
Performance and Energy Efficiency via

an Adaptive MorphCore Architecture

Khubaib

High Performance Systems Group
Department of Electrical and Computer Engineering

The University of Texas at Austin

Austin, Texas 78712-0240

TR-HPS-2014-002

July 2014

This page is intentionally left blank.

Copyright

by

Khubaib

2014

The Dissertation Committee for Khubaib

certifies that this is the approved version of the following dissertation:

Performance and Energy Efficiency via

an Adaptive MorphCore Architecture

Committee:

Yale N. Patt, Supervisor

Derek Chiou

Mattan Erez

Keshav Pingali

Chris Wilkerson

Performance and Energy Efficiency via

an Adaptive MorphCore Architecture

by

Khubaib, B.S.E.E.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2014

Dedicated to my mother, Ammi Jaan

Acknowledgments

First and foremost, I thank my advisor, Professor Yale N. Patt. I learned

the fundamentals of computer architecture and microprocessor design in his 360N

and 382N classes. His emphasis on fundamentals has always been inspirational to

me. Professor Patt created a great environment for learning and doing impactful

research. His feedback on my thesis and on all my other research projects has

strengthened my work. He taught me a lot about communicating effectively via

writing and presentations. I thank him for training me as a computer architect as

well as teaching me many valuable real-life lessons. Lastly, I thank him for taking

good care of his students.

I thank Aater Suleman for being a great friend and mentor, for helping me

in writing papers, and for his many technical contributions to my research. He has

shown me the value of creating and quickly evaluating first-order insights. Aater

introduced me to the world of heterogeneous computing from which the idea of

MorphCore came about. Additionally, I have benefited from simulation infrastruc-

ture that he developed. I am thankful to him for always being there to listen to my

problems and to help me, in matters related to both research and life in general.

I thank the members of the HPS research group that worked with me while

I was in the group: Peter Kim, José Joao, Chang Joo Lee, Eiman Ebrahimi, Rustam

Miftakhutdinov, Veynu Narasiman, Carlos Villavieja, Marco A. Z. Alves, Milad

Hashemi, Faruk Guvenilir, and Ben (Ching-Pei) Lin. They have been great friends

and colleagues. The interactions with them have improved my research and have

helped me develop as a computer architect. I thank José for always being there

to answer any question I have, for maintaining our group’s infrastructure, and for

helping me with my papers. I thank Chang Joo for helping me with my questions

on the memory system and I thank Rustam for providing insightful critique on my

ideas, and for helping me with my simulation infrastructure. I thank Milad for

vii

his candid feedback on my ideas and for his many contributions to MorphCore

research and paper. I thank Eiman, Veynu, Carlos, Marco, Faruk, and Ben for

useful feedback on my research, for helping me in writing, and for teaching me

computer architecture. I also thank them for proofreading my thesis. The best thing

about being in the HPS research group with all of these people was the feeling that

I can go talk to any one of them anytime about anything, and afterwards I would

be happy that I did. Besides the HPS group members, I would like to express my

gratitude to the following people and organizations.

I thank the members of my committee, Professor Derek Chiou, Professor

Mattan Erez, Professor Keshav Pingali, and Chris Wilkerson for providing useful

feedback.

I thank Nikhil Patil for always challenging my ideas, providing insightful

feedback, reading my drafts, and for being a great friend. I have always learned

something new after talking to him. I thank Moinuddin Qureshi for improving my

understanding of caching and the memory system. I also thank him and Viji Srini-

vasan for mentoring me during my internship at IBM. I thank Rob Chappell, Chris

Wilkerson, Doug Carmean, and Jared Stark for mentoring me during my internships

at Intel and for useful discussions on research. Chris provided insightful feedback

on many ideas that I explored during my work on MorphCore. I thank Onur Mutlu

for useful discussions on research and for always pushing me to do more. I thank

Francis Tseng, Bharath Balasubramanian, Chris Fallin, Dimitris Prountzos, George

(Chia-Chih) Chen, and Hari Angepat for their friendship and useful discussions. I

thank Dr. Shoab A. Khan for being a role model when I was going through my

undergraduate education and for always being extremely helpful.

I thank Leticia Lira for her outstanding administrative support to HPS re-

search group, Melanie Gulick for helping with matters related to ECE department

and paperwork, and Intel for providing me with a PhD Fellowship.

My life in Austin and at UT would not have been good without the good

company of my friends: Owais Khan, Zubair Malik, Umar Farooq, Amber Hassaan,

viii

Faisal Iqbal, Tauseef Rab and Rashid Kaleem. I have enjoyed many nights and

dinners with them discussing all sorts of random things. I especially thank my

longtime roommate, Owais, for his great company. I thank my friends Bilal Amin,

Shahzad Yasin, Bilal Saqib, and Imran Bhai for all the wonderful time we had

together in Pakistan. These memories have kept me going during the tough times

in graduate school.

Finally, I would like to thank my family. This thesis is dedicated to my

mother. Without her infinite love, support, and confidence I would not have come

to graduate school and finished my PhD. She has taught me the value of education,

hard work and perseverance. I owe all my successes to her, and no words could

express my gratitude to her. I am greatly thankful to my sisters, Ayesha and Fatima,

for continuous love and support, and to my brother, Ubaid, who took care of matters

at home while I was away. I would like to thank my wife, Sana, for her love and

support during the last one and a half years of my PhD, and for pushing me to

defend. I have been fortunate to have her in my life. Today I would also like to pay

tribute to the memory of my late father. He would have been very happy to see me

completing my formal education. The values he taught me at very young age have

made me who I am today. My family has been a source of great comfort for me,

and this thesis would be meaningless without them.

Khubaib

May 2014, Austin, TX

ix

Performance and Energy Efficiency via

an Adaptive MorphCore Architecture

Khubaib, Ph.D.

The University of Texas at Austin, 2014

Supervisor: Yale N. Patt

The level of Thread-Level Parallelism (TLP), Instruction-Level Parallelism

(ILP), and Memory-Level Parallelism (MLP) varies across programs and across

program phases. Hence, every program requires different underlying core microar-

chitecture resources for high performance and/or energy efficiency. Current core

microarchitectures are inefficient because they are fixed at design time and do not

adapt to variable TLP, ILP, or MLP.

I show that if a core microarchitecture can adapt to the variation in TLP,

ILP, and MLP, significantly higher performance and/or energy efficiency can be

achieved. I propose MorphCore, a low-overhead adaptive microarchitecture built

from a traditional OOO core with small changes. MorphCore adapts to TLP by

operating in two modes: (a) as a wide-width large-OOO-window core when TLP is

low and ILP is high, and (b) as a high-performance low-energy highly-threaded in-

order SMT core when TLP is high. MorphCore adapts to ILP and MLP by varying

the superscalar width and the out-of-order (OOO) window size by operating in four

x

modes: (1) as a wide-width large-OOO-window core, 2) as a wide-width medium-

OOO-window core, 3) as a medium-width large-OOO-window core, and 4) as a

medium-width medium-OOO-window core.

My evaluation with single-thread and multi-thread benchmarks shows that

when highest single-thread performance is desired, MorphCore achieves perfor-

mance similar to a traditional out-of-order core. When energy efficiency is desired

on single-thread programs, MorphCore reduces energy by up to 15% (on average

8%) over an out-of-order core. When high multi-thread performance is desired,

MorphCore increases performance by 21% and reduces energy consumption by

20% over an out-of-order core. Thus, for multi-thread programs, MorphCore’s en-

ergy efficiency is similar to highly-threaded throughput-optimized small and medium

core architectures, and its performance is two-thirds of their potential.

xi

Table of Contents

Acknowledgments vii

Abstract x

List of Tables xvi

List of Figures xvii

Chapter 1. Introduction 1

1.1 The Problem . 1

1.2 The Solution . 3

1.3 Thesis Statement . 4

1.4 Contributions . 4

1.5 Dissertation Organization . 5

Chapter 2. Overview of MorphCore Architecture 6

2.1 Baseline Large OOO Core . 6

2.1.1 Energy Cost of OOO Execution 7

2.2 Adapting to TLP . 8

2.2.1 The Potential of In-Order SMT 8

2.2.2 Repurposing Core’s Resources 10

2.2.3 Operating Modes . 10

2.3 Adapting to ILP and MLP . 10

2.3.1 Energy Cost of Wide Width 11

2.3.2 Problem: Different Programs Benefit Differently from Wide
Width and/or Large OOO Window 12

2.3.3 Our Solution: Dynamically Vary Width and Window Size . . 14

Chapter 3. Adapting to Thread-Level Parallelism (TLP) 16

3.1 MorphCore Microarchitecture . 16

3.1.1 Overview . 16

3.1.2 Fetch and Decode Stages. 17

3.1.3 Rename Stage . 17

xii

3.1.4 Select and Wakeup . 20

3.1.5 Execution and Commit . 22

3.1.6 Load/Store Unit . 22

3.1.7 Recovering from Branch Mispredictions 23

3.2 MorphCore Discussion . 24

3.2.1 Area and Power Overhead of MorphCore 24

3.2.2 Timing/Frequency Impact of MorphCore 24

3.2.3 Turning Off Structures in InOrder Mode 25

3.2.4 Interaction with OS . 25

Chapter 4. Mode Switching Policy for Adapting to TLP and Evaluation 26

4.1 When to Operate in OutofOrder Mode or in InOrder Mode? 26

4.1.1 Changing Mode from OutofOrder to InOrder 27

4.1.2 Changing Mode from InOrder to OutofOrder 27

4.1.3 Overhead of Changing the Mode 28

4.1.4 Handling Medium TLP . 29

4.2 Experimental Methodology . 29

4.2.1 Workloads . 31

4.3 Results . 33

4.3.1 Single-Thread Results . 34

4.3.2 Multi-Thread Results . 37

4.3.3 Single-thread and Multi-thread Results Summary 41

4.3.4 Sensitivity of MorphCore’s Results to Frequency Penalty . . . 41

4.3.5 Comparison with an 8-way SMT OOO Core 42

4.3.6 Effect of a Limited Capacity/Bandwidth Memory System . . 47

4.3.7 Effect of Increasing the Superscalar Width 50

Chapter 5. Adapting to Instruction-Level Parallelism (ILP) and Memory-
Level Parallelism (MLP) 52

