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SUPERVISOR: Yale Patt

High performance microprocessors have relied on accurate branch pre-

dictors to maintain high instruction supply for over 30 years. Unfortunately,

as instruction windows and pipeline widths have continued to grow, mispre-

diction penalties have gotten worse. Branch predictors have failed to improve

at a fast enough rate to counteract these penalties. Impossible-to-predict

branches, such as data-dependent branches, have become the worst offender

since, so far, no viable predictor exists for these branches. I propose to iden-

tify such branches at runtime, and replace the inaccurate branch prediction

with a more accurate merge point prediction. Doing so enables techniques

that can either pre-compute the result of the branch, as is the case for Branch

Runahead, or avoid the misprediction altogether by dynamically predicating

instructions, or fetching instructions out-of-order; i.e., from the merge point

until the branch direction has been determined. This dissertation presents a
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new merge point prediction algorithm that achieves a higher accuracy and cov-

erage than prior work, and uses it to enable three mechanisms for dealing with

impossible-to-predict branches: Branch Runahead, Dynamic Predication, and

Delayed Fetch.
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Chapter 1

Introduction

1.1 The Problem: The Conditional Branch Bottleneck

High performance microprocessors require high levels of instruction

supply. As instruction windows and fetch rates continue to grow, the de-

mand for higher levels of instruction supply rises. Continued improvements

in branch prediction accuracy have been the most important driver of this

for nearly 30 years. Unfortunately, modern predictors are increasingly bot-

tlenecked by hard-to-predict branches. While branch prediction accuracy will

continue to improve in the future, the rate of improvement is being outpaced

by the demand for increased instruction supply. Unfortunately, there are many

branches, such as data-dependent branches, that are impossible for traditional

history-based predictors to predict accurately. In these cases, branch predic-

tion will always fall short. Despite this, branch prediction remains the only

runtime solution for conditional branches.

Existing microarchitectures must predict all conditional branches, even

ones on which they have performed poorly in the past. This leads to high

branch misprediction rates in the presence of branches that are fundamentally

hard-to-predict. Each misprediction corresponds to an expensive pipeline flush
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Figure 1.1: Percentage of processor cycles wasted due to fetching wrong-path
instructions. Table 4.1 contains the system configuration.

that lowers the effective fetch rate and wastes energy. Figure 1.1 shows the

percentage of processor cycles wasted due to fetching wrong-path instructions

as a result of branch mispredictions. Each of these cycles, at a minimum,

corresponds to wasted power and energy, and often also results in significant

performance loss. This all-in approach on branch prediction is particularly

problematic when faced with branches that are impossible-to-predict. In these

cases, the processor has no ability to dynamically move from branch prediction

to alternative methods that may provide higher performance or greater energy

efficiency.

Alternatives to branch prediction, such as pre-computation and control-

independence, have been proposed; however, these techniques have limitations,

such as heavy dependence on a compiler or high hardware costs that discour-

age implementation. This dissertation presents a holistic new approach to

branch prediction alternatives. To do this, I improve upon essential structures
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required by branch prediction alternatives, such as hard-to-predict branch de-

tection and merge point prediction. Once the hard-to-predict branches and

their merge points have been identified, I use either pre-computation (Branch

Runahead) or control independence (Dynamic Predication and Delayed Fetch)

to avoid branch prediction altogether.

1.2 Impossible-to-Predict Branches

Impossible-to-predict branches are branches for which there is currently

no viable predictor that can predict the branch accurately. I.e., the branches

are impossible on a deep algorithmic level for a given branch predictor, beyond

just predicting the bias of the branch. An example of this is data-dependent

branches for the TAGE-SC-L predictor [52]. The TAGE predictor offers no

ability to specifically target this class of branches beyond predicting the bias

of the branch. Therefore, these branches often perform poorly on the TAGE

branch predictor. In such cases, simply making the predictor larger will not

improve accuracy because the predictor itself is not capable of learning useful

information about the branches. The fact that the branch predictor has no

ability to learn to predict these branches accurately motivates the branch

prediction alternatives presented in this dissertation.

Detecting branches that are truly impossible-to-predict, however, is

impractical. Instead, this dissertation detects hard-to-predict branches ; i.e.,

branches that TAGE-SC-L performs poorly on. This is done by adding a new

structure, the Hard Branch Table (HBT). A branch is contained in the HBT if
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its misprediction rate is higher than a given threshold. If a branch hits in the

HBT, this means that the branch predictor (for whatever reason) is not able

to predict the branch accurately and a branch prediction alternative, such as

Branch Runahead, Dynamic Predication, or Delayed Fetch, should be used in

its place. If a branch misses in the HBT, it is assumed that the branch is being

predicted accurately and the branch will continue to use the branch predictor.

1.3 Detecting Hard-to-Predict Branches

The branch prediction alternatives proposed in this dissertation should

only be used in cases where the traditional branch predictor fails to achieve

high accuracy. Therefore, the first step this dissertation takes is to iden-

tify branches for which the branch predictor is performing poorly. The first

method discussed detects branches whose misprediction rate exceeds a target

threshold. However, as will be shown in this dissertation, not all branch mis-

predictions are created equal. Long latency branch mispredictions can have

a higher impact on performance. In extreme cases, branches that mispredict

relatively infrequently can still become bottlenecks if their result depends on

a long latency operation, such as a cache miss. To handle these cases, we

augment our methodology to also account for branch latency.

Prior work in branch confidence estimation can be categorized as having

at least one of the two following issues. First, many prior techniques are path-

based confidence techniques [51, 19, 4, 36, 20]. The goal of these techniques

is to identify the path, or the specific dynamic instance of a branch that is
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likely to mispredict. These techniques are really intended to identify specific

branch predictions that have low-confidence and throttle only those instances.

The techniques presented in this dissertation, however, work on a per-branch

basis. These techniques require expensive transformations that are only worth

it for branches that contribute many mispredictions throughout the entire

program. Second, many prior techniques are too dependent on recent branch

behavior [26, 51, 55, 19]. For example, the JRS confidence predictor [26]

resets its confidence counter on each misprediction, classifying a branch as

low confidence if it has mispredicted recently. The techniques presented in

this dissertation benefit more from a more stable view of the hard-to-predict

branches. Ideally, we would like to generate a list of the top N hard-to-predict

branches in the workload and only update that list if another branch proves

to be in that top N.

To address these shortcomings, I introduce the Hard Branch Table

(HBT). The HBT is a small table that monitors the retired instructions stream

for branch mispredictions. The table uses a Leaky Bucket counter [24] to detect

branches whose misprediction rate exceeds a given threshold. An arithmetic

model is used to compute the parameters of the HBT based on the target mis-

prediction rate and an acceptable false positive rate. Furthermore, Chapter 2

discusses how to extend the HBT to account for branch waste; i.e., the impact

each branch misprediction has on performance. With this, the HBT is used to

detect which branches will benefit the most from Branch Runahead, Dynamic

Predication, and Delayed Fetch.
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1.4 Merge Point Prediction

An important contribution of this dissertation which is necessary for

the alternatives to branch prediction is a much more accurate merge point pre-

dictor than anything available prior to this dissertation. Prior approaches use

compiler heuristics and assumptions about code layout to predict the location

of the merge point that do not reliably locate the best merge point. My work

takes advantage of branch mispredictions by comparing instructions fetched

from both the wrong path and the correct path to detect the merge point.

This approach is more accurate and reliable than prior work.

The merge point predictor is able to achieve an average accuracy of 95%

across the SPEC CPU2006 benchmark suite [3]. The improved accuracy results

in successfully detecting and replacing 58% of all branch mispredictions with a

correct merge point prediction, reducing the MPKI by an average of 43%. This

dramatic improvement in coverage gives us more opportunity to substitute an

alternative for branch prediction in cases where the branch predictor performs

poorly.

1.5 Pre-computation: Branch Runahead

Branch Runahead is a mechanism that uses lightweight dependence

chains to pre-compute the result of hard-to-predict, data-dependent branches.

Prior work used the compiler to create a filtered version of the original pro-

gram, only containing instructions necessary to compute the result of hard-to-

predict branches. The filtered thread, or “helper” thread, is executed asyn-
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chronously on another core [59, 31], on another Simultaneous Multi-threading

(SMT) context [64, 49, 11, 10], or on a dedicated unit within the core [54].

These approaches are fundamentally more costly as they require use of the

compiler and/or re-executing most instructions (85%) in the program, and

thereby require expensive resources to pre-compute the branch.

Dependence chains are far simpler than the helper threads proposed

by prior work, which allows them to be accelerated on a small, simple hard-

ware structure, rather than another core or SMT context. Branch Runa-

head focuses on predicting hard-to-predict branches; E.g., branches on which

TAGE-SC-L [52] performs poorly. In particular, Branch Runahead is ideal for

data-dependent branches that have a small number of instructions required to

compute the predicate. Branch Runahead, when configured under reasonable

hardware constraints, reduces branch MPKI by 47.5% and increases IPC by

an average of 16.9%.

1.6 Control Independence

1.6.1 Dynamic Predication

Dynamic predication is a runtime mechanism for fetching both paths

of a branch, up to the merge point, then executing each path and only com-

mitting the results of the correct path. Predication avoids the costly mis-

prediction penalty while also guaranteeing that the correct path is always

fetched, decoded, renamed, and executed, even if the branch in question has

not completed execution. Once the result of the branch is known, the correct
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path results are passed on to any dependent, waiting, post-merge point in-

structions. In cases where branch mispredictions are frequent, this model can

minimize the length of the critical path, as both paths are always executed.

Unfortunately, the wrong path is also always fetched, decoded, re-

named, and executed. In some cases, the wasted fetch and execute bandwidth

from the wrong path is too great, causing performance inversions; i.e., cases

where the performance of branch prediction exceeds that of dynamic predica-

tion. Furthermore, predication adds new data dependencies to the data-flow

graph, which can increase the length of the critical path and worsen perfor-

mance.

Prior Dynamic Predication techniques require expensive hardware to

track the micro-architectural state of correct-path and wrong-path instruc-

tions separately [28]. Other approaches sacrifice early execution of predicated

instruction to simplify these hardware demands [12]. My approach to Dynamic

Predication will focus on low-cost hardware while still allowing predicated in-

structions to execute early.

1.6.2 Delayed Fetch

Delayed Fetch is a runtime mechanism that does not fetch instructions

from either path of the branch. Instead, Delayed Fetch fetches instructions

out-of-order from beyond the merge point. Once the branch has executed and

the correct path of the branch is known, Delayed Fetch fetches the correct

path of the branch and inserts the delayed instructions into the instruction
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window in their correct program order.

The primary benefit of Delayed Fetch is conserving instruction fetch

bandwidth since only correct path instructions are fetched. This, however,

comes at the expense of correct path latency since correct path instructions

are not fetched until the result of the branch is known. This increase in correct

path latency can also lead to performance inversions.

Prior approaches only address Delayed Fetch for simple if-then branches [13].

Furthermore, prior work does not address predicting branches out of order,

which limits the technique to skipped regions that either do not contain any

branches or only contain biased branches. My approach to Delayed Fetch in-

troduces a new technique for handling the branch predictions in the skipped

region. This not only enables Delayed Fetch to be used in more cases, but also

simplifies other issues like out-of-order Rename.

1.6.3 Combining Dynamic Predication and Delayed Fetch

Ultimately, Dynamic Predication reduces the latency of correct path

instruction at the expense of fetch, decode, and execute bandwidth, while

Delayed Fetch maximizes fetch, decode, and execute bandwidth at the cost

of correct path instruction latency. While neither Dynamic Predication nor

Delayed Fetch are perfect solutions on their own, the reciprocal nature of their

trade-offs make them perfect complements of one another. This dissertation

explores combining Dynamic Predication and Delayed Fetch. As such, we

propose a single microarchitecture that efficiently implements both techniques.
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Further, we demonstrate switching between the techniques on a per application

basis. This allows the technique that is most suited towards the needs of the

application to be selected. Finally, techniques to switch on a per-branch basis

are discussed in the future work section of the chapter.

1.7 Thesis Statement

Dynamic merge point prediction enables effective branch prediction alterna-
tives for impossible-to-predict branches allowing the architecture to dynami-
cally choose between pre-computation or control-independence, thereby avoid-
ing branch mispredictions, resulting in increased performance and energy effi-
ciency.

1.8 Contributions

The contributions of this dissertation are as follows:

• A new method for detecting hard-to-predict branches. This dissertation

presents an arithmetic model that can be used to detect branches that

mispredict above a given frequency.

• Further, this model is extended to detect branches that have high cost

(i.e., flush a large number of instructions), which is more directly related

to performance than misprediction rate alone.

• A new merge point prediction algorithm, which improves both accuracy

and coverage over prior work.

• Branch Runahead, a new light-weight pre-computation technique that
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generates near perfect branch predictions for data-dependent branches.

Branch Runahead improves on prior work by lowering the dynamic in-

struction footprint of the pre-computation, resulting in a lower hardware

and energy overhead.

• A holistic new approach to Dynamic Predication and Delayed Fetch.

This dissertation presents a unified micro-architecture that solves critical

issues related to both Dynamic Predication and Delayed Fetch. Further,

we present an analysis of both positive and negative results to discuss

what areas of control independence need further improvement.

1.9 Dissertation Organization

This dissertation is organized into six chapters. Chapter 2 discusses

hard-to-predict branch detection. The chapter also defines branch cost, ex-

plains why it is more closely related to performance than mispredictions alone,

and expands hard branch detection to include branch cost. Chapter 3 discusses

the merge point prediction. This includes merge point detection, prediction,

and predictor update. Chapter 4 discusses Branch Runahead, a light-weight

pre-computation technique for Branch Prediction. The chapter also shows

how the merge point predictor can be extended for affector and guard branch

detection- a technique that Branch Runahead uses to identify control and

data dependencies between branch instructions. Chapter 5 discusses Dynamic

Predication and Delayed Fetch, as well as a new holistic micro-architecture

that solves critical issues with both. Chapter 6 provides concluding remarks.
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Chapter 2

Hard-to-Predict Branch Detection

2.1 Introduction

This dissertation presents three branch prediction alternatives, Branch

Runahead, Dynamic Predication, and Delayed Fetch, that are used when a

branch is deemed too hard for the on chip branch predictor to predict. The

hard-to-predict branches go through an expensive chain extraction (in the case

of Branch Runahead) or code transformation (in the case of Dynamic Pred-

ication and Delayed Fetch) process in order to use these techniques. In the

case of Branch Runahead, only a limited number of branches (16 branches)

can use the pre-computation resources. For these reasons it is important to be

selective and decisive when choosing branches for these optimizations. Prior

work in branch confidence estimation does not produce stable enough results.

Furthermore, prior work is not able to account for the total cost of a branch

misprediction. This chapter introduces the Hard Branch Table (HBT)1, a new

structure that detects branches that mispredict at or above a given threshold.

In this chapter, the design of the Hard Branch Table is discussed, as well as

the arithmetic model that is used to configure the table. Finally, the chapter

1A version of the HBT was first introduced in the Branch Runahead [45] paper, which
is my own work.
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is concluded by discussing Branch Cost, a new metric that tracks the true im-

pact of each branch misprediction on overall performance, and the extensions

required to track Branch Cost in the HBT.

2.2 Limitations of Prior Work

Jacobsen et al. introduced several confidence mechanisms [26]. Most

notably was their confidence mechanism using a simple PC-indexed table of

3-bit counters. The counters are incremented on a correct prediction, and re-

set on a misprediction. Due to the aggressiveness of resetting the counter on

a misprediction, a saturated counter implies a very high degree of confidence.

Unfortunately, the counter values can also be unstable, because one mispredic-

tion can reset a long history of correct predictions. Further, the counters are

very susceptible to phase behavior, meaning that if a branch changes phase,

the counters will be reset and confidence must once again be earned. The Hard

Branch Table, on the other hand, assumes that some mispredictions occur. In

fact, the table is designed in such a way that it can tolerate mispredictions

as long as they remain below the target rate. This keeps the classification of

hard branches very stable throughout the program. If a branch truly changes

phase, turning into an easy branch, it must demonstrate that behavior across

multiple periods. This behavior is desirable, as branch prediction alternatives

often require a warm up cost before activating. Therefore, stable behavior is

preferred.

Seznec proposed a storage-free method for estimating confidence of pre-

33



dictions from the TAGE branch predictor [51]. While this method is undoubt-

edly effective and low overhead, it is tied specifically to the TAGE branch

predictor. Moreover, this method associates a level of confidence with a par-

ticular prediction, rather than generating a cumulative per branch confidence.

Currently, all branch prediction alternatives are either activated or deactivated

on a per-branch basis. Meaning that, in the context of this dissertation, get-

ting a per-prediction confidence is not useful. In future work, I believe it would

be possible to combine the Hard Branch Table together with the Seznec’s stor-

age free method to more selectively apply Dynamic Predication and Delayed

Fetch techniques (discussed later in this dissertation).

2.3 Detecting Branches with High Misprediction Rates

The simplest way to find hard-to-predict branches is by looking at the

misprediction rate of retiring branch instructions. We look at misprediction

rate (i.e., mispredictions per kilo-instruction) rather than misprediction ratio

(i.e., the percentage of the time that a given branch mispredicts) because

ultimately we care about minimizing the number of pipeline flushes per kilo-

instruction, and misprediction rate directly corresponds to the flush rate.

There are two ways to define hard-to-predict branches. The first is to

say that the hard-to-predict branches of a program are the N branches with

the highest misprediction rates. This methodology, however, would classify

branches as hard-to-predict even if they did not cause very many pipeline

flushes, simply because they happened to be in the top N hard to predict
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Variable Definition
Period (D) Length of a period, measured in retired

branch mispredictions.
Acceptable Misprediction Rate (AMR) An arbitrary threshold where any branch

mispredicting above threshold is considered
hard-to-predict.

Probability of a False Positive (PFP) An acceptable probability of a false positive;
i.e., the probability that a counter saturates
for a branch that is not hard-to-predict.

p The probability of a misprediction.

Table 2.1: Definition of variables for the Arithmetic Model.

branches in the workload.

Instead we classify hard-to-predict branches based on whether they are

above or below a given misprediction rate threshold. The idea being that for

every pipeline of a given width and depth there is some level of acceptable

flushes per kilo-instruction. As long as the MPKI stays at or below the rate

of acceptable flushes, then we do not have a performance/energy problem.

Therefore the goal of the Hard Branch Table is to detect branches that

rise above this acceptable rate. Any branch above this threshold may cause

problems for performance.

2.3.1 The Arithmetic Model

To achieve this, I developed a simple arithmetic model to describe hard

branch behavior. I then design a table, the Hard Branch Table, that detects

hard branches based on the arithmetic model.

To start, lets consider each static branch individually. The goal is to
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determine if a given static branch has a misprediction rate higher than the

given acceptable misprediction rate (AMR). To achieve this, I divide time

into periods. To keep the math simple, I choose to measure time in retired

mispredicted branches.2 In the general case, the length of the period is D, but

an example value of D used throughout this dissertation is D=1000 retired

mispredicted branches.

Dividing time into periods allows us to break up the problem into two

pieces: 1) what happens across periods and 2) what happens within the period.

What happens across periods. The HBT uses Leaky Bucket coun-

ters [24] to detect if a branch mispredicts at a rate higher than the AMR.

As mispredicted branches retire, a counter stored in the HBT is incremented.

The counter is decremented periodically at a rate equal to the AMR. In this

scheme, all branches that have a misprediction rate higher than the AMR will

(eventually) saturate their counters (i.e., fill the Leaky Bucket), while branches

that have a misprediction rate lower than the AMR will eventually saturate

to 0 (Empty Bucket). The simplest way to decrement the counter at this rate

is to decrement at the end of each period by AMR×D.

DecrementRate = AMR×D

What happens within the period. Decrementing the counter at

2Time can be measured by counting the number of retired instructions, retired branch
instructions, or retired mispredictions. However, the AMR must be adjusted accordingly.
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the end of each period only works as expected if the counter does not saturate

during the given period. If the counter were to saturate during the period, this

would throw off the effective increment rate, which could potentially increase

the impact of the decrement rate, leading to poor classification of hard-to-

predict branches.

Therefore, we must ensure that the counter is wide enough (i.e., enough

bits) such that the probability of saturating the counter in one period is suffi-

ciently low. This probability is refered to as the probability of a false positive

(PFP). To find the desired width we must first compute the probability of satu-

rating the counter. To compute that, we model the sequence of mispredicting

branches as a Binomial Distribution. The Binomial Distribution is used to

represent the string of mispredicted/correctly predicted branches within the

period (1 means mispredicted, 0 means correctly predicted). Each Binomial

computes the probability that i mispredictions occurs. We then sum these

probabilities for all i large enough to saturate a k-bit counter.

