global history, filtered TAGE has a table of filtered

histories. To make a prediction at runtime, filtered TAGE first looks up the filtered

history table using the fetched branch PC. If the lookup is a hit, the corresponding

filtered history is used as the history input to a TAGE partition dedicated for the

filtered hard-to-predict branches. If the lookup is a miss, the main global branch

142

XUnfiltered X C X X B X A X X

0 0 C 0 0 B 0 A 0 0Filtered - Zeroing

J CH G F BE D AFiltered - Packing I

The three correlated branches
can fit within a shorter history

Figure 6.2: Zeroing and packing filtering strategies.

history and the baseline TAGE-SC-L are used. Figure 6.1a shows the changes to the

prediction pipeline of TAGE, with my modifications bolded and colored in green.

Figure 6.1b shows an alternative design, where both filtered and unfiltered

branches use the same TAGE-SC-L tables. This design is more storage-efficient as

branches with filtered histories simply compete with all other branches to allocate

entries in TAGE tables. However, the filtered history lookup time is on the critical

path of the overall prediction latency.

Filtering: There are two methods to maintain filtered histories. The first

method is to mask the uncorrelated branches, i.e., always update all histories but zero

out the bits corresponding to uncorrelated branches. The second method is to not

insert uncorrelated branches in the history at all, effectively packing all the relevant

history bits into the most recent bits of the branch history. Using the terminology of

Thomas et al. [83], I refer to these two methods as zeroing and packing, respectively.

As Figure 6.2 shows, zeroing maintains the absolute position of branches in the global

history while packing increases the density of useful bits in the history. Packing results

in the correlated branches fit in a shorter history. Packing is a more effective choice

143

inin

Global History

Filtered History
Filtered History
Filtered History
Filtered History

Br1 PC
Br2 PC
Br3 PC
Br4 PC

Fetch Branch
(PC, predicted dir)

Set-
associative

Cache

Always Insert

Per-history
Insertion
Signals

0000

Correlation Map

hit / miss

Figure 6.3: Updating histories in filtered TAGE.

for filtered TAGE because packing enables prediction from shorter history tables of

TAGE, which in turn reduces allocation pressure and warmup time.

Updating the filtered histories: In addition to inserting all branches into

the baseline global history, filtered TAGE examines each branch and decides how to

update the filtered histories. To achieve this, filtered TAGE uses a structure called

the correlation map. As Figure 6.3 shows, the correlation map takes the incoming

branch as the input and produces a bit vector as the output. The bit vector indicates

which filtered histories should contain the incoming branch.1 If a branch misses in

the correlation map, the bit vector is implicitly assumed to be all zeros, meaning

none of the filtered branches are correlated with the incoming branch. Depending

on the filtering strategy, the bit vector is used differently. With zeroing, all filtered

histories are updated, but the bit vector clears the bits that are inserted into the

1Each incoming branch could be correlated with any combination of the filtered histories, there-
fore the bit vector is as wide as the number of filtered histories.

144

uncorrelated histories. With packing, the bit vector is used as a load-enable signal to

determine which histories are updated. Internally, the correlation map is organized as

a partially-tagged set-associate cache. The correlation map is pre-populated before

the program starts or at context switches, thus, no runtime replacement policy is

needed. Section 6.2 details the software algorithm for deciding which branches should

be inserted into the correlation map.

Along with the main global branch history (which can be very long), TAGE

also uses a 27-bit path history. The path history complements the traditional direction

history by maintaining the program counters of the branches that are inserted into

the global history. Both packing and zeroing strategies can also be applied to the

path history. In this case, zeroing means shifting the path register for each incoming

branch without folding in the uncorrelated branch.

Number of insertion bits: The most recent variant of TAGE inserts a hash

of the branch PC and its outcome into the global history, which could be 2 or 3

bits depending on the branch type. The filtered histories are updated with the same

hashing algorithm used by the baseline TAGE.

Filtered history lengths: Filtered history lengths do not need to be as long

as the main global branch history. I use a shorter history length for filtered histories

to reduce the storage overhead of filtering.

Recovery: The recovery mechanism depends on the filtering strategy. If

using zeroing filtering, we need to extend the width of filtered histories to cover the

maximum number of speculative branches in the history. Then, for recovery, we can

145

simply shift the registers by the number of bits corresponding to the flushed branches

in the pipeline.

If using packing filtering, since the branches in packed histories are not aligned,

filtered TAGE cannot use the same recovery mechanism as the main global history.

Instead, it needs to checkpoint all updates to the filtered histories. To save storage,

filtered TAGE uses a buffer of history checkpoints that should ideally be as large as the

maximum number of in-flight speculative updates to the filtered histories. After every

update to a filtered history, the predictor allocates an entry in the checkpoint buffer

for that update. In addition, along with each in-flight branch in the processor (both

filtered and unfiltered branches), the processor maintains pointers to the checkpoints

of all the filtered histories. If any branch mispredicts, the processor uses these pointers

to load the corresponding checkpoints for the filtered histories before the branch was

fetched.

Regardless of the filtering strategy, we need to recover the filtered path histories

using checkpoints.

Storage: The main storage cost of filtered TAGE with a partitioned TAGE

design is due to the TAGE tables dedicated to branches with filtered histories. This

cost does not exist for a filtered TAGE with shared TAGE-SC-L tables.

Table 6.1 outlines the storage overhead of maintaining filtered histories (using

packing filtering) as a function of design parameters with the following definitions:

N = number of filtered histories, H = history length, P = path history length, S =

number of correlation map sets, W = number of correlation map ways, tag = width

146

Table 6.1: Storage Overhead of maintaining filtered histories.

Formula Total size
Main filtered TAGE configuration

Filtered Histories N.(1 + 48 + H + P) 0.4KB
Correlation Map S.W.(1 + tag + N) 1.4KB
Checkpoint Buffer C.(H + P) 5.5KB
Checkpoint Pointers MaxBr.N.log2(C) 2.6KB

of correlation map partial tag, C = number of checkpoint buffer entries, MaxBr =

maximum number of in-flight speculative branches. My chosen configuration uses 24

packing filtered histories with a history length of 64 bits, a path history of 27 bits,

a 384-entry 6-way set-associative correlation map partially-tagged with 4 bits, 100

maximum in-flight branches, and a 500-entry checkpoint buffer. The total storage

overhead is 10KB. Note that most of the storage overhead is due to the recovery

checkpoints.

Latency: The latency overhead of filtered TAGE with a partitioned TAGE

design is marginal, as the filtered histories and the filtered TAGE tables are looked

up in parallel to the main unfiltered TAGE-SC-L.

