Reducing Memory Access Latency via an
Enhanced (Compute Capable) Memory Controller

Milad Hashemi: Khubaib FEiman Ebrahimi Onur Mutlu Yale N. Patt

High Performance Systems Group
Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, Texas 78712-0240

TR-HPS-2015-001
September 2015

This page is intentionally left blank.

Reducing Memory Access Latency via an
Enhanced (Compute Capable) Memory Controller

Milad Hashemi!, Khubaib!, Eiman Ebrahimi?, Onur Mutlu® and Yale N. Patt!

'Department of Electrical and Computer Engineering, The University of Texas at Austin
INVIDIA
3Department of Electrical and Computer Engineering, Carnegie Mellon University
Ymiladh, khubaib, patt}@hps.utexas.edu, 2eebrahimi@nvidia.com,*onur@cmu.edu

September 30, 2015

Abstract

Processor cores are seeing an increase in effective cache miss latency as the number of cores in a
multi-core chip increases, and on-chip contention correspondingly increases. This paper identifies
an important subset of latency-critical cache misses: those that will result in a cache miss but are
dependent on a prior cache miss. We propose accelerating the execution of these cache misses in
a manner that is transparent to the programmer, by adding compute-capability to the memory
controller. Our new enhanced memory controller executes the dependent cache misses as soon
as the source data arrives from DRAM, bypassing on-chip contention and decreasing DRAM row
buffer conflict rate. The result, on a set of memory intensive quad/eight core workloads, is an
improvement in system performance of 15%/17% respectively and a 20% reduction in memory
request latency.

1 Introduction

The large latency disparity between performing computation at the core and accessing data from
off-chip memory is a key impediment to system performance. While raw DRAM access latency
remains roughly constant [18], decreasing by only 26% over the last 12 years, the effective DRAM
latency as seen by the core is rising. This problem is known as the “memory wall” [39, 38] and is
due to two factors: high core frequency, and increasing levels of on-chip shared-resource contention
in the multi-core era. Examples of this contention include: on-chip interconnect, shared cache,
DRAM row-buffer, and DRAM bank contention. Due to these factors, DRAM accesses are a
performance bottleneck, particularly for single threaded applications that have difficulty hiding
long-latency operations with instruction-level parallelism due to limited reorder buffer size.

The impact of the memory wall on processor performance is magnified when a cache miss has
dependent memory operations that will also result in a cache miss. These operations, dependent
cache misses, form chains of long-latency operations that fill the reorder buffer and prevent the
core from making forward progress. Exacerbating the problem, these dependent cache misses often
have data-dependent addresses that are difficult to prefetch. Figure 1 shows the percentage of total
last level cache (LLC) misses that are dependent on a prior LLC miss for the SPEC CPU2006
benchmark suite. We simulate an aggressive out-of-order processor with a 256 instruction reorder
buffer and 1MB of last level cache. The benchmark suite is sorted in ascending memory intensity.
The application with the highest fraction of dependent cache misses, mcf, also has the lowest
performance across the entire benchmark suite, with an IPC of just 0.3.

o
o
o
°
S

» o ®
? 8 2
X X X

20%

=

mef =y

o
X

|
—
=l

% of Total Cache Misses
Dependent on a Previous Miss

= Deonnnlin, [.nn. 0 ul
X >XT n.C VNS DVETSN -0V QWV DAV XXWND
EE G2 0ES 2o o3 as SR 2825 508E
S5glcsSe COENRNBOED SRV EGE>=2
0>C8ca5c93L N2l a0 DoESCE T
©8c82¥Sg°Y E R38 %< 38z
o2 o= £2° < 4 e E o

T o 5

o [

)

Figure 1: Percent of total Last Level Cache (LLC) misses dependent on a prior LLC miss, sorted
by memory intensity.

We aim to reduce the latency of issuing these cache misses in a manner that is transparent to the
programmer by adding limited compute capability to the memory controller. We modify the core
to automatically identify the operations that are in the dependence chain of a cache miss. This
dependence chain is then transparently migrated to the enhanced memory controller (EMC) so that
data does not have to flow back to the core before the critical dependent cache miss is issued. Once
the data from the cache miss arrives, the EMC executes the dependent operations. This results in
two benefits. First, the EMC can generate cache misses faster than the core by bypassing on-chip
contention, thus reducing the effective latency seen by memory operations. Second, our proposal
increases the likelihood of a memory access hitting an open row buffer before the row can be closed
by a competing request to a different row in the same DRAM bank from a different core. Thus,
the enhanced memory controller can decrease the chance of a row-buffer conflict and increase the
row buffer hit rate and system performance.

We make the following contributions in this paper:

e We explore partitioning code between the core and the memory controller. We propose a
mechanism to automatically identify and migrate the dependence chain of a cache miss to a
compute capable, enhanced memory controller (EMC).

e The EMC accelerates the execution of operations that are dependent on an outstanding cache
miss, minimizing the latency impact of these computations. We show that a system with
an enhanced memory controller achieves a 15% average gain in weighted speedup and 11%
reduction in energy consumption over a quad-core baseline with no prefetching. We observe a
13% gain over a quad-core baseline with a global history buffer prefetcher. Memory requests
that are issued from the EMC observe a 20% lower latency on average than requests that are
issued from the core.

2 Motivation

Figure 2a presents one example of the problem that we target. A dynamic sequence of micro-
operations (uops) from a memory-intensive SPEC CPU2006 application, mcf, has been slightly
modified for clarity. The uops are shown on the left and the data dependencies, omitting control
uops, are illustrated on the right. Assume a scenario where Operation 0 is an outstanding cache
miss, we call this uop a source miss and denote it with a dashed box. Operations 2 and 6 are
conditional branches that have correctly been predicted to be not taken. Operations 4, 7, and 9
will result in cache misses when issued, shaded gray. However, their issue is blocked as Operations
4 and 7 have a data dependence on the result of the source miss, Operation 0. Operation 9 cannot
be issued until both Operations 7 and 8 have been completed. Operations 4 and 7 are delayed from
execution until the data from Operation 0 returns to the chip and flows back to the core through
the interconnnect and cache hierarchy. Yet, there are a small number of relatively simple uops
between Operation 0 and Operations 4/7 and only one ADD operation between Operations 7 and
9.

Op: 0 MEM_LD(OX8[ECX] -> EAX) //Addr: A . - D e
Op: 1 TEST (EAX EAX) (o feam ey,
Op: 2 CBRANCH sua "
Op: 3 MOV(EAX -> ECX) 3 EAX->ECx | ®== 12
Op: 4 MEM_LD(OX4[ECX] -> TMP) //Addr: B 7 get 10 _
Op: 5 TEST(0x1 TMP) 052 g
Op: 6 CBRANCH 4:[ECX]->TMP G § g &
Op: 7 MEM_LD(Ox18[ECX] -> EAX) //Addr: B g EQ
Op: 8 ADD (EAX EBX -> EBX) £20 4 TAn
Op: 9 MEM_LD([EBX] -> TMP) //Addr: C EEa C © 2 = il ﬂﬂﬂ ﬂ ﬂﬂﬂ
0 X>TNLQONN=DUESINLVONENDAOXXNTEY
i s
385539585 £°9%%38 7L 84S
o oy 5 NT e E 2
& 8

9: [EBX] -> TMP

(a) (b)

Figure 2: (a) Dynamic sequence of micro-ops based on mcf shown on the left, the dataflow graph
omitting control operations is shown on the right. A, B, C represent cache line addresses. Memory
addresses are denoted with brackets and offsets are denoted using hex values. (b) Average number
of dependent operations between a source miss and dependent miss, sorted by memory intensity.