CounterBits = log2(k + 1)

for the smallest value k such that

PFP >
D∑
i=k

(
D

i

)
pi(1− p)(D−i)

This arithmetic model leads to counters that are wide enough such that

they have a very low likelihood of saturating spuriously, while also minimizing
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the counter width to not create more hardware cost or warm-up time than

what is necessary. The arithmetic model essentially transforms parameters

like decrement rate and counter width, parameters that can feel arbitrary to

assign values to, to parameters that are more human relatable, like acceptable

misprediction rate (AMR) and probability of a false positive (PFP). This gives

architects more control over the parameters of the HBT, without requiring

simulation sweeps for fine tuning.

2.3.2 Hard Branch Table

The final resulting piece of hardware derived from the equations above

turns out to be relatively simple. Throughout this dissertation, we use a Hard

Branch Table that is 64 entries large. The table is indexed and tagged with

the PC of the branch instruction. At each location, there is a 5-bit saturating

misprediction counter. The misprediction counter is incremented each time a

corresponding branch misprediction is retired. All counters are decremented

by 15 after 1000 global branch mispredictions are retired. These numbers

correspond to a Hard Branch Table with a AMR of 1.5%, a period of 1000,

and a PFP of 1%.

2.4 Branch Cost

Branch mispredictions are not all created equal. To illustrate this, let’s

consider the following example.

Consider a theoretical machine that has a perfect i-cache, perfect d-
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cache, perfect target predictor, 16-wide fetch/decode/rename, and contains 12

pipeline stages before execution. This same machine has a branch predictor

that is 95% accurate. What is the maximum utilization of such a machine?

Assuming 1 out of every 5 instructions is a branch, and given that 1 out

of ever 20 branches is a misprediction, we can therefore infer that 1 out of every

100 instructions will be a branch misprediction. With a 16-wide fetch unit we

are able to reach the mispredicting branch after 7 cycles (100/16 = 6.25).

Given that the pipeline contains 12 stages before execution, the minimum

latency of the branch is 12 cycles. Therefore every 7 cycles there will be

a 12 cycle period where we fetch no useful instruction. This puts machine

utilization at 7/(7 + 12) or about 36.8%.

More generically, machine utilization can be given by the following ratio

between useful cycle : wasted cycles.

Utilization =
5(1− a)−1

W
: L

Where a is the branch predictor accuracy, W is the machine width,

and L is the branch execution latency. This ratio makes clear why branch

mispredictions increasingly become a bottleneck as machine width and depth

increase. As machine width increases, we more quickly fetch our way through

correct path instructions, reducing the total number of correct path cycles.

While as the pipeline becomes deeper, we increase the minimum latency of a

misprediction, thereby increasing the minimum latency of a branch misrpedic-
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tion.

This example is also meant to illustrate that the waste created by a

branch misprediction increases as the latency of the misprediction increases.

Therefore, considering the accuracy of branch is only half the story. One must

also consider a branch’s expected latency to truly determine the expected

branch misprediction cost.

2.5 Detecting Branches with High Branch Cost

Branch latency plays a key role in branch cost; however, latency and

misprediction rate alone do not describe the full picture. Complex interactions

in the pipeline, such as i/d-cache misses and full window stalls also impact

branch cost. Deriving a formula that accounts for all involved variables is

complex and unnecessary. Instead, branch cost can be measured directly by

counting the number of micro-ops that are flushed from the Re-order Buffer

(ROB) due to a retired branch misprediction.

Each flushed instruction represents a single unit of wasted fetch band-

width due to the branch misprediction. The total number of flushed micro-ops

represents the total wasted fetch bandwidth due to the branch misprediction

and fully accounts for all complex pipeline interactions. The total number

of flushed miro-ops can be quickly computed by subtracting the tail pointer

for the ROB with the ROB ID of the branch instruction. Note that to truly

account for all wasted fetch bandwidth, micro-ops flushed from fetch, decode,

rename, and any other stages that come before ROB allocation should also be
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accounted for. Counting this additional micro-ops, however, adds unnecessary

complexity to the pipeline. Simply counting the micro-ops flushed from the

ROB is sufficient for estimating wasted fetch bandwidth.

2.5.1 Branch Cost Table

Integrating branch cost into the HBT is a trivial task. Whereas be-

fore we treated all branch mispredictions equally, now each misprediction is

weighted by the branch cost. When a branch misprediction occurs, the number

of micro-ops flushed from the ROB is computed. Then, rather than increment-

ing the HBT misprediction counter by 1, the counter is incremented by branch

cost. Furthermore, the decrement rate and the HBT counter width need to be

increased to reflect the new increment rate.

2.6 Related Work

There are many other confidence estimations techniques not directly

addressed in this dissertation. However, all techniques suffer from the issues

described above. Jim Smith uses the magnitude of the saturating counter in

the bimodal table to estimate branch confidence [55]. While this method is

useful in that it requires no modification on top of a baseline branch predic-

tor (and was later extended to TAGE [51]), this confidence mechanism is still

limited to assigning confidence to particular predictions from the branch pre-

dictor. Further, because it is tied to the state of single bimodal table, it adapts

too quickly to recent branch behavior. The accuracy of these technique can
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be improved by using either a path history [19, 20, 36] or Perceptrons [4, 27];

however, these improvements do not address the limiting issues with these

technique.

2.7 Future Work

One limitation of the Hard Branch Table is its small size. While this

is not a problem for SPEC or Graph workloads, workloads that have larger

instruction footprints may have issues fitting in the small HBT. Large instruc-

tion footprint can impact the HBT in two areas. First, it can impact the

replacement policy of Hard Branches. Currently, branches are replaced when

their misprediction counter is zero. However, in large instruction footprint

applications the effective reuse distance of branches is much larger, which can

make caching a set of them in a small cache more difficult. Therefore, a sep-

arate aging mechanism is needed to retain branches that have not been seen

recently.

Second, a large instruction footprint can lead to a large number of

branches that reach the minimum threshold requirements for making it in the

HBT. Therefore, a dynamically adapting AMR threshold is needed to raise

the threshold such that only the hardest to predict branches in the workload

are able to enter into the table. In this model, the AMR would start off high.

Occupancy of the table would then be monitored. If not enough branches are

able to overcome the high threshold (and therefore the occupancy of the HBT

is low), then the AMR will by dynamically lowered. This will allow more
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branches into the table. This process will be repeated until the occupancy

reaches a desired threshold.
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Chapter 3

Merge Point Prediction

3.1 Introduction

This chapter discusses dynamic merge point prediction as a runtime

alternative to branch prediction.1 By predicting the merge point of a branch,

the processor can avoid an expensive branch misprediction, instead utilizing

a control independence strategy [13, 47, 25, 50, 56, 37, 14, 42, 43, 6, 48]. A

control independence strategy is a technique that does not require knowledge

of the branch direction, but can be used to mitigate or avoid a branch mispre-

diction. This chapter proposes and evaluates a fundamentally new algorithm

for detecting merge points. Prior approaches use compiler heuristics and as-

sumptions about code layout to predict the location of the merge point that

result in limited accuracy and coverage. My work takes advantage of branch

mispredictions by comparing instructions fetched from the wrong path and

correct path to detect the merge point. I argue this new approach to merge

point prediction is fundamentally more accurate and reliable than prior work.

The merge point predictor is able to achieve an average accuracy of

95% across the SPEC CPU2006 benchmark suite [3]. The improved accuracy

1The ideas presented in this Chapter were first published in [44], which is my own work.
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Figure 3.1: Example Control Flow Graph (CFG)

Dashed edges indicates paths that are rarely traversed at runtime. The
compiler would report that the merge point of A is F. However,
because block E is rarely seen, D is predicted as the merge point.

results in successfully detecting and replacing 58% of all branch mispredictions

with a correct merge point prediction, reducing the MPKI by an average of

43%.

3.2 Motivation

The merge point predictor is designed with common control indepen-

dence techniques in mind [13, 47, 25, 50, 56, 37, 14, 42, 43, 6, 48]. My work

emphasizes three key principles that I believe to be essential for utilizing

control independence effectively. First, only hard-to-predict or long latency

branches are candidates for merge point prediction. We only consider merge
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point prediction an option when a branch misprediction is too risky. Second,

predicted merge points should be as close to the branch as possible. Often,

the merge point predictor identifies more than one potential merge point for

a given branch. This is because the merge point predictor is identifying dy-

namic merge points, which will be explained later in this section. Selecting

merge points that are closer to the branch increases the number of post merge

point instructions that are control and data independent of the branch. Fur-

thermore, it decreases the number of resources that are required by the merge

point, which reduces the size of reservations required by some control inde-

pendence strategies. Third, merge point predictions must be accurate. If a

merge point prediction is wrong, then the machine must be flushed, similar to

a branch misprediction. We design a highly accurate dynamic merge point pre-

dictor that generates predictions at runtime without relying on compiler input

or code layout2. Prior predictors [13, 15] make assumptions about compilers

and code layout, making their work inaccurate and resistant to change. Our

predictor takes advantage of branch mispredictions, finding the point where

correct-path and wrong-path converge, making our predictor oblivious to com-

piler changes.

3.2.1 Weaknesses of Detecting Merge Points at Compile Time

The compiler itself could be used to easily identify merge points with

100% accuracy, however highly biased branches can weaken the compiler’s

2Arrangement of basic blocks in memory
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ability to find the nearest merge point [28, 15], which can negatively affect

performance. Furthermore, identifying hard-to-predict branches at compile

time is difficult, reducing the compiler’s ability to provide help where it is

most needed. Finally, compilers require costly instruction-set support to com-

municate with the microarchitecture that would likely result in additional fetch

bandwidth being wasted.

The dynamic merge point predictor uses run-time information to find

the nearest merge point. For example, consider the control-flow graph (CFG)

shown in Figure 3.1. A compiler would identify block F as the merge point,

because it is the only block guaranteed to execute after A. However, highly

biased branches can effectively remove edges from the CFG. To illustrate this,

Figure 3.1 uses dashed edges to identify branch directions that are rarely taken

at run-time. If these edges are omitted, then block D becomes the merge point.

Predicting block D as the merge point yields a merge point that is closer to

the branch, but is sometimes inaccurate. Predicting block F is always correct,

but is farther away than block D, making it less useful for performance.

Highly skewed branches prune edges of the CFG, producing merge

points that are closer to branches. Our experiments show that 61% of condi-

tional branches never change direction while an additional 9% of branches

change direction <1% of the time 3. The large number of highly biased

branches suggests that identifying merge points at runtime will have a ma-

3Measured across the SPEC CPU2006 [3] benchmark suite
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jor advantage over compile time.

3.2.2 Weaknesses of Prior Work in Merge Point Prediction

The previous state-of-the-art merge predictor proposed by Collins et

al. [15] has several major weaknesses. First, their predictor is not a general

solution. It is a collection of three heuristics that all rely on the compiler

to generate code that fits into their model. As compilers change over time,

their predictor may become less accurate. In contrast, our algorithm leverages

branch mispredictions to find the place where the wrong path and the correct

path overlap. We do not rely on compiler heuristics, which enables us to cover

a lot more cases and achieve higher accuracy. In our experiments, we compare

to the infinitely sized, unrealistic predictor proposed by Collins et al. Despite

their model having an unrealistic storage budget, their model achieves an

average accuracy of only 78% across the branch intensive workloads in SPEC

2006. Our realistic 4KB predictor achieves an accuracy of 95% on those same

workloads.

These numbers do not match the numbers reported by Collins et al.

In their paper [15], the authors report an accuracy of 95% for their infinitely

sized predictor, however, our evaluation shows an accuracy of at most 78%.

We have accounted for the discrepancy and attribute it to two factors. First,

we do not account for branches with trivial merge points that are are unlikely

to be mispredicted. Examples of this are constant length loop branches and

function calls. In both cases, the merge point is trivial to predict, boosting the
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accuracy of the merge predictor. However, in both cases the branch direction is

also trivial to predict, meaning that there will likely not be a branch direction

misprediction. If the branch predictor is correct, we will not make use of the

predicted merge point, making the correct merge point prediction meaningless.

We therefore do not count easy-to-predict loop branches and function calls as

part of accuracy. In our system, only branches with low branch prediction

confidence make use of the merge point predictor. Due to the high frequency of

loop branches, removing them from consideration significantly lowers relevant

accuracy. Second, we enforce all merge points identified by both predictors be

points where control converges. Due to the methodology used in [15], some of

the predicted values are not true merge points, but rather random intermediate

places in the control flow graph. In our methodology, these points are counted

as incorrect for both predictors.

3.3 Dynamic Merge Point Prediction

A merge point prediction consists of three parts: the PC of the merge

point, the merge distance, and the independent register set. The merge dis-

tance is the predicted number of dynamic instructions in which the merge

point is expected to be found. The predicted distance can be used to identify

merge point mispredictions, and also serves to place an upper bound on the

number of instructions between the branch and the merge point, which may be

useful for some control independence strategies. The independent register set

is the set of architectural registers that are predicted to be independent of the
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branch. Post merge point instructions that source registers identified by the

independent register set do not have any data-dependencies with instructions

between the branch and its merge point.

3.3.1 Merge Predictor Design

The merge predictor design consists of three new structures: the Merge

Point Predictor Table, the Update List, and the Wrong Path Buffer (WPB).

Figure 3.2 shows a block diagram of all three structures. The WPB is responsi-

ble for detecting new merge points and installing them into the predictor table.

The update list is responsible for tracking predicted entries and updating them

appropriately.

Merge points are detected by observing both the wrong-path and correct-

path of a branch. When a branch misprediction occurs, wrong-path instruc-

tions are copied from the Reorder Buffer (ROB) to the WPB. After the ma-

chine is flushed, each retired, correct-path instruction accesses the WPB. If

there is a hit, then a new merge point has been found and is installed into

the predictor table. Next time the branch is fetched, the predictor table sup-

plies the merge point and an entry is allocated in the update list. When the

branch retires, it activates its entry in the update list. Once activated, the

update list entry monitors retiring instructions. If the predicted merge point

retires within the merge distance without any unexpected register writes, then

the prediction is correct, otherwise it is incorrect. In either case, the entry is

updated and then removed from the update list.

50



...

. ...

. ...

. ...

. ...

. ...

. ...

. ...

.

== = =

Update

Entry /

Writeback

...

....

....

....

.

set
register
address,
merge
dist ,
ctr ,

set
register
address,
merge
dist ,
ctr ,

set
register
address,
merge
dist ,
ctr ,

set
register
address,
merge
dist ,
ctr ,

Merge Point Predictor Table

wrong path distance,
destination register

ROB

PC

Create new

predictor entryHit

PC

Highest Counter

Shortest Distance

tag tag tag tag

tag

Prediction
PC

Correct?

Prediction

Incorrect?

Address distAge

Merge

ctr

indexPC

Correct path

Hit / Miss Predicted 
DistanceMerge

Predicted 

Address

Update List

Predicted Entry

wrong path
distance,

register set

distance, register set

Way 0 Way 1 Way 2 Way 3

WPB

Figure 3.2: All three newly added structures: Merge Predictor Table, Update
List and WPB.

Figure 3.2 shows the interactions between the three newly added
structures and the ROB. The Predictor Table supplies the predicted
entry to the Update List. The Update List compares entires to retired
PCs until the merge point is confirmed or the merge distance is
reached. At this point, the entry is updated and written back to the
predictor. The Wrong Path Buffer (WPB) saves wrong-path PCs,
supplied by the ROB, and compares them to correct-path PCs. When a
match is found a new entry is installed in the predictor.

Section 3.3.1.1 discusses how new merge points are detected. Next,

3.3.1.2 discusses the implementation of the WPB. Section 3.3.1.3 discusses

how predictions are made. Finally, section 3.3.1.4 discusses how the predictor

is updated.
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3.3.1.1 Detecting New Merge Points

Our design detects new merge points by exploiting branch mispredic-

tions. Due to the large size of instruction windows and high fetch rates, it is

common for processors to fetch many wrong-path instructions before detecting

a misprediction. Our experiments show an average of 100 dynamic instruc-

tions fetched on the wrong path. Upon detecting a branch misprediction,

wrong path instructions must be copied from the ROB into the WPB. Figure

3.3 shows an example. Instructions are copied from the ROB starting with the

first instruction after the mispredicted branch, and ending upon one of three

conditions: (1) there are no more instructions in the ROB, (2) the maximum

merge distance is reached, or (3) another instance of the same branch is en-

countered in the ROB (i.e., a loop back to the branch). Instructions are copied

from the ROB to the WPB by conducting a ROB-walk during the flush.4 Each

wrong-path instruction indexes the WPB with its PC and stores a wrong-path

distance number and a bit-vector called the wrong-path independent register

set. The distance number represents the number of dynamic instructions be-

tween the current instruction and the branch, while the independent register

set represents the accumulated destination registers of each instruction up to

this point. Finally, we tag the WPB with the PC of the mispredicting branch,

and set a valid bit, indicating that the WPB should be compared to future

4We do not expect the ROB-walk latency to be an issue. It is not unusual for ROB-
walks to be used during a flush to restore the state of the speculative register alias table.
Furthermore, latency of ROB-walks are typically hidden by the front-end as it refills the
pipeline.
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Figure 3.3: Wrong-path instructions copied from the ROB to the WPB

When the branch (PC=x80500) misprediction is detected, subsequent
instructions are copied from the ROB to the WPB. The distance
between the branch and each instruction is saved in the WPB.
Additionally, the destination register of each instruction is saved in the
the wrong-path register set bit-vector.

retired instructions.

After populating the WPB and flushing the machine, fetch is redirected

down the correct path. When correct-path instructions retire, their program

counters are used to index into all of the valid WPBs. Similar to filling the

WPB, we continue until one of three conditions is met: (1) a PC hits in the

WPB (2) the maximum merge distance has been reached or (3) the PC is equal

to the PC of the mispredicted branch5. If there is a match (i.e., option 1),

then we have found a merge point and install a new entry into the predictor

table. If either option 2 or 3 occurs before finding a match, then we assume

5This happens when there is a loop back to the branch before encountering the merge
point.
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that there is no merge point and invalidate the WPB. Each WPB maintains a

count of correct-path instructions that have indexed it called the correct path

distance. Additionally, the WPB also tracks the correct-path independent

register set by accumulating the destination registers of retired instructions

into a bit vector.

Upon aWPB hit, the wrong-path distance and wrong-path independent

register set are read from the WPB. The merge point is identified by the PC

that hit in the WPB. The predicted distance is set to the larger of the wrong

path distance and the correct path distance. Finally, the independent register

set is formed by ORing the wrong-path bit vector and the correct-path bit

vector. The entry is then installed into the predictor table and the WPB is

invalidated.

3.3.1.2 Design of the WPB

Ideally the WPB would be a fully associative CAM; however, large

CAMs are impractical. For that reason, we chose to implement the WPB

as a 128-entry 4-way set associative cache. Organizing the WPB as a cache

instead of a CAM creates the possibility for an entry to be evicted, creating

false negatives. In our evaluation, we observed less than 1% false negative

rate, which led to an almost negligible loss in coverage. The WPB uses the

MRU replacement policy.
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3.3.1.3 Making the Prediction

The PC is used to access the merge predictor in parallel with the branch

target buffer (BTB) and the branch predictor. Figure 3.4 shows the connec-

tions between each of these structures. The entry supplied by the merge

predictor is only considered if the Hard Branch Table (HBT) has identified

the branch as hard-to-predict. The merge predictor is accessed as a typical set

associative cache. If there is a miss, we defer back to the branch predictor.

If there is a hit, it is possible that multiple entries match the branch

address. For example, consider the CFG in Figure 3.1. As discussed in sec-

tion 3.2, the merge point of the branch in basic block A could either be D or

F. It is possible that both D and F are detected by the WPB and are both

installed into the predictor. In the event that two or more entries match in

the predictor, the 3-bit saturating counter is examined and the entry with the
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highest counter value is selected as the prediction. If two or more entries have

equal counter values, then the merge entry containing the minimum merge

distance is selected. We choose the entry with the minimum merge distance

because predicting smaller distances results in smaller reservations in the in-

struction window. Once an entry has been selected for prediction, all entries

that matched in the predictor are inserted into the Update List.

When new entries are installed into the predictor, it may be necessary

to evict an older entry. Entries with the smallest counter value are the first

victims for eviction. If all entries have equal counters, then the entry with the

largest predicted distance value is selected as the victim.