5.1 InOrder Mode for Single-threaded Programs 52

5.1.1 Problem: Poor Energy Efficiency 53

5.2 Microarchitectural Support . 54

5.2.1 Reducing the Superscalar Width 55

5.2.1.1 Pipeline Latches and the Clock Network 56

5.2.1.2 Decode, Rename and Execution Stages 57

5.2.2 Reducing the OOO Window Size 59

xiii

Chapter 6. Mode Switching Policy for Adapting to ILP/MLP and Evalu-
ation 61

6.1 MorphCore Procedure for Changing Modes 61

6.2 The Sampling-Based Mode Switching Policy 62

6.3 Other Mode Switching Policies . 64

6.3.1 Performance-stats based policies 64

6.3.1.1 Determining the window size based on MLP 64

6.3.1.2 Determining the width based on instructions issued
per cycle . 64

6.3.1.3 Determining the width and window size based on
branch mispredictions 65

6.3.1.4 Determining the window size based on ROB and RS
occupation . 65

6.3.2 Reducing the Overhead of Sampling with Signature-based
Policies . 65

6.3.2.1 Code-based signature 66

6.3.2.2 Performance-stats based signature 66

6.4 Evaluation Methodology . 66

6.5 Results . 68

6.5.1 Energy Savings . 68

6.5.2 Analysis . 69

6.5.3 Oracle Switching Policy . 73

6.5.4 Dynamic Voltage and Frequency Scaling 75

6.5.5 Quantifying the Frequency of Phase Changes 77

6.5.6 Comparison to Static Configurations 79

6.5.7 Varying Only One Parameter (the Width or the Window Size) 81

6.5.8 Comparison with the Cores Optimized for Low-Power 84

Chapter 7. Related Work 85

7.1 Reconfigurable Cores . 85

7.2 Heterogeneous Chip-Multiprocessors 87

7.3 Adapting a Core’s Resources to ILP and MLP 87

7.4 Techniques to Scale a Core’s Performance and Energy 89

7.4.1 Dynamic Voltage and Frequency Scaling 89

7.4.2 Simultaneous Multi-Threading 89

Chapter 8. Conclusion 90

8.1 Summary . 90

8.2 Limitations and Future Work . 90

xiv

Bibliography 93

xv

List of Tables

4.1 Configuration of the simulated machine 30

4.2 Characteristics of Evaluated Architectures 32

4.3 Throughput of Evaluated Architectures 32

4.4 Details of the simulated workloads 33

4.5 Micro-op throughput (uops/cycle) on OOO-2 38

6.1 Configuration of the simulated machine 67

xvi

List of Figures

2.1 Out-of-Order core microarchitecture 7

2.2 Fraction of energy spent on different hardware resources 8

2.3 Performance of black with SMT 9

2.4 Fraction of energy per instruction spent on different hardware re-
sources . 11

2.5 Performance of cores with different widths and execution substrates.
12

2.6 Overview of MorphCore modes when it adapts to ILP and MLP.
In (b)-(e), Solid boxes are ON, dotted and shaded boxes are turned
OFF. 14

3.1 The MorphCore microarchitecture 16

3.2 Microarchitecture of the Fetch stage 17

3.3 Microarchitecture of the Rename stage 18

3.4 Microarchitecture of the Rename stage 19

3.5 MorphCore Wakeup and Selection Logic 20

3.6 Load / Store unit . 23

4.1 Percentage of execution time depending on the number of active
threads. 34

4.2 Single-thread performance results. 35

4.3 Single-thread energy results. 36

4.4 Multi-thread performance results 37

4.5 Multi-thread energy results . 40

4.6 Single-Thread performance-energy trade-off of MorphCore’s fre-
quency penalty. x-axis is performance and y-axis is energy normal-
ized to OOO-2. 42

4.7 Multi-Thread performance-energy trade-off of MorphCore’s frequency
penalty. x-axis is performance and y-axis is energy normalized to
OOO-2. 42

4.8 Single-Thread performance and energy of MorphCore vs. 8-way
SMT OOO core. 45

4.9 Multi-Thread performance and energy of MorphCore vs. 8-way
SMT OOO core. 46

4.10 Effect of Mem system parameters. 48

xvii

4.11 Effect of Mem system parameters (contd.). 49

4.12 Benefit of increasing the width for the baseline OOO-2 core. 51

4.13 Sensitivity to the issue width showing benefit of the increased width
for OOO-4 and MorphCore . 51

5.1 Performance-energy trade-off of various operating points. Aver-
aged over all SPEC 2006 benchmarks 54

5.2 The MorphCore microarchitecture with the ability to reduce width
and window size . 55

5.3 Turning off pipeline latches and clock network 56

5.4 Turning off half of instruction length detection logic and decoders. . 57

5.5 Turning off half of the dependency check logic in the Rename stage. 58

5.6 Turning off execution units and bypass wires 58

5.7 Associative (CAM) and indexed (RAM) structures that support re-
ducing the size at runtime . 59

6.1 Sampling-based mode switching policy 62

6.2 Energy-efficiency of MorphCore over OOO core. 69

6.3 MorphCore’s modes coverage (fraction of instructions executed). . . 71

6.4 Performance-energy trade-off of various MorphCore’s configura-
tions for several SPEC2006 benchmarks. X-axis is performance
and Y-axis is energy consumption normalized to OOO core. 72

6.5 Performance-energy trade-off of MorphCore with M=Sampling and
O=Oracle mode switching policies. X-axis is performance and Y-
axis is energy consumption normalized to OOO core. 74

6.6 Performance-energy trade-off of OOO only-frequency scaling vs.
MorphCore. M=MorphCore, S=Slowed-down OOO, 5%, 10%, and
20%. X-axis is performance and Y-axis is energy consumption nor-
malized to OOO core. 76

6.7 Performance-energy trade-off of Oracle policies with different in-
terval sizes. X-axis is performance and Y-axis is energy consump-
tion normalized to OOO. 78

6.8 Performance and energy of MorphCore compared to 3 static config-
urations. Three static configurations: MorphCore always executing
in 2W,48E mode, 4W,48E mode, and in 2W,192E mode. 80

6.9 Performance-Energy trade-off of varying only OOO window size.
X-axis is performance and Y-axis is energy normalized to OOO core. 82

6.10 Performance-Energy trade-off of varying only superscalar width.
X-axis is performance and Y-axis is energy normalized to OOO core. 83

6.11 Performance-Energy trade-off of MorphCore-LE vs. cores that are
optimized for low-power. X-axis is performance and Y-axis is en-
ergy normalized to OOO. 84

7.1 Effect of increasing latencies on an OOO core performance 86

xviii

Chapter 1

Introduction

1.1 The Problem

The level of Thread-Level-Parallelism (TLP), Instruction-Level-Parallelism

(ILP), and Memory-Level Parallelism (MLP) varies across programs and program

phases. Within a single program TLP is defined as the number of concurrently

active threads. A thread is active when it is not waiting for a synchronization event.

TLP varies at run-time because of software requirements but also due to inter-thread

synchronization. The two other factors, ILP and MLP are defined similarly. ILP

is defined as the number of instructions executed in parallel, and MLP is defined

as the number of memory requests issued in parallel. Within a single thread of

execution, ILP and MLP often vary across programs and program phases because

of the inherent structure of the programs and input set dependencies. Traditional

core microarchitectures do not dynamically adapt to the changes in TLP, ILP, and

MLP available in programs. This leads to wasted opportunity and inefficiency.

Inefficiency by not adapting to TLP. Today’s cores do not dynamically

adapt to changes in the TLP. In general, industry builds two types of cores: large

out-of-order cores (e.g., Intel’s Haswell, IBM’s Power 8), and small (either in-

order or small out-of-order) cores (e.g., Intel’s MIC a.k.a Xeon Phi, Sun’s Niagara,

ARM’s A15).

Large out-of-order (OOO) cores can provide high single-thread performance

by exploiting available ILP and MLP, but they are energy-inefficient for multi-

threaded programs because they unnecessarily waste energy on exploiting ILP and

MLP instead of leveraging the available TLP. In contrast, small cores do not waste

energy on wide superscalar OOO execution, but rather provide high parallel through-

1

put at the cost of poor single thread performance.

Heterogeneous (or Asymmetric) Chip Multiprocessors (ACMPs) [24, 25,

12, 29, 38] have been proposed to handle this software diversity. ACMPs provide

one or few large cores for speedy execution of single-threaded programs and many

small cores for high throughput in multi-threaded programs. Unfortunately, ACMPs

require that the number of large and small cores be fixed at design time, which

inhibits adaptability to varying degrees of software TLP.

To overcome the limitation of ACMPs, researchers have proposed CoreFusion-

like architectures [19, 3, 21, 34, 33, 44, 10, 11]. They propose a chip with small

cores to provide high throughput performance in multi-threaded programs. These

small cores can dynamically “fuse” into a large core when executing single-threaded

programs. Unfortunately, the fused large core has low performance and high en-

ergy consumption compared to a traditional out-of-order core for two reasons: 1)

there are additional latencies between the pipeline stages of the fused core, thus in-

creasing the latencies of the core’s “critical loops”, and 2) mode switching requires

instruction cache flushes and incurs the cost of data migration between the data

caches of small cores.

Inefficiency by not adapting to ILP and MLP. Large out-of-order (OOO)

cores provide high single thread performance only when the program has high

ILP/MLP; these cores waste energy on trying to exploit ILP/MLP when the pro-

gram’s inherent structure does not exhibit it. On the other hand, small cores’ single

thread performance is always low irrespective of the availability of ILP/MLP in the

program.

Previously, researchers have proposed adapting a large core’s resources to

ILP and MLP in order to save energy. All of these proposals focus on adapting

only one resource of the core to the requirements of the program. These proposals

include varying only the number of functional units that are enabled [2, 28, 16], the

size of the instruction queue [5, 6], the size of the OOO window [32], and the width

of the core [31]. However, variation in ILP and MLP puts different requirements

2

on different structures of the core simultaneously. Thus, varying only one resource

does not provide optimal energy efficiency.

1.2 The Solution

To overcome the limitations of previous research, I propose MorphCore, an

adaptive core microarchitecture that efficiently adapts at runtime to changes in TLP,

ILP, and MLP in programs. The key insight behind MorphCore is that a traditional

large OOO core can be minimally modified to design a microarchitecture that adapts

to these changes and provides high performance and/or energy efficiency. We do

so by designing and operating the MorphCore such that it efficiently increases the

utilization of the large structures that are ON (increasing performance), and max-

imizes the number of structures that could be turned OFF (increasing energy ef-

ficiency). MorphCore provides five efficient and low-power operating modes: a

highly-threaded in-order SMT mode, and four out-of-order modes with different

superscalar widths and out-of-order window sizes. We describe how MorphCore

adapts to TLP, ILP, and MLP below.

Adapting to TLP. MorphCore takes the opposite approach of previously

proposed reconfigurable cores. Rather than fusing small cores into a single large

core, MorphCore uses a large out-of-order core as the base substrate and adds the

capability of in-order SMT to efficiently exploit highly parallel code when avail-

able. MorphCore switches between two of the five available modes to adapt to TLP.