In the case of filtered TAGE with a shared TAGE-SC-L design, accessing the

filtered history table is on the critical path. Using CACTI for table accesses and by

counting gate delays for main logical components, I estimate the lookup time of the

filtered histories to be about 10% of the prediction latency of a 64KB TAGE-SC-L,

which may lead to increasing the overall prediction latency by 1 cycle.

System and ISA Requirements: The System and ISA requirements of

filtered TAGE are similar to those of BranchNet inference engines. Filtered TAGE

requires modifications to several layers of the computing stack to enable offline train-

147

ing. A profiling pass is needed to train BranchNet models to identify correlated

branches. This information must be appended to the program binary. The ISA is

then augmented with new instructions, which enable or disable filtered TAGE and

update the correlation map information. Finally, the OS should use this interface to

save/restore the correlation map state during context switches.

6.2 Evaluation Methodology

Simulation Infrastructure: I use the same methodology as previous chap-

ters to train BranchNet models offline and use SPEC ref inputs to report the final

numbers.

To report branch MPKI, I use a trace-driven simulation with a methodology

Similar to Championship Branch Prediction 2016, i.e., only the branch predictor is

simulated, and the predictor is updated immediately after each prediction. I use the

implementation of TAGE-SC-L in Championship Branch Prediction 2016 [65] as the

baseline, and add support for filtered histories. The Statistical Corrector and the

Loop Predictor are not modified, i.e., they do not use filtered histories in any way.

To report performance, I use Scarab [2], a cycle-level x86 simulator. The core

is configured as follows: 8-wide fetch, 1024-entry ROB, 256-entry unified reservation

station, 100-entry branch buffer, single-cycle branch predictor, DDR4 main memory,

128KB data cache, and 1MB L2 cache.

Identifying correlated branches with BranchNet: While offline training

has no runtime cost, it is still desirable to reduce the training time and required

148

computational resources. Thus, I modify the BranchNet architecture knobs to balance

training time and predictive capabilities. I use 3 history lengths (100, 200, and 600)

with pooling widths of (10, 20, and 60), a convolution width of 8, an embedding width

of 32, and two 16-neuron hidden fully-connected layers. I train with a batch size of

128 for a maximum of 6000 steps with an embedding regularization coefficient of

0.0001. If the training loss does not improve in 100 steps, I stop the training process

to save time. I use the concatenation of branch direction and the least significant

bits PC (12 PC bits to match the correlation map tag bits) as the embedding index.

With these hyperparameters, it takes less than 20 minutes to train 100 BranchNet

models on a single Nvidia Titan Xp GPU.

Selecting the most improved hard-to-predict branches and their cor-

related branches: The optimal number of selected correlated branches for each

branch is different. The results in Section 4.3 show that some branches may be pre-

dicted accurately using only 4 correlated branches, while others may need 16 or even

32 correlated branches. Using more branches than necessary increases the number of

history patterns that TAGE observes, which defeats the purpose of filtering. Further-

more, since the hardware only supports a fixed number of filtered histories, we need

to enable filtering for branches that benefit the most from filtering. To make these

decisions at compile-time, similar to BranchNet’s methodology, I use a validation set

to estimate the MPKI reduction due to improving each hard-to-predict branch.

First, I run TAGE-SC-L on the validation traces in 5 configurations: baseline

TAGE-SC-L, and four configurations of filtered TAGE where each candidate noisy

branch uses filtered histories that contain either top 4, top 8, top 16, or top 32

149

correlation branches. In this phase, filtered TAGE is configured without a capacity

limit on the number of filtered histories and the size of the correlation map. I compare

the four filtered TAGE-SC-L configurations to the baseline to estimate the MPKI

reduction per branch. Then for each hard-to-predict branch, I greedily choose the

filtering configuration (4, 8, 16, or 32 correlated branches) that leads to the highest

MPKI reduction in the validation set. Branches with no MPKI reduction among

the 4 configurations are eliminated from the candidate list. I sort the remaining

candidate branches based on their estimated MPKI reduction and pick the most

improved ones to use the limited number of available filtered histories. The result is

a list of noisy branches that benefit the most from filtering, where each noisy branch

has a corresponding set of 4, 8, 16, or 32 correlated branches. Finally, the inverse

function of this list is loaded into the correlation map. Recall that the correlation map

is a set-associative structure that identifies if an incoming branch should be inserted

in any of the filtered histories.

Because of the limited capacity and associativity of the correlation map, not all

selected correlated branches may fit inside the on-chip predictor. Thus, we also need

an algorithm to select the most likely useful correlated branches. For this purpose,

I sort the correlated branches by their embedding score rank in the identification

step and the number of noisy branches that they are correlated with. When filling

a set in the correlation map, if the number of candidate branches is more than the

associativity, I drop the least needed branches according to the final sort order.

150

0.0

2.5

5.0

7.5

10.0

12.5

15.0
M

PK
I

64KB TAGE-SC-L
128KB TAGE-SC-L

74KB Filtered TAGE-SC-L (Shared)
90KB Filtered TAGE-SC-L (Partitioned)

m
cf

le
el

a xz

de
ep

sj
en

g

om
ne

tp
p

gc
c

ex
ch

an
ge

2

x2
64

pe
rlb

en
ch

xa
la

nc
bm

k

m
ea

n

0

1

2

3

4

IP
C

 Im
pr

ov
em

en
t (

%
)

0.0

2.5

5.0

7.5

10.0

12.5

M
PK

I R
ed

uc
tio

n
(%

)
90

K
B

 F
ilt

er
ed

 T
A

G
E-

SC
-L

 (P
ar

tit
io

ne
d)

2.2%

4.8%
4.1%

9.4%

3.1%

1.4%
0.5%

-0.1% 0.2% -0.1%

3.7%

Figure 6.4: MPKI reduction and speedup of using filtered TAGE with a 64KB TAGE-
SC-L baseline.

6.3 Results

I compare the MPKI and IPC of using 64KB TAGE-SC-L, 128KB TAGE-SC-

L,2 filtered TAGE with shared TAGE tables (10KB storage overhead), and filtered

TAGE with an extra 16KB TAGE partition for filtered branches (26KB storage over-

2To build a 128KB TAGE-SC-L, I created a few TAGE-SC-L configurations by adjusting the
following parameters: bimodal table size, TAGE table bank sizes, number of TAGE table banks,
number of TAGE tag bits, Statistical Corrector counter width, Statistical Corrector GEHL table
sizes. I report the MPKI and IPC of the best 128KB configuration I could find on SPEC benchmarks.