3.3.1.4 Updating the Predictor

Once inserted into the update list, entries wait until the merge-predicted

branch instruction reaches retire. At that point, the update list entry becomes

active. An Update List entry contains the following information: (1) the PC

of the merge-predicted branch, (2) a prediction age field, which is the num-

ber of dynamic instructions retired since the entry became active, and (3) the

predictor table entry that will be updated and written back to the predic-

tor. An entry remains in the Update List until either (1) a PC matching the

merge address is found (meaning the prediction is correct), (2) the age field

exceeds the merge distance (the prediction is incorrect), or (3) the PC of the
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merge-predicted branch is seen retiring for a second time6 (the prediction is

incorrect). If the prediction is correct, the 3-bit saturating counter is incre-

mented, otherwise the counter is decremented. Additionally, the destination

registers of gap instructions are monitored. If any unexpected writes occur7,

then the prediction is considered incorrect and the machine is flushed.

We introduce another update policy called UPDATE MAX. UPDATE MAX

will not remove an entry from the update list until the prediction age field has

exceeded the max prediction distance. In this mode, all entries in the update

list are treated as if their merge distances were equal to the max merge dis-

tance, regardless of the actual prediction. This allows the update list to detect

if the merge address ever appears. If the merge address is encountered, then

the 3-bit prediction counter is incremented and the merge distance field is set

to equal the age field. This allows for the merge distance field to be increased

as necessary. If the max merge distance is reached and the merge address is

never found, then we decrement the 3-bit counter, as before.

Once the update policy has completed, the entry is removed from the

Update List and written back to the predictor table. The Update List is a

very small table with only 8 entries, and thus is organized as a fully associative

cache.

6This happens when there is a loop back to the branch before encountering the merge
point.

7Register writes not specified by the independent register set.
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Table 3.1: System Configuration
1: Core 4-Wide Issue, 512-Entry ROB, 92-Entry Reservation Station,

TAGE Branch Predictor [52], 3.2 GHz

2: L1 Caches 32 KB I-Cache, 32 KB D-Cache, 64 Byte Lines, 2 Ports,
3-Cycle Hit Latency, 8-Way, Write-Back.

3: L2 Cache 1MB 8-Way, 18-Cycle Latency, Write-Back.

4: Memory Controller 64-Entry Memory Queue.
5: Prefetchers Stream: 64 Streams, Distance 16. Prefetch into Last Level Cache.
6: DRAM DDR3

7: Merge Predictor Table 128 entiries, 4 way set associative, total size 1.6KB
8: WPB 128 entries, 4 way set associative, total size 1KB
9: Update List 8 entries, total size 113 bytes
10: Maximum Prediction Distance 100

3.4 Evaluation Methodology

To simulate our proposal, we use a cycle-accurate x86 simulator. The

front-end of the simulator is based on Multi2Sim [61]. The simulator faithfully

models core microarchitectural details and the cache hierarchy. Table 3.1

contains a list of microarchitectural details. Our simulator includes a 64KB

TAGE [52] branch predictor configured similar to the version submitted to

CBP 2014. We did not include the SC or L components of the TAGE predictor.

We use the SPEC CPU2006 Integer benchmark suite [3] on the ref input set

to evaluate our predictor. We use SimPoints [41] methodology to identify a

single representative region, and run all of our benchmarks for 200 million

instructions.

We use several metrics to evaluate the effectiveness of our merge point

predictor. Accuracy is a measure of how often a prediction supplied by the

merge predictor is correct. Coverage is similar to accuracy, however it factors

in predictor misses (i.e., the merge predictor has no matching entry). Predicted
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distance is the predicted number of dynamic instructions before encountering

the merge point. True distance is the actual number of dynamic instructions

seen between the branch and merge point. Finally, we compute branch mispre-

diction coverage, which is the difference between old MPKI and new MPKI.

New MPKI is calculated by adding the MPKI of the branch predictor and the

MPKI of the merge point predictor.

We evaluate two versions of the merge point predictor, a version that

uses the UPDATE MAX policy and a version that does not. We will refer

to them as MPPmax and MPP, respectively. Table 4.1 shows the complete

predictor specification used in our experiments. We compare our predictor

against the infinitely sized reconvergence predictor introduced by Collins et

al. [15]. We will refer to their design as the reconvergence-inf.

3.5 Results and Analysis

Figure 3.5 (a) shows the accuracy of reconvergence-inf, MPP, and MPP-

max respectively. The height of the bars indicates accuracy, while the stacks

show predicted distances. Reconvergence-inf does not predict distance, so we

have shown all of its predicted distances as the maximum distance. The final

bar is the arithmetic mean (amean) of all workloads. Figure 3.5 (b) also shows

prediction accuracy, but the stacks show true distance values. Figure 3.5 (c)

shows the coverage results for each predictor.

Ideally, the predicted distance and the true distance would be equal,

as some control independence strategies use distance to reserve space in the
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Figure 3.5: Final Merge Point Predictor Results
The bars, from left to right, represent the infinitely sized

reconvergence-inf[15], MPP, and MPPmax. The top graph (a)
shows prediction accuracy overlayed with predicted distance. The
middle graph (b) shows prediction accuracy overlayed with true

distance. The bottom graph (c) shows coverage.

instruction window. Unfortunately, this is not the case. Figure 3.6 shows the

average difference between predicted and true distances for MPP and MPP-

max. The height of each bar represents the wasted space in the instruction

window due to overestimating the predicted distance.

Predicted distance can be overestimated for two reason. First, because

the predicted distance is the larger of the correct-path distance and the wrong-
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Figure 3.6: Average difference between predicted and true distances

path distance, it is possible that the smaller path was the one actually traversed

at runtime, thus creating an error. Shortening the error in this case would be

difficult, as the branch direction is not known. The second case is that the

update policy is installing an unnecessarily large distance into the predictor.

The accuracy of MPPmax is higher than MPP in every benchmark,

resulting in almost 14% higher accuracy on average. This is because the UP-

DATE MAX policy strictly increases the predicted distance over time. Pre-

dicting larger distances can only increase prediction accuracy. However, the

gain in accuracy comes at a cost. The negative effects of UPDATE MAX are

shown in Figure 3.6. MPPmax overestimates distance to a larger degree than

MPP. This results in additional resources being wasted.

Both MPPmax and MPP outperform the infinitely-sized reconvergence-

inf predictor. Collins et al. [15] work reports an accuracy of 95% for reconvergence-
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inf, however, our evaluation shows an accuracy of at most 78%. We have ac-

counted for the large discrepancy and attribute it to two factors. First, we

consider predictions incorrect once the predicted distance has been exceeded.

This is different from the methodology described by Collins et al., however

this difference does not lead to a significant change in accuracy. Second, we

enforce that all merge points identified by both predictors are points where

control actually converges. Due to the methodology used by Collins et al.,

some of the predicted values are not merge points.

Accuracy numbers alone are not enough to understand the worth of a

merge point predictor. It is important that we demonstrate that the merge

point predictor is accurate when the branch predictor is not. Figure 3.7 shows

the difference in MPKI between a branch predictor only design and a branch

predictor + merge point predictor design. This represents the total number

of mispredictions created by both the branch predictor and merge point pre-

dictor. The figure shows that MPPmax is able to replace a 56% of branch

mispredictions with an accurate merge point prediction over a BP only design

and a 51% improvement over reconvergence-inf. This significant improvement

in branch misprediction coverage shows that MPPmax is highly accurate, even

in the presence of hard to predict branches.

3.6 Prior Work

Control independence, as an alternative to branch prediction, was first

proposed by Lam and Wilson [32]. While their study drew attention to the
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area, it made many assumptions that led to an inaccurate upper bound on

performance [47, 60]. A more detailed analysis was done by Rotenberg et

al. [47]. They devised six models designed to place an upper bound on the

advantages of control independence. However, the focus of their work was lim-

ited to theoretical benefits of control independence, with no tangible solutions

presented.

Skipper [13] was the first microarchitecture proposal for control in-

dependence that included a dynamic merge point predictor. Skipper iden-

tified hard-to-predict branches, then fetched post merge point instructions

out-of-order to avoid prediction. However, Skipper is limited to only predict-

ing if-then, if-then-else, and loops. Furthermore, it makes assumptions about

the compiler and code layout, making it inaccurate and resistant to change.

Additionally, Skipper only uses branch confidence to identify hard-to-predict

branches. Our work also considers branch latency as an important factor.

Collins et al. proposed a reconvergence predictor [15], which attempted
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to solve the limitations of Skipper. Their algorithm introduced 3 different

heuristics for detecting merge points of if-then and if-then-else branches. Fur-

thermore, they included support for call branches. However, their algorithm

still depended on code layout, making it considerably less accurate. Addition-

ally, their prediction mechanism provided no support for predicting distance or

data-independence. Our predictor does not rely on the compiler, or make as-

sumptions about code layout. It can identify merge points of all branches with

sufficiently low distances and has a simply, extendable structure for tracking

gap properties.

The SYRANT [42] work symmetrically allocated resources along both

sides of a branch in preparation for a misprediction. Their merge point pre-

diction mechanism also used wrong-path information, however, the paper fo-

cuses on the use case of their predictor, rather than evaluating the prediction

mechanism itself, leaving the design of their predictor largely unknown. Addi-

tionally, their work is focused on optimizing branch mispredictions, while our

work focuses on avoiding them altogether.

3.7 Future Work

History-based predictor. As discussed in this chapter, some branches

have multiple dynamic merge points due to changes in branch behavior. In

some cases, a branch may oscillate between more than one merge point each

time it is encountered. Our current prediction mechanism will track these mul-

tiple merge points, however, it will predict the merge point which has been
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occurring the most in the recent past. While this simple approach is accurate

for most branches, a better design would use branch history as an index to

predict which dynamic merge point is the most likely to be used next.

Improving the storage efficiency of the predictor table. Most

commonly, the merge point of a branch is equal to its own target, as is the

case of if-then branches [13]. Therefore, the target of the branch can serve as

a base merge point prediction. This allows us to create a TAGE-like predictor

design, where minimal storage is needed for branches whose merge point is

equal to the target, and an tagged table is used to override the base prediction

for cases where the merge point is not equal to the target.

Combining merge point prediction and target prediction. Merge

point prediction is often used in place of branch direction prediction. There-

fore, entries in the branch target predictor (IT-TAGE) can be used to store

the merge point predictions themselves. This shared design would allow for an

aggressive history indexed merge point predictor at minimal additional cost.
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Chapter 4

Branch Runahead

4.1 Introduction

As branch predictors continue to improve, their accuracy on data-

dependent branches remains roughly constant. Over time, data-dependent

branches have become responsible for a larger share of the total remaining

mispredictions. To illustrate this, Figure 4.1 shows the misprediction rate of

the 32 most hard-to-predict branches from each benchmark. The left bar is the

accuracy of a 64KB TAGE-SC-L [52], winner of the 2016 Champion Branch

Prediction competition (CBP-2016) limited storage category, and the middle

bar is the accuracy of MTAGE-SC [53], winner of CBP-2016 unlimited stor-

age category. On average, MTAGE-SC is only able to reduce misprediction

from 11% (TAGE-SC-L) to 9%, an improvement of only 18%. I propose using

dependence chains— a short sequence of operations that can pre-compute the

result of the branch before it is needed in the fetch stage.1 Figure 4.1 also

shows the accuracy of using dependence chains to pre-compute branch out-

come (right bar). On average, dependence chains decrease mispredictions to

5%,2 reducing misprediction by 55% (TAGE-SC-L) and 44% (MTAGE-SC).

1The ideas presented in this chapter were first published in [45], which is my own work.
2Some mispredictions still occur when the dependence chain diverges.
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Figure 4.1: Misprediction Rate: TAGE-SC-L (64KB) vs MTAGE-SC (Unlim-
ited) vs Dependence Chains for Hard-to-Predict Branches

This result clearly demonstrates that pre-computation can improve branch

prediction for branches that TAGE fundamentally cannot predict accurately.

Unfortunately, prior work in pre-computation for branch prediction has

primarily focused on heavy-weight, compile-time approaches. Here, the com-

piler creates a filtered version of the original program, only containing instruc-

tions necessary to compute the result of hard-to-predict branches. The filtered

thread, or “helper” thread, is executed asynchronously on another core [59, 31],

Simultaneous Multi-threading (SMT) context [64, 49, 11, 10], or on a dedi-

cated unit within the core [54]. I argue these approaches are fundamentally

more costly as they require re-executing most instructions in the program, and

thereby require expensive resources to pre-compute the branch. Meanwhile,

light-weight runtime approaches [10] are not able to run continuously, limiting

their ability to provide timely predictions.

I propose Branch Runahead, a system that continuously executes lightweight
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dependence chains to pre-compute the result of hard-to-predict, data-dependent

branches. Dependence chains, which are extracted from the program at run-

time, are far simpler than the helper threads proposed by prior work, which

allows them to be accelerated using less hardware, rather than requiring an-

other core or SMT context. In particular, Branch Runahead improves state-

of-the-art in four key areas.

Light-weight Dependence Chain. The dependence chain is a short

sequence of operations necessary to produce the result of a branch instruc-

tion. 3 Unlike helper threads, dependence chains are guaranteed to be simple.

All dependence chains have fewer than 16 micro-operations, do not contain

expensive operations such as integer divide or floating point operations, and

do not contain any control flow instructions. Figure 4.2 shows that the av-

erage length of a dependence chain is fewer than 8 micro-operations. Branch

Runahead dynamically filters the instruction stream to produce the exact se-

quence of operations needed to compute the branch outcome. The result is a

light-weight sequence of instructions that can be accelerated efficiently.

Continuous Execution. Prior techniques using light-weight depen-

dence chains [10, 23, 40] have struggled to execute continuously, as dependence

chains do not contain control flow instructions. This causes them to diverge

from the main thread quickly, reducing the accuracy of predictions. Branch

Runahead solves this problem using our new merge point predictor. The merge

3More specifically, a dependence chain is the backwards dataflow slice needed to compute
the branch.

68



mcf_1
7

leela_17
xz_17

deepsjeng_17

omnetpp_17
astar_06

mcf_0
6

gobmk_06
bzip2_06

sjeng_06

omnetpp_06 cc bfs tc bc pr
ssspamean

0
2
4
6
8

10
12
14
16

M
icr

o-
Op

s

Figure 4.2: Average Length of Dependence Chains

point predictor detects control and data dependencies between branch instruc-

tions, which allows Branch Runahead to properly order dependence chains.

Timeliness. Pre-computation is effective only if the results are ready

before the prediction is needed. Branch Runahead maximizes chain level par-

allelism by predicting the next dependence chain, allowing it to issue as early

as possible.

Dependence Chain Engine. Branch Runahead executes dependence

chains using a dedicated unit, the Dependence Chain Engine (DCE). I propose

3 variants of the DCE: an unlimited storage Big engine, a 17KB Mini engine,

and a 9KB Core-Only engine, which shares reservation stations, physical reg-

isters, and functional units with the core. The Dependence Chain Engine

consumes just 2.2% of the area of a typical out-of-order core (or only 1.4% in

the case of the Core-Only model). As branch outcomes are produced, they are

inserted into prediction queues, which override predictions supplied by the tra-

ditional branch predictor. Dependence chains begin executing in the DCE as

69



soon as their live-ins are known. Live-ins are copied from the physical register

file during a branch misprediction and loaded into the DCE. This initializes

the register file for the chain, effectively synchronizing it with the core. De-

pendence chains are not guaranteed to be correct, and occasionally diverge

from the main thread. Once this is detected, the DCE is synchronized again

by repeating the copy of the physical registers.

The contributions of this Branch Runahead are:

• To our knowledge, this paper is the first work to evaluate dynamically

generated, light-weight dependence chains that are run continuously as

a means to pre-compute the results of branch instructions.

• I demonstrate the importance of accurately identifying affector and guard

dependencies between branches (section 4.4.4).

• I introduce a new method for merge point prediction, which is 95% ac-

curate, compared to prior work which is only 78% accurate [44] (sec-

tion 4.4.4).

• I introduce the Branch Runahead system, including dependence chain ex-

traction, synchronization with the fetch unit, and the microarchitecture

of the Dependence Chain Engine. We show that placing restrictions on

chain extraction can guarantee the simplicity of the dependence chain,

allowing it to be executed quickly and efficiently on the Dependence

Chain Engine (DCE).

• I evaluate three methods for chain initiation, which promotes chain level

parallelism and improves the timeliness of predictions.
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In the remaining sections, I discuss the fundamental limitations of

prior work, and how Branch Runahead addresses them. Then, I provide a

detailed discussion of Branch Runahead, including implementation and im-

portant properties. Finally, I show that Branch Runahead, when configured

under reasonable hardware constraints, reduces branch MPKI by 47.5% and

increases IPC by an average of 16.9%.

4.2 Limitations of Prior Work

Branch Runahead is not the first to propose pre-computation as a sub-

stitute for branch prediction. In fact, many works have paved the way for

Branch Runahead [63, 64, 49, 11, 10, 54, 31]. However, Branch Runahead is

the first runtime only solution to execute light-weight dependence chains con-

tinuously. This allows Branch Runahead to execute further ahead with fewer

hardware resources.

4.2.1 Limitations of Compiler-based Techniques

Most prior work relies on the compiler to identify candidate branches

and extract helper threads [63, 64, 49, 11, 10, 54, 31]. Since compilers take a

holistic view of the program, they can iterate over the control flow and data

flow that lead up to a branch instruction and produce the exact minimum

set of operations needed to compute the direction of the branch. Zilles et

al. [63, 64] first observed, however, that building helper threads that com-

puted branch outcome 100% accurately was not profitable, as it required too
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Figure 4.3: Increase in micro-ops due to Branch Runahead

many operations to be a part of the helper thread. Since then, research has

focused on using profiling techniques during compile time to more aggres-

sively remove instructions from the helper threads [49, 11, 31]. This results

in a helper thread that is significantly simpler but no longer 100% accurate.

Unfortunately, the effectiveness of these techniques relies heavily on the rep-

resentativeness of the profiling data. Unrepresentative data can lead to in-

accurate compiler optimizations that improperly reduce the helper threads,

causing them to produce far less accurate predictions at runtime, increasing

expensive synchronizations. In addition, introducing dependence chains at the

compiler level requires changes to the Instruction Set Architecture (ISA) that

chip makers are usually hesitant, if not unwilling, to make. In contrast, Branch

Runahead requires no modifications to the ISA or compiler to achieve its full

potential.
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4.2.2 Limitations of Prior Runtime Techniques

SlipStream and its variants [59, 57] are runtime only techniques that

pre-compute the direction of branch instructions. In SlipStream, two proces-

sors are used to execute a program. The A-stream runs a filtered version of the

program ahead of the R-Stream. This enables the A-stream to communicate

branch directions via a hardware queue between the two cores. Slipstream

reports to remove an average of 15% of all retired instruction, leaving the

remaining 85% in the A-stream as overhead.

In contrast, Branch Runahead extracts only the instructions needed

to predict the targeted branch. As a result, dependence chains in Branch

Runahead are far simpler than the A-stream. To illustrate this, Figure 4.3

shows the increase in micro-ops executed due to enabling Branch Runahead.

On average, Branch Runahead executes 34.3% more micro-ops, significantly

less than SlipStream’s 85%.4

Difficult-path SSMT (DP-SSMT) [10] extracts dependence chains

at runtime to pre-compute hard-to-predict branches. However, DP-SSMT

requires a trigger instruction to begin each instance of the dependence chains.

In contrast, Branch Runahead generates dependence chains that can execute

continuously, as if they were in a loop. This allows Branch Runahead to

run farther ahead than DP-SSMT. Furthermore, Branch Runahead considers

4The Slipstream numbers are values reported in [57], which used a slightly different set
of benchmarks. However, there are several benchmarks that do overlap which confirm the
large disparity.
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affector and guard branches, which enable Branch Runahead to run ahead for

longer intervals with high accuracy. DP-SSMT, on the other hand, generates

dependence chains that only work if control goes down a predefined path.

Dependence Chains for Prefetching. Hashemi et al. propose us-

ing dependence chains for data prefetching [23, 22]. While both papers show

the predictive power of dependence chains, Branch Runahead utilizes affec-

tor/guard branches and frequent synchronizations to improve the accuracy of

the dependence chains. Carlson et al. [9] propose a new way of extracting

dependence chains different from the method we use. Naithani et al. [40] use

a similar technique, but instead of running chains on a separate pipeline, they

issue chains during cycles where the core is idle. Both works rely on branch

prediction to generate the correct dependence chain, making the techniques

less useful as a branch prediction alternative.