The two modes are OutOfOrder (one of the four out-of-order modes) and InOrder.

In OutOfOrder mode, MorphCore provides the single-thread performance of a tra-

ditional out-of-order core with minimal performance degradation. However, when

TLP is available, MorphCore switches into InOrder mode and operates as a highly-

threaded in-order SMT core. This reduces execution time by exploiting TLP, and

reduces energy consumption by turning off several high-energy structures (e.g., re-

naming logic, out-of-order scheduling, and the load queue) while in InOrder mode.

3

Adapting to ILP and MLP. MorphCore adapts (varies) the superscalar

width and the OOO window size at runtime to match program behavior. It switches

between the four out-of-order modes to adapt to ILP/MLP. Our design is influenced

by two factors: 1) core’s width and window size are the two major sources of en-

ergy consumption, and 2) we observe that width/window size need to be managed

simultaneously as different programs require different width/window settings for

optimal performance and energy.

1.3 Thesis Statement

An out-of-order core microarchitecture can be modified to operate in five

modes, as 1) a 4-wide 192-entry OOO core, 2) a 4-wide 48-entry OOO core, 3)

a 2-wide 48-entry OOO core, 4) a 2-wide 192-entry OOO core, and 5) a 4-wide

8-way-threaded in-order SMT core, resulting in a core than can adapt dynamically

to ILP, MLP, and TLP present in programs and provide higher performance and

energy efficiency than traditional non-adaptive cores.

1.4 Contributions

My dissertation develops the MorphCore microarchitecture and makes the

following contributions:

1. It proposes the MorphCore microarchitecture that efficiently adapts to the

TLP available in programs by operating as a big-width large-OOO-window

core when TLP is low and ILP is high, and as a high-performance but lower-

energy highly-threaded in-order SMT core when TLP is high. This thesis

describes in detail the microarchitecture of MorphCore that adapts to TLP,

shows how only minimal changes to a traditional OOO core are required

to provide the hardware support for the two modes, and shows how in-order

SMT mode provides high performance and energy savings when TLP is high.

2. It quantitatively compares MorphCore to small, medium and large core ar-

4

chitectures in terms of performance and energy efficiency on single-threaded

and multi-threaded programs.

3. It describes a MorphCore microarchitecture that efficiently adapts to ILP and

MLP present in programs by varying the superscalar width and the OOO

window size, and by operating in four out-of-order modes: (1) as a big-

width large-OOO-window core, 2) as a big-width medium-OOO-window

core, 3) as a medium-width large-OOO-window core, and 4) as a medium-

width medium-OOO-window core.

4. It proposes a simple and effective sampling-based mode switching policy for

adapting to ILP and MLP. The policy periodically samples the performance

and energy of each of the four out-of-order operating modes, and chooses the

width/window size that will lead to the desired goal of performance or energy

efficiency. We show that this policy is able to closely match the benefit of an

oracle switching policy.

5. It presents the low-overhead microarchitectural support required to incorpo-

rate the five modes in a traditional large OOO core.

1.5 Dissertation Organization

This dissertation is organized as follows. Chapter 2 provides the background

and motivation for the work, and an overview of the MorphCore microarchitecture.

Chapter 3 describes the design of MorphCore’s operating modes to adapt to TLP.

Chapter 4 presents our mode switching policy for adapting to TLP, and evaluates the

design. Chapter 5 describes the design of MorphCore’s operating modes to adapt to

ILP and MLP. Chapter 6 describes our mode switching policy for adapting to ILP

and MLP, and evaluates the design. Chapter 7 describes related work. Chapter 8

summarizes my results and suggests avenues for future work.

5

Chapter 2

Overview of MorphCore Architecture

2.1 Baseline Large OOO Core

Out-of-order (OOO) cores provide better performance than in-order cores

by executing instructions as soon as their operands become available, rather than

executing them in program order. Figure 2.1 shows a high-level layout of a 2-way

SMT OOO core pipeline, including the major structures accessed and functionality

performed in different stages of the pipeline. We describe a Pentium-4 like ar-

chitecture [35], where the data, both speculative and architectural, is stored in the

Physical Register File (PRF), and the per-thread Register Alias Table (RAT) entries

point to PRF entries. The front-end Speculative-RAT points to the speculative state,

and a back-end Permanent-RAT points to the architectural state. The front-end of

the pipeline (from the Fetch stage until the Insert into Reservation Station (RS))

works in-order. Instructions are fetched, decoded, and sent to the Rename Stage.

The Rename stage renames (i.e. maps) the architectural source and destination

register IDs into Physical Register File IDs by reading the Speculative-RAT of the

thread for which instructions are being renamed, and inserts the instructions into

the Reservation Station (also referred to as the Issue Queue).

Instructions wait in the Reservation Station until they are selected for ex-

ecution by the Select stage. The Select stage selects an instruction for execution

once all of the source operands of the instruction are ready, and the instruction is

the oldest among the ready instructions. When an instruction is selected for exe-

cution, it readies its dependent instructions via the Wakeup Logic block, reads its

source operands from the PRF, and executes in a Functional Unit. After execution,

an instruction’s result is broadcast on the Bypass Network, so that any dependent

6

Figure 2.1: Out-of-Order core microarchitecture

instruction can use it immediately. The result is also written into the PRF, and the

instruction updates its ROB status. The instruction retires once it reaches the head

of the ROB, and updates the corresponding Permanent-RAT.

2.1.1 Energy Cost of OOO Execution

Unfortunately, the single-thread performance benefit of the large OOO core

comes with a large energy penalty. As shown in Figure 2.2, a significant fraction

(28%) of total core energy is spent on structures that support OOO execution. The

core is 4-wide 192-entry OOO. The energy is estimated using a modified version

of McPAT [26], and is averaged over all SPEC 2006 programs. I have modified

McPAT to better estimate the energy consumption because of SMT and clock’s

dynamic activity, and to report energy of different core structures at a finer grain

level. This overhead exists to exploit ILP and MLP to increase core throughput, and

is justified when the software has high ILP or MLP. However, when multiple threads

of execution exist, the core can be efficiently utilized using in-order Simultaneous

Multi-Threading (SMT).

7

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

F
ra

ct
io

n
 o

f
en

er
g
y
 (

%
)

Dcache + TLB
Inst Fetch Unit

OOO (Rename + Scheduler + LSQ + ROB)
Physical Reg File

Execution

Figure 2.2: Fraction of energy spent on different hardware resources

2.2 Adapting to TLP

Simultaneous Multi-Threading (SMT) [14, 47, 42] is a technique to improve

the utilization of execution resources using multiple threads provided by the soft-

ware. In SMT, a core executes instructions from multiple threads concurrently. Ev-

ery cycle, the core picks a thread from potentially many ready threads, and fetches

instructions from that thread. The instructions are then decoded and renamed in a

regular pipelined fashion and inserted into a common (shared among all the threads)

Reservation Station (RS). Since instructions from multiple candidate threads are

available in the RS, the possibility of finding ready instructions increases. Thus,

SMT cores can achieve higher throughput provided that software exposes multiple

threads to the hardware.

2.2.1 The Potential of In-Order SMT

The observation that a highly multi-threaded in-order core can achieve the

instruction issue throughput similar to an OOO core was noted by Hily and Seznec

[13]. We build on this insight to design a core that can achieve high-performance

and low-energy consumption when software parallelism is available.

Figure 2.3 shows the performance of the workload black (Black-Scholes

pricing [30]) on an out-of-order and an in-order core. For this experiment, both

8

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

S
p

ee
d

u
p

 o
v

er
 O

o
O

 w
/

1
 t

h
re

a
d

Out-of-Order

In-order

Number of SMT Threads

Figure 2.3: Performance of black with SMT

of the cores are similarly sized in terms of cache sizes, pipeline widths (4-wide

superscalar) and depths (refer to Section 4.2 for experimental methodology). The

performance of the in-order core is significantly less than the performance of the

out-of-order core when both cores run only a single thread. As the number of SMT

threads increases from 1 to 8, the performance of the out-of-order core increases

significantly at 2 threads, but starts to saturate at 4 threads, because the performance

is limited by the peak throughput of the core. In contrast, the performance of the in-

order core continues to benefit from more threads (which allows it to better tolerate

long latency operations and memory accesses). When the number of threads is

equal to 8, the in-order core’s performance begins to match the performance of the

out-of-order core. This experiment shows that when high thread-level parallelism

is available, high performance and low energy consumption can be achieved with

in-order SMT execution; therefore the core does not require the complex and power

hungry structures necessary for out-of-order SMT execution.

9

2.2.2 Repurposing Core’s Resources

A key insight behind MorphCore’s design is that a highly-threaded in-order

SMT core can be built using a subset of the hardware required to build an aggressive

out-of-order core. For example, we use the Physical Register File (PRF) in the out-

of-order core as the architectural register files for the many SMT threads in InOrder

mode. Similarly, we use the Reservation Station entries as an in-order instruction

buffer and the execution pipeline of the out-of-order core as-is. This efficiently

increases the utilization of the core’s resources and increases both performance and

energy efficiency.

2.2.3 Operating Modes

In spite of its high energy cost, out-of-order execution is still desirable be-

cause it provides significant performance improvement over in-order execution.

Thus, if we want high single-thread performance we must maintain support for

out-of-order execution. However, when software parallelism is available, we can

efficiently provide performance by using in-order SMT and not waste energy on

out-of-order execution. To accomplish both, we propose the two operating modes

of MorphCore: OutofOrder and InOrder. In OutofOrder mode, MorphCore works

exactly like a traditional out-of-order core. In InOrder mode, MorphCore supports

additional in-order SMT threads, and in-order scheduling, execution, and commit

of simultaneously running threads.

2.3 Adapting to ILP and MLP

Single thread performance and energy efficiency are both key to any mod-

ern general-purpose core design. Architects in industry are trying to maximize

performance without increasing energy consumption. Industry is increasing single

thread performance by increasing the superscalar width and the OOO window size.