151

head). Both filtered TAGE configurations improve the MPKI by 3.7% across all SPEC

2017 Integer benchmarks, up to 9.4% for benchmark deepsjeng. This amount of im-

provement is about the same as expanding the baseline TAGE-SC-L to 128KB, which

needs 70% and 40% more storage compared to the two TAGE configurations, demon-

strating the storage-efficiency and scalability of filtering TAGE. Figure 6.4 shows the

MPKI of all 4 configurations, the MPKI reduction of partitioned filtered TAGE com-

pared to the baseline, and the speedup of 128KB TAGE-SC-L and the two filtered

TAGE configurations. Note that not only 128KB TAGE-SC-L is less storage-efficient

than filtered TAGE, but it is also worse for prediction latency as expanding the main

table sizes increases the prediction latency. The IPC gain of filtered TAGE is 0.9%

on average (geometric mean), and up to 3.0% for the best benchmark leela.

The benchmarks that benefit the most are generally the same as those that

benefit the most from BranchNet. Filtered TAGE has the most impact on deepsjeng,

leela, and xz which contain many hard-to-predict branches that become predictable if

we isolate the relevant correlated branches. Mcf and omnetpp are also improved, but

most mispredictions in these two benchmarks are due to data-dependent branches

which do not benefit from filtering. Still, filtered TAGE is more effective than 128KB

TAGE-SC-L for these benchmarks. Filtered TAGE improves a few branches in gcc

and exchange2, but not enough to significantly reduce the overall MPKI, resulting in

less MPKI reduction and speedup compared to 128KB TAGE-SC-L. Filtered TAGE

only reduces the MPKI of x264, perlbench, and xalancbmk by less than 1%. However,

these benchmarks do not suffer from high misprediction rates in the first place, so

the MPKI reduction is not as important.

152

de
ep

sj
en

g

le
el

a xz

om
ne

tp
p

m
cf gc
c

ex
ch

an
ge

2

xa
la

nc
bm

k

x2
64

pe
rlb

en
ch

m
ea

n

0.0

2.5

5.0

7.5

10.0

12.5

M
PK

I R
ed

uc
tio

n
(%

) Filtered TAGE (shared) - Packing
Filtered TAGE (partitioned) - Packing
Filtered TAGE (shared) - Zeroing
Filtered TAGE (partitioned) - Zeroing

Figure 6.5: MPKI Reduction of filtered TAGE compared to TAGE-SC-L. All filtered
TAGE use up to 32 active filtered histories and 3000 bits of history.

6.3.1 Filtering Mechanism

Figure 6.5 shows the MPKI reduction of two different filtering mechanisms

(zeroing and packing) and two filtered TAGE designs (shared and partitioned TAGE

tables). The results show that packing is the best filtering mechanism to maximize

prediction accuracy. This is in contrast to the results of Thomas et al. [83], where

zeroing has a marginal advantage over filtering. The primary difference is that they

use the filtered histories as an input to a predictor with a single history length, so

the packing does not affect the history length. But, for TAGE, packing the relevant

bits into a shorter history length enables TAGE to use shorter history tables to

make a prediction, which has a first-order impact on the allocation pressure on the

tables and warm-up time. Furthermore, my packing strategy is slightly different

because of different recovery methods. Thomas et al. always maintained unpacked

histories (for ease of recovery) and packed the histories on the critical path of making

153

Table 6.2: Internal TAGE statistics for some of the most improved branches on leela’s
most representative simpoint.

Accuracy Mean Prediction Number of Allocations Number of Unique Entries
Table ID

b
a
se

ze
ro
in
g

p
a
ck

in
g

b
a
se

ze
ro
in
g

p
a
ck

in
g

b
a
se

ze
ro
in
g

p
a
ck

in
g

b
a
se

ze
ro
in
g

p
a
ck

in
g

Br1 79.4 80.3 97.0 8.2 9.8 4.7 175K 147k 34K 86K 74K 24K
Br2 89.3 89.4 95.7 6.7 11.2 3.1 36K 26k 18K 19K 11K 14K
Br3 85.0 96.3 94.1 13.3 16.7 7.1 110K 22K 59K 60K 4K 31K
Br4 83.5 93.1 93.1 14.6 15.8 11.3 39K 11K 14K 23K 3K 8K
Br5 90.8 92.9 95.1 13.1 15.0 7.2 127K 83K 69K 68K 34K 41K
Br6 87.3 88.3 89.5 10.3 13.2 7.8 165K 105K 152K 81K 38K 105K
Br7 89.7 90.4 91.1 14.1 14.5 7.9 400K 333K 405K 248K 186K 218K
Br8 94.6 95.5 96.6 7.2 7.6 3.0 114K 90K 94K 59K 43K 55K

a prediction. This approach is infeasible for very long histories because of the latency

of the packing logic. Instead, filtered TAGE maintains packed histories and uses

checkpoints for recovery. Maintaining packed histories increases the effective history

length with fewer bits, which can also improve the prediction accuracy.

To verify my hypothesis about the impact of packing on the history length, I

collected per-branch statistics about the behavior of baseline TAGE, filtered TAGE

with zeroing, and filtered TAGE with packing. Table 6.2 shows the results for some

of the most improved branches of leela. The relevant statistic is Mean Prediction

Table ID, which is the arithmetic mean of the table ID that is ultimately used to

provide a prediction. Tables with shorter history lengths have a smaller ID, thus,

the lower average prediction table ID of filtered TAGE is an indicator that TAGE is

successfully using shorter history tables.

Table 6.2 also shows the change in TAGE allocation behavior due to filtering.

Number of Allocations is the total number of allocation attempts, whether successful

154

Table 6.3: Prediction accuracy of baseline 64KB TAGE-SC-L and filtered TAGE-SC-
L with packing filtering. Br1-Br8 are the same branches as the branches in Table 4.1.

Baseline Filtered Filtered Filtered Filtered
Top 32 Top 16 Top 8 Top 4

Br1 77.92% 78.43% 78.72% 77.02% 76.68%
Br2 89.21% 90.45% 87.38% 83.54% 83.55%
Br3 76.06% 99.97% 99.92% 99.97% 99.94%
Br4 75.65% 76.38% 77.56% 95.15% 90.57%
Br5 66.85% 65.68% 61.51% 59.12% 58.29%
Br6 67.40% 66.18% 65.26% 63.82% 64.87%
Br7 89.21% 93.72% 92.99% 94.50% 91.08%
Br8 68.33% 68.57% 66.81% 65.51% 65.47%

or not, which is a measure of allocation pressure caused by each branch. Number of

Unique Entries is the total number of unique allocation attempts as specified by a

(table ID, index, tag) tuple, which is a measure of distinct history patterns observed

by each branch. Both zeroing and packing consistently reduce allocation and the

number of observed patterns, which is most likely the cause of improved accuracy.