4.2.3 Limitations of Heavy-weight Helper Threads.

Prior work requires helper threads to execute on another core [59, 31]

or SMT context [64, 49, 11, 10] because helper threads still contain complex

control flow that requires expensive out-of-order hardware to execute quickly.

Requiring a separate core doubles the hardware cost for a single thread, and

adds non-trivial latency for core-to-core communication. Requiring a sepa-

rate SMT context requires all helper thread instructions be fetched, decoded,

renamed, and access many other structures, like the Re-order Buffer (ROB),

Load-Store Queue, etc.
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pos = position on GO board

for (i = 0; i < 8; i++) {

sq = pos + neighbor_offset[i]

if ( board[sq] == EMPTY ) // Branch A

if( not board[sq]. self_atari () ) // Branch B

do_work ()

} (a)

Tag: < A, ∗ >

add $0x4 , %rbx

mov (%rbx), %ebp

add %r14d , %ebp

movslq %ebp , %rax

cmpl $0x2 ,0x6f0(%r12 ,%rax ,4)
jne SKIP ; Branch A (c)

Tag: < A,NT >

movzwl 0x1ba4 (%r12 ,%rax ,2) ,%edx

mov %edx , %eax

sar $0x8 , %eax

and $0x7 , %eax

cmp $0x1 , %eax

jle SKIP ; Branch B (d)

A LOOP mov (%rbx), %ebp

A add %r14d , %ebp

A movslq %ebp , %rax

A cmpl $0x2 ,0x6f0(%r12 ,%rax ,4)

A jne SKIP ; Branch A

B movzwl 0x1ba4 (%r12 ,%rax ,2) ,%edx

B mov %edx , %eax

B sar $0x8 , %eax

B and $0x7 , %eax

B cmp $0x1 , %eax

B jle SKIP ; Branch B

W call do_work

A SKIP add $0x4 , %rbx

W cmp %rbx , %r13

W jne LOOP (b)

Figure 4.4: Code snippet from leela, a SPEC 2017 benchmark [3].

In contrast, Branch Runahead guarantees the simplicity of dependence

chains. Dependence chains are stored in the Dependence Chain Cache as a

sequence of micro-ops, so they do not need to be decoded. Further, most com-

munication is internal to the dependence chain, allowing us to break Rename

into 2 phases: a one-time local rename, and a dynamic global rename. This

optimization also reduces the cost of reservation stations and physical regis-

ters. These simplifications motivate the creation of the Dependence Chain

Engine (DCE): a dedicated unit for executing dependence chains.
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4.3 Motivational Example

History-based branch predictors struggle with data-dependent branches

because the branch outcome is not correlated to the branch history. Depen-

dence chains, however, are a good fit for data-dependent branches because

they use the application’s own code to compute the direction of the branch.

Using dependence chains to predict branches. Figure 4.4a shows

a code snippet taken from leela, a benchmark in the SPEC 2017 [3] benchmark

suite. The code contains two hard-to-predict branches, A and B, which are

two of the most frequently mispredicted branches in the benchmark. Branch A

loads data from a random location on a GO board, then inspects it to see if the

location is empty. The branch is hard to predict because it is a data-dependent

branch with no correlated branches in the history.

Instead of trying to predict branch A, Branch Runahead extracts all

instructions required to compute the outcome of the branch, forming the de-

pendence chain for branch A. Figure 4.4b shows the assembly code generated

by the compiler. Branch Runahead performs a backwards dataflow walk on

branch A to find all instructions required to produce its outcome. These in-

structions (marked with the letter A) are included in the dependence chain for

branch A. The resulting dependence chain is shown in Figure 4.4c.

Once extracted, dependence chains can be used to compute future pre-

dictions. The dependence chain is shipped to the Dependence Chain Engine

where it is executed continuously, as if it were in a loop. This process generates

76



mcf_1
7

leela_17
xz_17

deepsjeng_17

omnetpp_17
astar_06

mcf_0
6

gobmk_06
bzip2_06

sjeng_06

omnetpp_06 cc bfs tc bc pr
ssspamean

0
20
40
60
80

100
%

 o
f D

ep
en

de
nc

e
Ch

ai
ns

 Im
pa

ct
ed

Figure 4.5: Dependence Chains with Affectors or Guards

accurate predictions for the duration of the for loop (until i reaches 8). Once

that happens, the dependence chain diverges from the main thread, because

it continues to assume that it is in a loop. This will cause future predictions

for branch A to be inaccurate. Once this is detected, the core will synchronize

with branch A’s dependence chain and resume its execution.

Affector and Guard Branches. Frequent synchronizations inhibit

Branch Runahead’s ability to stay ahead of the main thread. Therefore, we

need the dependence chains to remain accurate long enough for the Depen-

dence Chain Engine to run ahead of the main thread. This requires Branch

Runahead to be aware of frequently changing branches that may affect the

instructions in the dependence chain.

Such branches are classified into two groups. Guard branches are

branches that control the execution of another branch. For example, in Fig-

ure 4.4a, branch B is guarded by branch A and only occurs when branch A

is not-taken. Affector branches are branches that can affect the source data
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of other branches; i.e., the direction of one branch could have an impact on

the data-dependencies of another branch. Both affector and guard branches

can have a serious impact on the accuracy of dependence chains if ignored.

Figure 4.5 shows the percentage of dependence chains in SPEC 2017 [3] that

are impacted by affectors and guards.

As affector and guard branches impact such a large fraction of depen-

dence chains, it is important that dependence chains be aware of affector and

guard relationships. Branch Runahead uses our new dynamic merge point

predictor to identify the merge point5 of a branch at runtime. Once the merge

point is known, it can be used to detect affector and guard relationships. This

process will be discussed in detail in section 4.4.4.

What does the dependence chain for branch B look like? Sim-

ilar to branch A, the chain extraction process starts by doing a backward

dataflow walk starting at branch B. However, because branch A guards branch

B, the chain extraction process terminates once branch A has been reached.

Additionally, the dependence chain is tagged < A,NT >, representing the

Program Counter (PC) of branch A, as well as the branch outcome (of branch

A) required to execute branch B. The resulting dependence chain is shown in

Figure 4.4d.

Tags are used to identify the action which initiates the execution of

the dependence chain. For example, any time branch A is not-taken, that will

5The merge point of a branch is the instruction where control converges regardless of the
true direction of the branch.
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match with the tag < A,NT > and the dependence chain for branch B can

begin executing. Additionally, the dependence chain for branch A is tagged

as < A, ∗ >. The ‘*’ denotes a wildcard, meaning that any outcome of branch

A will match this tag and initiate branch A’s dependence chain.

Biased branches and memory address aliasing.

Branch Runahead assumes that highly biased branches will remain biased

and ignores them during chain extraction, even if a biased branch is also

an affector or guard branch. Additionally, Branch Runahead assumes that

memory address aliasing (i.e., overlapping memory addresses) between store-

load pairs will also persist. These assumptions are, of course, not always true

and can cause the dependence chains to diverge from the main thread. For

example, once the for loop in Figure 4.4a terminates, the dependence chain

for branch A will no longer be valid and any predictions it generates will likely

be incorrect. Dependence chains will be deactivated when a misprediction is

detected.

Putting it all together. Once the chains for branch A and B have

been extracted, they are installed in a chain cache located in the Dependence

Chain Engine. Newly installed chains cannot start executing until the core

synchronizes the chain by initializing the chain’s local register file with the

correct input data. This does not happen until the next time either branch A

or branch B mispredicts. When a misprediction occurs, the correct direction

of the branch is broadcast to the Instruction Fetch Unit. Any chains whose tag

matches the branch address and outcome are activated. At this point, newly
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activated chains copy their live-ins from the physical register file and begin

execution. Finally, when the dependence chain finishes execution, the branch

address and outcome produced by the chain are used to identify the next

set of chains. The dependence chains continue to execute, completely asyn-

chronously from the core, until a misprediction from the dependence chains is

detected. At that point, the mispredicting chain is synchronized by copying

the correct values from the physical register file and chain execution resumes.

4.4 Branch Runahead Microarchitecture

Figure 4.6 shows a summary of the changes Branch Runahead requires

on top of a typical Out-of-Order pipeline. We break these changes up into

three categories: 1) dependence chain extraction, the process of identifying

hard-to-predict branches and the uops that belong to their dependence chains.

Once extracted, dependence chains are stored in the dependence chain cache.

2) Dependence Chain Control synchronizes the dependence chains with the

core and allows them to execute continuously, producing near perfect branch

predictions, which are used instead of predictions from the TAGE-SC-L pre-

dictor. Finally, the chains are executed on 3) the Dependence Chain Engine

80



(DCE), which is a specialized unit designed to execute dependence chains more

efficiently than is possible on the core. Figure 4.7 shows a block diagram of

the DCE. This section discusses Dependence Chain Control, followed by the

microarchitecture of DCE, then concludes with dependence chain extraction

and affector/guard detection.

4.4.1 Dependence Chain Control

Entering Runahead Mode. Once the dependence chains have been

extracted, they are copied to the dependence chain cache where they wait to

be initiated. Dependence chains cannot be initiated until their live-in data is

synchronized with the core. Branch mispredictions present a convenient time

to perform this synchronization, as the core backend and frontend are syn-

chronized. When the core detects a branch misprediction, the branch address

and outcome, which together form a tag, are used to look up an entry in the

chain cache. If there is a hit, then the matching dependence chain is initiated ;

i.e., its uops are written into the reservation stations and its live-ins are copied

from the core’s physical register file. Additionally, the corresponding predic-

tion queue is synchronized with instruction fetch. Once complete, the chain

may begin execution.

Continuous Execution. Once initiated by the core, dependence

chains execute continuously by using the dependence chain outcome to initiate

future dependence chains. The aggressiveness of chain initiation impacts the

level of chain level parallelism, which impacts the timeliness of the computed
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branch outcomes. In this paper, we evaluate three initiation techniques.

Non-speculative Initiation. A dependence chain must finish exe-

cution entirely before initiating the next dependence chain. Once the depen-

dence chain has finished execution, the pre-computed branch outcome and

the branch address are used to index the chain cache and initiate all match-

ing chains. Chain level parallelism is minimized in this mode as dependence

chains must wait for their predecessors to finish execution before they can

begin processing.

Independent-early Initiation. Chains with a wildcard tag are ini-

tiated when a triggering branch is issued into the reservation station. Recall

from section 4.3 that some chains are marked with a wildcard tag, indicating

that the direction of the triggering branch does not matter. In this case there

is no need to wait for the predecessor chain to finish execution as the result

of the branch will not affect whether or not the wildcard chain is initiated.

Instead, wildcard chains are initiated as soon as their predecessor chains finish

initiation. This mode increases chain level parallelism as chains with wildcard

tags can now execute in parallel6. Non-wildcard chains, however, must wait

for the predecessor chain to finish execution.

Predictive Initiation. Before, chains with non-wildcard tags required

the direction of the triggering branch to be known in order to initiate them;

6Note that initiation simply affects when the chain is added to the reservation stations.
The individual uops within the dependence chain are still required to wait until their data
dependencies have been satisfied before they are scheduled to the functional unit.
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however, in this mode the outcome of each branch is predicted at initiation

time. This allows the branch address and the predicted outcome to index the

chain cache and initiate non-wildcard matching chains early. If the prediction

turns out to be incorrect, the speculatively initiated chains are simply flushed

and the correct chains are initiated in their place. This mode maximizes chain

level parallelism when the predicted branch outcomes are correct, or, in the

case of mispredictions, results in chains being initiated no later than they

would have in the prior two modes. In this mode, wildcard chains are handled

exactly as they were in Independent-early Initiation. It is important to note

that the prediction is only used to increase chain level parallelism; thus, any

level of accuracy will likely improve the timeliness of branch outcomes. We

use a simple per-branch 3-bit counter as the prediction mechanism.

Predictive Initiation, however, comes with the downside that depen-

dence chains are now executing speculatively. This means that it is now possi-

ble for DCE resources to be wasting executing micro-ops that will eventually

be flushed. This can waste energy, but also potentially create interference that

slows down the DCE.

In all three modes, chain execution continues as long as the produced

tags continue to hit in the chain cache. If ever the produced tag misses, then

there are no more chains to initiate and runahead mode is exited.

Detecting Dependence Chain Divergence. Unfortunately, depen-

dence chains will eventually diverge from the main thread. When this happens,

the dependence chains will begin to produce incorrect predictions. Branch
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Figure 4.7: DCE Microarchitecture

Runahead monitors all prediction produced by dependence chains. Once a

misprediction is detected, the chain is synchronized by once again copying the

live-in values from the core to the DCE.

4.4.2 DCE Microarchitecture

The microarchitecture of the DCE is specialized to execute dependence

chains more efficiently than the core. This is accomplished by observing that

most of the communication between uops occurs within the dependence chain.

Tailoring the microarchitecture of the DCE around this allows us to reduce

the number of ports required for physical registers and reservation stations,
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in turn reducing the cost-per-entry of those structures. Alternatively, we also

evaluate a Core-Only implementation of the DCE, which shares physical reg-

isters, reservation stations, and functional units with the core. This section

covers each component of the DCE microarchitecture, how it works, and what

utility it provides towards improving branch prediction.

Dependence Chain Cache. Once the dependence chains have been

extracted, they are copied to the dependence chain cache where they wait to

be executed. The dependence chain cache holds up to 32 dependence chains

and uses LRU as a replacement policy.

Rename and Instruction Scheduling. Instruction scheduling hap-

pens at two levels of granularity: global (i.e., initiating the dependence chains,

discussed in section 4.4.1) and local (i.e., scheduling the uops within a chain).

To accomplish this, Branch Runahead uses two levels of rename. Local re-

name happens once, during chain extraction, where communication within

the chain is assigned a local physical register. Global rename happens dy-

namically, when the dependence chain is initiated, and results in assigning the

dependence chain to a local register file and reservation station.

Physical Registers. The physical register file is divided into several

local register files (Figure 4.8). Each local register file is treated as an inde-

pendent, single-ported bank. Dependence chains read and write to their own

local register file, except for live-in values 7, which are read from the local

7Values produced by another dependence chain or the core.
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register file of the producer chain, creating the possibility of a bank conflict.

Reservation Stations. The reservation stations are divided into sev-

eral local reservation stations, each with a capacity of 16 uops (1 chain). As

uops are executed, their results are broadcast to the physical register file and

to the reservation stations. Once all sources of a uop are ready, then the uop

may be scheduled for execution. Uops are scheduled to execute out-of-order.

We experimented with in-order instruction scheduling; however, we found that

in-order execution was not able to expose enough Memory Level Parallelism

(MLP) to significantly benefit the dependence chains.

Instruction Window. The physical register file and reservation sta-

tions together form the instruction window. The number of local register

files and reservation stations directly affects the number of dynamic chain in-

stances that are actively executing at once. Increasing the window size allows

for more chain level parallelism; however, it can come at a significant cost.

Alternatively, the entire instruction window can be shared with the core, min-

imizing cost, but also minimizing chain level parallelism. See section 4.5.2 for

a detailed analysis.

Figure 4.8 shows an example. Here, a branch misprediction from the

core triggers the tag < A, ∗ >. The misprediction also triggers a synchroniza-

tion between the DCE and the core. The chain’s live-ins are read from the

core physical registers and copied to a new local register file (red). While the

live-ins are being copied, the matching dependence chain is issued into a reser-

vation station and allocated a new local register file (blue). The chain’s source
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register file is set to red. Once the branch is issued, its address is broadcast

to the chain cache to initiate any matching wildcard tags. In this example,

the same chain matches, which triggers another dynamic instance of the chain

to be issued (orange) and the chain’s source registers are set to blue. Once

the core has copied all live-ins to the red register file, the ready-bits in the

physical register file will be set and the reservation station will be notified. At

this point, the chain may begin executing. As uops execute, their results are

written back to the appropriate local register file and the reservation station

is notified.

Memory Accesses. The DCE shares the D-Cache and D-TLB with

the core. The main thread is given priority to the D-Cache and D-TLB ports,

and the DCE may only use these structures when available. Dependence chains

do not contain any store instructions (see section 4.4.3), so the main thread

does not have to worry about data corruption by the dependence chains.
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The Prediction Queues. The prediction queues ensure that predic-

tions between the DCE and core are synchronized. The size of each prediction

queue also limits how far ahead (or behind) the DCE can be, which can affect

performance. The DCE contains 16 per-branch prediction queues. When a

dependence chain is initiated, a slot in the corresponding prediction queue is

allocated. 8 Finally, when the dependence chain finishes execution, it pushes

the outcome of the branch into the prediction queue. When the branch is

fetched, it will see that its queue contains a prediction and will use that result

instead of TAGE-SC-L. However, if the core fetches the branch before the DCE

has computed the next prediction, then the slot is marked as consumed, even

though it has not yet been filled. Later, when the DCE finishes computing

the prediction, the already consumed slot in the prediction queue will be filled

in case there is a recovery. To maintain the state of the queue, we use three

pointers: DCE push for inserting new predictions, core fetch for consuming

predictions at fetch, and core retire for removing retired predictions.

Recovery. During a branch recovery, the core fetch pointer is re-

stored to its state before the misprediction, effectively reinserting previously

consumed predictions into their original positions in the queue. This is accom-

plished by checkpointing the state of the core fetch pointer at each branch.

Prediction Throttling. Each prediction queue has a 2-bit throttle

counter, which is incremented when the DCE is correct and TAGE is incorrect

8Slots must be allocated at initiation to ensure they appear in the prediction queue in
program order.
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PC Operation

BR 0x7

ADD P3 <= P3 + 40xA

LD P7 <= [P3]0xC

LD P0 <= [ P2 ]
CMP P0, 2
BR  (mispredict)

MOV P2 <= P70x1
0x3
0x5
0x7

...

...

...

...

ADD P7 <= P7 + P50xD

Cycle 0

Retired

Cycle 1 Cycle 2 Cycle 3 Cycle N

BR 0x7

ADD P3 <= P3 + 40xA

LD P7 <= [P3]0xC

LD P0 <= [ P2 ]
CMP P0, 2
BR  (mispredict)

MOV P2 <= P70x1
0x3
0x5
0x7

...

...

...

...

ADD P7 <= P7 + P50xD

BR 0x7

ADD P3 <= P3 + 40xA

LD P7 <= [P3]0xC

LD P0 <= [ P2 ]
MOV P2 <= P70x1

0x3

0x7

...

...

...

...

ADD P7 <= P7 + P50xD

PC Operation PC Operation PC Operation PC Operation

CMP P0, 20x5
BR  (mispredict)

BR 0x7

ADD P3 <= P3 + 40xA

LD P7 <= [P3]0xC

LD P0 <= [ P2 ]
CMP P0, 2
BR  (mispredict)

MOV P2 <= P70x1
0x3
0x5
0x7

...

...

...

...

ADD P7 <= P7 + P50xD

BR 0x7

ADD P3 <= P3 + 40xA

LD P7 <= [P3]0xC

LD P0 <= [ P2 ]
CMP P0, 2
BR  (mispredict)

MOV P2 <= P70x1
0x3
0x5
0x7

...

...

...

...

ADD P7 <= P7 + P50xD

LIV: {cc} LIV: {P0} LIV: {P2} LIV: {P7} LIV: {P5, P3}

Hard Branch Table
Bias

CounterAG AGC AGLBR BDMisp.
Counter

0x7 31 1 0 { } 0 NT

0x9 31 0 0 { 0x7 } 0 T

Figure 4.9: The Chain Extraction Buffer (CEB)

and decremented when the DCE is incorrect and TAGE is correct. When the

counter is negative, predictions produced by the DCE are ignored.

4.4.3 Chain Extraction Hardware

Detecting Hard to Predict Branches. The Hard Branch Table

(HBT) (Figure 4.9), introduced in Chapter 2, detects hard-to-predict branches.

New entries are allocated when a conditional branch retires (if space available).

Each entry consists of a 5-bit saturating misprediction counter that is incre-

mented upon retiring a mispredicted branch. A branch is considered hard-to-

predict when its misprediction counter saturates. Misprediction counters are

periodically decremented by 15 every 1000 retired branches. Old entries can

be overwritten when their counter is 0.

Tracking Affector and Guard Branches. In addition to identifying

hard-to-predict branches, the HBT also keeps track of affectors and guards.