Increasing width increases the number of instructions that are fetched, decoded, re-

named and allocated per cycle, so that more and more instructions are exposed to

10

the execution engine (which also has the ability to execute and commit at an in-

creased rate), potentially increasing the ILP and thus the performance. Increasing

the OOO window size increases the number of “in-flight” instructions by increas-

ing the number of ROB, Physical Register file (PRF), load/store queue (LSQ) and

scheduler (RS) entries. This increases the microprocessor’s ability to tolerate laten-

cies, as well as its ability to expose parallel cache misses (known as Memory-Level

Parallelism or MLP), both of which increase performance.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

F
ra

ct
io

n
 o

f
en

er
g
y

 (
%

)

Pipeline (clock + latches)
Dcache + TLB

Decode
Fetch

Out-of-Order
Bypass

Execution

Figure 2.4: Fraction of energy per instruction spent on different hardware resources

2.3.1 Energy Cost of Wide Width

These high performance features cost significant energy consumption. Fig-

ure 2.4 shows the fraction of Energy Per Instruction (EPI) spent on different hard-

ware structures of a 4-wide 192-entry ROB OOO core (averaged over all SPEC

2006 programs). Energy is estimated using a modified version of McPAT 0.8 [26].

The two biggest sources of energy consumption are out-of-order execution struc-

tures (Rename, ROB, PRF, LSQ, and RS) and deep and wide pipeline (more specif-

ically, pipeline latches and clock network). A deep pipeline enables high frequency

operation, and a wider pipeline improves instruction throughput per cycle.

11

2.3.2 Problem: Different Programs Benefit Differently from Wide Width and/or

Large OOO Window

Increasing pipeline width and OOO window size benefits different work-

loads differently. For example, compute bound workloads can benefit from a wider

pipeline as well as a larger window, however, memory bound workloads only ben-

efit from a larger window size, if at all.

 0

 20

 40

 60

 80

 100

pe
rl

hm
m

er

m
cf

m
ilc

le
sl
ie

G
em

s

de
al

II

IP
C

 n
o
rm

al
iz

ed
 t

o

 4
-w

id
e

1
9
2
-e

n
tr

y
 O

O
O

 (
%

)

4-wide 192-entry OOO
2-wide InOrder

2-wide, 192-entry OOO
2-wide, 48-entry OOO
4-wide, 48-entry OOO

Figure 2.5: Performance of cores with different widths and execution substrates.

Figure 2.5 plots performance of four different less aggressive core config-

urations for seven SPEC2006 benchmarks normalized to a large more aggressive

OOO core (4-wide and 192-entry OOO window). The four less aggressive core

configurations are: a 2-wide in-order, a 2-wide 192-entry OOO, a 2-wide 48-entry

OOO, and a 4-wide 48-entry OOO. The memory hierarchy is the same across all

core configurations. Note that the 2-wide InOrder core loses performance signifi-

cantly on all 7 benchmarks. The experiment also shows that wide width and large

OOO window do not always help to increase performance significantly. For ex-

12

ample, all workloads shown in Figure 2.5 except dealII can obtain performance

close to a wide width, large OOO window core when they are run on a less ag-

gressive core (either with a reduced width or with a reduced window or with both

reduced width and reduced window). We discuss each of these applications in de-

tail.

The benchmarks perl and hmmer can get high performance on a 4-wide

48-entry OOO core because they have short latency operations and high ILP. Such

workloads need big width to exploit high ILP but do not need a big window to

get high performance since instructions have short latencies and they drain quickly

from the window. Thus, we conclude that for programs like perl and hmmer, a

4-wide 48-entry OOO core can provide a good balance between performance and

energy consumption.

The benchmarks mcf and milc can get performance close to the big OOO

core on a 2-wide, 192-entry OOO core because they are heavily memory-bound

with high MLP, thus they need a large window to expose parallel memory misses

and obtain performance. These programs do not need a wide width because the

performance is memory-limited and the rate at which instructions are brought in

into the window and executed does not matter. Thus, we conclude that for programs

like mcf and milc, a 2-wide 192-entry OOO core can provide a good balance

between performance and energy consumption.

The benchmarks leslie and Gems achieve performance close to that of a

big OOO core even on a 2-wide, 48-entry OOO core. leslie is memory-bound

with high MLP, but even a medium-sized window is able to expose the available

MLP. Gems has very little ILP or MLP, thus it does not need wide width or large

window. Thus, we conclude that for programs like leslie and Gems, a 2-wide

48-entry OOO core can provide a good balance between performance and energy

consumption.

In summary, for the above mentioned programs, wide width and/or a large

window do not create a performance gain; even a less aggressive core (either with

13

reduced-width, or with reduced-window, or with reduced-window and reduced-

width) can provide performance close to a big OOO core. For such workloads,

hardware supported wide width and large OOO window is inefficient.

Finally, dealII is an example of a program that needs a wide width and a

large window to achieve high performance. dealII’s instructions on average have

longer latencies, and thus, a small window stalls frequently. With a large window,

the instruction stream exposes high ILP, which makes it possible to get a significant

performance boost with a wider core.

The data presented in Figures 2.4 and 2.5 motivates the need for an adaptive

out-of-order core that dynamically varies its width and window to the needs of

the program in order to achieve a balance between high performance and energy

efficiency.

2.3.3 Our Solution: Dynamically Vary Width and Window Size

(b) OutofOrder Mode
4−wide, 192−entry OOO

Width

Size

Pipeline

OOO Window

Depth

Pipeline

(a) MorphCore Architecture

(192−entry)
(4−wide)

4−wide, 192−entry window

(c) 4−wide, 48−entry OOO Mode

(d) 2−wide, 192−entry OOO Mode

(e) 2−wide, 48−entry OOO Mode

Figure 2.6: Overview of MorphCore modes when it adapts to ILP and MLP. In

(b)-(e), Solid boxes are ON, dotted and shaded boxes are turned OFF.

The MorphCore microarchitecture can adapt to the resource needs of differ-

ent programs or program phases by changing superscalar pipeline width and OOO

14

window size. Figure 2.6 (a) shows the MorphCore microarchitecture. It supports

wide superscalar width and large OOO execution window. In addition, it also has

microarchitectural support for reducing the pipeline width and the window size

(shown with dotted lines). Because MorphCore can vary two parameters, width

and window, MorphCore provides four out-of-order operating modes as shown in

Figure 2.6 (b)-(e). The modes are: 4-wide 192-entry OOO, 4-wide 48-entry OOO,

2-wide 192-entry OOO, and 2-wide 48-entry OOO. The 4-wide 192-entry OOO

mode is the fully-provisioned high-power and high-performance mode, whereas

the other three modes are “low-provisioned” low-power low-performance modes.

Our goal with the MorphCore microarchitecture is to provide high perfor-

mance and, when needed, energy efficiency for single-threaded programs. Mor-

phCore continuously monitors the executing workload and makes intelligent de-

cisions to change the width and the window size. It employs a simple yet effec-

tive sampling-based mode switching policy that periodically samples the perfor-

mance and energy of each of the four out-of-order operating modes, and chooses

the width/window size that will lead to the desired goal of performance or energy

efficiency.

15

Chapter 3

Adapting to Thread-Level Parallelism (TLP)

3.1 MorphCore Microarchitecture

3.1.1 Overview

The MorphCore microarchitecture is based on a traditional OOO core. Fig-

ure 3.1 shows the changes that are made to a baseline OOO core (shown in Fig-

ure 2.1) to build the MorphCore. MorphCore provides two operating modes to

adapt to TLP: OutofOrder and InOrder. The figure shows the blocks that are active

in both modes, and the blocks that are active only in one of the modes. In addition

to out-of-order execution, MorphCore supports additional in-order SMT threads,

and in-order scheduling, execution, and commit of simultaneously running threads

in InOrder mode. In OutofOrder mode, MorphCore works exactly like a traditional

out-of-order core.

Figure 3.1: The MorphCore microarchitecture

16

3.1.2 Fetch and Decode Stages.

The Fetch and Decode Stages of MorphCore work exactly like an SMT-

enabled traditional OOO core. Figure 3.2 shows the Fetch Stage of the MorphCore.

MorphCore adds 6 additional SMT contexts to the baseline core. Each context con-

sists of a PC, a branch history register, and a Return Address Stack. In OutofOrder

mode, only 2 of the SMT contexts are active. In InOrder mode, all 8 contexts are

active. The branch predictor and the I-Cache are active in both modes.

Figure 3.2: Microarchitecture of the Fetch stage

3.1.3 Rename Stage

Figure 3.3 shows the Rename Stage of the MorphCore. InOrder renaming

is substantially simpler, and thus more power-efficient, than OOO renaming. In In-

Order mode, we use the Physical Register File (PRF) to store the architectural regis-

ters of the multiple in-order SMT threads: we logically divide the PRF into multiple

fixed-size partitions where each partition stores the architectural register state of a

thread (Figure 3.3(b)). Hence, the architectural register IDs can be mapped to the

Physical Register IDs by simply concatenating the Thread ID with the architectural

register ID. This approach limits the number of in-order SMT threads that the Mor-

phCore can support to num physical registers/num architectural registers.

17

Figure 3.3: Microarchitecture of the Rename stage

However, the number of physical registers in today’s cores is already large enough

(and increasing) to support 8 in-order SMT threads which is sufficient to match the

out-of-order core’s performance. For the x86 ISA [17] that we model in our simu-

lator, a FP-PRF partition of 24 entries and an INT-PRF partition of 16 entries per

thread is enough to hold the architectural registers of a thread. The registers that

are not renamed and are replicated 2-ways in the baseline OOO core need to be

replicated 8-ways in MorphCore.

Allocating/Updating the Resources. When the MorphCore is in OutofOrder

mode, the instructions that are being renamed are allocated resources in the ROB

18

and in the Load and Store Queues. In InOrder mode, MorphCore leverages the ROB

to store the instruction information. We partition the ROB into multiple fixed-size

chunks, one for each active thread. We do not allocate resources in the Load Queue

in InOrder mode since memory instructions are not executed speculatively. Thus,

the Load Queue is inactive. The Store Queue that holds the data from committed

store instructions and the data that is not yet committed to the D-cache, is active in

InOrder Mode as well, and is equally partitioned among the threads.

Figure 3.4: Microarchitecture of the Rename stage

Insert into the Reservation Station (RS). Figure 3.4(a) shows the part of Re-

name stage that inserts renamed instructions into the RS. In OutofOrder mode, the

RS is dynamically shared between multiple threads, and the RS entry that is allo-

cated to an incoming renamed instruction is determined dynamically by consulting

a Free List. In InOrder mode, the RS is divided among the multiple threads into

fixed-size partitions (Figure 3.3(b)), and each partition operates as a circular FIFO.

Instructions are inserted into consecutive RS entries pointed to by a per-thread RS-

Insert-Ptr, and removed in-order after successful execution.

19

3.1.4 Select and Wakeup

MorphCore employs both OutofOrder and InOrder Wakeup and Select Logic.

The Wakeup Logic makes instructions ready for execution, and the Select Logic se-

lects the instructions to execute from the pool of ready instructions. Figure 3.5

shows these logic blocks.