6.3.2 Number of Correlated Branches

Table 6.3 shows the prediction accuracy of the baseline and filtered TAGE-SC-

L for some of the hard-to-predict branches of SPEC benchmark leela. Br1-Br8 are the

same branches that were used in Table 4.1. Filtered Top 32 refers to using a filtered

history that contains 32 static correlated branches. The run with the best prediction

is highlighted in green, orange, or red. Green identifies cases where filtering the

history significantly improves the accuracy, orange identifies the cases where filtering

somewhat improves the accuracy, and red identifies the cases where filtering does not

help at all. Interestingly, the green branches are the same as the green branches in

155

Table 6.4: The selected number of correlated branches for each filtered history and
the total number of combined correlated branches. Filtered TAGE supports up to a
total of 16 filtered histories in this configuration.

le
el
a

x
z

o
m
n
et
p
p

d
ee
p
sj
en

g

m
cf

x
2
6
4

g
cc

ex
ch

a
n
g
e2

p
er
lb
en

ch

x
a
la
n
cb

m
k

Filtered histories with 4 correlated branches 7 4 4 4 3 3 5 6 4 1
Filtered histories with 8 correlated branches 3 7 5 4 6 3 3 5 4 2
Filtered histories with 16 correlated branches 2 3 4 4 3 4 2 2 2 0
Filtered histories with 32 correlated branches 4 2 3 4 3 6 3 3 0 2
Total number of correlated branches 113 129 153 163 94 218 186 137 54 60

Table 4.1, i.e., the branches that can be accurately predicted with filtered BranchNet

are the same as branches that benefit the most from filtered TAGE. The reason is

that for filtered TAGE to be effective, the number of correlated branches should be

small enough such that TAGE could capture all the observable history patterns. For

branches like Br4, having more correlated branches is not worth the extra allocation

pressure caused by including those branches in the history.

Table 6.4 shows the selected number of correlated branches for filtered TAGE

with up to 16 filtered histories. All choices of using 4, 8, 16, or 32 branches are

deemed useful for some branches. The table also shows the total number of correlated

branches that are selected across all filtered histories. The correlation map should

ideally be large enough to support keeping an entry for each of the correlated branches.

However, as explained in Section 6.2, if there is not enough capacity for all correlated

branches in a given correlation map configuration, I will sort the branches according

to some heuristic and drop the least likely needed correlated branches.

156

3000 2500 2000 1500 1000 750 500 250 150 100 64 32 16
Filtered History Length

0
1
2
3
4
5
6
7
8
9

M
PK

I R
ed

uc
tio

n
(%

)

Filtered TAGE - Packing
Filtered TAGE - Zeroing

Figure 6.6: Impact of history length on MPKI reduction of filtered TAGE. Filtered
TAGE is configured to support up to 32 filtered histories.

6.3.3 Sensitivity Studies

Figure 6.6 shows the impact of reducing the history length from 3000 bits

(baseline 64KB TAGE-SC-L) down to 16. As mentioned above, when using pack-

ing filtered histories, most predictions are produced by short history tables, thus,

filtered TAGE can tolerate much shorter history lengths without any significant loss

of accuracy. Compared to using 3000 history bits, the first significant drop in MPKI

reduction occurs when the history length is 64 bits. On the other hand, filtered TAGE

with zeroing filtering is sensitive to the history length because long history tables are

still needed for high accuracy (the first significant drop occurs when the history length

is 500 bits).

Figure 6.7 shows the impact of the number of filtered histories. In general, most

benchmarks only need up to 16 filtered histories. The exceptions are deepsjeng and

xz, which can use up to 32 filtered histories to further improve the branch prediction

accuracy. For the purpose of improving TAGE without significant storage overhead,

using 24 filtered histories is a good design choice.

157

de
ep

sj
en

g

le
el

a xz

om
ne

tp
p

m
cf gc
c

ex
ch

an
ge

2

xa
la

nc
bm

k

x2
64

pe
rlb

en
ch

m
ea

n

0.0

2.5

5.0

7.5

10.0

12.5

15.0

M
PK

I R
ed

uc
tio

n
(%

)
Up to 4 filtered histories
Up to 8 filtered histories
Up to 12 filtered histories
Up to 16 filtered histories

Up to 20 filtered histories
Up to 32 filtered histories
Up to 64 filtered histories

Figure 6.7: Impact of number of filtered histories on MPKI reduction of filtered
TAGE. Filtered TAGE uses 250-bit packing histories.

Figure 6.8 shows that TAGE-SC-L storage can be reduced to 40KB while

maintaining positive MPKI reduction. Since filtering reduces the allocation pressure

on TAGE entries, a smaller TAGE with filtering can be more accurate than a larger

TAGE without filtering. The main negative outliers are gcc and exchange2, where the

improvement due to filtering is small, but the overall accuracy is sensitive to baseline

TAGE-SC-L storage.

158

de
ep

sj
en

g

le
el

a xz

om
ne

tp
p

m
cf gc
c

ex
ch

an
ge

2

xa
la

nc
bm

k

x2
64

pe
rlb

en
ch

m
ea

n

20

15

10

5

0

5

10

M
PK

I R
ed

uc
tio

n
(%

)

Filtered TAGE (Shared 32KB TAGE-SC-L)
Filtered TAGE (Shared 40KB TAGE-SC-L)
Filtered TAGE (Shared 48KB TAGE-SC-L)

Filtered TAGE (Shared 56KB TAGE-SC-L)
Filtered TAGE (Shared 60KB TAGE-SC-L)
Filtered TAGE (Shared 64KB TAGE-SC-L)

Figure 6.8: Impact of shrinking baseline TAGE-SC-L storage on filtered TAGE.

159

Chapter 7

Conclusion and Future Work

7.1 Conclusion

BranchNet is a convolutional neural network that is trained offline to predict

many branches that are fundamentally hard to predict for state-of-the-art predictors.

State-of-the-art branch predictors fail to accurately predict these branches because

they need exponentially large storage to identify branch correlations that appear deep

into a noisy global history. In contrast, by using the abundant data and computation

available during offline training, BranchNet learns to ignore uncorrelated noise in

the history and uses only the correlated branches to make a prediction. After offline

training, BranchNet can be used either directly as a helper predictor to augment state-

of-the-art runtime predictors, or as a tool to explicitly identify correlated branches and

filter the global branch history of TAGE. Both approaches result in improved overall

prediction accuracy. This dissertation describes and evaluates both approaches and

discusses the trade-offs.