We propose that these operations that are dependent on a cache miss can be executed as soon
as the source data enters the chip, at the memory controller. This avoids on-chip interference and
reduces the overall latency to issue the dependent memory requests.

Figure 2a shows one dynamic instance where there are a small number of simple integer operations
between the source and dependent miss. We find that this trend holds over the memory intensive
applications of SPECO06. Figure 2b shows the average number of operations in the dependence chain
between a source and dependent miss, if a dependent miss exists. A small number of operations
between a source and dependent miss means that the enhanced memory controller (EMC) does not
have to do very much work to uncover a cache miss and that it requires a small amount of input
data to do so.

We therefore explore mechanisms to tailor the memory controller to execute dependent chains
of operations such as those listed in Figure 2a. The added compute capability is described in
detail in Section 3.1. Since the instructions have already been fetched and decoded at the core and
are sitting in the reorder buffer, the core can automatically determine the uops to include in the
dependence chain of a cache miss by leveraging the existing out-of-order execution hardware. This
process is described in Section 3.2. The chain of decoded uops is then sent to the EMC.

Once the cache line arrives from DRAM for the original source miss the chain of dependent uops
are executed and the live-outs are sent back to the core. We discuss the details of execution at the
EMC in Section 3.3.

3 Mechanism

A quad-core chip multiprocessor (CMP) that uses our proposed enhanced memory controller is
shown in Figure 3a. The four cores are connected with a bi-directional ring. The memory con-
troller is located at a single ring-stop, along with both memory channels, similar to Intel’s Haswell
microarchitecture [13]. Our proposal adds two pieces of hardware to the processor: a dependence
chain-generation unit at each of the cores and limited compute capability at the memory controller.
We first focus on the compute hardware that we add to the memory controller.

3.1 EMC Compute Microarchitecture

We design the EMC to have the minimum functionality required to execute the pointer-arithmetic
that generates dependent cache misses. Instead of a front-end, we utilize small uop buffers (Section
3.1.1). For the back-end, we use 2 ALUs and provide a minimal set of caching and virtual address
translation capabilities (Section 3.1.2). Figure 3b provides a high level view of the added compute
microarchitecture.

3.1.1 Front-End
The front-end of the EMC consists of multiple small uop buffers. Each of these buffers supports
executing a single dependence chain, and can hold up to 16 uops (based on Figure 2b). With

4

Live-in
registers
from co

Result Data

0
o
]
[0
o
0
o
]
[0}
-
- C
585
3at
‘$m§
|

Physical
Register

File
Live In Vector

DRAM [Enhanced becoded L
Channel 0| Memory LLC LLC micro-ops ALUO
- [] from core
DRAM [Controller] HD IR {
Channel 1| (EMC) ‘ LLC ‘ ‘ LLC ‘
e a— Reservation ALU 1
hd Issue Buffer Station cDa(ha
ache
Core 2 Core 3 | Dirty cache

Tag Broadcast lines to core

Load Store
Queue

(a) (b)

Figure 3: (a) A high level view of a quad-core CMP with an Enhanced Memory Controller. Each
core has a ring stop, denoted by a dot, that is also connected to a slice of the shared last level
cache. (b) The microarchitecture of the EMC. Boldfaced lines indicate a shared bus.

multiple buffers, the EMC can be shared between the cores of a multi-core processor. Ready uops
are issued in a round-robin fashion out of each of these buffers and into the reservation stations
when reservation station entries are available. The front-end of the EMC consists only of this buffer,
it does not contain any fetch, decode, or register rename hardware. The chains of operations are
renamed for the EMC using the out of order capabilities of the core (Section 3.2).

3.1.2 Back-End

As the EMC is targeting pointer-arithmetic, it is limited to executing a subset of the total uops
that the core is able to execute. Only integer operations are allowed (Table 1). Floating point and
vector operations are not allowed. This simplifies the microarchitecture of the EMC, and enables
the EMC to potentially execute fewer operations to get to another cache miss. The core is creating
a filtered chain of operations for the EMC to execute (Section 3.2), only the operations that are
required to generating the address for the dependent cache miss are included in the uop chain.

These filtered dependence chains are executed on a 2-wide back-end. To achieve comparable
levels of memory level parallelism as the base out-of-order core, which our exploration shows is
important for many memory-intensive workloads, the EMC has the capability to issue and execute
uops out-of-order. This requires the back-end to support out-of-order issue and wakeup with a small
reservation station (8-entries) and common data bus (CDB). In Figure 3b the CDB is denoted by
the result and tag broadcast buses. A small load/store queue is maintained at the EMC to be able
to execute memory operations out of order. We support executing stores at the EMC due to how
common register spills/fills are in x86.

Each of the issue buffers in the front-end is also allocated a private physical register file (PRF)
that is 16 registers large and a private live-in source vector. As the out-of-order core has a much

larger physical register file than the EMC (256 vs. 16 registers), operations arrive at the enhanced
memory controller correctly renamed to use the physical registers of the EMC.

Operations are not retired at the EMC, only executed. Retirement state is maintained at the
ROB of the home core and physical register data is transmitted back to the core for in-order
retirement. These operations are not re-executed at the core. Thus, a portion of the operations
in the reorder buffer are executed at the core, while others are executed at the EMC. Figure 4
provides a high-level view of partitioning the instruction stream between the EMC and the core
with a simple sequence of 7 uops from milc, a memory intensive SPEC06 application.

On Core On Enhanced Memory Controller
|0p 0: MEM_LD (Oxc[EBP] -> ECX) | (EMC)

Initiate EMC

Execution
—>
Op 1: ADD (ESP + 4 -> ESP)
Op 2: MEM_ST (EBX -> [ESP]) Op 4: MEM_LD ([ECX] -> FP5)
Op 3: MOV (ESI -> EBX) Op 5: MEM_LD (0x8[ECX] -> FP4)
-

Live-Out Regs to

Op 6: MUL (FP3 FP5 -> FP3) Core

Figure 4: A sequence of 7 micro-ops from milc. Operation 0 results in a cache miss and is surrounded
by a dashed box. The dependent cache misses to be executed at the memory controller are shaded

gray.

In Figure 4, Op 0 results in a cache miss. Ops 1, 2, and 3 are independent of the result of Op
0 and execute during the period of time that Op 0 is waiting for data from memory. Ops 4 and 5
are dependent on Op 0 and will result in a cache miss when issued.

The core transmits these two uops to execute at the EMC instead of the core. When EMC
execution completes, FP4 and FP5 are returned to the core so that execution can continue. Section
3.2 describes in detail the process of identifying and generating the chain of dependent operations
to be executed at the enhanced memory controller.

3.1.3 Caches

The EMC contains no instruction cache, but it does contain a small data cache that holds the
most recent lines that have been transmitted from DRAM to the chip to exploit temporal locality.
Cache coherence for this cache is maintained at the inclusive last-level cache by adding an extra
bit to each directory entry for every line to track the cache lines that the EMC holds.