Figure 3.5: MorphCore Wakeup and Selection Logic

OutofOrder Wakeup. OutofOrder Wakeup logic works exactly the same as a

traditional out-of-order core. Figure 3.5 (unshaded) shows the structure of an RS

20

entry [37]. An operand is marked ready (R-bit is set) when the corresponding

MATCH bit has been set for the number of cycles specified in the DELAY field.

When an instruction fires, it broadcasts its destination tag (power hungry), so that it

can be compared against source tags of all instructions in the RS. If the destination

tag matches the source tag of an operand, the MATCH bit is set and the DELAY

field is set equal to the execution latency of the firing instruction (the latency of the

instruction is stored in the RS entry allocated to the instruction). The DELAY field

is also latched in the SHIFT field associated with the source tag. The SHIFT field

is right shifted one-bit every cycle the MATCH bit is set. The R bit is set when the

SHIFT field becomes zero. The RS-entry waits until both sources are ready, and

then raises the Req OOO Exec line.

OutofOrder Select. The OutofOrder Select logic monitors all instructions in the

RS (power hungry), and selects the oldest instruction(s) that have the Req OOO

Exec lines set. The output of the Select Logic is a Grant bit vector, in which every

bit corresponds to an RS entry indicating which instructions will fire next. When

an instruction is fired, the SCHEDULED bit is set in the RS entry so that the RS

entry stops requesting execution in subsequent cycles.

InOrder Wakeup. The InOrder mode executes/schedules instructions in-order,

i.e., an instruction becomes ready after the previous instruction has either started ex-

ecution or is ready and independent. We add 2 new bit-fields to each RS entry for in-

order scheduling (Scheduled, and MATCH (M)). The new fields are shaded in Fig-

ure 3.5. The InOrder Wakeup Logic block also maintains the M/DELAY/SHIFT/R

bit fields per architectural register, in order to track the availability of architectural

registers. When an instruction fires, it sets the R, M, and DELAY bit fields corre-

sponding to the destination register in the InOrder Wakeup Logic block as follows:

resets the R bit, sets the MATCH (M) bit, and sets the DELAY field to the execution

latency of the firing instruction (the DELAY/SHIFT mechanism works as explained

above). Every cycle, for every thread, the InOrder Wakeup checks the availability

21

of source registers of the two oldest instructions (R bit is set). If the sources are

available, the Wakeup logic readies the instructions by setting the M bit in the RS

entry to 1. The InOrder Wakeup is power-efficient since it avoids the broadcast and

matching of the destination tag against the source operands of all instructions in the

RS.

InOrder Select. The InOrder Select Logic block works hierarchically in a complexity-

effective (power-efficient) manner by maintaining eight InOrder select blocks (one

per thread) and another block to select between the outcomes of these blocks. Fur-

thermore, each in-order select logic only monitors the two oldest instructions in the

thread’s RS partition, rather than monitoring the entire RS as in OOO select. Note

that only two instructions need monitoring in InOrder mode because instructions

from each thread are inserted and scheduled/removed in a FIFO manner.

3.1.5 Execution and Commit

When an instruction is selected for execution, it reads its source operands

from the PRF, executes in an ALU, and broadcasts its result on the bypass network

as done in a traditional OOO core. In MorphCore, an additional PRF-bypass and

additional data storage are active in InOrder mode. This bypass and buffering is

provided in order to delay the write of younger instruction(s) in the PRF if an older

longer latency instruction is in the execution pipeline. In such a case, younger

instruction(s) write into a temporary small data buffer (4-entry per thread). The

buffer adds an extra bypass in the PRF-read stage. Instructions commit in traditional

SMT fashion. For OutofOrder commit, the Permanent-RAT is updated as well. In

InOrder mode, only the thread’s ROB Head pointer needs to be updated.

3.1.6 Load/Store Unit

Figure 3.6 shows the Load/Store Unit. In OutofOrder mode, load/store in-

structions are executed speculatively and out of order (similar to a traditional OOO

core). When a load fires, it updates its entry in the Load Queue and searches the

22

Figure 3.6: Load / Store unit

Store Queue to get the latest data. When a store fires, it updates and stores data

in the Store Queue, and searches the Load Queue to detect store-to-load program

order violations. In InOrder mode, since load/store instructions are not executed

speculatively, no Load Queue CAM searches are done. However, loads still search

the Store Queue that holds committed data. Store instructions also update the Store

Queue. Note that the introduction of InOrder mode in a traditional OOO core does

not impact the memory consistency model or the cache coherence protocol imple-

mented by the core.

3.1.7 Recovering from Branch Mispredictions

In OutofOrder mode, a branch misprediction triggers a recovery mechanism

that recovers the F-RAT to the state prior to the renaming of the mispredicted branch

instruction. In InOrder mode, a branch misprediction squashes the instructions in

the RS partition, the ROB partition and the front-end pipeline from the thread, fol-

lowed by redirection of the PC to the correct target.

23

3.2 MorphCore Discussion

3.2.1 Area and Power Overhead of MorphCore

First, MorphCore increases the number of SMT ways from 2 to 8. This adds

hardware to the Fetch stage and other parts of the core, which is less than 0.5% area

overhead as reported by our modified McPAT [26] tool (the core area includes the

area of the first-level instruction cache and data cache). Note that it does not incur

the two biggest overheads of adding SMT contexts in an OOO core –additional

Rename tables and physical registers– because the SMT contexts being added are

in-order. Second, MorphCore adds InOrder Wakeup and Select logic, which we

assume adds an area overhead of less than 0.5% of core area, half the area of the

OOO Wakeup and Select logic blocks. Third, adding extra bypass/buffering adds

an area overhead of 0.5% of core. Thus, MorphCore adds an area overhead of 1.5%,

and a power overhead of 1.5% in InOrder mode.

3.2.2 Timing/Frequency Impact of MorphCore

MorphCore requires only two key changes to the baseline OOO core:

1) InOrder renaming/scheduling/execution logic. MorphCore adds a multi-

plexer in the critical path of three stages: a) in the Rename stage to select between

OutofOrder mode and InOrder mode renamed instructions, b) in the Instruction

Scheduling stage to select between the OutofOrder mode and InOrder mode ready

instructions, and c) in PRF-read stage because of additional bypassing in InOrder

mode. In order to estimate the frequency impact of this overhead, we assume that

a multiplexer introduces a delay of one transmission gate, which we assume to be

half of an FO4 gate delay. Assuming 20 FO4 gate delays per pipeline stage [45, 7],

we estimate that MorphCore runs 2.5% slower than the baseline OOO core.

2) More SMT contexts. Addition of in-order SMT contexts can lengthen

the thread selection logic in MorphCore’s front-end. This overhead is changing the

multiplexer that selects one out of many ready threads from 2-to-1 to 8-to-1. We

assume that running MorphCore 2.5% slower than the baseline OOO core hides this

24

delay.

In addition to the above mentioned timing-critical changes to the baseline

OOO core, MorphCore adds InOrder Wakeup and Select logic blocks. Because

InOrder instruction scheduling is simpler than OutofOrder instruction scheduling,

we assume that newly added blocks can be placed and routed such that they do not

affect the critical path of other components of the baseline OOO core. Thus, we

conclude that the frequency impact of MorphCore is only 2.5%.

3.2.3 Turning Off Structures in InOrder Mode

The structures that are inactive in InOrder Mode are either clock-gated

(OOO scheduling and load queue) or power-gated (OOO renaming logic).

3.2.4 Interaction with OS

MorphCore does not require any changes to the operating system, and acts

like a core with the number of hardware threads equal to the maximum number

of threads supported in the InOrder Mode (8 in our implementation). Switching

between the two modes is handled in hardware.

25

Chapter 4

Mode Switching Policy for Adapting to TLP and

Evaluation

In Chapter 3, I introduced two of the five modes supported by the Mor-

phCore microarchitecture: OutOfOrder and InOrder. The OutOfOrder mode is

4-wide superscalar and 192-entry out-of-order whereas InOrder mode is 4-wide

superscalar 8-way threaded in-order SMT. This chapter describes the policy that

we use to switch between these two modes when the MorphCore microarchitecture

adapts to TLP, and evaluates its performance and energy efficiency.

4.1 When to Operate in OutofOrder Mode or in InOrder Mode?

The current implementation of MorphCore switches between OutofOrder

and InOrder modes based on the number of active threads. A thread is active when it

is not waiting for a synchronization event. We assume that the threading library uses

MONITOR/MWAIT [17] instructions such that MorphCore hardware can detect a

thread becoming inactive, e.g., inactive at a barrier waiting for other threads to

reach the barrier, or inactive at a lock-acquire waiting for another thread to release

the lock. The hardware makes the thread active when a write to the cacheline being

monitored is detected.

MorphCore operates in OutofOrder mode when the number of active threads

is fewer than or equal to 2. The rationale here is that when TLP is limited, execut-

ing OOO is the best and only way to obtain performance and energy efficiency.

I show in Section 5.1 that 2-wide in-order execution not only loses performance

significantly but increases energy consumption as well. MorphCore operates in In-

Order when the number of active threads is greater than 2. The rationale here is that

26

high core throughput can be obtained by executing the many available threads in-

order while saving energy. MorphCore starts running in OutofOrder mode when the

number of active threads is fewer than 2. If the OS schedules more threads on Mor-

phCore, and the number of active threads becomes greater than 2, the core switches

to InOrder mode. While running in InOrder mode, the number of active threads can

drop for two reasons: the OS can de-schedule some threads or the threads can be-

come inactive waiting for synchronization. If the number of active threads becomes

smaller than or equal to 2, the core switches back to OutofOrder mode until more

threads are scheduled or become active.

4.1.1 Changing Mode from OutofOrder to InOrder

Mode switching is handled by a micro-code routine that performs the fol-

lowing tasks:

1) Drains the core pipeline.

2) Spills the architectural registers of all threads. These registers are spilled

to a reserved memory region. To avoid cache misses on these writes, we use Full

Cache Line Write instructions that do not read the cache line before the write [17].

3) Disables the Renaming unit, OutofOrder Wakeup and Select Logic blocks,

and Load Queue. Note that these units do not necessarily need to be power-gated

(we assume that these units are clock-gated).

4) Fills the register values back into each thread’s PRF partitions. This is

done using special load micro-ops that directly address the PRF entries without

going through renaming.