To show the inherent advantage of CNNs in predicting this category of branches,

I compared the prediction accuracy of Big-BranchNet to MTAGE-SC without consid-

ering practical constraints. Big-BranchNet outperforms MTAGE-SC on some of the

most mispredicting branches among the SPEC2017 benchmarks, resulting in 7.6%

160

MPKI reduction. Furthermore, to show the effectiveness of CNNs as practical branch

predictors, I compared Mini-BranchNet to 64KB TAGE-SC-L. Without increasing

the prediction latency, Mini-BranchNet reduces the MPKI by 9.6%.

Using BranchNet as a tool to identify correlated branches enables filtered

TAGE. Filtered TAGE uses the correlation information produced by BranchNet to

maintain filtered histories that only contain the most useful branches to predict noisy

branches. Because of eliminating redundant history patterns, the allocation pressure

and the warmup time of TAGE are decreased. To show the effectiveness of using

BranchNet to filter TAGE histories, I compared the accuracy of filtered TAGE to

a 64KB TAGE-SC-L baseline. In an iso-latency configuration with 26KB storage

overhead, filtered TAGE reduces the MPKI of SPEC 2017 Integer benchmarks by

3.7%, up to 9.4% for the most improved benchmark (0.9% speedup, up to 3.0%). To

achieve the same order of performance benefits, an unfiltered TAGE-SC-L requires

128KB, which is 40% more than the size of the chosen filtered TAGE configuration,

demonstrating the storage-efficiency of filtering.

While the IPC gains of using BranchNet in practical settings are limited (e.g.,

iso-latency Mini-BranchNet results in 1.3% average speed-up, up to 7.9% speed-up for

the best benchmark), these results should not be interpreted as a limit to the potential

benefits of deep learning for branch prediction. The key takeaway from BranchNet is

that offline deep learning is a powerful approach to address the weaknesses of state-

of-the-art runtime branch predictors. Further work can complement and enhance the

key insights and observations of this dissertation.

161

7.2 Future Work

Using per-branch prediction models is a major performance bottleneck if the

mispredictions of a program are distributed among many static branches. In this

case, BranchNet cannot significantly improve its accuracy by improving the prediction

accuracy of just a few branches. Even if we can train an accurate CNN model for each

mispredicting branch, we need a large storage area to keep the models. One possible

direction is to use the methodology of Predictor Virtualization [9] to maintain all

the models in the main memory and use either a runtime mechanism or explicit

BranchNet instructions to load the BranchNet models into the inference engine as

needed. Another strategy is to use larger models that can predict multiple branches.

This strategy is particularly interesting for filtering TAGE histories, as the sets of

correlated branches for predicting noisy histories often have significant overlap. If

correlated branch sets overlap, a shared filtered history is an effective way of filtering

the global history for multiple noisy branches at the cost of one extra branch history.

It may be possible to reduce the large gap between the accuracy of Big-

BranchNet and Mini-BranchNet. This dissertation argues that specialization is key

for further reducing this gap. For example, a major source of inefficiency is identifying

the relevant portion of the history that contains useful information. Fully-connected

layers are not a storage-efficient solution. If the relevant region can be identified

through other means (e.g., information extraction from a trained Big-BranchNet

model), maybe a custom specialized hardware can replace the fully-connected neu-

rons.

Perhaps the biggest weakness of BranchNet is predicting data-dependent

162

branches. Despite this current weakness, I believe the combination of deep learning

and offline training has the potential to further push branch prediction by using

signals other than the global branch history that can help to predict data-dependent

branches.

Finally, while this dissertation focuses on branch prediction, many key insights

of observations are transferable to other domains. For example, a key insight of this

dissertation is that machine learning models can be designed as tools for guiding other

prediction mechanisms. It may be possible to use neural networks to learn data access

patterns and use the information to adjust conventional runtime data prefetchers.

163

Bibliography

[1] “Branchnet,” https://github.com/siavashzk/BranchNet.

[2] “Scarab,” https://github.com/hpsresearchgroup/scarab.

[3] A. Adileh, D. Lilja, and L. Eeckhout, “Architectural support for probabilistic

branches,” in 51st annual IEEE/ACM International Symposium onMicroarchitecture,

Fukuoka, Japan, Oct 2018.

[4] Z. Allen-Zhu, Y. Li, and Z. Song, “A convergence theory for deep learning via

over-parameterization,” arXiv preprint arXiv:1811.03962, 2018.

[5] J. N. Amaral, E. Borin, D. R. Ashley, C. Benedicto, E. Colp, J. H. S. Hoffmam,

M. Karpoff, E. Ochoa, M. Redshaw, and R. E. Rodrigues, “The alberta workloads

for the spec cpu 2017 benchmark suite,” in 2018 IEEE International Symposium

on Performance Analysis of Systems and Software (ISPASS), April 2018, pp.

159–168.

[6] D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, “The ibm system/360

model 91: Machine philosophy and instruction-handling,” IBM Journal of Research

and Development, vol. 11, no. 1, pp. 8–24, 1967.

[7] R. Bera, K. Kanellopoulos, A. Nori, T. Shahroodi, S. Subramoney, and

O. Mutlu, “Pythia: A customizable hardware prefetching framework using

164

online reinforcement learning,” in MICRO-54: 54th Annual IEEE/ACM

International Symposium on Microarchitecture, ser. MICRO ’21. New York,

NY, USA: Association for Computing Machinery, 2021, p. 1121–1137. [Online].

Available: https://doi.org/10.1145/3466752.3480114

[8] H. D. Block, “The perceptron: A model for brain functioning. i,” Rev.

Mod. Phys., vol. 34, pp. 123–135, Jan 1962. [Online]. Available:

https://link.aps.org/doi/10.1103/RevModPhys.34.123

[9] I. Burcea, S. Somogyi, A. Moshovos, and B. Falsafi, “Predictor virtualization,”

in Proceedings of the 13th International Conference on Architectural Support

for Programming Languages and Operating Systems, ser. ASPLOS XIII. New

York, NY, USA: Association for Computing Machinery, 2008, p. 157–167.

[Online]. Available: https://doi.org/10.1145/1346281.1346301

[10] B. Calder, D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer, and B. Zorn,

“Evidence-based static branch prediction using machine learning,” ACM Trans.

Program. Lang. Syst., vol. 19, no. 1, pp. 188–222, Jan. 1997. [Online].

Available: http://doi.acm.org.ezproxy.lib.utexas.edu/10.1145/239912.239923

[11] P.-Y. Chang, M. Evers, and Y. Patt, “Improving branch prediction accuracy by

reducing pattern history table interference,” in Proceedings of the 1996 Conference

on Parallel Architectures and Compilation Technique, 1996, pp. 48–57.