3.1.4 Virtual Address Translation

Virtual memory translation at the EMC occurs through a small 32 entry TLB for each core. The
TLBs act as a circular buffer and cache the page table entries (PTE) of the last pages accessed

Cycle 0 Cycle 1 Cycle 2 Cycle 3

[IDECX(C17) > EAX(€10) |- 1 [c17)>E0 [DECK (C17) > EAX (C10) |~ LD [C17}->E0 LD ECX (C17) > EAX(C10) |~ {c17)-5E0 LD ECX (C17) > EAX(C10) |~ | (C17)->0

[

"> MOV EAX (C10) > ECX (CT) [~ MOVED->E1 | MOVEAX (C10) > ECX(C7) [~ MOVED->E1 | MOV EAX (CL0)-> ECX (C7) [~ oy £o - E1 > MOV EAX (C10) -> ECX (CT) |- wov £ -> £1
LD ECX (C7) > TMP (C5) [IDECK(C) > TMP(C5) |.DE1->E2 [‘»/ LDECK(CH>TMP(C5) |mipEr-> 2 L IOEX > TP (G |wipg1 .o 2
LD ECX (C7) -> EAX (C13) = LD ECK (C7) > EAX (C13) |- (D E1-> E3 >TIDECK(CT) -> EAX (C13) |+ 1D F1.5E3 > IDECK(C7) > EAX (C13) |+ 1p 1.5 E3
ADD EAX (C13) EBX (C18) ADD EAX (C13) EBX (C18) C ADD EAX (C13) EBX (C18) | _ | ADD EAX (C13) EBX (C18) | _

-> EBX (C20) -> EBX (C20) -> EBX (C20) ADDE3LO->E4 -> EBX (C20) ADD E3 L0 -> E4

LD EBX (C20) -> TMP (C2) LD EBX (C20) -> TMP (C2) LD EBX (C20) -> TMP (C2) "> LDEBX (C20)-> TMP (C2) |~ LD E4-> E5

CPR EPR CPR EPR CPR EPR CPR EPR

C10[EO C10(EO C10|EO C10|EO
C7 [E1 C7 [E1 C7 |E1 C7 |E1
C5 |E2 C5 (E2 C5 |E2
C13[E3 C13|E3 C13|E3
C1g|Lo C1g|Lo
C20|E4 C20|E4
C2 |ES

Figure 5: Chain generation using the chain of micro-ops from Figure 2a over four cycles. Two
structures, the reorder buffer (ROB) and register remapping table (RRT) are shown. Physical
registers are noted using parenthesis (CPR denotes Core Physical Register, EPR denotes EMC
Physical Register). Processed operations are shaded after every cycle.

by the EMC for each core. The PTEs of the home core add a bit to each TLB entry to track if
a page translation is resident in the TLB at the EMC. This bit is used to invalidate TLB entries
resident at the EMC during the TLB shootdown process. Before a chain is executed, the core sends
the EMC the PTE for the source miss if it is determined not to be resident at the EMC TLB.
The EMC does not handle page-faults, if the PTE is not available at the EMC, the EMC halts
execution and signals the core to re-execute the entire chain.

3.2 Generating Chains of Dependent Micro-Operations

We leverage the out-of-order execution capability of the core to generate the short chains of op-
erations that the enhanced memory controller (EMC) executes. This allows the EMC to have no
fetch, decode, or rename hardware, as shown in Figure 3b, thereby reducing its area and energy
consumption.

The core can generate dependence chains to execute at the EMC once there is a full-window
stall due to a LLC miss blocking retirement. If this is the case, we use a 3-bit saturating counter
to determine if a dependent cache miss is likely. This counter is incremented if any LLC miss has
a dependent cache miss and decremented if any LLC miss has no dependent cache misses. If either
of the top 2-bits of the saturating counter are set, we begin the following process of generating a
dependence chain for the EMC to accelerate.

We use the dynamic micro-op sequence from Figure 2a to demonstrate the chain generation
process, illustrated by Figure 5. This process takes a variable number of cycles based on dynamic
chain length (4 cycles for Figure 5). As the uops are included in the chain, they are stored in a
buffer maintained at the core, until the entire chain has been assembled. At this point the entire
chain is transmitted to the EMC.

For each cycle we show two structures in Figure 5, the reorder buffer of the home core (ROB)
and the register remapping table (RRT). The RRT is functionally similar to a register alias table
and maintained for the proposed EMC at the home core. We only show a portion of the ROB and
omit control operations by denoting them with stripes.

In Figure 5 the cycle 0 frame shows the source miss at the top of the ROB. It has been allocated
core physical register number 10 (C10) to use as a destination register. However, since the EMC
has many fewer physical registers than the large out-of-order core the operations in the chain have
to be renamed to a smaller set of physical registers so that the memory controller can execute them.
EMC physical registers are assigned using a counter that starts at 0 and saturates at the maximum
number of physical registers that the EMC contains. This is equivalent to the maximum number
of uops allowed in the chain. In the example, C10 is renamed to use the first physical register of
the EMC (E0). This information is stored in the RRT, which is indexed by the physical register
id and shown at the bottom of Figure 5.

Once the source miss has been renamed to EMC physical registers, chains of decoded uops are
created by tracking dependencies through renamed physical registers. This process begins after a
load is known to have missed in the last level cache and the ROB of the home core is full. The goal
is to mark uops that would be ready to execute when the load has completed. Therefore, the load
that has caused the cache miss is pseudo “woken up” by broadcasting the tag of the destination
physical register onto the common data bus (CDB) of the home core. A uop wakes up when the
physical register tag of one of its source operands matches the tag that is broadcast on the CDB,
and all other source operands are ready. By pseudo waking up the uop it does not execute or
commit the uop, it simply broadcasts its destination tag on the CDB. A variable number of uops
are broadcast every cycle based on uop and functional unit availability, up to the back-end width
of the home core.

In the example, there is only a single ready uop to broadcast in Cycle 0. The destination register
of the source load (C10) is broadcast on the CDB. This wakes up the second operation in the
chain, which is a MOV instruction that uses C10 as a source register. Before this operation can
be included in the chain, the core must check if the EMC has the ability to execute the operation.
As the MOV is an integer operation, it is included in the chain. It reads the remapped register
id from the RRT for C10, and uses EO as its source register at the EMC. The destination register
(C7) is renamed to El.

Operations continue to pseudo “wake-up” dependent operations until either the maximum num-
ber of operations in a chain is reached, or there are no more operations to awaken. Thus, in the
next cycle, the core broadcasts C7 on the CDB. The result of this operation is shown in Cycle 1,
two loads are woken up. Their destinations, C5 and C13 respectively, are renamed to E2 and E3
and written into the RRT.

In cycle 2, C5 and C13 are broadcast on the CDB. Broadcasting C13 causes the ADD operation
to pseudo-wake up. However, the ADD has a second source register, C18. If the result of C18 has
already been computed, or is ready, the ADD can be included in the chain. Otherwise, the ADD
will not broadcast the tag of its destination register, C20, on the CDB. In this case, C18 is ready.

The value is read out of the core’s physical register file and packed into a live-in source vector,
which will be sent to the EMC along with the chain. C18 is renamed to the first element in the
source vector (L0). Thus, the ADD instruction uses two sources E3 and L0, and writes its result
into E4.

In cycle 3, the ADD broadcasts C20 on the CDB and the final load can be added to the chain.
Once the process has completed, a filtered portion of the execution window has been assembled
for the EMC to execute. These uops are read out of the ROB and sent to the EMC for execution
along with the live-in vector.

Algorithm 1 summarizes the algorithm for dynamically generating a filtered chain of dependent
uops.