Once detected (section 4.4.4), affector/guard branches are allocated in the

HBT. The AG field is set to indicate the branch is an affector/guard, which
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allows the branch to remain in the table even if it is not hard-to-predict. Af-

fector/guard branches can only be replaced when the hard-to-predict branch

they are associated with is removed. In addition, the affector/guard branch is

added to the affector/guard list (AGL) field of the hard-to-predict branch.9 If

this branch was not previously in the affector/guard list, then the affector/-

guard changed (AGC) field is set, indicating that a new affector/guard branch

was found.

Branch Runahead ignores highly biased affector/guard branches. There-

fore, the HBT tracks the bias of each affector/guard branch using a 7-bit bias

counter, which is incremented when the direction of a retired branch matches

the direction stored in the Biased Direction (BD) field and is decremented by

9 periodically10. If an affector/guard branch is found to be biased, then it is

removed from the hard-to-predict branch’s affector/guard list, and the AGC

field is set if appropriate.

Extracting the Dependence Chain. The chain extraction algo-

rithm is adapted from Hashemi et al. [23] where the authors use dependence

chains to create prefetches for load instructions. Chain extraction begins when

a hard-to-predict branch is retired.11 Chain extraction terminates when either

1) a second instance of the same branch is found, or 2) an affector/guard

9The AGL is stored as a bit-vector, 1 bit per entry in the HBT.
10The decrement amount and counter width was calculated using an arithmetic model

that theoretically detects a bias of 90% or more with a false positive rate of 1%.
11The branch must be contained in the HBT and have either saturated its misprediction

counter or be randomly selected. Branches are randomly selected with a 1% probability.
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branch is found. Upon termination, the dependence chain is tagged with the

PC and outcome of the terminating branch and installed into the dependence

chain cache.

Chain extraction performs a backwards dataflow walk starting at the

most recently retired hard-to-predict branch instruction. To facilitate this, we

add a circular buffer, called the chain extraction buffer (CEB), that holds the

last 512 micro-operations (uops) retired. Uops in the CEB are searched cycle-

by-cycle to see if they belong to the dependence chain. Figure 4.9 shows an

example. In cycle 0, the second, younger dynamic instance of the mispredict-

ing branch (shaded in grey) is added to the dependence chain and the search

list (LIV) is initialized with the live-in table entry associated with this branch.

Additionally, all of the branch’s source registers (i.e., the condition code reg-

ister) are added to the search list. Then, the CEB is iteratively scanned for

uops whose destination register(s) match in the search list. On a match, we

1) add the matching uop to the dependence chain, 2) remove the matching

register(s) from the search list, and 3) add the source registers of the matching

uop to the search list. In cycle 1, the CEB is scanned for uops that write the

condition codes, resulting in the addition of the CMP uop to the dependence

chain and its source registers added to the search list. In cycle 2, the CEB is

scanned for uops that write to R0. This results in the LD uop being added to

the dependence chain, P0 being removed from the search list, and the sources

of the LD (P2) added to the search list. When a load op is found, its address

is compared to other addresses in the CEB store buffer. If a corresponding
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store op is found, then the store is also added to the dependence chain. In

cycle 3, the MOV uop is added to the dependence chain because of its write to

P2. Finally, in cycle N, we reached the initial instance of the branch, ending

chain extraction. The shaded uops make up the final resulting dependence

chain. Several uops in the CEB were omitted because they are not added to

the dependence chain.

Chain extraction takes place one chain at a time, off the critical path,

and is not latency sensitive. The process takes multiple cycles, as shown

in Figure 9. In all of our experiments, we model this latency accurately 12;

however, we experimented with much longer latency (1000s of cycles) and

found no sensitivity. This is because chain extraction very rarely produces a

chain that is not currently in the chain cache.

Live-in and Live-out Tables. The live-in and live-out tables hold the

architectural live-ins/outs for each chain detected during chain extraction. In

Figure 9, the architectural registers corresponding to the live-in vector (LIV)

are stored in the live-in table at the end of chain extraction. Further, the

Live-out vector, i.e., architectural registers corresponding to P0, P2, P3, P7,

is written into the live-out table. This information is used during local rename

and during synchronizations with the core.

Local Rename. Local rename happens once during chain extraction.

During this process local registers (i.e., communication within a chain) are

12uops in CEB / retire width
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renamed and global registers (communication between chains) are identified

and partially renamed to prepare for global rename. Local registers are re-

named to minimize physical register footprint. Global registers are identified

by comparing the live-in/live-out registers of the chain with the live-out/live-

in registers of the producer/consumer branches, respectively. Global registers

are renamed in-order to guarantee the same name is used between different

chain extractions.

Dependence Chain Optimizations. All move uops are move-eliminated.

Further, because store-load pairs detected during chain extraction are logically

equivalent to a move, all store-load pairs are move eliminated as well. This

optimization guarantees that dependence chains will not contain any store

instructions.

4.4.4 Detecting Affector and Guard Branches

Branch Runahead uses the merge point prediction algorithm discussed

in Chapter 3 to detect control and data dependencies between dependence

chains. Here, the WPB is used to detect the merge point of a target branch.

The WPB is extended to then detect Affector and Guard Branches.

Detecting Guard Branches By definition, a branch guards any

branches that are observed between itself and the merge point (excluding

biased branches). Therefore, any branches observed on the wrong-path or

correct-path during merge point prediction are marked as being guarded by

the merge predicted branch. If no merge point is found, then no branches are
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marked.

Detecting Affector Branches The merge predicted branch is an af-

fector for any branch that sources data that is affected by the direction of

the merge predicted branch. Fortunately, the merge point predictor provides

us with the both-path dest set, which marks all registers/memory addresses

affected by the merge predicted branch. To detect affectee branches, we use

the both-path dest set and the poison algorithm adapted from Runahead Exe-

cution [39]. Registers and memory addresses marked in the both-path dest set

are initialized as poisoned. As correct path instructions after the merge point

retire, they propagate any poison they source to the destination register. If

an instruction outputs to a poisoned register without sourcing any poisoned

registers, then the destination register poison is removed. Any branch, includ-

ing the merge predicted branch, that sources poison is considered to be an

affectee branch 13 (i.e., the merge predicted branch is an affector of the poison

sourcing branch). The process terminates when the second instance of the

merge predicted branch is seen or when the maximum merge point distance

has been reached.

13Excluding biased branches.
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Core 4-Wide Issue, 256-Entry ROB, 92-Entry Reservation
Station, 3.2 GHz, 64KB TAGE-SC-L Branch Predictor [52].
Modeled by Scarab [2].

WPB 128-entry, 4-way, max merge point distance 256 uops.

L1 Caches 32 KB I-Cache, 32 KB D-Cache, 64 Byte Lines, 2 Ports,
3-Cycle Hit Latency, 8-Way, Write-Back.

L2 Cache 2 MB 12-Way, 18-Cycle Latency, Write-Back.

Memory Controller 64-Entry Memory Queue.
Prefetchers Stream: 64 Streams, Distance 16. Prefetch into LLC.
DRAM DDR4, 8Gb, x8, 2400R, Modeled by Ramulator [30].

Table 4.1: Baseline Configuration

Core-Only (9KB) Mini (17KB) Big (Unlimited)
uOps Integer: add/multiply/subtract/mov/load.

Logical:and/or/xor/not/shift/sign-extend.
Chain 32-entry (2KB) 1024-entry
Cache 1 uop per entry, 4B per uop.
PRF 0 (0KB) 64x 8-entry (4KB) 1024x 8-entry
RSV 0 (0KB) 64x 32-entry (4KB) 1024x 32-entry
MSHRs 48-entry 48-entry 64-entry
Prediction 16x 256-entry ( 4KB) 1024-entry
Queue
HBT 64-entry (1KB)
CEB 512-entry (2KB) 2048-entry

Table 4.2: Branch Runahead Configuration

4.5 Results

4.5.1 Evaluation Methodology

To simulate our proposal, we use Scarab [2]— an open source simula-

tor commissioned by Intel in their Intel/NSF FoMR initiative [1]. Scarab is

an execution-driven, cycle-accurate x86 simulator whose front-end is based on

PIN [34]. The simulator faithfully models core microarchitectural details, the

cache hierarchy, wrong-path execution, and includes a detailed non-uniform

access latency DDR4 memory system, modeled by Ramulator [30]. We model

the 64KB TAGE-SC-L [52] branch predictor with the configuration submit-
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ted to CBP-2016. The 64KB TAGE-SC-L is the best known realistic branch

predictor. Table 4.1 describes our system.

Branch Runahead Configuration. Branch Runahead is evaluated

on three configurations— Core-Only (9KB), Mini (17KB), and Big (unlim-

ited). Table 4.2 contains the details of each configuration.

Benchmarks. We evaluate Branch Runahead on SPEC CPU2017

Integer Speed, SPEC CPU2006 Integer [3] and GAP Benchmark Suites [8].

From that set, we select the branch misprediction intensive benchmarks with

an average MPKI greater than 2. We use the SimPoints [41] methodology to

identify anywhere between one to five representative regions per benchmark.

We run each region for 200 million instructions, then compute the weighted

average of all the regions. We run SPEC benchmarks on the ref input set, and

use -g 19 -n 300 inputs for GAP. If there is more than one ref input, then the

benchmark is run on each input, and a weighted average, weighing each input

by the total dynamic instruction count, is used to compute a single metric for

the entire benchmark.

Energy and Area. We model chip energy and area using McPAT [33].

The DCE is modeled as a stripped down core, removing structures like decode,

register rename, floating point pipeline, prefetchers, and others required for

maintaining precise state, such as the ROB.

Metrics. We use Instructions Per Cycle (IPC) as the performance

metric and Branch Mispredictions Per Kilo Instruction (MPKI) to evaluate
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Figure 4.10: IPC and MPKI Improvement of Branch Runahead compared to
64KB TAGE-SC-L

improvements in prediction accuracy. MPKI Improvement is computed as the

difference between Branch Runahead MPKI and TAGE-SC-L MPKI, normal-

ized to TAGE-SC-L MPKI.

4.5.2 Branch Runahead Results

Figure 4.10 shows the performance results for the Core-Only, Mini,

and Big implementations of Branch Runahead. The results show that Branch

Runahead reduces MPKI by an average of 37.5%, 43.6%, and 47.5% and

increases IPC by an average of 8.2%, 13.7%, and 16.9%, respectively. The

trade-off comes down to cost vs chain level parallelism. Big-Branch Runahead

maximizes chain level parallelism by providing the most physical registers and

reservation station entries, while the Core-only model minimizes these same
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qualities.

Figure 4.10 also shows the performance of an 80KB TAGE-SC-L predic-

tor (left most bar), which requires roughly the same storage overhead as Mini

Branch Runahead (16KB). However, the 80KB TAGE-SC-L only improves

MPKI by 0.8%, resulting in only 0.3% improvement in IPC. Mini Branch

Runahead improves the misprediction rates of targeted branches by an av-

erage of 55%, while 80KB TAGE-SC-L has a negligible effect on these same

branches. This result supports the claim that history-based predictors are

fundamentally unable to predict these data-dependent branches.

Limits of Branch Runahead. Big Branch Runahead uses unlimited

storage to demonstrate the maximum potential of Branch Runahead. In this

model, parameters of the microarchitecture are increased far beyond their rea-

sonable limits. As Figure 4.10 shows, Big Branch Runahead improves MPKI

over Mini Branch Runahead by only 3.8%, suggesting that Mini Branch Runa-

head is very close to its peak potential.

Limits of History-based Predictors. Figure 4.11 (top) compares

Big-Branch Runahead to MTAGE-SC, winner of the unlimited storage cat-

egory in CPB-2016 [53]. While MTAGE-SC improves MPKI significantly,

particularly in the SPEC workloads, it is still outperformed on average by Big

Branch Runahead (middle bar). This is because MTAGE-SC performs poorly

on GAP workloads, which are dominated by data-dependent branches. Com-

bining MTAGE-SC and Big Branch Runahead (right bar) further improves

MPKI on every benchmark, demonstrating that Branch Runahead is capable
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Figure 4.11: MPKI Improvement of MTAGE and Branch Runahead (top) and
MPKI Improvement of Chain Initiation Methods (bottom)

of predicting branches that TAGE fundamentally cannot predict.

Chain Initiation Method. Chain Initiation is the most important

factor towards improving timeliness. As discussed in section 4.4.1, Chain Ini-

tiation affects chain level parallelism. Figure 4.11 (bottom) shows the MPKI

improvement of each initiation method. Unsurprisingly, the Predictive Initia-

tion method, which maximizes chain level parallelism, has the highest impact

on MPKI. While this method does produce the highest degree of performance,

it comes at the cost of flushing the DCE on a misprediction, which wastes

energy.

Timeliness of predictions. DCE predictions need to be timely in
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Figure 4.12: Prediction Breakdown

order to be useful. The stacked bars in Figure 4.12 show the fraction of pre-

dictions supplied by the DCE that are inactive or late. The inactive category

means that, at the time the core needed the prediction, no dependence chains

had been activated to produce that prediction. This generally happens once

the branch is fetched, but before the first synchronizing misprediction occurs.

Branch Runahead requires a mispredicted branch to synchronize, which un-

fortunately has the effect of activating chains late. The late category refers to

predictions which have active chains, but are generated too late to be useful

for the core. This generally happens when the dependence chain contains too

many long latency operations. The throttle category refers to predictions that

are throttled (as described in section 4.4.2). The remaining two categories,

correct and incorrect, refer to predictions that are used by the core. This

figure demonstrates two things. First, predictions generated by Branch Runa-

head are very accurate, with nearly all of the used predictions being correct.

Second, nearly 40% of predictions are generated on time. Timeliness is the
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Figure 4.13: IPC and MPKI Improvement of Branch Runahead on a 16-wide
fetch, 1024-entry instruction window baseline.

most difficult issue Branch Runahead faces, with late predictions making up

the largest category outside of correct predictions.

Branch Runahead on a larger baseline machine. Branch Runa-

head achieves improvement by delivering accurate predictions to the frontend

before the branch is fetched. Therefore, it is fair to ask if Branch Runahead

will continue to achieve performance as the fetch rate of the baseline machine

is increased. Increasing the fetch rate of the baseline machine puts pressure

on Branch Runahead to deliver the branch results more quickly; however, it

also increases the cost of each branch misprediction, thereby making Branch

Runahead more valuable. Figure 4.13 shows the results of running Branch
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Runahead on top of a machine that fetches 16 instructions per cycle and has a

Re-order Buffer and Reservation Stations capable of holding 1024 instructions.

The figure shows that the performance improvements of Branch Runahead de-

creases slightly across all workloads. This is primarily due to the stricter

timeliness constraints placed on Branch Runahead. Additionally, the perfor-

mance difference between the Core-only, Mini, and Big models also decreases.

This is partly due to the fact that Core-only performance increases slightly

due to a larger availability of resources in the larger instruction window.

Why does Mini Branch Runahead out perform Big Branch

Runahead on some workloads? The results in figure 4.10 show that Mini

Branch Runahead achieves a higher performance and a higher MPKI than Big

Branch Runahead. This happens when the the Mini-DCE is able to achieve a

higher performance than the Big-DCE. This is typically caused by one of two

factors. First, the big-DCE generates a higher degree of cache pollution, due

to the fact that it more quickly executes dependence chains. When the de-

pendence chains inevitable diverge from the main thread, the memory accesses

that they generate are often not useful to the main thread nor to future depen-

dence chains. In extreme cases, this pollution can slow down both the main

thread and future dependence chains. Second, the big-DCE can generate more

interference for the main thread by virtue of creating more memory accesses

in flight. These memory accesses create more traffic that can slow down either

the main thread or other dependence chains, thereby slowing down Branch

Runahead.
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Impact on Security. In light of the recent Spectre and Meltdown

attacks, more attention than ever is placed on ensuring new features to not un-

lock new attacks. Branch Runahead extracts dependence chains and executes

them continuously, as if they were in a loop, to generate near perfect branch

predictions. However, at some point these dependence chains will diverge from

the main thread. Upon detection, the dependence chains are synchronized with

the main thread and restarted; however, this is not before several wrong-path

memory accesses are sent to the memory system on behalf of Branch Runa-

head. It is important to note that, just as in regular execution, these wrong

path memory accesses would be manipulated to access private data. There-

fore it is important that permissions are checked before the memory access is

initiated. Branch Runahead accesses the D-TLB before all memory accesses,

just as in the baseline system. Further, because the dependence chains are

generated from the applications own code they do not create any new attack

vectors that would not be available to an attacker already. Dependence chains

only make assumptions about the code in two cases: 1) biased branches and 2)

memory disambiguation. However, these two cases are both predicted in the

baseline machine as well. For example, Branch Runahead assumes that biased

branches will remain bias. However, this is not unlike any branch predictor

that would make the same assumption.

Sweeps. Figure 4.14 shows MPKI improvement for a DCE with various

configurations 14. Parameters are swept up to the values used for the Big

14Due to the large number of simulations, sweeps ran for 10 Million instructions, as
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Figure 4.14: MPKI Improvement relative to Mini Branch Runahead. Param-
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dotted line) to show each parameters contribution.

Branch Runahead configuration. On average, Big Branch Runahead improves

the MPKI of Mini Branch Runahead by 3.89%. The figure suggests that this

improvement is primarily due to the increased window size and chain cache

size. Furthermore, the graph suggests that optimal values for window size and

chain cache would be 128-entry and 64-entry respectively, meaning that Big

Branch Runahead could be implemented using 27KB of total storage.

Energy. Figure 4.15 shows the change in energy due to Branch Ru-

opposed to the 200 Million used for all other experiments.
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Figure 4.15: Energy Impact (Lower is better)

anhead, as estimated by McPat. Branch Runahead decreases energy on av-

erage, primarily due to faster run times. However, Branch Runahead does

increase energy usage in two ways. First, there is the increase in static and

dynamic power that is generated by new structures. Second, Branch Runa-

head increases the total number of instructions executed and memory accesses.

Figure 4.3 shows the total increase in both ops executed and total memory

accesses.

Area. McPat estimates the DCE engine area to be 0.38mm2, or about

2.2% of a baseline out-of-order core (16.96mm2 at a 22nm process). Of this

total, 0.09mm2 is dedicated to the dependence chain cache, 0.15mm2 is ded-

icated to functional units, reservation stations, and physical registers, and

0.14mm2 is dedicated to chain extraction and the HBT. 15

15For reference, McPat estimates the 64KB TAGE-SC-L predictor to be 0.73mm2. This
estimate is a lower bound on the total area, as McPat does not faithfully model the in-
terconnect, muxes, and adders contained within TAGE-SC-L predictor, which consume a
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Impact on clock frequency. Branch Runahead minimally affects

clock frequency, as almost all units are off the critical-path and are not sen-

sitive to latency. The only component on the critical path is a MUX, which

selects between TAGE-SC-L and the DCE engine prediction queues. The DCE

executes the dependence chain across many cycles, off the critical path, and

inserts the result into a prediction queue. Therefore, processor throughput is

minimally impacted.

4.6 Related Work

Gupta et al. [21] target dependence chains that contain one load in-

struction with a predictable address. While this technique is effective for a

subset of branches, Branch Runahead is a more general technique that is able

to capture more benefit. Their targeted approach does simplify some hardware

(no affector/guards, simplifies chain scheduling), however much of the same

hardware is needed to execute the dependence chains.

Farooq el al. [16] propose Store-Load-Branch (SLB) predictor, which

predicts data-dependent branches by identifying dependent store-load-branch

chains in a program using the compiler. Gao et al. [18] propose a new

predictor that targets data-dependent branches by correlating a load’s memory

address with the result of an upcoming branch. The EXACT predictor [5] also

targets data-dependent branches by distinguishing branch instances based on

non-negligible area.
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their feeder load’s address.

Premillieu et al. [42] save branch results computed on the wrong-

path and replay them as predictions later on the correct-path. However, this

technique is limited to control-independent/data-independent branches that

are executed in the shadow of a branch misprediction.

Ayers et al. [7] propose a new methodology to classify the memory ac-

cess patterns of applications. This technique effectively categorizes dependence

chains for load instructions, enabling reasoning about prefetcher timeliness

and criticality. Transparent Control Independence (TCI) proposes a method

of identifying CIDD instructions that is similar to our method for identifying

affector branches [6]. However, their purpose for doing so is completely or-

thogonal to Branch Runahead. Trace processors was the first work to propose

the local/global register concept used by Branch Runahead [48].

Zangeneh et al. propose BranchNet [62] offline training of a CNN to

improve prediction accuracy for hard-to-predict branches. However, this tech-

nique requires correlation between branch outcomes and history, making the

technique less effective for data-dependent branches.