[12] R. S. Chappell, F. Tseng, A. Yoaz, and Y. N. Patt, “Difficult-path branch predic-

tion using subordinate microthreads,” in Proceedings 29th Annual International

Symposium on Computer Architecture, May 2002, pp. 307–317.

165

[13] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt,

“Simultaneous subordinate microthreading (ssmt),” in Proceedings of the 26th

Annual International Symposium on Computer Architecture, ser. ISCA ’99.

Washington, DC, USA: IEEE Computer Society, 1999, pp. 186–195. [Online].

Available: http://dx.doi.org/10.1145/300979.300995

[14] C. Chen, F. Tung, N. Vedula, and G. Mori, “Constraint-aware deep neural net-

work compression,” in Proceedings of the European Conference on Computer

Vision (ECCV), 2018, pp. 400–415.

[15] I.-C. K. Chen, J. T. Coffey, and T. N. Mudge, “Analysis of branch prediction

via data compression,” SIGPLAN Not., vol. 31, no. 9, p. 128–137, sep 1996.

[Online]. Available: https://doi.org/10.1145/248209.237171

[16] J. Cleary and I. Witten, “Data compression using adaptive coding and partial

string matching,” IEEE Transactions on Communications, vol. 32, no. 4, pp.

396–402, April 1984.

[17] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized

neural networks: Training deep neural networks with weights and activations

constrained to +1 or -1,” 2016.

[18] A. N. Eden and T. Mudge, “The yags branch prediction scheme,” in Proceedings

of the 31st Annual ACM/IEEE International Symposium on Microarchitecture,

ser. MICRO 31. Washington, DC, USA: IEEE Computer Society Press, 1998,

p. 69–77.

166

[19] R. E.M. and F. C.C., “The inhibition of potential parallelism by conditional

jumps,” IEEE Transactions on Computers, vol. C-21, no. 12, pp. 1405–1411,

1972.

[20] M. Evers, S. J. Patel, R. S. Chappell, and Y. N. Patt, “An analysis of

correlation and predictability: What makes two-level branch predictors work,”

in Proceedings of the 25th Annual International Symposium on Computer

Architecture, ser. ISCA ’98. USA: IEEE Computer Society, 1998, p. 52–61.

[Online]. Available: https://doi.org/10.1145/279358.279368

[21] M. U. Farooq, Khubaib, and L. K. John, “Store-load-branch (slb) predictor: A

compiler assisted branch prediction for data dependent branches,” in 2013 IEEE

19th International Symposium on High Performance Computer Architecture

(HPCA), 2013, pp. 59–70.

[22] A. Fog, “Instruction tables: Lists of instruction latencies, throughputs

and micro-operation breakdowns for intel, amd and via cpus,” Technical

University of Denmark, Tech. Rep. [Online]. Available: https:

//www.agner.org/optimize/instruction tables.pdf

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,

http://www.deeplearningbook.org.

[24] D. Gope and M. H. Lipasti, “Bias-free branch predictor,” in 2014 47th Annual

IEEE/ACM International Symposium on Microarchitecture, Dec 2014, pp. 521–

532.

167

[25] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang, C. Kozyrakis,

and P. Ranganathan, “Learning memory access patterns,” in Proceedings of

the 35th International Conference on Machine Learning, ser. Proceedings

of Machine Learning Research, J. Dy and A. Krause, Eds., vol. 80.

Stockholmsmässan, Stockholm Sweden: PMLR, 10–15 Jul 2018, pp. 1919–1928.

[Online]. Available: http://proceedings.mlr.press/v80/hashemi18a.html

[26] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun

2018. [Online]. Available: http://dx.doi.org/10.1109/CVPR.2018.00745

[27] Q. Huang, K. Zhou, S. You, and U. Neumann, “Learning to prune filters in

convolutional neural networks,” in 2018 IEEEWinter Conference on Applications

of Computer Vision (WACV), 2018, pp. 709–718.

[28] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network

training by reducing internal covariate shift,” in Proceedings of the 32Nd

International Conference on International Conference on Machine Learning -

Volume 37, ser. ICML’15. JMLR.org, 2015, pp. 448–456. [Online]. Available:

http://dl.acm.org/citation.cfm?id=3045118.3045167

[29] E. Ipek, O. Mutlu, J. F. Mart́ınez, and R. Caruana, “Self-optimizing memory

controllers: A reinforcement learning approach,” in 2008 International Symposium

on Computer Architecture, 2008, pp. 39–50.

[30] D. Jiménez, “Multiperspective perceptron predictor,” in 5th JILP Workshop on

168

Computer Architecture Competitions (JWAC-5): Championship Branch Prediction

(CBP-5), 2016.

[31] D. Jiménez, “Multiperspective perceptron predictor with tage,” in 5th JILP

Workshop on Computer Architecture Competitions (JWAC-5): Championship

Branch Prediction (CBP-5), 2016.

[32] D. A. Jimenez, H. L. Hanson, and C. Lin, “Boolean formula-based branch pre-

diction for future technologies,” in Proceedings 2001 International Conference

on Parallel Architectures and Compilation Techniques, Sep. 2001, pp. 97–106.

[33] D. A. Jimenez, S. W. Keckler, and C. Lin, “The impact of delay on the design

of branch predictors,” in Proceedings 33rd Annual IEEE/ACM International

Symposium on Microarchitecture. MICRO-33 2000, Dec 2000, pp. 67–76.

[34] D. A. Jimenez and C. Lin, “Dynamic branch prediction with perceptrons,”

in Proceedings HPCA Seventh International Symposium on High-Performance

Computer Architecture, Jan 2001, pp. 197–206.

[35] D. Jimenez, “Fast path-based neural branch prediction,” in Proceedings. 36th

Annual IEEE/ACM International Symposium onMicroarchitecture, 2003. MICRO-36.,

2003, pp. 243–252.

[36] D. A. Jimenez, “Piecewise linear branch prediction,” in Proceedings of the

32Nd Annual International Symposium on Computer Architecture, ser. ISCA

’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 382–393.

[Online]. Available: https://doi.org/10.1109/ISCA.2005.40

169

[37] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor model,” in

Proceedings. 31st Annual International Symposium on Computer Architecture,

2004., June 2004, pp. 338–349.

[38] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram

simulator,” IEEE Computer Architecture Letters, vol. 15, no. 1, pp. 45–49, Jan

2016.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,

vol. abs/1412.6980, 2015.

[40] A. Krall, “Improving semi-static branch prediction by code replication,”

SIGPLAN Not., vol. 29, no. 6, pp. 97–106, Jun. 1994. [Online]. Available:

http://doi.acm.org/10.1145/773473.178252

[41] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,

and L. D. Jackel, “Backpropagation applied to handwritten zip code

recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, Dec. 1989. [Online].