ALGORITHM 1: Dependence chain generation.
CPR denotes Core Physical Register.
EPR denotes EMC Physical Register.
RRT denotes Register Remapping Table.
Process the source uop at ROB full stall
Read source miss uop from ROB.
Allocate EPR for destination CPR of uop.
Update RRT.
Broadcast destination CPR tag on CDB.
for each dependent pseudo-woken up uop do
if Total uops in Chain<MAXLENGTH
and uop Type Allowed then
Prepare the dependent uop to be sent to the EMC
for each source operand do
if source ready then
Read data from physical register file.
Pack data into live-in vector.
else
EPR = RRT|CPR]
end if
end for
Allocate EPR for destination CPR of uop.
Update RRT.
Read uop from ROB to include in chain.
Broadcast destination CPR tag of uop on CDB.
end if
end for
Send filtered chain of uops and live-in vector to the EMC

3.3 EMC Execution

To start execution, the enhanced memory controller (EMC) takes two inputs: a source vector of
live-in registers and an executable chain of operations, as described above in Section 3.2. The EMC
also does not commit any architectural state, it executes the chain of uops speculatively and sends
the destination physical registers back to the core. Two special cases arise with respect to control
operations and memory operations. First, we discuss control operations.

The EMC does not fetch instructions and is already sent a branch predicted stream, so it evaluates
each condition and determines if the chain that it was sent to execute contains the correct path of
execution. If the EMC realizes it is on the wrong-path, execution is stopped and the core is notified
of the mis-predicted branch. We send control operations along with computation to the EMC so
that the EMC does not generate wrong path memory requests if it is on the wrong path.

For memory operations, a load first queries the data cache, if it misses in the data cache it
generates an LLC request. A store writes its value into the EMC LSQ. Loads and stores are
retired in program order back at the home core. Every load or store executed at the EMC sends a
request on the interconnect to the core. The core snoops this request and populates the relevant
entry in the LSQ. This serves two purposes. First, if a memory disambiguation problem arises,
for example there is a store to the same address as a load executed at the EMC in program
order at the core, execution of the chain can be canceled. Second, for consistency reasons, stores
executed at the EMC are not made globally observable until the store has been drained from
the home core store-queue in program order. While executing chains of instructions remotely
requires these modifications to the core, transactional memory implementations that are built into
current hardware [12] provide many similar guarantees for load/store ordering. Remote execution
at the EMC is simpler than a transaction, as there is no chance for a conflict or rollback due
to simultaneous execution. Leveraging these transactional memory capabilities provides a path
towards fine-grained remote-code execution, as we propose with the EMC.

Once each dependence chain has completed execution, the live-outs, including the store data
from the LSQ, are sent back to the core. Physical register tags are broadcast on the CDB, and
execution on the main core continues.

As the home core maintains all instruction state for in-order retirement, any bad-event (branch
misprediction, EMC TLB-miss, EMC exception) causes the home core to re-issue and execute the
entire chain normally.

3.4 EMC Miss Predictor

The EMC has the ability to predict if any given load is going to result in a cache miss. This enables
the EMC to directly issue the request to memory if it is predicted to miss in the cache, thus saving
the latency to access the on-chip cache hierarchy. To enable this capability we keep an array of
3-bit counters for each core, similar to [29]. The PC of the miss causing instruction is used to hash
into the array. On a miss the corresponding counter is incremented, a hit decrements the counter.

10

DRAM
Channel 0
Pialllioh

DRAM

Core 0 Core 1 Core 2 Core 3

nhanced

DRAM

Core 0 Core 1 Core 2 Core 3

nhancet

Enhance

DRAM

Channel 11 e mory ‘ LLC H LLC H LLC H LC ‘ Channel 0| yemory ‘ LLC H LC H Le H Le ‘ Memory | Channel 2
DRAM [Controller] DRAM (Controlle Controlled DRAM
Channel 2| (EMC) ‘ LLC ‘ ‘ LLC ‘ ‘ LLC ‘ ‘ LLC ‘ Channel 1| (EMC) ‘ LLC ‘ ‘ LLC H LLC H Lc ‘ (EMC) | Channel 3
-« -« —>
DRAM
Channel 3
ganne.

Core 4 Core 5 Core 6 Core 7 Core 4 Core 5 Core 6 Core 7

(a) (b)
Figure 6: Eight-core configurations. (a) Single Memory Controller. (b) Dual Memory Controller.

If the counter is above a threshold the request is sent directly to memory. Note that a parallel
request still has to be sent to the home core to populate a LSQ entry and to look-up the LLC in
the case of a mis-predicted dirty line.

3.5 Micro-Op Cache

We observe that the chains of uops that are sent to the EMC are repetitive, and a small cache
of chains can greatly reduce interconnect overhead. However, caching uops at the EMC produces
additional complexity as the core must be certain that the cached chain is the same as the chain
that it has scheduled for execution. This is a solvable problem, requiring additional hardware
overhead, but we do not currently consider caching uop chains at the EMC for simplicity.

3.6 Multiple Memory Controllers

We primarily consider a common quad-core processor design, where one memory controller has
access to all memory channels from a single location on the ring, as shown in Figure 3a. However,
with large core counts multiple memory controllers can be distributed across the interconnect. In
this case, with our mechanism, each memory controller would be compute capable. On cross-
channel dependencies (where one EMC has generated a request to a channel located at a different
enhanced memory controller) the EMC directly issues the request to the new memory controller
without migrating execution of the chain. This cuts the core, a middle-man, out of the process (in
the baseline the original request would have to travel back to the core and then on to the second
memory controller). We evaluate this scenario with an eight-core CMP (Figure 6b) and compare
the results to an eight-core CMP with a single memory controller (Figure 6a) in Section 5.2.

11

4 Methodology

We simulate three systems: a quad core system (Figure 3a) and two eight-core systems (Figure 6).
The details of our system configurations are listed in Table 1. The cache hierarchy of each core
contains a 32KB instruction cache and a 32KB data cache. The LLC is divided into 1MB cache
slices per core. The interconnect is composed of two bi-directional rings, a control ring and a data
ring. Each core has a ring-stop that is shared with the LLC slice. We model a ring where a core
can access the LLC slice at its own ring stop without getting onto the ring (using a bypass) to not
overstate ring contention.

Core 4-Wide Issue, 256 Entry ROB, 92 Entry Reservation Station, Hybrid
Branch Predictor, 3.2 GHz Clock Rate

L1 Caches 32 KB I-Cache, 32 KB D-Cache, 64 Byte Lines, 2 Ports, 3 Cycle La-
tency, 8-way, Write-Through.

L2 Cache Distributed, Shared, 1MB 8-way slice per core, 18-cycle latency, Write-
Back. 4-Core: 4 MB total. 8-Core: 8MB total.

Interconnect | 2 Bi-Directional rings, control (8 bytes) and data (32 bytes). 1 cycle
core to LLC slice bypass. 1 cycle latency between ring stops.

EMC 2-wide issue. 8 Entry Reservation Stations. 32 Entry TLB per core.

Compute 64 Line Data Cache 4-way, 2-cycle access, 1-port. 4-Core: 2 contexts.
8-Core: 4 contexts total. Each context contains: 16 entry uop buffer,
16 entry physical register file. Micro-op size: 6 bytes in addition to any
live-in source data.

EMC Integer: add/subtract/move/load /store. Logical:

Instructions | and/or/xor/not/shift/sign-extend.

Memory Batch Scheduling [24]. 4-Core: 128 Entry Memory Queue. 8-Core: 256

Controller Entry Memory Queue.

Prefetchers Stream: 32 Streams, Distance 32, Degree 2. Markov: 1MB Correlation
Table, 4 addresses per entry. GHB G/DC: 1k Entry Buffer, 12KB total
size. All configurations: FDP [35], prefetch into Last Level Cache.

DRAM DDR3J22], 1 Rank of 8 Banks/Channel, 8KB Row-Size, CAS 13.75ns,
bank-conflicts & queuing delays modeled, 800 MHz bus. 4-Core: 2
Channels. 8-Core: 4 Channels.