4.7 Future Work

Branch Runahead suffers from two key limitations. The first limitation

is timeliness. Despite the initiation strategies presented in this chapter, there

is still room for Branch Runahead to execute dependence chains more quickly,

107



which would further improve MPKI. The second is Branch Runahead’s reactive

synchronization mechanism. Currently, Branch Runahead waits for a core

misprediction to start a dependence chain. In addition, Branch Runahead

waits for a second misprediction to recognize that a divergence happens. This

essentially means that a dependence chain is guaranteed 2 mispredictions each

time it is started. For chains with small lifetimes, these 2 mispredictions can

significantly reduce the overall prediction accuracy of the dependence chain.

Trigger points, as used in prior work [10], can be used to eliminate

both of these issues. Use of a trigger point (i.e., a static PC in the code that

will trigger Branch Runahead to start executing dependence chains) will allow

Branch Runahead to start execution without waiting for a branch mispredic-

tion. Furthermore, trigger points can be used to start execution at a much

earlier point in time, which will in turn help timeliness. The main challenges

facing trigger points are 1) determining the correct position of the trigger

point and 2) correctly synchronizing data from the backend upon detection of

a trigger point.

Lifetime prediction can be used to terminate dependence chains without

waiting for a branch misprediction to indicate that the dependence chain has

diverged. In some cases, a dependence chains lifetime may be very predictable.

For example, in Figure 4.4 it is very clear that the dependence chains in

this example will only be accurate for 8 iterations (the for loop terminates

after 8 iterations). Therefore, it should be predictable that the lifetime of the

dependence chain for Branch A is 8 iterations. Predicting lifetime accurately
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will help Branch Runahead terminate dependence chains before encountering

the first misprediction. This will of course save a single flush of the backend,

but it will also save energy and reduce memory bandwidth as fewer superfluous

micro-ops need to be executed by the backend.

Finally, Branch Runahead can be potentially extended to other areas

of prediction such as branch target prediction and value prediction. Branch

target prediction would be relatively straight-forward for Branch Runahead, as

we are already executing the branch instructions themselves. Here, the predic-

tion queues would need to be extended to house the branch targets as well as

the predictions. Value prediction is another area where Branch Runahead can

potentially provide value. As discussed in section 4.2.2, Branch Runahead dif-

fers from traditional Runahead techniques due to its use of affector and guard

branches. These enable Branch Runahead to remain accurate while executing

continuously. This benefit increases the accuracy of the dependence chains to

a level that is appropriate for branch prediction, as opposed to prefetching

where simply computing the correct line address is enough. It is likely that

value prediction would also benefit from the improved accuracy of Branch

Runahead.
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Chapter 5

Control Independence

5.1 Introduction

Accurate branch predictors have enabled architects to design wider,

deeper pipelines over the past few decades. Unfortunately, advancements in

branch predictor accuracy have slowed significantly and are struggling to keep

up with the demand for even larger microprocessors [38]. Hard-to-predict

branches frequently cause expensive pipeline flushes that not only lower per-

formance, but also waste energy. While improvements in branch predictor

accuracy are expected, it is unlikely predictors will improve at a rate that

is acceptable for future microprocessors. Therefore, runtime alternatives to

branch prediction should be explored.

Control independence is a promising alternative to branch prediction

for hard-to-predict branches [12, 13]. With control independence, we predict

the merge point of a branch, rather than its direction. Knowledge of the

merge point allows us to deploy one of two control-independent strategies:

Dynamic Predication or Delayed Fetch. Control-independent strategies do

not rely on the branch direction information, and therefore can help maintain

high fetch and execution bandwidth and avoid costly flushes. Unfortunately,
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each control-independent technique can also cause performance inversions, i.e.,

cases where the performance worsens despite avoiding the branch mispredic-

tion. In this chapter, I discuss how to efficiently implement both Dynamic

Predication and Delayed Fetch, overcoming critical problems with prior work.

Further, I discuss the reciprocal nature of the trade-offs between each of the

control independent techniques. I will show that each technique is optimal

under different circumstances. As a part of my future work, I will propose

a system that can dynamically switch between each technique depending on

what is best for the running program.

5.1.1 Dynamic Predication

Dynamic Predication is a runtime mechanism for fetching both paths of

a branch, up to the merge point, then executing each path and only committing

the results of the correct path. The primary performance goals of Dynamic

Predication are to 1) avoid the expensive branch misprediction and 2) do

so while minimizing execution latency for the correct path instructions. As

the correct path is not known, the optimal strategy is therefore to fetch and

execute both paths of the branch.

Auto-Predication of Critical Branches (ACB) [12], the current state-of-

the art technique for dynamic predication, is an effective technique for reducing

the impact of hard-to-predict branches. Unfortunately, ACB is not effective

for all hard-to-predict branches, primarily due to two limiting factors: 1) poor

coverage and 2) throttling due to performance inversions. This chapter im-

111



proves upon ACB in each of these two areas. First, I use a more effective

merge point detection algorithm, proposed in Chapter 3, that achieves higher

coverage and higher accuracy [44, 45]. Second, I improve upon the ACB mi-

croarchitecture by supporting more complex, but important cases, such as

nested predication and allowing predicated memory accesses to execute before

the branch completes execution.

5.1.2 Delayed Fetch

Delayed Fetch is a runtime mechanism that does not fetch instructions

from either side of the branch. Instead, Delayed Fetch predicts the location

of the merge point and begins fetching instructions out-of-order from that

location. Once the branch has executed and the correct path is known, Delayed

Fetch will then fetch the correct path of the branch. Due to the fact that

instructions are fetched out of order, Delayed Fetch is also required to rename

and allocate1 instructions out-of-order as well. The primary goal of Delayed

Fetch is to avoid the branch misprediction penalty while also maintaining high

instruction fetch bandwidth. This is accomplished by fetching post merge

point instructions that are highly likely to be on the correct path regardless

of the true direction of the branch.

Skipper [13] was the first work to propose fetching instruction out-

of-order as an alternative to branch prediction; however, Skipper did not ad-

dress critical implementation issues, such as the out-of-order branch prediction

1Allocate instructions into backend structures; i.e., Re-order Buffer, LD/ST Queue, etc.
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Dynamic Delayed
Predication Fetch

Correct-Path Min. Max
Latency
Fetch Max Min.
Bandwidth

Table 5.1: Reciprocal trade-offs of control-independent strategies.

problem and complexity issues with out-of-order rename, which has limited its

adoption. This dissertation proposes simple and easy to implement solutions

to these previously unsolved problems.

5.1.3 The Duality of Dynamic Predication and Delayed Fetch.

Dynamic Predication and Delayed Fetch have reciprocal trade-offs,

making each ideal in different scenarios. Table 5.1.2 shows a summary. Dy-

namic predication minimizes latency of correct path instructions, as both paths

are fetched, decoded, renamed, and executed all before the resolution of the

branch. However, this low latency comes at the cost of fetch bandwidth and

backend resources as both paths of the branch must be fetched and allocated.

Delayed Fetch, on the other hand, does not fetch either path. Instead, the

correct path is fetched after branch resolution when the result of the branch

is known. This trade-off minimizes wasted fetch bandwidth and backend re-

sources at the expense of correct path latency.

This dissertation presents an holistic new approach to control indepen-

dence. I propose a new microarchitecture that has a unified and low cost

approach to implementing both techniques. Further, I show that selecting the
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correct control independence technique for each application can lead to higher

performance than either technique in isolation.

The contributions of this chapter are:

• Solving critical problems related to Dynamic Predication that enable

the technique to be used effectively on more hard-to-predict branches.

This is accomplished by using the new merge point predictor, as well as

supporting features like nested predication.

• Solving critical problems related to the implementation of Delayed Fetch.

Previous solutions do not properly update the branch predictor in the

face of out-of-order fetch, which lowers performance and makes Delayed

Fetch infeasible. In this dissertation we present a new way to predict

branches for Delayed Fetch that solves this problem.

• A new unified microarchitecture for implementing both Dynamic Pred-

ication and Delayed Fetch. This new microarchitecture allows us to

dynamically switch between the two techniques with minimal overhead,

giving us the freedom to identify the mode that is best for the running

program.

• Identifying the reciprocal nature of the trade-offs between dynamic pred-

ication and delayed fetch and demonstrating that both techniques can be

used together to create a more holistic replacement for branch prediction

for hard-to-predict branches.
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5.2 Limitations of Prior Work

5.2.1 Limitations of Compiler Predication

Compilers have been predicating instructions for many years. Pred-

icated execution benefits superscalar processors by 1) eliminating expensive

flushes caused by branch mispredictions and 2) eliminating the conditional

branch instructions themselves, thereby increasing fetch bandwidth [35]. Un-

fortunately, predication only improves performance in cases where the branch

is hard-to-predict. Identifying hard-to-predict branches can be a difficult chal-

lenge for a compiler. The compiler must profile the code, which requires rep-

resentative input data to be available at compile time. Further, compilers

must profile the code on the target micro-architecture, or again the results

may differ from what is observed at runtime. Inadvertently predicating an

easy-to-predict branch can cause severe performance degradation, which leads

compilers to be conservative when doing if-conversion. This ultimately leads

to many missed predication opportunities.

Dynamic Predication has the advantage that it can monitor the perfor-

mance of the actual branch predictor during runtime. This allows the proces-

sor to accurately identify the hard-to-predict branches. Further, as discussed

in Chapter 2, total branch cost can also be monitored to determine which

branches are causing the highest degree of instructions to be flushed and are

therefore the best targets for predication.
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5.2.2 Dynamic Predication

Diverge-Merge Processor (DMP) [28] uses compiler analysis and pro-

filing to identify candidate branches and their dynamic merge points. This

information is appended to the program binary. Then, at runtime, hard to

predict branches are identified and dynamically predicated. DMP fetches in-

structions down both paths of the branch, forking the branch history register

and register alias table (RAT). Finally, when the branch resolves and the cor-

rect path is known, the correct history register and RAT are identified. Select

micro-ops are injected to properly track data-dependences.

Unfortunately, there are several limitations to DMP. First, DMP still

relies on the compiler to identify candidate branches, which limits DMP as

discussed in section 5.2.1. Second, DMP requires that the branch history reg-

ister and register alias table be forked to maintain the proper state down both

paths of the predication. This creates an unreasonable amount of complexity,

and prevents techniques such as nested predication.

Auto-predication of Critical Branches (ACB) [12] identifies hard to pre-

dict branches at runtime, then it identified the merge points of hard-to-predict

branches using a merge point predictor. Using the dynamically predicted

merge points, ACB is able to fetch instructions down both paths of the branch.

ACB, however, does not allow both paths of the branch to be executed, instead

it waits for the predicated branch to complete execution. At that time, the

correct path is allowed to execute and the wrong-path is converted to move

instructions that also need to be executed.
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ACB addresses many of the shortcoming of prior work by introducing

dynamic hard-to-predict branch detection and dynamic merge point predic-

tion. However, the merge point predictor used by ACB memorizes code layout,

which in turn lowers coverage, as discussed in Chapter 3. This dissertation

uses a new merge point prediction algorithm that significantly boosts coverage,

enabling more branches to be predicated. Further, the hard-to-predict branch

detection algorithm presented in this dissertation also accounts for branch

cost, which detects previously undetected high cost branches that are suitable

targets for predication. Further, ACB does not support important cases like

nested predication, resulting in lower coverage. Finally, ACB does not allow

predicated instructions to execute until after the predicated branch finishes

execution. This eliminates one of the key benefits of dynamic predication,

which is minimizing latency for correct-path instruction, and reduces memory

level parallelism.

5.2.3 Delayed Fetch

Skipper [13] identifies hard-to-predict branches at runtime, then, in

cases where the merge point of the branch is the target of the branch, fetches

instruction out-of-order to avoid predicting the direction of the branch. Once

the direction of branch is known, the skipped path is optionally fetched and

inserted into the instruction stream.

Unfortunately, Skipper only targets branches whose merge points are

equal to their target address. This eliminates the possibility of using Delayed
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Fetch on many branches whose merge point can be trivially predicted. Further,

Skipper does not handle cases where there are conditional branches in the

skipped region, which result in an out of order branch history register. These

complications significantly lower branch predictor accuracy, often negating the

positive effect of Delayed Fetch. This dissertation presents methodology for

handling branches in the skipped region that does not lower branch predictor

performance. Further, my implementation of Delayed Fetch can dynamically

switch to fetching predicted paths during full window stalls, which further

improves fetch bandwidth. Finally, I use a branch cost table, which identifies

all branches that have high cost.

In-order branch prediction with out-of-order Delayed Fetch.

Prior work in Delayed Fetch techniques [13] does not address changes to the

branch predictor to accommodate out-of-order fetch, which remains an un-

solved problem. A typical implementation of Delayed Fetch would present

branches to the branch predictor non-deterministically and out of program

order, which would in turn lower predictor accuracy. Our implementation of

Delayed Fetch solves this problem by predicting branches in the predicated

code order.

Stark et al. [58] proposes using out-of-order fetch to avoid the latency

of i-cache misses. Many of the hardware structures used to implement out-of-

order fetch acted as inspiration for this work. However, out-of-order fetch to

avoid branch misprediction is a more challenging problem because it is unclear

how to modify the branch predictor to handle these cases. Stark was able to
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assume the predictor was still predicting accurately, which enabled him to

use a decoupled branch predictor to predict addresses after the i-cache miss

and begin fetching those addresses. Delayed Fetch, however, cannot simply

continue to branch predict as usual, because the existence of a hard-to-predict

branch is what is causing the problem in the first place.

5.3 Critical Issues

To date, there remain several critical issues facing Dynamic Predica-

tion and Delayed Fetch that limit adoption. Both Dynamic Predication and

Delayed Fetch require changes to the branch predictor and instruction fetch

stage. Dynamic Predication requires the branch predictor to predict down

both paths of the branch. Prior work has suggested that this requires sep-

arate history registers for each path [28]; however, as will be shown in this

section, that is not the case. Delayed Fetch requires the branch predictor to

be able to predict branches out-of-order. Straight-forward implementations of

this lead to either information being removed from the branch predictor, or

non-deterministic updates to the branch predictor [13]— both of which lead to

significant performance loss. This section shows that Delayed Fetch can access

the branch predictor in the same way that is used for Dynamic Predication.

Unifying the implementation of the branch predictor not only simplifies the

implementation of instruction fetch, but also the implementation of rename

and the merge point predictor itself.

Rename presents another hurdle for adoption. Prior work requires a
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register alias table for each path of the branch [28]. This significant hardware

cost prevents techniques like nested predication, which can exponentially in-

crease the number of required register alias tables. Cheaper rename techniques,

on the other hand, do not allow instructions to execute until the branch re-

solves, eliminating one of the primary benefits of predication [12]. This section

presents a low cost rename technique that does not sacrifice performance.

This section discusses the implementation requirements for both Dy-

namic Predication and Delayed Fetch to be successful. The section also intro-

duces solutions to each of the critical issues listed above. Then, section 5.4

presents a unified Control Independent Microarchitecture (CIM) that imple-

ments the solutions presented in this section.

5.3.1 Branch Prediction and Instruction Fetch

Predicated Code Order. Dynamic Predication uses the merge point

predictor to fetch instructions down both paths of the branch. To achieve

this, the processor must view the code as if the code were transformed by

the compiler. An example of this transformation is shown in Figure 5.1a-b.

Each box in this figure (labelled A, B, C, and D) represent different paths,

which internally may contain predictable branches. We refer to this new code

order as the predicated order ; i.e., the ordering of the paths after it has been

dynamically predicated.

Note, it is not necessary to transform the actual code in memory, we are

simply changing the processor’s perspective of the original code in memory.
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Figure 5.1: Original Code Order (left) and Predicated Code Order (right).
Red indicates wrong-path instructions, green is correct-path.

This is achieved by installing an entry for the branch in the merge point

predictor. Upon a merge point predictor hit, the merge point predictor will

supply both the target and fall-through addresses of the branch, as well as a

predicated order bit indicating the ordering of the paths.

The order of the paths is determined by the location of the jumper

branch; i.e., the branch that jumps to the location of the merge point (con-

tained at the end of Path B in Figure 5.1a-b). This order is selected such that

the path that does not contain the jumper will continue to fall-through to

the merge point. This optimization helps to not introduce new packet breaks

during instruction fetch/branch prediction.
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Re-training the Branch Predictor. Once an entry for the branch

has been installed in the merge point predictor, the frontend of the pipeline

will begin processing the code according to the predicated order. This means

that the branch predictor will observe branches in the predicated code order

rather than in the original code order. The new ordering will be unfamiliar to

the branch predictor and will require a new warm up period.2

In addition to the warm up period, the predicated order introduces a

new variable into the history register: wrong path branch instructions. As

shown in Figure 5.1c-d, the predicated code order causes wrong path branch

instructions to be inserted into the history register and, unlike with the original

order, these wrong-path branches will not be flushed out or recovered later.

While it is possible to track the wrong-path branches and eventually repair the

history, doing so would be expensive and unnecessary. In theory, the addition

of wrong-path branches can either create new sources of noise or new sources

of correlation, depending on the code. At worst, the wrong-path branches

amount to more noise in an already very noisy history register. The branch

predictor is already capable of dealing with such sources of noise. In practice,

we observed negligible impact on branch prediction accuracy from leaving the

wrong-path branches in the history.

Fetch Order. The predicated code order is determined based on the

location of the jumper branch. Choosing this order minimizes packet breaks,

2Note, due to the warm up period caused by the code transformation, we do not want
to switch between views of the code often.
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which in turn improves branch predictor throughput. However, the predicated

paths themselves have no order relative to one another and can therefore be

fetched/renamed in any order. This allows us to predict which path should be

fetched first in order to minimize the latency of correct path instructions. The

correctness of the prediction does not matter, as either fetch order is valid.

However, when the correct path is correctly predicted, fetching and renaming

that path first leads to a small performance improvement.

The Out-of-Order Branch Prediction Problem Implementations

of Delayed Fetch result in severe drops in branch predictor accuracy. Even pre-

viously easy-to-predict branches can begin to suffer from high misprediction

rates. This drop fundamentally occurs due to the fact that the branch predic-

tor is now expected to predict branches out-of-order, something it was never

designed to do. I attribute three reasons for the decline in branch predictor

accuracy:

1. No prediction for the Delay Fetch branch. No prediction is made for

the Delay Fetch branch, and therefore there is nothing to shift into the branch

history register. This causes information to be removed from the history reg-

ister, which may adversely effect some branches. Note, Dynamic Predication

suffers from the same problem. This problem is fundamental to strategies that

seek to avoid predicting hard-to-predict branches.

2. No predictions for any branches down either path of the branch.

Delayed Fetch skips over both paths of the branch in order to conserve fetch

bandwidth. This unfortunately means that we are also skipping over all of the
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branches in these code blocks, which means that the branch history register

is losing even more information. For example, when control reaches Path D

(Figure 5.1), the branch predictor will be missing history information on all the

branches in Path B or C. If any of the branches in Path B or C are correlated

to the outcome of branches in Path D, then accuracy will suffer.

3. Non-deterministic execution latency of the Delay Fetch Branch.

Eventually, the Delay Fetch branch finishes execution and we can begin fetch-

ing down the correct path of the branch (Path C in Figure 5.1). This creates

two challenges: 1) We will need to make predictions for all branches in Path

C. This is problematic because the history register currently contains some of

the branches from Path D. The exact number of Path D branches depends on

the execution latency of the Delay Fetch branch. For example, if the Delay

Fetch branch executes quickly, then only a small number of the branches in

Path D will be shifted into the history register. However, if the Delay Fetch

branch takes a longer time to execute, then more branches will be shifted into

the history register. This means that the exact contents of the history register

depend on the execution latency of the Delay Fetch branch, which is non-

deterministic. This creates many possible histories that the branches in Path

C can observe, which increases the storage requirements and warm up time for

TAGE to memorize all history-outcome pairs. 2) Once we have fetched Path

C, we will need to decide if we want to add the branches in Path C to the

branch history. Both options are problematic. If we add the branches to the

history we will be inserting them into the history at a non-deterministic point
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in time, which means that branches in Path D will sometimes observe the

branches in Path C and sometimes not. However, if we do not insert the Path

C branches, then we will forever lose potentially valuable history information.

Prior work addresses these problems by limiting Delayed Fetch to only

target branches that contain biased branches in their skipped regions. Bias

branches do not need to access the branch predictor, which solves the out-

of-order branch predictor problem. Unfortunately, this solution significantly

limits the number of branches that can use Delayed Fetch, making the tech-

nique far less useful.

Delayed Fetch - Predicated Code Order.