4.1.2 Changing Mode from InOrder to OutofOrder

MorphCore supports eight threads in InOrder mode and two threads in Out-

ofOrder mode. When MorphCore changes mode from InOrder to OutofOrder, only

two of the eight threads can be executed. Thus six of the eight threads are marked

inactive or “not running” (unless they are already inactive, which is the case in

27

our current implementation). The state of the inactive threads is stored in memory

until they become active. To load the state of the active threads, the MorphCore

stores pointers to the architectural state of the inactive threads in a structure called

the Active Threads Table. The Active Threads Table is indexed using the Thread

ID, and stores an 8-byte pointer for each thread. Mode switching is handled by a

micro-code routine that performs the following tasks:

1) Drains the core pipeline.

2) Spills the architectural registers of all threads, and stores the pointers to

the architectural state of the inactive threads in the Active Thread Table.

3) Enables the Renaming unit, OutofOrder Wakeup and Select Logic blocks,

and Load Queue.

4) Fills the architectural registers of only the active threads into pre-determined

locations in PRF, and updates the Speculative-RAT and Permanent-RAT.

4.1.3 Overhead of Changing the Mode

The overhead of changing the mode is pipeline drain, which varies with the

workload, and the spill or fill of the architectural register state of the threads. The

x86 ISA [17] specifies an architectural state of ∼780 bytes per thread (including

the latest AVX extensions). The micro-code routine takes ∼30 cycles to spill or

fill the architectural register state of each thread after the pipeline drain (a total of

∼6KB and ∼250 cycles for 8 threads) into reserved ways of the private L2 cache

(assuming a 256 bit wide read/write port to the cache, and a cache bandwidth of 1

read/write per cycle). We have empirically observed a loss in performance of only

less than 1% by reserving 6KB in the private 256KB cache. Note that the overhead

of changing the mode can be reduced significantly by overlapping the spilling or

filling of the architectural state with the pipeline drain.

28

4.1.4 Handling Medium TLP

MorphCore operates in InOrder mode when the number of active threads is

greater than 2. This policy works best when the number of active threads is max-

imum, i.e., 8, since many active threads sustain a high core throughput even when

running in-order. However, the number of active threads can change at runtime.

When only a few threads are active (e.g., 3-5), executing those threads in-order in

InOrder mode may not achieve a high core throughput, and in fact may even reduce

performance as compared to the baseline OOO-2 core (or OutofOrder mode).

A solution to this problem is to switch into OutofOrder mode when the

medium number of active threads cannot sustain a high core throughput in InOrder

mode but OOO execution can in OutofOrder mode. Detecting such situations and

making the necessary mode switching decisions are future research areas. Note that

the few active threads cannot all be run out-of-order simultaneously since the core

supports only 2 OOO contexts. A technique called Balanced Multithreading [43]

can be used to address this problem which proposes to time-multiplex the threads (2

at a time) onto a 2-SMT-context OOO processor when the number of active threads

(their “virtual context”) is greater than 2.

4.2 Experimental Methodology

Table 4.1 shows the configurations of the cores and the memory subsystem

simulated using our in-house cycle-level x86 simulator. The simulator faithfully

models microarchitectural details of the core, cache hierarchy and memory subsys-

tem, e.g., contention for shared resources, DRAM bank conflicts, banked caches,

etc. To estimate the area and energy of different core architectures, we use a modi-

fied version of McPAT [26]. We modified McPAT to: 1) report finer-grain area and

power data, 2) increase SMT ways without increasing the Rename (RAT) tables,

3) use the area/energy impact of InOrder scheduling (1/2 of OOO), 4) model extra

bypass/buffering, and 5) model the impact of SMT more accurately. Note that all

core configurations have the same memory subsystem (L2, L3 and main memory).

29

Table 4.1: Configuration of the simulated machine

Core Configurations

OOO-2 Core: 3.4GHz, 4-wide issue OOO, 2-way SMT, 14-stage pipeline,

64-entry unified Reservation Station (Issue Queue), 192 ROB,

50 LDQ, 40 STQ, 192 INT/FP Physical Reg File, 1-cycle

wakeup/select Functional Units: 4 multi-purpose. ALU latencies

(cycles): int arith 1, int mul 4-pipelined, fp arith 4-pipelined, fp di-

vide 8, loads/stores 1+2-cycle D-cache L1 Caches: 32KB I-cache,

D-cache 32KB, 2 ports, 8-way, 2-cycle pipelined SMT: Stages se-

lect round-robin among ready threads. ROB, RS, and instr buffers

shared as in Pentium 4 [22]

OOO-4 3.23GHz (5% slower than OOO-2), 4-wide issue OOO, 4-way

SMT, Other parameters are same as OOO-2.

MED Core: 3.4GHz, 2-wide issue OOO, 1 Thread, 10-stage, 48-entry

ROB/PRF. Functional Units: Half of OOO-2. Latencies same as

OOO-2. L1 Caches: 1 port Dcache, other same as OOO-2. SMT:

N/A

SMALL Core: 3.4GHz, 2-wide issue In-Order, 2-way SMT, 8-stage

pipeline. Functional Units: Same as MED. L1 Caches: Same

as MED. SMT: Round-Robin Fetch

MorphCore Core: 3.315GHz (2.5% slower than OOO-2), Other parameters

are same as OOO-2. Functional Units and L1 Caches: Same as

OOO-2. SMT and Mode switching: 2-way SMT similar to OOO-

2, 8-way in-order SMT (Round-Robin Fetch) in InOrder mode. RS

and PRF partitioned in equal sizes among the in-order threads. In-

Order mode when active threads > 2, otherwise, OutofOrder mode

Memory System Configuration

Caches L2 Cache: private L2 256KB, 8-way, 5 cycles. L3 Cache: 2MB

write-back, 64B lines, 16-way, 10-cycle access

Memory 8 banks/channel, 2 channels, DDR3 1333MHz, bank conflicts,

queuing delays modeled. 16KB row-buffer, 15 ns row-buffer hit

latency

30

Tables 4.2 and 4.3 summarize the key characteristics of the compared ar-

chitectures. We run the baseline OOO-2 core at 3.4GHz and scale the frequencies

of the other cores to incorporate the effects of both increase in area and critical-

path-delay. For example, OOO-4’s frequency is 5% lower than OOO-2 because

adding the 2 extra SMT threads significantly increases the area/complexity of the

core: it adds two extra Rename tables (RATs), at least a multiplexer at the end of

the Rename stage, and also adds extra buffering at the start of the Rename stage

(to select between 4, rather than 2 rename tables) which we estimate (using McPAT

0.8 [26]) to be an additional 5% area and thus lower frequency by 5%. MorphCore’s

frequency is reduced by 2.5% because its critical path increased by 2.5% (as ex-

plained in Section 3.2.2). We also perform a sensitivity study where we increase

the frequency penalty incurred by MorphCore’s design, and report the resulting

performance and energy.

Since the OOO-2 core has the highest frequency and supports 4-wide su-

perscalar OOO execution, we expect it to have the highest single thread (ST) per-

formance. Since the SMALL and MED cores have the highest aggregate ops/cycle,

we expect them to have the highest multi-threaded (MT) performance. We expect

the MorphCore to perform close to best in both ST and MT workloads.

4.2.1 Workloads

Table 4.4 shows the description and input-set for each application. We sim-

ulate all single-threaded SPEC 2006 applications and 14 multi-threaded applica-

tions from different domains. Each SPEC benchmark is run for 200M instructions

with ref input set, where the representative slice is chosen using a Simpoint-like

methodology. We do so since SPEC workloads are substantially longer (billions of

instructions), and easier to sample using existing techniques like SimPoint. Single-

threaded workloads run on a single core with other cores turned off. In contrast,

multi-threaded workloads run with the number of threads set equal to the number

of available contexts, i.e., numberofcores × numberofSMTcontexts. We run

all multi-threaded workloads to completion and count only useful instructions. We

31

Table 4.2: Characteristics of Evaluated Architectures

Core Type Freq

(Ghz)

Issue-

width

Num

of

cores

SMT

threads per

core

Total

Threads

Total

Norm.

Area

OOO-2 out-of-

order

3.4 4 1 2 2 1

OOO-4 out-of-

order

3.23 4 1 4 4 1.05

MED out-of-

order

3.4 2 3 1 3 1.33

SMALL in-order 3.4 2 3 2 6 1.12

MorphCore out-of-

order or

in-order

3.315 4 1 OutOfOrder:

2, or In-

Order:

8

2 or 8 1.015

Table 4.3: Throughput of Evaluated Architectures

Core Peak ST

throughput

Peak MT

throughput

OOO-2 4 ops/cycle 4 ops/cycle

OOO-4 4 ops/cycle 4 ops/cycle

MED 2 ops/cycle 6 ops/cycle

SMALL 2 ops/cycle 6 ops/cycle

MorphCore 4 ops/cycle 4 ops/cycle

32

Table 4.4: Details of the simulated workloads

Workload Problem description Input set

Multi-Threaded Workloads

web web cache [41] 500K queries

qsort Quicksort [8] 20K elements

tsp Traveling salesman [23] 11 cities

OLTP-1 MySQL server [1] OLTP-simple [40]

OLTP-2 MySQL server [1] OLTP-complex [40]

OLTP-3 MySQL server [1] OLTP-nontrx [40]

black Black-Scholes [30] 1M options

barnes SPLASH-2 [46] 2K particles

fft SPLASH-2 [46] 16K points

lu (contig) SPLASH-2 [46] 512x512 matrix

ocean (contig) SPLASH-2 [46] 130x130 grid

radix SPLASH-2 [46] 300000 keys

ray SPLASH-2 [46] teapot.env

water (spatial) SPLASH-2 [46] 512 molecules

Single-Threaded Workloads

SPEC 2006 All benchmarks 200M instrs

exclude synchronization instructions. Statistics are collected only in the parallel

region, and initialization phases are ignored. For reference, Figure 4.1 shows the

percentage of execution time in multi-threaded workloads when a certain number

of threads are active (the experiment is done when the workload was run with 8

threads). A thread is active when it is not waiting for a synchronization event. We

will refer to this data when presenting our results.

4.3 Results

Since MorphCore attempts to retain single thread (ST) performance and

improve multi thread (MT) performance and energy, we compare our evaluated

architectures with respect to performance, energy, and both performance and energy

combined on a performance-energy trade-off space (plot). Also, since design and

performance/energy trade-offs of ST and MT workloads are inherently different, we

33

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

w
eb

-1

qs
or

t

ts
p

O
LTP-1

O
LTP-2

O
LTP-3

bl
ac

k

ba
rn

es

ff
t

lu oc
ea

n

ra
di

x
ra

y
w

at
er

am
ea

n

E
x

ec
 T

im
e

(%
)

8 Active Threads
7 Active Threads
6 Active Threads
5 Active Threads
4 Active Threads
3 Active Threads
2 Active Threads
1 Active Thread

Figure 4.1: Percentage of execution time depending on the number of active

threads.

evaluate ST and MT workloads separately. We evaluate a MorphCore design with

an increased frequency penalty in Section 4.3.4. We compare MorphCore against

an 8-way SMT out-of-order core in Section 4.3.5. We evaluate MorphCore with a

limited last-level cache capacity and limited memory bandwidth in Section 4.3.6.