Table 1: System Configuration

We model three different prefetchers. A stream prefetcher (based on the stream prefetcher in
the IBM POWERA4 [37]), a Markov prefetcher [14], and a global-history-buffer (GHB) based global
delta correlation (G/DC) prefetcher [25]. Prior work has shown a GHB prefetcher to outperform
a large number of other prefetchers [28]. We find that the stream prefetcher always increases
performance when used with a Markov prefetcher, and therefore employ them together.

The baseline memory controller uses a sophisticated scheduling algorithm, batch scheduling [24],
and Feedback Directed Prefetching (FDP) [35] to throttle prefetchers. The parameters for the EMC

12

listed in Table 1 (TLB size, cache size, number/size of contexts) have been chosen via sensitivity
analysis. In the eight-core, dual memory controller case (Figure 6b), each EMC contains 2 issue
contexts for 4 total contexts, and is otherwise identical to the EMC in the eight-core single memory
controller configuration.

We separate SPEC06 benchmarks into three categories: high, medium, and low memory intensity
by misses per thousand instructions (MPKI). The classification of each SPEC06 benchmark is listed
in Table 2.

High (MPKI >10) mcf, libquantum, bwaves, Ibm, sphinx3, omnetpp, milc, soplex

Medium (MPKI >2) zeusmp, cactusADM, leslie3d, GemsFDTD, wrf

Low (MPKI <= 2) perlbench, bzip2, gce, gobmk, hmmer, sjeng, h264ref, astar,
xalancbmk, gamess, gromac, namd, dealll, povray, calculix,
tonto

Table 2: SPEC06 Workload Classification by Memory Intensity

Using this table we randomly generate a set of 4-core workloads to evaluate. Each benchmark can
only appear once in every workload combination. As the EMC is primarily intended to accelerate
memory intensive applications, we focus on memory intensive workloads in our evaluation. We
generate three sets of workloads, listed in Table 3.

The first set of 10 workloads contains 4 high memory intensity benchmarks. The second contains
5 workload combinations. In each, 2 benchmarks have a high memory intensity and 2 have a
medium memory intensity. The third set of workloads also contains 5 workloads combinations.
In each, 2 benchmarks have a high memory intensity and 2 have a low memory intensity. The
eight-core workloads are two copies of the corresponding quad-core workload.

H1 | bwaves+lbm-+milc+omnetpp M11| soplex+Gems+wrf+mcf

H2 | soplex4+omnetpp+bwaves+libq M12| mcf+zeusmp+Ibm+-cactus

H3 | sphinx3+mcf+omnetpp+milc M13| Gems+wrf+mcf+omnetpp

H4 | mcf+sphinx3+soplex+libqg M14| cactus+Gems+soplex+sphinx3
H5 | Ibm+mcf+libg+bwaves M15| libg+leslie3d+wrf+1bm

H6 | Ibm+soplex+mcf+milc L16 | h264ref+1bm+omnetpp+povray

H7 | bwaves+libq+sphinx3+omnetpp || L17 | tonto+sphinx3+sjeng+mcf
H8 | omnetpp+soplex+mcf+bwaves L18 | bzip2+namd+mcf+sphinx3
H9 | Ibm+mcf+libg+soplex L19 | omnetpp+soplex+namd+xalancbmk
H1Q libg+bwaves+soplex+omentpp L20 | soplex+mcf+bzip2+perlbench

Table 3: Workloads
We simulate these workloads using an in-house cycle-accurate x86 simulator. The simulator

faithfully models core microarchitectural details, the cache hierarchy, and includes a detailed non-
uniform access latency DDR3 memory system. We simulate each workload until every application

13

in the workload has completed at least 50 million instructions from a representative SimPoint [31].

Chip energy is modeled using McPAT [19] and DRAM power is modeled using CACTI [23].
Static power of shared structures is dissipated until the completion of the entire workload. Dynamic
counters stop updating upon each benchmark’s completion. The EMC is modeled as a stripped
down core and does not contain structures like an instruction cache, decode stage, register renaming
hardware, or a floating point pipeline.

We model the chain generation unit by adding the following additional energy events corre-
sponding to the chain generation process at each home core. Each of the uops included in the
chain requires an extra CDB access (tag broadcast) due to the pseudo wake-up process. Each of
the source operations in every uop require a Register Remapping table (RRT) lookup, and each
destination register requires a RRT write since the chain is renamed to the set of physical registers
at the EMC. Each operation in the chain requires an additional ROB read when it is transmitted
to the EMC. Data and instruction transfer overhead to/from the EMC is taken into account via
additional messages sent on the ring.

5 Results

To measure the performance of a multi-core system, we use weighted speedup [32] as a metric,
defined below.

n—1 IPthaTEd

W speedup = Z TPCalone
i=0 i

(1)

We first show the performance results of the quad-core system (Section 5.1) and then the eight-
core system (Section 5.2).

5.1 Quad-Core Evaluation

The performance of the quad-core system, represented in terms of weighted speedup deltas over a
non-prefetching baseline, across the workload combinations listed in Table 3 is shown in Figures 7a
and 7b. The performance gain due to the EMC over each no-prefecthing/prefetching configuration
is illustrated as a hashed bar.

On the memory intensive workloads, our enhanced memory controller (EMC) improves perfor-
mance on average by 15% over a non-prefetching baseline, by 10% over a baseline with stream
prefetching, 13% over a baseline with a GHB prefetcher and 11% over a baseline with both a
stream and Markov prefetcher. Workloads M11-M15/L16-L20 show a smaller performance gain
of 5% over the no-prefetching baseline, 4% over the stream prefetcher and 3% over the GHB and
stream-+Markov prefetcher.

To demonstrate the scalability of the EMC system, we show eight-core results next in Section
5.2.

14

N

o

o

o

%
/
%

=]

NN

N A O ®©
o

o
S

20

/

U

7 0
? I ’ I‘ 7
% 2 U - U

7 7

H Ny NI -
Z‘ E % % 2 7 g

U
H1 H2 H3 H4 H5 H6 H7 H8 H9 HlOgmean
No PF GHBPF MW Stream PF ME Markov + Stream PF Emc|

(a) (b)

o

over No-Prefetching Baseline
over No-Prefetching Baseline
(=)
o

M1l M12 M13 M14 M15 L16 L17 L18 L19 L20gmean
No PF GHBPF Wm Stream PF_ WEM Markov + Stream PF 22 EMC|

% Weighted Speedup Improvement
% Weighted Speedup Improvement

Figure 7: (a) Quad-Core performance increase relative to a no-prefetching baseline for workloads
H1-H10. (b) Quad-Core performance increase relative to a no-prefetching baseline for workloads
M11-L15 and L16-1L20.

5.2 Eight-Core Evaluation

Figure 8a shows the performance benefit for using the EMC in an eight-core system. We evaluate
both the single memory controller configuration (1MC, the first four bars in each workload) and
the dual memory controller configuration (2MC, the second four bars in each workload).

=]
=1
-
o
S
===
=

@
=]

o

=]
o
=]

N
(=)

N
=1
N
o

a2l g O . A ML
M1l M12 M13 M14 M15 L16 L17 L18 L19 L20gmean
IMC: No PF 1MC:GHB PF BN IMC: Stream PF_WEE 1MC: Markov + Stream PF EMC]
2MC: No PF 2MC: GHB PF WE 2MC: Stream PF WM 2MC: Markov + Stream PF

=)

=)

over No-Prefetching Baseline

% Weighted Speedup Improvement

1MC: No PF 1MC: GHB PF WM 1MC: Stream PF W 1MC: Markov + Stream PF EMC]
2MC: No PF 2MC: GHB PF W 2MC: Stream PF MBI 2MC: Markov + Stream PF

(a) (b)

% Weighted Speedup Improvement
over No-Prefetching Baseline
B
(=)

Figure 8: (a) Eight-Core performance relative to a no-prefetching baseline for workloads H1-H10.
(b) Eight-Core performance relative to a no-prefetching baseline for workloads M11-M15 and L16-

L20.