I propose predicting branches according to the predicated code order

for Delayed Fetch. Doing so solves two critical issues associated with out-of-

order branch prediction. First, predictions are generated for both Paths B

and C. This means that the history register is no longer missing potentially

critical information from those blocks. Second, all branches are inserted into

the history register at deterministic points in time (i.e., when the branch is

predicted rather than after execute), which creates repeatable behavior and

allows the branch predictor to learn more efficiently.

Generating the predictions for both paths has the added benefit of

letting the branch predictor tell us which paths are in the skipped region on the

Delay Fetch branch. As will be discussed later in the section, this allows us to

more accurately compute the register live-in/out information for the skipped
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region, which in turn simplifies rename. Furthermore, this information can

be used to compute the number of dynamic instructions between the Delay

Fetch branch and the merge point, which can in turn be used to verify the

correctness of the merge point or detect a divergence. This means the merge

point predictor no longer needs to predict the merge point distance or the

register live-in/out information, which simplifies the design of the merge point

predictor.

Delayed Fetch - Fetch Order. For both Dynamic Predication and

Delayed Fetch, the branch predictor will traverse both paths of the branch.

However, the difference between these two techniques is the fetch order. While

Dynamic Predication will fetch instructions down both paths of the branch,

Delayed Fetch skips the fetch of these instructions and instead fetches instruc-

tions from beyond the merge point. This is accomplished by simply ignoring

the predicted addresses for the skipped region of code. Rather than passing

the skipped region addresses to the fetch stage, these addresses are cached

in a new structure called the prediction cache (discussed more in section 5.4.

Addresses from beyond the merge point are then passed to the fetch stage,

which will begin fetching instructions from beyond the merge point. Eventu-

ally when the Delay Fetch branch resolves, the true direction of the branch

will be broadcast to the prediction cache. The prediction cache, which cached

the previously generated branch prediction for both paths of the Delay Fetch

branch, will then pass the prediction for the correct path to the fetch stage,

which will then fetch the correct path instructions.
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Importance of decoupled branch prediction. Unifying the imple-

mentation of the branch predictor simplifies many of the complexities associ-

ated with Delayed Fetch. Unfortunately, generating branch predictions down

both paths wastes branch predictor bandwidth. This goes against the goals of

Delayed Fetch, which purports to preserve fetch bandwidth. To mitigate this,

we require the implementation of a decoupled branch predictor [46], which

typically generates predictions at a higher rate than the fetch rate. Therefore,

the wasted prediction bandwidth is usually hidden.

While the decoupled branch predictor design does mitigate the effects

of predicting down both paths, it does not completely eliminate it. Ideally,

we would not waste branch predictor bandwidth predicting down both paths

for Delayed Fetch. However, generating these predictions simplifies critical is-

sues with out-of-order branch prediction, instruction fetch, and rename, which

ultimately make the trade-off worth it.

5.3.2 Rename

Both Dynamic Predication and Delayed Fetch present challenges for a

traditional rename implementation. In this chapter, I present a unified rename

implementation that works for both Dynamic Predication and Delayed Fetch.

Having a single unified implementation is ideal because it minimizes the hard-

ware cost and complexity— rename does not need to know whether the code

is using Dynamic Predication or Delayed Fetch. Furthermore, rename must

also scale for nested Dynamic Predication and Delayed Fetch. Our experi-

127



ments show that supporting a nested depth of 5 branches leads to significant

improvement in some workloads. Prior work would require 32 register alias

tables to support a nesting depth of 5. Our design seeks to minimize this cost.

Fortunately, the unified design of the branch predictors helps us accom-

plish both of these goals. For both Dynamic Predication and Delayed Fetch,

the branch predictor produces predictions down both paths of the branch.

This in turn gives us the complete set of basic block addresses that will be

fetched down both paths. Using a new structure called the map cache, we can

use these basic block addresses to look up register live-in/outs for each basic

block. The basic block live-in/out information allows us to trivially compute

the live-in/out information for each path of the branch. Using this informa-

tion, the rename unit can rename the live-in/outs of the predicated or delayed

fetch region of the branch prior to renaming the instructions within the re-

gion. This achieves two things. First, it unifies the rename algorithm. Both

Dynamic Predication and Delayed Fetch will first rename the live-in/outs of

region, then at a later point rename the instructions within the region itself.

Second, it minimizes the hardware cost. Because the live-in/out register of

the region have already been renamed, the register alias table itself can be

used as a temporary scratch space that can assist in the rename of each path.

The hardware required to do this as well as a more detailed description of the

rename algorithm will be presented in the next section.
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5.3.3 Gap Allocation, Deadlock, and Full Window Stalls

Delayed Fetch skips over the predicated code block, instead fetching

post merge point instructions that are more likely to be on the correct path.

Unfortunately, this also implies that instructions must be allocated into the

Re-order Buffer (ROB) out-of-order as well. This requires a gap region to be

allocated in the ROB for each Delay Fetch branch. The gap reserves space for

the skipped instructions, which prevents deadlock from occurring. Unfortu-

nately, allocating gaps in the ROB can cause the ROB to fill up more quickly,

which can increase full window stalls. During a full window stall, the frontend

is forced to stop fetching altogether, in turn lowering effectice fetch bandwidth.

During this time, as no useful instructions can be fetch, Delay Fetch can begin

predicting the result of the Delay Fetch branches that have already allocated

a gap in the ROB. The full window stall does not apply to instructions in

these regions, because space for them in the out-of-order window has already

be reserved. Therefore, during a full window stall, branches in the ROB will

trigger the fetch of their predicted path. In the event the prediction is correct,

then otherwise wasted fetch bandwidth is used to fetch the correct path of

the branch early. If the branch is mispredicted, then the ernoiously fetched

instructions can be flushed, and the correct path can be fetched/filled at that

time. It is worth noting that mispredictions during a full window stall do not

waste additional fetch bandwidth, because the full window stall was already

preventing the fetch of useful instructions.
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Figure 5.2: Changes to the pipeline. Blue indicates logic required for Dynamic
Predication, yellow indicates logic needed for Delayed Fetch, and green indi-
cates logic needed for both.

5.4 Control Independent Microarchitecture

The reciprocal nature of the trade-offs between Dynamic Predication

and Delayed Fetch motivate the design of a unified control independent mi-

croarchitecture that is capable of switching between the two strategies with

minimal overhead. Both strategies require changes to the branch predictor,

fetch, rename, allocate, and retirement stages of the pipeline. Figure 5.2 sum-

marizes these changes, with blue indicating changes needed for Dynamic Pred-

ication, yellow indicated changes needed for Delayed Fetch, and green indicat-

ing changes needed for both.

5.4.1 Merge Point Prediction

The merge point predictor consists of five components: a Hard Branch

Table (HBT) that is responsible for detecting hard-to-predict branches (pre-

sented in Chapter 2), a Wrong Path Buffer (WPB) that is responsible for

detecting merge points (presented in Chapter 3), a Prediction Table that is

responsible for supplying the correct prediction in the instruction fetch phase
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Structure # Entries Per-entry Composition
HBT 64-entry partial-tag (12b), Cost Counter (8b)
WPB 128-entry partial-tag (12b)
Prediction Table 16-entry Valid (1b), Partial-tag (12b),

Merge Address (48b), Confidence (5b),
Bias Pred. (2b), Predicated Order (1b),
Mode (2b), Involve counter (4b)

Training Table 1-entry Valid (1b), Merge address (48b),
Instruction counter (6b)

Active Context 5-entry Path (1b), Predicated Order (1b),
Br Fall-through (48b), Br Target (48b),

(shared) Merge address (48), Instruction counter (6b)

Table 5.2: Merge Point Predictor Structures

(presented in Chapter 3), a Training Table that is responsible for warming

up new predictor entries, and an Active Context Stack that is responsible for

monitoring active merge point predictions. The Training Table and Active

Context Stack replace the Update List presented in 3. The Training Table re-

quires that a merge point demonstrate a specified accuracy before being used

for prediction, which decreases the number of divergences, and the Active Con-

text Stack allows for nested merge point predictions. Figure 5.3 shows a block

diagram of each of these components together and Table 5.2 summarizes each

components size. This section describes each component of the merge point

predictor. In some cases, components are sized differently than they were in

Chapter 3. This is primarily due to tuning differences between the different

set of workloads used in each chapter. The reason behind any other differences

will be described in the sections below.

Hard Branch Table (HBT). Hard-to-predict branches are detected

using the HBT, which was presented in Chapter 2. In this chapter, we use the
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Figure 5.3: Merge Point Predictor.

version of the HBT that tracks total branch cost. Upon a branch misprediction,

the number of instructions that are flushed from the ROB are counted.3 When

the mispredicting branch is retired, that total is added to the counter of the

entry corresponding to the mispredicting branch in the HBT. The parameters

used for the HBT are a Period of 10,000, an Acceptable Cost Rate of 5%,

and Probability of a False Positive of 1%. Using the calculations presented

in Chapter 2, this leads to a periodic decrement rate of 500 every 10,000

mispredictions, and an 8-bit cost counter.

Wrong Path Buffer (WPB) and Balanced Stack Counter. The

WPB works by intersecting the wrong-path and correct-path of a branch dur-

3This can be done easily by subtracting the ROB address of the branch from the tail
pointer.
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ing a branch misprediction. The wrong-path is inserted into the WPB when a

branch that hits in the HBT triggers a branch misprediction. Moving forward,

each retired correct-path instruction looks up the WPB. A hit indicates an

intersection between the correct-path and the wrong-path, which is predicted

to be a merge point. In this paper, we use the WPB design as it is presented

with two modifications.

First, we add a balanced-stack counter. The balanced-stack counter

is used to detect false merge points that can appear due to call and return

instructions. For example, if both sides of the branch call the same function

or return to the same point. These cases present challenges for our control

independence strategies, and should be omitted from merge point detection.

To detect these cases, we add a signed counter to the WPB. The counter is

incremented on call instructions and decremented on return instructions. We

only allow merge points to be detected when the counter is 0.

Second, we task the WPB with locating the jumper branch. Recall that

the predicated order of the code is determined by the location of the jumper.

The WPB is also responsible for finding the jumper branch and determining

the predicated order.

Prediction Table. Once the WPB detects a merge point, that ad-

dress is saved in the prediction table. The contents of each prediction table

entry are detailed in Table 5.2. The prediction table is indexed by the branch

address during the branch predictor stage of the pipeline. If there is a hit and

the matching entry has not been throttled, that indicates that we have a valid
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merge point prediction for this branch and will deploy one of the control inde-

pendent strategies for this branch (specified by the mode bits). If the entry is

confident (confidence counter is saturated), then we will activate the specified

control independent strategy by inserting the entry into the Active Context.

If the entry is not confident, then we will train the entry further by inserting

it into the Training Table.

Training Table. The training table is a single entry table intended to

build confidence without activating a control independence strategy. When an

entry is inserted into the training table, addresses coming out of the branch

predictor are scanned for the merge point. If the merge point is found within

the learning interval, the confidence counter is incremented. If the merge

point is not found within the learning interval, then the confidence counter is

decremented by 15.

Active Context. The Active Context ensures that the branch predic-

tion stage traverses the code using the predicated order; i.e., once the merge

point is reached on the first path, the branch predictor is redirected down the

second path of the branch until the merge point is found for a second time.

The Active Context is organized as a 5-entry stack. each time a branch hits

in the merge point predictor a new entry is pushed onto the active context.

In the event of nested predication, the Active Context stack depth indicates

the maximum nesting depth. Any nesting branches beyond that depth cannot

be merge point predicted. The Active Context traverses down each path in a

depth first manner.
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Only a single merge point address is maintained for the entire Active

Context stack, meaning that all nested merge point prediction inherit the

same merge address prediction from the parent. While this limitation is not

necessary, it reduces the overall complexity of nesting.

Divergences. When the predicted merge point address is not found

within the learning interval, a divergence is triggered. Divergences are detected

as soon as the branch predictor passes the learning interval without finding the

merge address. Note that this may occur before the execution of the predicated

branch. Once a divergence is detected, the front-end is immediately halted (to

save energy), however control is not directed down the correct path until the

predicated branch finishes execution.

5.4.2 Changes to the Branch Predictor Stage

Figure 5.4 summarizes the changes to the Branch Predictor pipeline

stage. New structures are highlighted in green if they are needed for all control

independent strategies and yellow for structures only needed for Delay Fetch.

Shuffle Unit and Prediction Cache. The shuffle unit is responsible

for filtering and reordering predictions from the branch predictor. The branch

predictor must observe the same branch order so that it can properly train.

For this reason, the branch predictor will always observe the same predicated

order for all control independence strategies. The shuffle unit then re-orders

predictions (in the case of dynamic predication) or filters predictions (in the

case of Delayed Fetch) as appropriate for the given mode and branch bias
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Figure 5.4: Changes to the Branch Predictor Stage. The red text is an example
highlighting the difference between branch prediction order and fetch order.

prediction supplied by the merge point predictor. Figure 5.4 shows an example

(red). Here, the branch predictor encounters the code shown in Figure 5.1. The

branch predictor and merge point predictor traverse the code in the predicated

order: A, B, C, D. These paths are passed to the shuffle unit in that order. The

merge point predictor specifies that Paths B and C are to be Delay Fetched,

which causes the shuffle unit to filter-out Paths B and C, saving their branch

predictions into the prediction cache, while passing along the branch prediction

for Path A and D to the fetch stage. Later, when the branch in Path A finishes

execute, the true direction of the branch is broadcast to the shuffle unit, which

then supplies the predictions generated for the correct path (either B or C).

Map Cache. The map cache saves live-in/out information for each
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basic block in the predicated region of a branch (i.e., for each basic block

that makes up Path B and C). Live-in/out information is required for fast-

path rename (discussed below) during Dynamic Predication and required in all

cases for Delayed Fetch. A map cache hit only occurs if all of the basic blocks

in the predicated region hit in the map cache. If even one block misses, then

the whole region has missed in the map cache, which causes slow-path rename

in the case of Dynamic Predication or a divergence in the case of Delayed

Fetch.

If all basic blocks in the predicated region hit in the map cache, then

the live-in/out vectors for each basic block are accumulated into a single live-

in/out vector for the entire predicated region. Figure 5.4 shows an example.

Note that all live-outs are also added to the live-in vector. This is due to the

fact that we will eventually issue CMOVs for each live-out, thereby sourcing

each register in the live-out vector.

The Map Cache allows the microarchitecture to compute the live-in/out’s

of the predicated region early, before enterring the rename stage. This allows

the rename stage to only worry about renaming the live-in/outs correctly.

Once this has been done, the two predicated paths can be renamed in any

order or at a later point in time, which makes the rename unit impervious to

the code re-ordering that occurs in the branch predictor stage.
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Figure 5.5: Fast Path Rename.

5.4.3 Changes to Rename

Renaming predicated instructions either takes a slow-path or a fast-

path, depending on whether the predicated region hit or missed in the map

cache.

Slow-path Rename. Slow-path Rename (valid only for Dynamic

Predication) involves minimal new hardware, but may take a longer latency

depending on the pre-existing checkpoint/recovery mechanism in the baseline

microarchitecture for the Speculative Register Alias Table (SRAT). The steps

for Slow-path Rename begin when the predicated paths enter the rename stage.

In Figure 5.1, this would happen when Path B or C reach the rename stage.

Rename for Path B is performed in the usual way. Additionally, new

hardware computes the live-in/out’s for every basic block in the path. Once

a basic block passes through rename completely, the live-in/outs of that basic

block are saved into the map cache. After Path B finishes rename, a recovery

of the SRAT is triggered. Depending on the pre-existing hardware for recov-
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ering the SRAT, this may take 1 or more cycles (hence the name “slow-path

rename”). After this recovery is complete, the process of renaming Path C

may begin. Again, this process is the same as baseline rename, but we are

again computing/saving the live-in/outs for the basic blocks in Path C.

Issuing CMOV uops. Once Patch C has been renamed and Path D

enters the rename stage, we will see that the predicted merge point was found

and we will use the live-out registers computed for each path of the branch to

inject CMOV uops. The CMOV uops take 3 operands: the physical register

tag from the not-taken path, the tag from the taken-path, and tag generated

for the predicated branch. When the predicated branch finishes execution, it

will notify the CMOV uop in the reservation station, and the correct-path tag

will be selected (if ready) for the move.

Fast-path Rename and the Live-In/Out Tag Cache. Fast-path

Rename occurs when all of the basic blocks in Path B and C hit in the map

cache. 4 Once the live-in/out information has been accessed for each basic

block, the accumulated live-in/out masks for Path B and C can trivially be

computed by taking the union. The accumulated live-in/out information will

allow for a faster rename process, which is summarized in Figure 5.5. Note,

step 3 is simply the typical rename step that Paths B and C will go through

anyways. The only new latencies are 1) the latency to inject CMOVs (step

4), which is necessary for predication, and 2) the latency to source the Live-in

4Note that the map cache is accessed in the branch prediction stage. See Figure ??.
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Tags (step 1), which will consume SRAT bandwidth and must be completed

before step 3 can begin.

Another advantage of fast-path rename, is that it does not require steps

3 and 4 to be done immediately. Thus, fast-path rename also gives the ability

to implement out-of-order rename for Delayed Fetch and Delayed Predication.

When a Delay Fetch branch reaches rename, the accumulated live-in/out mask

(computed during the branch prediction stage, when the basic blocks in each

path identified) can be used to complete steps 1 and 2. The results of these

steps (live-in/out tags) are stored in the live-in/out tag cache, which will hold

the tags until the correct-path of the Delay Fetch branch reaches rename.

5.4.4 Squashing wrong-path instructions

Dynamic predication requires that wrong-path instructions be squashed

once the correct-path of the branch is known. This happens lazily, either when

wrong-path instructions are retired or reach the rename stage (if the predicated

branch finishes execution before the predicated block reaches rename). Wrong-

path instructions that are currently executing or waiting in the reservation

stations are immediately flushed.

5.4.5 Out-of-order Rename

Out-of-order Rename works similarly to Fast-Path Rename in Dynamic

Predication. A map cache hit is required to enable Out-of-order Rename. If

any of the basic blocks miss in the map cache, then the Delayed Fetch is
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aborted, as if a merge point divergence was detected. If all basic blocks hit

in the map cache, then that information is passed along to rename. The live-

in/outs are used to save the tags for the live-in register and allocate new tags

for the live-out register of the gap region (i.e., skipped micro-ops). Once new

tags have been generated for all live-outs, the post merge point instructions

can be renamed in the usual way.

Eventually, when the Delayed Fetch branch resolves, the skipped in-

structions will pass through rename. At this point the saved live-in tags can

be used to rename the correct-path gap micro-ops. Finally once all instructions

in the gap have been renamed, move micro-ops are injected into the instruction

stream to move the live out tags of the recently renamed gap micro-ops to the

live-out tags that were generated before the rename of the post merge point

instructions. The generation of these move instructions effectively patches the

“hole” in the data-flow graph.

5.4.6 Gap Allocation and Tracking

Delayed Fetch and Delayed Predication require that a gap is allocated

in the ROB, reservation stations, load/store queue, and any other structures

that require in-order allocation. This gap reserves space for the delayed in-

structions which do not have the ability to allocate in-order, thus preventing

deadlock. Contrary to prior work [42, 13] that allocates enough space for the

larger of the two paths of the branch, our implementation allocates a fixed size

region. This region is the managed by the Gap Tracking Unit, which tracks
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all allocated gaps in the backend, and the current number of micro-ops that

occupy them. Allocating a fixed size gap gives us more control: allocate a gap

too big and we waste precious backend resources. Allocate a gap too small

and we unnecessarily limit ILP.

In the event of a full window stall, any unfilled gaps are identified, and

a prediction for the corresponding branch is sent to the prediction cache. This

triggers the fetch of the Delayed Fetch instructions early, which utilizes other-

wise unused fetch bandwidth. If the prediction is later found to be incorrect,

the incorrect Delay Fetch instructions can be flushed, and the correct path can

be fetched at that time.

5.4.7 Waste-based Throttling

Dynamic Predication and Delayed Fetch are best when the average

waste due to either mechanism is less than the average waste due to branch

mispredictions. Chapter 2 defines the waste due to branch mispredictions to

be the number of micro-ops flushed from the ROB during a branch mispre-

diction. Tracking this total over time indicates how much a branch impacts

performance based on the frequency and latency of mispredictions. Dynamic

Predication can lead to significant waste due to the fact that Dynamic Predica-

tion causes both paths to be fetched each time the branch is encountered. Fur-

thermore, CMOV micro-ops must be generated to stitch together the dataflow

graph. Each of these factors can contribute significant waste in extreme cir-

cumstances. Therefore, a field is added to each merge point predictor entry
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Core 16-Wide Issue, 1024-Entry ROB, 256-Entry Reservation
Station, 3.2 GHz, 64KB TAGE-SC-L Branch Predictor [52].
Modeled by Scarab [2].