Available: http://dx.doi.org/10.1162/neco.1989.1.4.541

[42] C.-C. Lee, I.-C. K. Chen, and T. N. Mudge, “The bi-mode branch predictor,”

Proceedings of 30th Annual International Symposium on Microarchitecture, pp.

4–13, 1997.

[43] J. K. F. Lee and A. J. Smith, “Branch prediction strategies and branch target

buffer design,” Computer, vol. 17, no. 1, pp. 6–22, 1984.

170

[44] M.-S. Lee, Y.-J. Kang, J.-W. Lee, and S.-R. Maeng, “Opts: increasing

branch prediction accuracy under context switch,” Microprocessors and

Microsystems, vol. 26, no. 6, pp. 291 – 300, 2002. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0141933102000418

[45] C.-K. Lin and S. J. Tarsa, “Branch prediction is not a solved problem: Measure-

ments, opportunities, and future directions,” in IEEE International Symposium

on Workload Characterization, 2019.

[46] S. Mcfarling, “Combining branch predictors,” Digital Equipment Corporation,

Western Research Lab, Tech. Rep., 1993.

[47] P. Michaud, “A ppm-like, tag-based branch predictor,” in In Proceedings of

the First Workshop on Championship Branch Prediction (in conjunction with

MICRO-37), 2004.

[48] P. Michaud, “An alternative tage-like conditional branch predictor,” ACM

Trans. Archit. Code Optim., vol. 15, no. 3, Aug. 2018. [Online]. Available:

https://doi.org/10.1145/3226098

[49] P. Michaud, A. Seznec, and S. Jourdan, “An exploration of instruction fetch

requirement in out-of-order superscalar processors,” International Journal of

Parallel Programming, vol. 29, no. 1, pp. 35–58, Feb 2001. [Online]. Available:

https://doi.org/10.1023/A:1026431920605

[50] P. Michaud, A. Seznec, and R. Uhlig, “Trading conflict and capacity

aliasing in conditional branch predictors,” SIGARCH Comput. Archit.

171

News, vol. 25, no. 2, p. 292–303, may 1997. [Online]. Available:

https://doi.org/10.1145/384286.264211

[51] C. Molnar, G. Casalicchio, and B. Bischl, “Interpretable machine learning–a

brief history, state-of-the-art and challenges,” in Joint European Conference on

Machine Learning and Knowledge Discovery in Databases. Springer, 2020, pp.

417–431.

[52] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing nuca orga-

nizations and wiring alternatives for large caches with cacti 6.0,” in 40th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO 2007), Dec

2007, pp. 3–14.

[53] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann

machines,” in Proceedings of the 27th International Conference on International

Conference on Machine Learning, ser. ICML’10. USA: Omnipress, 2010,

pp. 807–814. [Online]. Available: http://dl.acm.org/citation.cfm?id=

3104322.3104425

[54] J. R. C. Patterson, “Accurate static branch prediction by value range

propagation,” SIGPLAN Not., vol. 30, no. 6, pp. 67–78, Jun. 1995. [Online].

Available: http://doi.acm.org.ezproxy.lib.utexas.edu/10.1145/223428.207117

[55] S. Pruett and Y. Patt, “Branch runahead: An alternative to branch prediction

for impossible to predict branches,” in MICRO-54: 54th Annual IEEE/ACM

International Symposium on Microarchitecture, 2021, pp. 804–815.

172

[56] S. Pruett, S. Zangeneh, A. Fakhrzadehgan, B. Lin, and Y. Patt, “Dynami-

cally sizing the tage branch predictor,” in 5th JILP Workshop on Computer

Architecture Competitions (JWAC-5): Championship Branch Prediction (CBP-5),

2016.

[57] H. Robbins and S. Monro, “A stochastic approximation method,” Ann. Math.

Statist., vol. 22, no. 3, pp. 400–407, 09 1951. [Online]. Available:

https://doi.org/10.1214/aoms/1177729586

[58] A. Roth and G. S. Sohi, “Speculative data-driven multithreading,” in Proceedings

HPCA Seventh International Symposium on High-Performance Computer Architecture,

Jan 2001, pp. 37–48.

[59] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Representations by

Back-Propagating Errors. Cambridge, MA, USA: MIT Press, 1988, p. 696–699.

[60] Y. Sazeides, A. Moustakas, K. Constantinides, and M. Kleanthous, “The signifi-

cance of affectors and affectees correlations for branch prediction,” vol. 4917, 01

2008, pp. 243–257.

[61] H. Schorr et al., “Design principles for a high-performance system,” in Proceedings

of the Symposium on Computers and Automata, 1971.

[62] A. Seznec, “Analysis of the o-geometric history length branch predictor,” in 32nd

International Symposium on Computer Architecture (ISCA’05), June 2005, pp.

394–405.

173

[63] A. Seznec, “The o-gehl branch predictor,” in The 1st JILP Championship Branch

Prediction (CBP-1), 2004.

[64] A. Seznec, “Exploring branch predictability limits with the MTAGE+SC predic-

tor,” in 5th JILP Workshop on Computer Architecture Competitions (JWAC-5): Championship Branch Prediction (CBP-5),

Seoul, South Korea, Jun. 2016, p. 4. [Online]. Available:

https://hal.inria.fr/hal-01354251

[65] A. Seznec, “Tage-sc-l branch predictors again,” in 5th JILPWorkshop on Computer

Architecture Competitions (JWAC-5): Championship Branch Prediction (CBP-5),

2016.

[66] A. Seznec and P. Michaud, “A case for (partially) tagged geometric history length

branch prediction,” J. Instruction-Level Parallelism, vol. 8, 2006.

[67] A. Seznec, J. S. Miguel, and J. Albericio, “The inner most loop iteration

counter: A new dimension in branch history,” in Proceedings of the

48th International Symposium on Microarchitecture, ser. MICRO-48. New

York, NY, USA: ACM, 2015, pp. 347–357. [Online]. Available:

http://doi.acm.org/10.1145/2830772.2830831

[68] R. Sheikh, J. Tuck, and E. Rotenberg, “Control-flow decoupling: An approach for

timely, non-speculative branching,” IEEE Transactions on Computers, vol. 64,

no. 8, pp. 2182–2203, Aug 2015.

[69] T. Sherwood and B. Calder, “Automated design of finite state machine pre-

dictors for customized processors,” in Proceedings 28th Annual International

174

Symposium on Computer Architecture, June 2001, pp. 86–97.