Overall, the performance benefit of the EMC is larger in the eight-core case than the quad-core
case, due to a more heavily contested memory system. The single memory controller configura-
tion gains 17%, 14%, 13%, and 13% over the no-prefetching, stream, GHB and stream-+Markov
prefetchers respectively in Figure 8a. The dual memory controller baseline system shows a slight
(-.8%) performance degradation over the single memory controller system, and gains slightly less
on average over each baseline (16%, 14%, 11%, 12% respectively) than the single memory con-

15

troller, due to the overhead of communication between the EMCs. We do not observe a significant
performance degradation by using two enhanced memory controllers in the system.

For clarity, and ease of explanation (as the eight-core workloads are two of each quad-core
workload) we explore the quad-core configuration in depth in Sections 5.3 through 5.6 to explain
the benefits and drawbacks of the EMC.

5.3 Performance Analysis

To isolate the reasons behind the performance benefit of the EMC we compare several different
statistics from workload 1, which results in a 1% performance gain, to workload 4, a 33% perfor-
mance gain. While we observe no single indicator for the performance improvement that the EMC
provides, we identify three statistics that correlate to increased performance. First, we show the
percentage of total cache misses that the EMC generates in Figure 9a. As workloads 1 and 4 are
both memory intensive workloads consisting of benchmarks with a high MPKI, the EMC generat-
ing a larger percentage of the total cache misses indicates that its latency reduction features result
in a larger impact on workload performance. The EMC generates about 10% of all of the cache
misses in workload 1 and 22% of the misses in workload 4 !.

3 35 . 40

0o M 4

£330 £2 20

o > 25 5! vs

£a EU 0

9520 5y

og L

g £E -20
2210 [y

5 £ 3 -40

°° (5) ¢ 60 -
& HL H2 H3 H4 H5 H6 H7 H8 H9 HlOamean """HL_H2 H3 H4 H5 H6 H7 H8 H9 HlOamean

[No PF GHBPF W Stream PF W Markov + Stream PF| [No PF GHBPF__ WM Stream PF WM Markov + Stream PF|

(a) (b)

Figure 9: (a) The fraction of total cache misses generated by the EMC for Workloads H1 - H10 with
and without prefetching. (b) The percent difference in row-buffer conflict rate over a no-prefetching
baseline for workloads H1 - H10.

Additionally, we expect a reduction in row-buffer conflicts with the EMC, as requests are gen-
erated and issued to memory faster than in the baseline. Thus, a request can reach an open row
before the row can be closed by a competing request. There are two different scenarios where this
occurs. First, the EMC can issue a dependent request that hits in the same row-buffer as the
original request. Second, multiple dependent requests to the same row-buffer are issued together
and can coalesce into a batch. We observe that the first scenario occurs about 15% of the time
while the second scenario is more common, occurring about 85% of the time on average.

1The Markov + Stream PF configuration generates 25% more memory requests than any other configuration on average,
diminishing the impact of the EMC in Figure 9a and one reason for lower relative performance

16

Figure 9b shows the difference in row-buffer conflict reduction. This statistic correlates to how
much total latency reduction the EMC is able to achieve, as the latency for a row-buffer conflict
is much higher than the latency of a row-buffer hit. The reduction in workload 1, less than 1% is
much smaller than the 19% reduction seen from workload 4.

Between these two factors, the percent of total cache misses generated by the EMC and the
reduction in row-buffer conflicts, it is clear that the EMC has a much smaller impact on performance
in workload 1 than workload 4. One other factor is also important to note, the data cache located
at the EMC effectively converts a long-latency LLC lookup into a very short-latency cache hit.
Figure 10a shows that Workload 1 has a much smaller hit rate in the data cache than Workload 4.

These three factors are major reasons behind why the performance gain in Workload 4 is much
more significant than the performance gain in Workload 1.

70 400——
@ 60 £ 350]
S S 300 r
2850 . g
%540 5§20
® & 30 2 2%
[t <150
VT 20 2100
g 10 3

0 °%

HL H2 H3 H4 H5 H6 H7 H8 H9 Hl0amean HI H2 H3 _H4 H5 H6 H7 H8 H9 HlOamean

| No PF GHBPF WM Stream PF WMl Markov + Stream PF| | EMC Request Core Requestl

(a) (b)

Figure 10: (a) The data cache hit rate at the EMC. (b) The latency observed by a cache miss
generated by the EMC vs a cache miss generated by the core for Workloads 1-10 without prefetching.

We also show the raw latency difference for cache misses that are generated by the enhanced
memory controller (EMC) and cache misses that are generated by the core in Figure 10b. Latency is
given in cycles observed by the miss before dependent operations can be executed and is inclusive
of accessing the LLC, interconnect, and DRAM. As such, a cache miss generated by the EMC
observes a 20% lower latency than a cache miss generated by the core on average. Figure 1la
illustrates why this is the case. In the baseline, a request issued by the core must access the global
interconnect before querying the LLC (Steps #1/2). After a miss in the LLC, the request accesses
the global interconnect again and is sent to the memory controller (Steps #3/4). After the DRAM
access is complete, the data returns to the chip and accesses the interconnect again before it is
installed in the cache hierarchy and used by the core (Steps #5,6,7,8).

With a compute capable memory controller, data does not have to return to the core before
execution can begin (Steps #7/8). Additionally, the miss predictor at the EMC allows EMC
requests to bypass the LLC, removing all global interconnect access from the critical path of the
miss (Steps #1,2,3).

We attribute the latency difference between the EMC and the baseline in Figure 10b to these
three sources: bypassing the interconnect back to the core, bypassing the LLC access, and a higher

17

Core

v

A

@ | Memory 20
® Controller
‘ Hl1 H2 H3 H4 H5 H6 H7 H8 H9 HlOamean

@‘ DRAM ‘ | Interconnect LLC Lookup M Row Buﬂ‘erl

(a) (b)

\
D Interconnect \
\
\
v \
\
@ - ' 100
LLC N !
NI
\
\/’ w 80
¢ I K
v e
% ‘ Interconnect ’ I 60
[
-
S
O

Figure 11: (a) Steps to uncover and service a cache miss. Solid lines denote the outgoing request
and dashed lines denote data returning. (b) The average number of cycles saved by the EMC on
each memory request.

percentage of row-buffer hits. The average number of cycles saved by these factors are shown in
Figure 11b.

As we attribute much of the increase in performance to a reduction in row-buffer conflicts,
we demonstrate that the performance gain of the EMC cannot simply be obtained by increasing
memory banks and bandwidth. Figure 12 shows the sensitivity of the memory intensive workloads
to different DRAM configurations, from 1 channel with 1 rank to 4 channels with 4 ranks per
channel. For the 1 channel and 2 channel cases (up to 2 channels 4 ranks), the performance benefit
of the EMC relative to the no EMC baseline increases as the number of banks increases. This is
because more banks present the EMC with a greater opportunity to create a row-buffer hit. At 2
channels 4 ranks and 4 channels, the large amount of memory bandwidth causes some reduction
in the benefit of the EMC. However, even at 4 channel/4 ranks, our proposal provides a 11%
performance gain over the baseline.