WPB 128-entry, 4-way, max merge point distance 40 uops.

L1 Caches 32 KB I-Cache, 32 KB D-Cache, 64 Byte Lines, 2 Ports,
3-Cycle Hit Latency, 8-Way, Write-Back.

L2 Cache 2 MB 12-Way, 18-Cycle Latency, Write-Back.

Memory Controller 64-Entry Memory Queue.
Prefetchers Stream: 64 Streams, Distance 16. Prefetch into LLC.
DRAM DDR4, 8Gb, x8, 2400R, Modeled by Ramulator [30].

Table 5.3: Baseline Configuration

that tracks waste due to Dynamic Predication. Waste is tracked using a sin-

gle per-branch saturating counter that counts squashed wrong-path and extra

CMOV micro-ops. The waste counter is periodically decremented similar to

the branch misprediction waste counter in the Hard Branch Table (HBT).

When a branch hits in the merge point predictor table, the Dynamic Predi-

cation waste counter is compared to the waste counter from the HBT. This

effectively compares the waste generated by Dynamic Predication due to the

waste generated by branch mispredictions. Whichever counter is lower corre-

sponds to the technique that likely generates less waste overall. If less waste is

generated by branch mispredictions, then the merge point prediction is throt-

tled and the branch is not predicated. While waste-based throttling primarily

benefits Dynamic Predication, whose primary drawback is wasting fetch/exe-

cution bandwidth, waste-base throttling also provides minor improvement to

Delayed Fetch. In that mode only the extra MOVE micro-ops are considered

waste.
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5.5 Results

5.5.1 Evaluation Methodology

To simulate our proposal, we use Scarab [2]— an open source simula-

tor commissioned by Intel in their Intel/NSF FoMR initiative [1]. Scarab is

an execution-driven, cycle-accurate x86 simulator whose front-end is based on

PIN [34]. The simulator faithfully models core microarchitectural details, the

cache hierarchy, wrong-path execution, and includes a detailed non-uniform

access latency DDR4 memory system, modeled by Ramulator [30]. We model

the 64KB TAGE-SC-L [52] branch predictor with the configuration submitted

to CBP-2016. The 64KB TAGE-SC-L is the best known realistic branch pre-

dictor. The branch predictor is modeled as a decoupled branch predictor which

sits in its own stage prior to the fetch stage. The branch predictor populates

a prediction queue that sits between the branch prediction stage and the fetch

stage. The queue is capable of holding 64 predictions. The branch predictor

faithfully models all packet break situations. Our baseline models a 16-wide

machine (decoder outputs up to 16 micro-ops) with an instruction window

of up to 1024 micro-ops. We model an aggressive baseline to emphasize the

use cases where we see Dynamic Predication and Delayed Fetch being most

valuable. Table 5.3 describes our system.

Dynamic Predication Configuration. To simulate Dynamic Pred-

ication, we use a merge point predictor with a predictor context stack depth

of 5 (i.e., supports nested predication of depth 5) and a learning interval of 40

micro-ops.
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Delayed Fetch Configuration. To simulate Delayed Fetch, we use

the same configuration as Dynamic Predication with a maximum gap size of

20 micro-ops for allocating gaps into the backend.

Benchmarks. We evaluate Dynamic Predication and Delayed Fetch

on SPEC CPU2017 Integer Speed, SPEC CPU2006 Integer [3] and GAP

Benchmark Suites [8]. From that set, we select the branch misprediction

intensive benchmarks with an average MPKI greater than 2. We use the

SimPoints [41] methodology to identify anywhere between one to five repre-

sentative regions per benchmark. We run each region for 200 million instruc-

tions, then compute the weighted average of all the regions. We run SPEC

benchmarks on the ref input set, and use -g 19 -n 300 inputs for GAP. If there

is more than one ref input, then the benchmark is run on each input, and a

weighted average, weighing each input by the total dynamic instruction count,

is used to compute a single metric for the entire benchmark.

Energy. We model chip energy using McPAT [33]. In addition to

McPat, we also supply the reduction in off path micro-ops executed to further

demonstrate the expected reduction in energy.

Metrics. We use Instructions Per Cycle (IPC) as the performance

metric and Branch Mispredictions Per Kilo Instruction (MPKI) to evaluate

improvements in prediction accuracy. Coverage is computed by looking at the

reduction in branch predictor MPKI due to accurate merge point predictions.
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Figure 5.6: Percentage of Branch Misprediction covered by the ACB vs our
merge point predictor

5.5.2 Coverage Results

The first step to Dynamic Predication and Delayed Fetch is to identify

hard-to-predict branches and accurately detect their merge point. Figure 5.6

shows the percentage of branch mispredictions covered by ACB [12] and the

merge point predictor presented in this chapter. As the figure shows, our

implementation covers an average of 62.2% of branch mispredictions with an

accurate merge point prediction, while prior work only covers 14.8%. As dis-

cussed in Chapter 3, this is primarily due to the code layout memorization

approach used by prior work to detect merge points. Our approach compares

the correct path and the wrong path during a branch misprediction recovery

to find the intersection. This is a much more generic way of detecting merge

points that results in higher coverage. Furthermore, our merge point predictor

makes use of an Active Context Stack, which allows for nested merge point

predictions. This further improves the coverage numbers as the merge point
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Figure 5.7: IPC Improvement of ACB, Dynamic Predication, and Delayed
Fetch without throttling techniques.

predictor is able to accurately predict in these nested cases. ACB, on the other

hand, does not support nested predication, which limits their coverage in these

cases.

5.5.3 Performance Results

Figure 5.7 shows a summary of the IPC improvement for ACB, the prior

dynamic predication technique, our implementation of Dynamic Predication,

and our implementation of Delayed Fetch. For purposes of showing results in

this dissertation, throttling mechanisms in both the prior work and our work

have been disabled. This will allow us to discuss both the positive and negative

results in a clearer way, which will allow us to discuss future work required to

make these techniques more effective.

Dynamic Predication. As shown in Figure 5.7, Dynamic Predi-

cation (without throttling) results in an average IPC improvement of 4.5%,
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compared to ACB which improves IPC by 2.5%. Dynamic Predication largely

improves over ACB for two reasons. First, the improved coverage leads to

more opportunities to use dynamic predication, which in turn leads to fewer

branch mispredictions in those workloads. Second, a positive prefetching ef-

fect is caused by Dynamic Predication. ACB does not benefit from a similar

prefetching effect due to the fact that they do not allow predicated instructions

to execute.

The negative outlier workloads generally occur for two reasons. First,

the waste generated by the predication (i.e., wrong-path predicated instruc-

tions, CMOV instructions) exceeds the average waste generated by branch

mispredictions (i.e., wrong-path instructions). This can happen when a branch

with a low misprediction rate and/or a relatively low execution latency is pred-

icated. This is what is causing both the gobmk 06 and sjeng 06 workloads to

suffer. The waste-based throttling mechanism targets cases like this; however,

as these workloads show that throttling mechanism is not perfect.

Second, a poorly predicted merge point address, as is the case in bc,

can result in divergences, which are essentially the same cost as a branch

misprediction. Generally, these cases are aggressively throttled, which makes

them largely not a problem. However, in some cases, like bc, the predicted

merge-point is actually correct and does not lead to a divergence, but rather

the predicted merge point is not optimal and leads to poorly predicated code.

This most commonly occurs for loop branches, where the merge point predictor

usually does not identify the optimal location of the merge point. Again, the
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future work section of this chapter will address this issue in more detail.

Delayed Fetch. Figure 5.7 shows that Delayed Fetch (without throt-

tling) results in an average performance improvement of 0.9%. Most notably,

Delayed Fetch improves performance over Dynamic Predication in two work-

loads: omnetpp 17 and astar 06. While this result demonstrates the hypothe-

sis of this chapter, Delayed Fetch overall results in more negative outliers than

Dynamic Predication. While some of this would be mitigated by dynamically

switching between Dynamic Predication and Delayed Fetch, it is worth dis-

cussing the negative Delayed Fetch results on their own so that future work in

Delayed Fetch can be discussed.

Omnetpp 17 contains three nested hard-to-predict branches that make

up a large fraction of the overall mispredictions in the workload. These hard-

to-predict branches also guard critical memory accesses that are not correctly

pre-fetched by the wrong-path of the branch or hardware prefetchers. There-

fore, improving the speed at which the correct path is fetched, decoded, and

executed improves the overall critical path of the benchmark, which in turn

results in critical memory accessed getting to the memory system sooner. As-

tar 06 contains many nested hard to predict branches, which guard indepen-

dent memory accesses that often miss in the d-cache. Delayed Fetch is the

optimal mechanism for astar because it is able to bring more of these indepen-

dent memory accesses into the instruction window than Dynamic Predication.

Furthermore, Delayed Fetch eliminates 80% of the total branch mispredictions

(Figure 5.6.
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Deepsjeng 17 is another good fit for Delayed Fetch, however here the

overheads associated with Delayed Fetch (injecting MOV instructions) waste

more fetch bandwidth than the branch mispredictions did. This leads the

benchmarks to lose a small amount of performance overall. Again, the waste-

based throttling mechanism should eliminate this negative result; however,

due to the throttling mechanism not being perfect this workload results in a

performance loss.

Other workloads like xz 17 and sjeng 06 suffer from an increase in the

critical path due to Delayed Fetch increasing the latency of correct-path in-

structions. In the future work section, we discuss the need for a critical path

predictor that can identify such cases where Delayed Fetch leads to perfor-

mance inversions.

Combining Dynamic Predication and Delayed Fetch. While

many improvements must be made to both Dynamic Predication and Delayed

Fetch, it is already apparent that combination of alternatives is better than

either individually. In this dissertation, we consider the simplest switching

mechanism: switching at the application granularity. Switching is most valu-

able for workloads like mcf 06 that are a good fit for one mechanism (Dynamic

Predication), but a bad fit for another (Delayed Fetch). Ideally, switching

would happen at a finer granularity within the application. This concept is

discussed more in the future work section of this chapter.
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Figure 5.8: Change in Energy for Dynamic Predication and Delayed Fetch.

5.5.4 Energy Results

Figure 5.8 shows the change in energy for both Dynamic Predication

and Delayed Fetch. These results largely reflect the performance results from

the previous section due to two reasons. First, the static (i.e., leakage) en-

ergy, which McPAT estimates as roughly 50% of the total energy, increases or

decreases linearly with the time it takes to complete the program. Therefore

the increase in static energy will reflect the change in time, i.e., the change in

performance. The dynamic energy is primarily effected by two variables: 1)

the change in time to complete the program and 2) the change in activity fac-

tor. As was the case for static energy, the dynamic energy will be scaled up or

down linearly with respect to performance. However, the dynamic energy will

further be affected by the change in activity factor, which is mainly impacted

by the change in issued micro-ops.

Figure 5.9 shows the reduction in issued micro-ops (i.e., higher bar
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Figure 5.9: Reduction in total micro-ops issued to the execution units for
Dynamic Predication and Delayed Fetch.

equates to fewer micro-ops issued). As the results show, both Dynamic Pred-

ication and Delayed Fetch can lead to fewer micro-ops issued, which in turn

lowers dynamic energy. Dynamic Predication and Delayed Fetch may reduce

the total number of issued micro-ops by avoiding branch mispredictions, which

will in turn avoid fetching micro-ops down the wrong-path. Some of these pos-

itive effects are reduced by the overheads of Dynamic Predication (wrong-path

predicated ops and CMOV ops) and Delayed Fetch (MOV ops). These over-

heads become significant in cases where the branch was predicted correctly a

high percentage of the time. The Hard Branch Table may detect such branches

because their misprediction rate (i.e., misprediction per kilo instruction) still

exceeds the given threshold; however, a branch with a high MPKI can still

be predicted correctly a large majority of the time. Unfortunately, Dynamic

Predication and Delayed fetch transform the branch each time it is fetched,

meaning that the additional MOV ops and wrong-path predicated ops are
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waste in cases when the branch would have been predicted correctly. The

future work section in this chapter discusses ways to reduce the overheads of

these techniques in cases where this imbalance exists, which should continue

to improve dynamic energy.

5.6 Related Work

Wish Branches [29] implemented Dynamic Predication by having the

compiler generate both the predicated and non-predicated versions of the orig-

inal code. The hardware would the monitor branch predictor performance and

dynamically select which version of the code should be used. While this ap-

proach can be useful in some cases, it still ultimately relies on the compiler to

determine which branches should be predicated. Further, the compiler may

need to generate many different combinations of the code to account for all

cases where a branch should or should not be predicated. Our implementation

of Dynamic Predication solves this by detecting which branches are hard-to-

predict and should be predicated. Furthermore, we dynamically predict the

location of the merge point, eliminating the need for compiler or ISA support

for Dynamic Predication.

Transparent Control Independence (TCI) proposes a stack-based method

for tracking nested merge points similar to the one used in this dissertation [6].

Our implementation, however, has the small simplification that all nested

branches inherit the same merge point prediction for their parent.
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5.7 Future Work

Clearly, both Dynamic Predication and Delayed Fetch still have room

to improve before they are beneficial for all applications. In this section, I

propose several techniques which I think will broaden the cases where Dynamic

Predication and Delayed Fetch are effective, while also eliminating the negative

outlier cases.

5.7.1 Eliminating MOV micro-ops

Move micro-ops are a considerable overhead for both Dynamic Predi-

cation and Delayed Fetch. The primary purpose of the move micro-ops is to

patch the data-flow graph so that the proper data dependencies are used after

branch resolution. Move micro-ops are the simplest solution; however, given

their high overhead, more complex solutions should also be explored. Modifi-

cations to the rename hardware to reuse tags and the broadcast hardware, to

delay the broadcast of tags, may be possible which negate the need for move

micro-ops to consume fetch/execution resources.

5.7.2 Critical Path Based Throttling

Currently, Dynamic Predication and Delayed Fetch used a Waste-Based

throttling technique to throttle branches where either Predication or Delayed

Fetch is more expensive than the branch mispredictions themselves. However,

waste is only half of the story. Both Dynamic Predication and Delayed Fetch

can have negative effects on the critical path of the application. Fields et
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al. [17] developed a token-passing critical path detection algorithm used to

detect which instructions are on the critical path of a program. This token-

passing algorithm can be modified to detect whether or not specific paths

effected by Dynamic Predication or Delayed Fetch resulted in changes to the

critical path. This information can be used to further inform the switching

algorithm to choose the mechanism that minimizes the critical path. This

mechanism would be particularly beneficial for Delayed Fetch, whose main

drawback is increasing the latency of correct-path instructions.

5.7.3 Utilizing TAGE confidence

In the current design, the Hard Branch Table (HBT) is used to deter-

mine which static branches mispredict enough to justify using either Dynamic

Predication or Delayed Fetch. Furthermore, the HBT tracks which branches

flush the most micro-ops from the ROB as a mechanism for detecting which

branch mispredictions have the highest impact on performance. As discussed

in Chapter 2, some branches are identified due to their long execution latency

rather than their high misprediction rate. In extreme cases, branches with a

relatively low misprediction rate ( 10%) can be identified for Dynamic Pred-

ication or Delayed Fetch. This is not ideal, however, because our existing

mechanism will attempt to Predicate or Delay Fetch all dynamic instances of

the branch. Ideally, we would like to only Predicate or Delay Fetch the in-

stances of the branch that are likely to mispredict and continue to use branch

prediction for the cases that are likely to be correct. Fortunately, prior work
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is capable of identifying such cases when the branch predictor is confident or

not-confident with no storage overhead [51]. This confidence mechanism can

be used to enable Dynamic Predication or Delayed Fetch dynamically, which

creates opportunity to use the branch predictor when it is confident.

Unfortunately, both Dynamic Predication and Delay Fetch require the

code to be transformed to the predicated order, which in turn requires a

warmup period for the branch predictor. Dynamically switching between

branch prediction and Dynamic Predication/Delayed Fetch would therefore

be harmful as the branch predictor would never be given the opportunity to

warm up. As a solution to this, I propose maintaining the predicated order,

even when using branch prediction, for such branches. This will allow the

branch predictor to warm up, which will in turn allow us to detect the confi-

dence of the branch predictor. By maintaining the core’s view of the code, we

can switch back and forth between Dynamic Predication/Delayed Fetch and

branch prediction, thus allowing us to use each mechanism only when it will

be most beneficial.

5.7.4 Specialized Loop Predictor

Variable length loops are a common form of hard-to-predict branch.

Such loops are not predicted accurately by the Loop component of the TAGE-

SC-L predictor due to the fact that the loop variable is constantly changing.

Further, both the merge point predictor presented in this dissertation and prior

work in merge point prediction [15] predict sub-optimal merge points for most
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loops, which results in performance inversions when Dynamic Predication or

Delayed Fetch are applied. The minimum/maximum iteration counts, how-

ever, are often very stable values for most variable length loops. This creates

an opportunity to predict the minimum and maximum iteration count of a

variable length loop. With this information, Dynamic Predication or Delayed

Fetch could be applied to each loop iteration between the minimum and max-

imum iteration count. For variable loops that have a low variance in iteration

count, this could substantially improve performance.
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Chapter 6

Conclusion

This dissertation presents new microarchitecture techniques that are

able to pre-compute or avoid branch mispredictions in cases where TAGE-

SC-L, the current state-of-the-art branch predictor, cannot. Each technique

proposed in this dissertation is enabled by a new merge point prediction al-

gorithm that significantly improves accuracy and coverage compared to prior

work. The accurate merge point predictor enables the design of Branch Runa-

head by enabling the microarchitecture to detect control and data dependen-

cies between dependence chains (i.e., affector and guard branches). Without

the detection of these important dependencies, Branch Runahead would not

be able to accurately run as far ahead, which would reduce the accuracy and

timeliness of the predictions it generates. For Dynamic Predication and De-

layed Fetch, knowing the location of the merge point enables these techniques

to avoid predicting the direction of the branch at all. Instead, we are able

to either fetch both paths of the branch, or fetch neither, based on what is

most appropriate for the code. Clearly, improving the coverage of the merge

point predictor enables these techniques to be used on more hard to predict

branches.
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This dissertation proposes a total of three alternatives to branch predic-

tion. Each alternative comes with its own set of trade-offs that make it more

or less appropriate in different situations. Branch Runahead performs best for

data-dependent branches with short dependence chains. Fortunately, this hap-

pens to be a category of hard-to-predict branch that traditional history-based

branch predictors have struggled with. Branch Runahead is able to quickly and

efficiently execute the short dependence chain to pre-compute the direction of

the branch. Branch Runahead also uses a predictive initiation strategy, which

allows it to run multiple dependence chains in parallel. Predictive initiation

enables high chain-level parallelism, which in turn enables Branch Runahead

to deliver predictions in a more timely way. Branch Runahead differs from

prior work in three primary ways: 1) dependence chains are extracted at run-

time, which enables Branch Runahead to 2) identify affector/guard branches

as well as biased branches at runtime. Detecting these cases at runtime is

more accurate than identifying them at compile time, which makes Branch

Runahead’s dependence chains lighter-weight than those produced by a com-

piler. Finally, Branch Runahead uses the affector/guard branch information

to 3) execute dependence chains continuously. This enables Branch Runahead

to run farther ahead than prior light-weight runtime-only techniques.

Dynamic Predication and Delayed Fetch, on the other hand, work best

when both traditional branch prediction and Branch Runahead have failed.

These options are a last resort, which improve performance by eliminating

branch misprediction. This dissertation identifies the reciprocal trade-offs
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between the two techniques. This motivates the design of a single Control

Independent Microarchitecture that is capable of dynamically switching be-

tween each technique. While further research is still required to handle per-

formance inversion cases, both Dynamic Predication and Delayed Fetch show

high potential to significantly improve performance and energy in the pres-

ence of impossible-to-predict branches. This work significantly reduces total

micro-ops executed without significantly impacting performance, which in turn

lowers dynamic power.

Together, these three techniques improve performance for many branches

which state-of-the-art branch predictors cannot handle. As history-based

branch predictors continue to struggle with the remaining hard-to-predict

branches, the techniques presented in this dissertation will be required to con-

tinue to improve performance. This dissertation provides a framework for the

microarchitecture to identify such branches, then switch to a new mechanism

that best fits the needs of the branch.
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