We evaluate the effect of increasing superscalar width of both the baseline OOO

core and MorphCore in Section 4.3.7.

4.3.1 Single-Thread Results

Figure 4.2 shows the speedup of each core normalized to OOO-2 for all 29

SPEC2006 benchmarks. As expected, OOO-2 achieves the highest performance

on average. OOO-2 does not achieve the highest performance on bwaves as ex-

plained later in this section. MorphCore is a close second because it introduces

minimal changes to a traditional out-of-order core. As a result of these changes,

MorphCore runs at a 2.5% slower frequency than OOO-2, achieving 98.8% of the

34

 0

 20

 40

 60

 80

 100

 120

p
er

l

b
zi

p
2

g
cc

m
cf

g
o

b
m

k

h
m

m
er

sj
en

g

li
b

q
u

an

h
2

6
4

o
m

n
et

p
p

as
ta

r

x
al

an
c

b
w

av
es

g
am

es
s

m
il

c

ze
u

sm
p

g
ro

m
ac

s

ca
ct

u
s

le
sl

ie

n
am

d

d
ea

lI
I

so
p

le
x

p
o

v
ra

y

ca
lc

u
li

x

G
em

s

to
n

to

lb
m

w
rf

sp
h

in
x

g
m

ea
n

S
p

ee
d

u
p

 O
v

er
 O

O
O

-2
 (

%
)

MorphCore OOO-4 MED SMALL

Figure 4.2: Single-thread performance results.

performance of OOO-2. The OOO-4 core provides slightly lower performance than

MorphCore because OOO-4 has a higher overhead when running in ST mode, a 5%

frequency penalty, as it supports 4 OOO SMT threads. Note that the difference in

performance among OOO-2, OOO-4, and MorphCore is the smallest for memory-

bound workloads, e.g., mcf and lbm. On the other hand, the cores optimized for

multi-thread performance, MED and SMALL, have issue widths of 2 (as opposed to

4 for ST optimized cores) and either run in-order (SMALL) or out-of-order with a

small window (MED). This results in significant performance loss in ST workloads:

MED loses performance by 27% and SMALL by 63% as compared to OOO-2. The

performance loss is more pronounced for a workload like dealII which is com-

pute bound and gets a significant performance boost with a wide superscalar width

and a large OOO window. The benchmark bwaves gets a performance boost when

run on the cores with lower frequency (MorphCore and OOO-4) as compared to

when run on the core with higher frequency (OOO-2). This unexpected result can

be explained by investigating bwaves memory behavior. bwaves is highly mem-

ory bandwidth-bound benchmark, especially when prefetching is enabled which is

the case in our work. In case of OOO-2 which runs at the highest frequency, read

requests catch up with the prefetch requests in the memory system and thus, the

35

memory controller immediately schedules them. By doing so, it destroys the row

buffer locality of the writeback requests. For MorphCore and OOO-4 that are run-

ning at slower frequencies, read requests do not catch up with the prefetch requests.

Thus, the memory controller first schedules all of the writeback requests, taking full

advantage of the row buffer hits, and then schedules the prefetch requests, which

are very accurate for this benchmark. Thus, MorphCore and OOO-4 perform bet-

ter than OOO-2. In summary, MorphCore provides the second best performance

(98.8% of OOO-2) on ST workloads.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

p
er

l

b
zi

p
2

g
cc

m
cf

g
o

b
m

k

h
m

m
er

sj
en

g

li
b

q
u

an

h
2

6
4

o
m

n
et

p
p

as
ta

r

x
al

an
c

b
w

av
es

g
am

es
s

m
il

c

ze
u

sm
p

g
ro

m
ac

s

ca
ct

u
s

le
sl

ie

n
am

d

d
ea

lI
I

so
p

le
x

p
o

v
ra

y

ca
lc

u
li

x

G
em

s

to
n

to

lb
m

w
rf

sp
h

in
x

g
m

ea
n

E
n

er
g

y
 N

o
rm

al
iz

ed
 t

o
 O

O
O

-2
 (

%
)

MorphCore OOO-4 MED SMALL

Figure 4.3: Single-thread energy results.

Figure 4.3 shows the total (static + dynamic) energy consumed by each con-

figuration (core includes L1 I and D caches but not L2 and L3 caches) normalized to

OOO-2. As expected, ST-optimized architectures that provide highest performance

are not the most energy-efficient on ST workloads.

MorphCore consumes almost the same amount of energy as OOO-2. This

is because MorphCore introduces few low-energy structures to an OOO core and

does not significantly increase the core’s area and workload’s execution time as

compared to an OOO core. OOO-4 increases the amount of energy a little over

OOO-2 because it increases core area by 5% and slows down the core by 5%, both

36

of which increase leakage.

MED core is the most energy-efficient for ST workloads and reduces energy

consumption by 37%. The microarchitectural structures of MED are small and low-

energy (its area is only 44% of an OOO-2 core, see Table 4.2), and MED core is

still able to provide 73% of the performance of an OOO core. Although SMALL’s

microarchitecture is even more lean than MED (its area is 37% of an OOO core), it

does not provide energy savings on average since it loses performance significantly.

When execution time increases, the increase in leakage energy may outweigh the

benefit of a lean microarchitecture.

4.3.2 Multi-Thread Results

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

w
eb

-1

qs
or

t

ts
p

O
LTP-1

O
LTP-2

O
LTP-3

bl
ac

k

ba
rn

es

ff
t

lu oc
ea

n

ra
di

x
ra

y
w

at
er

gm
ea

n-
A

LL

S
p

ee
d

u
p

 N
o

rm
al

iz
ed

 t
o

 O
O

O
-2

 (
%

)

MorphCore OOO-4 MED SMALL

Figure 4.4: Multi-thread performance results

Multi-thread (MT) performance is affected not only by the performance po-

tential of a single core, but also by the total number of cores and SMT threads

on the cores. Figure 4.4 shows the speedup of each core normalized to OOO-2.

As expected, the throughput optimized cores, MED and SMALL, provide the best

MT performance (on average 27% and 31% performance improvement over OOO-

2 respectively). This is because MED and SMALL cores have higher total peak

37

throughput even though they take approximately the same area as OOO-2 (see Ta-

ble 4.3).

More importantly, MorphCore provides a significant 21% performance im-

provement over OOO-2. MorphCore provides the highest performance improve-

ment for workloads that have low micro-op execution throughput (uops/cycle) when

run on the baseline OOO-2 core (Table 4.5). For such workloads MorphCore pro-

vides better latency tolerance and increases core throughput by executing up to 8

threads simultaneously. For example, radix gets the highest performance im-

provement of 77% over OOO-2 by increasing the uops/cycle from 2.00 to 3.58. In

fact, one MorphCore outperforms three MED cores by 5% on radix because of

its ability to run more SMT threads as compared to three MED cores. qsort is

another workload with low uops/cycle (1.95), however MorphCore (similar to other

throughput cores) does not provide as high a performance improvement as in the

case of radix. This is because of two reasons: 1) when executing qsort, Mor-

phCore spends only 80% of execution time running more than 2 threads as shown in

Figure 4.1), and 2) even when more than 2 threads are active, only 50% of the time

are 6 or more threads active. Thus, MorphCore does not get much opportunity to

achieve higher throughput. Note that one MorphCore still outperforms three MED

cores in qsort because of its ability to execute up to 8 threads.

Table 4.5: Micro-op throughput (uops/cycle) on OOO-2

web qsort tsp OLTP-1 OLTP-2 OLTP-3 black

3.47 1.95 2.78 2.29 2.23 2.35 3.39

barnes fft lu ocean radix ray water

3.31 2.68 3.11 2.48 2.00 3.29 3.48

Other workloads that have relatively high uops/cycle on OOO-2 (from 2.23

to 2.68) achieve relatively lower performance improvement with MorphCore over

OOO-2 (from 20% for fft to 40% for tsp). The performance improvement of

MorphCore is higher for tsp as compared to other workloads in this category even

38

with a relatively high baseline uops/cycle of 2.78 (on OOO-2) because MorphCore

executes fewer instructions (-10%) as compared to OOO-2 although doing the same

algorithmic work. The benchmark tsp is a branch and bound algorithm, and the

likelihood of quickly reaching the solution increases with more threads, and hence

MorphCore executes fewer instructions.

MorphCore provides the least performance improvement for workloads web,

black, barnes, ray, and water. These workloads have high per-thread ILP

available, and even with only two threads on OOO-2, the achieved core throughput

(from 3.11 to 3.48) is close to the maximum possible (4). Because MorphCore’s

peak throughput is the same as OOO-2, the potential of improving performance

over OOO-2 using MorphCore is low for these workloads. However, as we later

show, MorphCore is still better because it is able to provide higher performance at

a lower energy consumption by executing the threads in-order.

In general, MorphCore’s performance improvement is lower than that of

throughput optimized cores, MED and SMALL, over OOO-2 (on average 21% vs

27% and 31%) because of its lower peak MT throughput (Table 4.2). However,

one MorphCore outperforms three MED cores in 3 workloads: qsort, fft, and

radix. As explained above qsort and radix benefit from more threads. In

fft, MED cores suffer from thread imbalance during execution: 3 threads are ac-

tive only 72% of the execution time, and only 2 threads are active 24% of execution

time, thus providing lower performance than MorphCore. MorphCore also outper-

forms SMALL cores in lu. (In fact SMALL cores perform worse than OOO-2).

The threads in lu do not reach a global barrier at the same time and have to wait

for the lagging thread. Because SMALL cores have low single-thread performance,

threads end up waiting for the lagging thread for a significant amount of time (only

1 thread is active for 35% of the execution time), and thus execution time increases

significantly. MorphCore does not suffer significantly from the problem of thread-

imbalance-at-barrier because it switches into OutOfOrder mode when only 1 thread

is active, therefore the waiting time for other threads is reduced.

39

MorphCore also outperforms OOO-4 by 7% on average (up to 25% for

tsp). Although the peak throughput of both MorphCore and OOO-4 is the same

(4, Table 4.2), MorphCore wins because it provides better latency tolerance by ex-

ecuting more threads than OOO-4. Thus, for workloads which have low uops/cycle

throughput on baseline OOO-2 and benefit from increasing the number of threads,

MorphCore provides significantly higher MT performance compared to OOO-4.