5.4 Prefetching and the Enhanced Memory Controller

In this section we discuss the interaction between the EMC and prefetching when they are employed
together. Figure 9a shows that the fraction of total cache misses that are generated by the EMC
with prefetching is, on average, about 2/3 of the fraction of total cache misses generated without
prefetching. However, the total number of memory requests is different between the prefetching
and the non-prefetching case. This is because the prefetcher generates many memory requests,
some requests are useful while others are useless. Thus, the impact of prefetching on the EMC is
more accurately illustrated by considering how many fewer cache misses the EMC generates when
prefetching is on versus when prefetching is off. This fraction is shown below in Figure 13.

On average, the Stream/GHB/Markov+Stream prefetchers can prefetch about 21%, 30%, 48%

18

o
o

NN W
o w
o o

5 150

lclr 1c2r 1cd4r 2clr 2c2r 2c4r 4clr 4c2r 4cér
[No PF GHBPF SN Stream PF NN Markov + Stream PF 2 EMC]

% Weighted Speedup Improvement
over 1C1R No-EMC Baseline

Figure 12: Performance sensitivity to varying memory channels and ranks over a 1 channel 1 rank
(1CI1R) baseline.

(=2}
o

o

o

= N W A WU
= =]

o

that are Prefetched

% of EMC Requests

o

H1 H2 H3 H4 H5 H6 H7 HS H9 Hloamean

[Stream PF GHB PF W Markov + Stream PF|

Figure 13: The percentage of cache misses generated by the EMC without prefetching that have
been converted into a cache hit when employing a prefetcher.

of the requests that the EMC issued in the non-prefetching case respectively, thus converting what
would have been a cache miss to a cache hit. This shows that prefetching does diminish the benefit
of the EMC to some extent, but the EMC also supplements the prefetcher by reducing the latency
to access memory addresses that the prefetcher can not predict ahead of time.

5.5 Enhanced Memory Controller Overhead

We now quantify the overhead of the enhanced memory controller (EMC). Overall, we observe an
33% average increase in data ring activity across Workloads H1-H10 while using the EMC. This
overhead consists of two main components: shipping source registers (live-ins) and uops to the
EMC and destination registers (live-outs) back from the EMC.

Figure 14a shows the average number of live-ins for each of the workloads in Figure 7a. On
average, this results in less than a cache line of input data shipped to the EMC per executed chain,
a relatively small amount of input data.

Figure 14b shows the average chain length in terms of uops. The chain length defines both the
number of uops which must be sent to the EMC, and the number of registers that must be shipped
back to the core. This is because we ship all physical registers back to the core as described in
Section 3.3 and each uop produces a live-out/physical register.

19

=
o

Average Number of Live-Ins
o N » (=)} ©
Average Chain Length (uops)

h
h

o N b O ®

TF Hg

H1 H2 H3 H4 H5 H6 H7 H8 H9 HlO0amean

HL M2 H3 H4 H5 H6 H7 HB HO HlOamean
(a) (b)

Figure 14: (a) The number of live-ins on average for each workload (H1-H10). (b) The average
number of uops in each chain executed at the EMC for each workload (H1-H10).

Again, the destination registers that are shipped back to the home core result in roughly a cache
line of data. Transmitting the micro-operations results in a transfer of 1-2 cache lines on average.
This relatively small amount of data transfer motivates why we do not see a performance loss
due to the EMC. The interconnect overhead of the EMC for each executed chain is small and we
accelerate the issue and execution of integer dependent operations only if they exist.

5.6 Energy and Area Evaluation

The energy results for Workloads H1-H10 and M11-L.20 are shown in Figure 15a and Figure 15b
respectively. Both figures present the cumulative results for the energy consumption of the chip
and DRAM as a percentage difference in energy consumption from the no-EMC, no-prefetching
baseline.

N
S

Now
o o

—
o

% Difference in
Energy Consumption
o

% Difference in
Energy Consumption
o

-10
-20 -4 I
30 HlI H2 H3 H4 H5 H6 H7 H8 H9 HlOgmean -6 M1l M12 M13 M14 M15 L16 L17 L18 L19 L20gmean
EMC GHB EMC + GHB W Stream PF EMC GHB EMC + GHB W Stream PF
EZA EMC + Stream PP WM Markov + Stream PF [EMC + Markov + Stream PF EZZ EMC + Stream PF M Markov + Stream PF [EMC + Markov + Stream PF
(a))

Figure 15: (a) Energy consumption difference relative to a no-prefetching baseline for workloads
H1-H10. (b) Energy consumption difference relative to a no-prefetching baseline for workloads
M11-L20.

20

Overall, we observe that the EMC is able to reduce energy consumption (Chip+DRAM) on
average by about 11% for the memory intensive workload set and by about 5% for Workloads 11-
20. We find this is due to two factors: a reduction in static energy consumption (as the performance
improvement caused by the EMC decreases the total execution time of a workload), and dynamic
energy savings due to the reduced row-buffer conflict rate in the DRAM system.

Based on McPAT, the entire area overhead of the EMC is 5.0mm?, (including 7.5KB of additional
storage) roughly 5% of total chip area. As McPAT estimates the area of an out-of-order core
including I/D-Caches as 21.22mm?, and a typical design includes one memory controller for at
least four cores, the area overhead/core is 6%. This additional area leads to a 6.5% increase in
static power. The peak dynamic power of the chip is estimated to increase by 5.4%.

In the prefetching cases, Figure 15a illustrates the cost of prefetching. On average, all three of
the prefetchers we evaluated cause an increase in energy consumption. This is due to inaccurate
prefetches, which occur despite the fact that our baseline throttles inaccurate prefetchers (FDP).
As in the performance results, we also observe that the prefetcher and EMC combined result in
better energy efficiency than just using the prefetcher.

6 Related Work

To our knowledge, this is the first work that proposes adding compute capability to the memory
controller to automatically reduce memory access latency for chains of dependent demand requests.
Related prior work also attempts to reduce the latency seen by a cache miss using prefetcher
improvements and/or moving computation closer to memory. Here we will briefly discuss these
prior papers.

Advanced hardware prefetching techniques such as correlation prefetching [4, 14, 17, 34] aim to
reduce average memory access latency by issuing requests for data that the processor is predicted
to use ahead of the demand access stream. Other hardware prediction based mechanisms [5, 30]
attempt to also predict future memory accesses by storing additional data regarding pointers and
access patterns.

Another form of prefetching involves spawning speculative thread contexts [7], [42, 6] or other
forms of precomputation [2, 20, 40, 36] to execute ahead of the demand access stream. These
contexts normally execute filtered portions of the instruction stream. [33] combine correlation
prefetching and an extra execution context by proposing that a user level thread executing either
in a DRAM chip or at the memory controller can leverage the available DRAM capacity to store
the large correlation tables required for correlation prefetching.

Content-directed prefetching [8] does not require additional state to store pointers or additional
execution contexts, but greedily prefetches using values that it believes to be addresses. This
results in a large number of useless prefetches. [10] developed mechanisms to throttle inaccurate
content-directed prefetchers.

21

Prior work has also considered enhancing the memory controller. [3] proposed enhancements to
the memory controller that include address remapping and prefetching capabilities.

Memory-side prefetching moves the hardware that prefetches data from the chip closer to the
main memory system [1, 11]. [41] track dependencies between two static instructions and then
dynamically insert new instructions to execute them closer to memory. More generally, fabricating
logic and memory on the same process has been proposed [16, 26] and recently revisited with
Micron’s Hybrid Memory Cube [27]. To this end, industry is also pursuing different methods of
integrating compute and memory controllers [9].