[70] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically

characterizing large scale program behavior,” in Proceedings of the 10th

International Conference on Architectural Support for Programming Languages

and Operating Systems, ser. ASPLOS X. New York, NY, USA: ACM, 2002,

pp. 45–57. [Online]. Available: http://doi.acm.org/10.1145/605397.605403

[71] Z. Shi, X. Huang, A. Jain, and C. Lin, “Applying deep learning to the cache re-

placement problem,” in Proceedings of the 52nd Annual IEEE/ACM International

Symposium on Microarchitecture, 2019, pp. 413–425.

[72] Z. Shi, A. Jain, K. Swersky, M. Hashemi, P. Ranganathan, and C. Lin, “A

hierarchical neural model of data prefetching,” in Proceedings of the 26th

ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, ser. ASPLOS 2021. New York, NY, USA:

Association for Computing Machinery, 2021, p. 861–873. [Online]. Available:

https://doi.org/10.1145/3445814.3446752

[73] J. E. Smith, “A study of branch prediction strategies,” in Proceedings of the 8th

Annual Symposium on Computer Architecture, ser. ISCA ’81. Washington,

DC, USA: IEEE Computer Society Press, 1981, p. 135–148.

[74] E. Sprangle and D. Carmean, “Increasing processor performance by implement-

ing deeper pipelines,” in Computer Architecture, 2002. Proceedings. 29th

Annual International Symposium on. IEEE, 2002, pp. 25–34.

175

[75] E. Sprangle, R. S. Chappell, M. Alsup, and Y. N. Patt, “The agree predictor:

A mechanism for reducing negative branch history interference,” SIGARCH

Comput. Archit. News, vol. 25, no. 2, p. 284–291, may 1997. [Online].

Available: https://doi.org/10.1145/384286.264210

[76] V. Srinivasan, R. B. R. Chowdhury, and E. Rotenberg, “Slipstream processors re-

visited: Exploiting branch sets,” in 2020 ACM/IEEE 47th Annual International

Symposium on Computer Architecture (ISCA), 2020, pp. 105–117.

[77] J. Stark, M. Evers, and Y. N. Patt, “Variable length path branch prediction,”

SIGOPS Oper. Syst. Rev., vol. 32, no. 5, pp. 170–179, Oct. 1998. [Online].

Available: http://doi.acm.org/10.1145/384265.291042

[78] K. Sundaramoorthy, Z. Purser, and E. Rotenburg, “Slipstream processors:

Improving both performance and fault tolerance,” in Proceedings of the

Ninth International Conference on Architectural Support for Programming

Languages and Operating Systems, ser. ASPLOS IX. New York, NY, USA:

Association for Computing Machinery, 2000, p. 257–268. [Online]. Available:

https://doi.org/10.1145/378993.379247

[79] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-resnet

and the impact of residual connections on learning,” 2016.

[80] D. Tarjan and K. Skadron, “Merging path and gshare indexing in

perceptron branch prediction,” ACM Trans. Archit. Code Optim.,

vol. 2, no. 3, pp. 280–300, Sep. 2005. [Online]. Available:

http://doi.acm.org/10.1145/1089008.1089011

176

[81] M. . Tarlescu, K. B. Theobald, and G. R. Gao, “Elastic history buffer: a low-cost

method to improve branch prediction accuracy,” in Proceedings International

Conference on Computer Design VLSI in Computers and Processors, Oct 1997,

pp. 82–87.

[82] S. J. Tarsa, C.-K. Lin, G. Keskin, G. Chinya, and H. Wang, “Improving branch

prediction by modeling global history with convolutional neural networks,” in

The 2nd International Workshop on AI-assisted Design for Architecture, 2019.

[83] R. Thomas, M. Franklin, C. Wilkerson, and J. Stark, “Improving branch

prediction by dynamic dataflow-based identification of correlated branches

from a large global history,” in Proceedings of the 30th Annual International

Symposium on Computer Architecture, ser. ISCA ’03. New York, NY, USA:

Association for Computing Machinery, 2003, p. 314–323. [Online]. Available:

https://doi.org/10.1145/859618.859655

[84] S. Verma, B. Maderazo, and D. M. Koppelman, “Spotlight - a low complexity

highly accurate profile-based branch predictor,” in 2009 IEEE 28th International

Performance Computing and Communications Conference, Dec 2009, pp. 239–

247.

[85] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware automated

quantization with mixed precision,” 2018.

[86] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity

in deep neural networks,” in Advances in neural information processing systems,

2016, pp. 2074–2082.

177

[87] F. Wu, A. Fan, A. Baevski, Y. N. Dauphin, and M. Auli, “Pay less attention

with lightweight and dynamic convolutions,” 2019.

[88] T.-Y. Yeh and Y. N. Patt, “Two-level adaptive training branch prediction,” in

Proceedings of the 24th Annual International Symposium on Microarchitecture,

ser. MICRO 24. New York, NY, USA: ACM, 1991, pp. 51–61.

[89] T.-Y. Yeh and Y. N. Patt, “Alternative implementations of two-level adaptive

branch prediction,” SIGARCH Comput. Archit. News, vol. 20, no. 2, p.

124–134, apr 1992. [Online]. Available: https://doi.org/10.1145/146628.139709

[90] T.-Y. Yeh and Y. N. Patt, “A comparison of dynamic branch predictors that use

two levels of branch history,” in Proceedings of the 20th Annual International

Symposium on Computer Architecture, ser. ISCA ’93. New York, NY, USA:

Association for Computing Machinery, 1993, p. 257–266. [Online]. Available:

https://doi.org/10.1145/165123.165161

[91] C. Young and M. D. Smith, “Improving the accuracy of static branch prediction

using branch correlation,” SIGOPS Oper. Syst. Rev., vol. 28, no. 5, pp. 232–241,

Nov. 1994. [Online]. Available: http://doi.acm.org/10.1145/381792.195549

[92] S. Zangeneh, S. Pruett, S. Lym, and Y. N. Patt, “Branchnet: A convolu-

tional neural network to predict hard-to-predict branches,” in 2020 53rd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020, pp.

118–130.

178

[93] S. Zangeneh, S. Pruett, and Y. Patt, “Branch prediction with multi-layer neu-

ral networks: The value of specialization,” ML for Computer Architecture and

Systems, 2020.

[94] C. B. Zilles and G. S. Sohi, “Understanding the backward slices of performance

degrading instructions,” in Proceedings of 27th International Symposium on

Computer Architecture (IEEE Cat. No.RS00201), June 2000, pp. 172–181.

[95] C. Zilles and G. Sohi, “Execution-based prediction using speculative slices,”

SIGARCH Comput. Archit. News, vol. 29, no. 2, pp. 2–13, May 2001. [Online].

Available: http://doi.acm.org/10.1145/384285.379246

179