Our proposal differs from prior work in that we do not prefetch data, all of the requests sent
by the EMC are demand requests, instead a dependent chain of computation is automatically
extracted from the core and dynamically moved closer to memory. This allows the EMC to reduce
access latency for requests that may be difficult to prefetch accurately without the negative effects
of prefetching (inaccurate/untimely prefetch requests wasting bandwidth). As we are transferring
execution, our proposal shares similarities with execution migration schemes [15, 21], which also
move execution closer to data. However, execution migration has been primarily concerned with
reducing the overhead of cache coherence in a shared memory multiprocessor. We focus on reducing
memory access latency with very fine-grained dynamic migration.

7 Conclusion

We explore partitioning code between the core and the memory controller. This results in an
approach to reduce the effective latency observed by memory operations by executing small chains of
micro-ops at the memory controller instead of the core. These chains of operations are dynamically
identified by the existing out-of-order unit once a cache miss is known to have occurred, and
transparently migrated to an Enhanced Memory Controller for execution.

By executing the dependent operations at the EMC instead of the home core we observe a 15%
average gain in weighted speedup and a 11% reduction in average energy consumption over a system
without prefetching. Additionally, we observe a 13% performance gain over a GHB prefetcher, the
highest performing prefetcher in our evaluation.

This paper makes a case for compute capable memory controllers. We introduce one mechanism
for offloading computation and mechanisms for communication between main processor cores and
an EMC. Other techniques can be built upon this framework that can exploit the proposed sub-
strate in different ways to amortize its complexity. For example, while the current mechanism does
not require programmer intervention, exposing the EMC to the expert programmer can further ac-
celerate latency-critical, memory-bound code. As main memory latencies remain roughly constant
architects must search for other avenues to reduce the effective latency seen by memory operations
for applications that cannot hide memory access latency with parallelism.

22

References

1]

2]

[10]

[11]

[12]

[13]

[14]

T. Alexander and G. Kedem. Distributed prefetch-buffer/cache design for high performance
memory systems. In HPCA-2, 1996.

M. Annavaram, J. M. Patel, and E. S. Davidson. Data prefetching by dependence graph
precomputation. In ISCA-29, 2001.

J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand, A. Davis, C.-C. Kuo,
R. Kuramkote, M. Parker, L. Schaelicke, and T. Tateyama. Impulse: Building a smarter
memory controller. In HPCA-5, 1999.

M. J. Charney and A. P. Reeves. Generalized correlation-based hardware prefetching. Tech-
nical Report EE-CEG-95-1, Cornell Univ., 1995.

J. D. Collins, S. Sair, B. Calder, and D. M. Tullsen. Pointer cache assisted prefetching. In
MICRO-35, 2002.

J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen. Dynamic speculative precomputation.
In MICRO-8/, 2001.

J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery, and J. P. Shen.
Speculative precomputation: long-range prefetching of delinquent loads. In ISCA-28, 2001.

R. Cooksey, S. Jourdan, and D. Grunwald. A stateless, content-directed data prefetching
mechanism. In ASPLOS-X, 2002.

P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes. An efficient and scalable
semiconductor architecture for parallel automata processing. 2014.

E. Ebrahimi, O. Mutlu, and Y. N. Patt. Techniques for bandwidth-efficient prefetching of
linked data structures in hybrid prefetching systems. In HPCA-15, 2009.

C. J. Hughes and S. Adve. Memory-side prefetching for linked data structures. In Journal of
Parallel and Distributed Computing, 2001.

Intel Transactional Synchronization Extensions. http://software.intel.com/sites/
default/files/blog/393551/sf12-arcs004-100.pdf, 2012.

Intel 64 and IA-32 Architectures Optimization Reference Manual. http:
//www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-optimization-manual.pdf, 2014. [Online; Page 2-3; Accessed
14-April-2014].

D. Joseph and D. Grunwald. Prefetching using markov predictors. In ISCA-24, 1997.

23

[15]

[16]

[17]

[18]

[19]

[20]

O. Khan, M. Lis, S. Devadas, O. Khan, M. Lis, and S. Devadas. Em2: A scalable shared-
memory multicore architecture. In MIT CSAIL TR 2010-030, 2010.

P. M. Kogge. Execube-a new architecture for scaleable mpps. In Proceedings of the 1994
International Conference on Parallel Processing - Volume 01.

A.-C. Lai, C. Fide, and B. Falsafi. Dead-block prediction and dead-block correlating prefetch-
ers. In ISCA-28, 2001.

D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu. Tiered-latency dram: A
low latency and low cost dram architecture. In HPCA-19, 2013.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. Mec-
PAT: an integrated power, area, and timing modeling framework for multicore and manycore
architectures. In MICRO-/2, 2009.

C.-K. Luk. Tolerating memory latency through software-controlled pre-execution in simulta-
neous multithreading processors. In ISCA-28, 2001.

P. Michaud. Exploiting the cache capacity of a single-chip multi-core processor with execution
migration. In Software, IEE Proceedings-, pages 186—-195, 2004.

MT41J512M4 DDR3 SDRAM Datasheet Rev. K Micron Technology, Apr. 2010. http://
download.micron.com/pdf/datasheets/dram/ddr3/2Gb_DDR3_SDRAM.pdf, 2010.

N. Muralimanohar and R. Balasubramonian. Cacti 6.0: A tool to model large caches. In HP
Laboratories, Tech. Rep. HPL-2009-85, 2009.

O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: Enhancing both perfor-
mance and fairness of shared DRAM systems. In ISCA-35, 2008.

K. J. Nesbit and J. E. Smith. Data cache prefetching using a global history buffer. In HPCA-10,
2004.

D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas,
and K. Yelick. A case for intelligent ram. In IEEE Micro, March 1997.

J. T. Pawlowski. Hybrid Memory Cube (HMC). In Proceedings of Hot Chips, volume 23, 2011.

D. G. Perez, G. Mouchard, and O. Temam. Microlib: A case for the quantitative comparison
of micro-architecture mechanisms. In MICRO-37, 2004.

M. K. Qureshi and G. H. Loh. Fundamental latency trade-off in architecting dram caches:
Outperforming impractical sram-tags with a simple and practical design. In MICRO-45, 2012.

24

[30]

31]

32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

A. Roth and G. S. Sohi. Effective jump-pointer prefetching for linked data structures. In
ISCA-26, 1999.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing large
scale program behavior. In ASPLOS-X, 2002.

A. Snavely and D. M. Tullsen. Symbiotic job scheduling for a simultaneous multithreading
processor. In ASPLOS-1X, 2000.

Y. Solihin, J. Lee, and J. Torrellas. Using a user-level memory thread for correlation prefetch-
ing. In ISCA-29, 2002.

S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Spatial memory stream-
ing. In ISCA-33, 2006.

S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed prefetching: Improving the
performance and bandwidth-efficiency of hardware prefetchers. In HPCA-13, 2007.

K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream processors: improving both
performance and fault tolerance. In ASPLOS-9, 2000.

J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy. POWER4 system microar-
chitecture. IBM Technical White Paper, Oct. 2001.

M. V. Wilkes. The memory gap and the future of high performance memories, March 2001.

W. A. Wulf and S. A. McKee. Hitting the memory wall: implications of the obvious. In
SIGARCH Comput. Archit. News, March 1995.

C. Yang and A. R. Lebeck. Push vs. pull: Data movement for linked data structures. In
1CS-2000, 2000.

S. Yehia, J.-F. Collard, and O. Temam. Load squared: Adding logic close to memory to reduce
the latency of indirect loads with high miss ratios. MEDEA, 2004.

C. Zilles and G. Sohi. Execution-based prediction using speculative slices. In ISCA-28, 2001.

25