MorphCore provides this performance improvement in an energy-efficient manner

because it does not waste energy on OOO renaming and scheduling, and instead,

provides performance via highly-threaded in-order SMT execution.

Figure 4.5 shows the total (static + dynamic) energy consumed by each con-

figuration (a core includes L1 I and D caches but not L2 and L3 caches) normalized

to OOO-2 for MT workloads. As expected, throughput-optimized cores MED and

SMALL reduce energy consumption significantly over OOO-2 (by 15% and 16%

respectively). Note that MED and SMALL also provide the highest performance.

 0

 20

 40

 60

 80

 100

 120

 140

w
eb

-1

qs
or

t

ts
p

O
LTP-1

O
LTP-2

O
LTP-3

bl
ac

k

ba
rn

es

ff
t

lu oc
ea

n

ra
di

x
ra

y
w

at
er

gm
ea

n-
A

LL

E
n

er
g

y
 N

o
rm

al
iz

ed
 t

o
 O

O
O

-2
 (

%
)

MorphCore OOO-4 MED SMALL

Figure 4.5: Multi-thread energy results

MorphCore reduces energy by 20% over OOO-2 and by 16% over OOO-

4 because MorphCore does not waste energy on OOO renaming and scheduling,

and instead, provides performance via highly-threaded in-order SMT execution.

40

MorphCore reduces energy consumption for two reasons: 1) MorphCore reduces

execution time, thus keeping the core’s structures active for a shorter period of time,

and 2) even when MorphCore is active, some of the structures that will be active

in traditional out-of-order cores will be inactive in MorphCore’s InOrder mode.

These structures include the Rename logic, part of the instruction Scheduler, and

the Load Queue. Figure 2.2 shows that the OOO structures contribute significantly

to the overall energy consumption, and if those structures can be turned off, while

providing performance through in-order SMT, significant performance and energy

savings can be obtained. We find that 50% of the energy savings of MorphCore

over OOO-2, and 75% of the energy savings of MorphCore over OOO-4 come

from reducing the activity of these structures.

4.3.3 Single-thread and Multi-thread Results Summary

On single-thread (ST) workloads, MorphCore performs very close to OOO-

2, the best ST-optimized architecture. On multi-thread (MT) workloads, Mor-

phCore performs 21% higher than OOO-2 while providing 20% energy savings over

OOO-2, and achieves 2/3 of the performance potential of the best MT-optimized ar-

chitectures (MED and SMALL),. We conclude that MorphCore is able to handle

diverse ST and MT workloads efficiently.

4.3.4 Sensitivity of MorphCore’s Results to Frequency Penalty

Figures 4.6 and 4.7 show how MorphCore’s performance and energy effi-

ciency changes with the frequency penalty (because of its adaptive design) as com-

pared to the OOO-2 core. We find that for a MorphCore with an x% frequency

penalty, performance of ST and MT workloads reduces by ∼ x/2% and x% respec-

tively as compared to a MorphCore with no frequency penalty. This is because our

ST workloads are core+memory bound while our MT workloads are primarily core

bound. For example, MorphCore with a 10% frequency penalty reduces perfor-

mance by 4% on ST workloads and 7% on MT workloads over MorphCore with a

2.5% frequency penalty. Because of the increase in execution time, MorphCore in-

41

creases energy consumption. For ST workloads, MorphCore with a 10% frequency

penalty does not lose energy efficiency significantly over MorphCore with a 2.5%

frequency penalty. However, on MT workloads, MorphCore with a 10% frequency

penalty degrades energy efficiency by 3% over MorphCore with a 2.5% frequency

penalty.

 0.9

 0.95

 1

 1.05

 1.1

 0.9 0.95 1 1.05 1.1

gmean-ALL

Legend:

OOO-2
MorphCore-2.5% Slow

MorphCore-5% Slow
MorphCore-10% Slow

Figure 4.6: Single-Thread performance-energy trade-off of MorphCore’s frequency

penalty. x-axis is performance and y-axis is energy normalized to OOO-2.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

gmean-ALL

Legend:

OOO-2
MorphCore-2.5% Slow

MorphCore-5% Slow
MorphCore-10% Slow

Figure 4.7: Multi-Thread performance-energy trade-off of MorphCore’s frequency

penalty. x-axis is performance and y-axis is energy normalized to OOO-2.

4.3.5 Comparison with an 8-way SMT OOO Core

MorphCore increases performance and energy efficiency for MT workloads

by executing many threads simultaneously in-order. We compared MorphCore

42

against three throughput-optimized architectures (OOO-4, MED, and SMALL) in

Section 4.3.2. In this section, we compare MorphCore to yet another throughput-

optimized architecture OOO-8, an 8-way SMT OOO core. OOO-8 executes 8

threads simultaneously on the big core (4-wide 192-entry OOO window), thus when

TLP is available, OOO-8 can utilize big core’s resources fully. However, OOO-

8 comes with a significant area cost: McPat 0.8 [26] estimates that supporting 8

threads in OOO-8 increases the core area by 20% over the baseline OOO-2 core

because of significant increase in the area and complexity of the Renaming logic.

As we will see shortly, this has a negative effect on the energy efficiency of OOO-8.

We compare MorphCore to two configurations of OOO-8 that run at 5% and 10%

slower frequency than the OOO-2 core.

Figure 4.8 shows the performance and energy of MorphCore vs OOO-8 for

ST workloads (A representative subset of SPEC 2006 benchmarks are shown, the

average is over all SPEC2006 programs). On average, OOO-8 loses performance

by 2% and 4% over OOO-2 because OOO-8 runs at slower frequency. OOO-8 also

increases energy consumption by 6% because it has significantly higher leakage

due to its increased execution time and area.

Figure 4.9 shows performance and energy of MorphCore vs OOO-8 for MT

workloads. Even though OOO-8 runs at 2.5% slower frequency than MorphCore,

OOO-8 achieves on average performance similar to MorphCore because it executes

the 8 threads out-of-order (as opposed to MorphCore that executes the 8 threads in-

order). For example, the OOO-8 core that is 2.5% slower than MorphCore provides

5% higher performance over MorphCore for ocean. The benchmark ocean is

memory-intensive and threads go to memory frequently. Thus executing all threads

out-of-order in OOO-8 tolerates latency better, exposes high MLP, and results in

performance higher than MorphCore. On the other hand, OOO-8 loses performance

as compared to MorphCore in OLTP-2 and OLTP-3 because these benchmarks

are compute-bound, thus, the on-chip latencies are well-hidden by in-order multi-

threading. For such programs, the core throughput in terms of uops executed per

cycle of OOO-8 would be similar to that of MorphCore. However, any decrease in

43

frequency of the core proportionally reduces its performance, and hence the reason

for reduced performance of OOO-8 compared to MorphCore.

A major benefit of MorphCore over OOO-8 is its energy efficiency: Mor-

phCore reduces energy consumption by 20% over OOO-2 whereas OOO-8 reduces

energy consumption by only 3%. MorphCore is more energy efficient than OOO-8

because it is able to achieve similarly high performance but with in-order SMT ex-

ecution and reduced area. We conclude that MorphCore is a better alternative for

improving performance and energy efficiency for MT workloads than OOO-8.

44

 0

 20

 40

 60

 80

 100

pe
rl

bz
ip

2

m
cf

hm
m

er

lib
qu

an
tu

m

h2
64

as
ta

r
xa

la
nc

m
ilc

ze
us

m
p

ca
ct

us

de
al

II

G
em

s

lb
m

gm
ea

n-
A

LL

P
er

fo
rm

an
ce

 n
o
rm

al
iz

ed
 t

o
 O

O
O

-2
 c

o
re

 (
%

)

MorphCore-2.5% slow
OOO-8 5% slow

OOO-8 10% slow

(a) Performance

 0

 20

 40

 60

 80

 100

 120

pe
rl

bz
ip

2

m
cf

hm
m

er

lib
qu

an
tu

m

h2
64

as
ta

r
xa

la
nc

m
ilc

ze
us

m
p

ca
ct

us

de
al

II

G
em

s

lb
m

gm
ea

n-
A

LLE
n
er

g
y
 n

o
rm

al
iz

ed
 t

o
 O

O
O

-2
 c

o
re

 (
%

)

(b) Energy

Figure 4.8: Single-Thread performance and energy of MorphCore vs. 8-way SMT

OOO core.

45

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

w
eb

-1

qs
or

t

ts
p

O
LTP-1

O
LTP-2

O
LTP-3

bl
ac

k

ba
rn

es

ff
t

lu oc
ea

n

ra
di

x
ra

y
w

at
er

gm
ea

n-
A

LL

P
er

fo
rm

an
ce

 n
o
rm

al
iz

ed
 t

o
 O

O
O

-2
 c

o
re

 (
%

)
MorphCore-2.5% slow

OOO-8 5% slow
OOO-8 10% slow

(a) Performance

 0

 20

 40

 60

 80

 100

 120

w
eb

-1

qs
or

t

ts
p

O
LTP-1

O
LTP-2

O
LTP-3

bl
ac

k

ba
rn

es

ff
t

lu oc
ea

n

ra
di

x
ra

y
w

at
er

gm
ea

n-
A

LLE
n
er

g
y
 n

o
rm

al
iz

ed
 t

o
 O

O
O

-2
 c

o
re

 (
%

)

(b) Energy

Figure 4.9: Multi-Thread performance and energy of MorphCore vs. 8-way SMT

OOO core.

46

4.3.6 Effect of a Limited Capacity/Bandwidth Memory System

MorphCore improves throughput performance over OOO-2 by executing 8

threads simultaneously. This may increase capacity and bandwidth demands on the

memory system, and may hurt the performance of MorphCore in InOrder mode. To

show these effects, we evaluate the performance of the 3 most memory intensive

benchmarks from our MT workload suite, fft, ocean, and radix, for differ-

ent memory system configurations. For all memory system configurations, both

baseline OOO-2 and MorphCore simulations use the same configuration.

We first repeat our baseline results from Figure 4.4. Figure 4.10(a) shows

MorphCore’s performance for the three benchmarks over OOO-2 for the base-

line memory system. Our baseline memory system consists of a 2MB last-level

cache (LLC) and 2 DRAM channels where each channel has 8 banks. Table 4.1

shows detailed memory system parameters. Figure 4.10(b) shows that when the

DRAM channels are halved (from 2 to 1), MorphCore performance improvement

over OOO-2 reduces for all three benchmarks (the average reduces from 33% to

25%). When the number of channels are kept to 2, and the LLC size is reduced

from 2MB to 1MB in Figure 4.10(c), MorphCore’s performance improvement over

OOO-2 is not hurt significantly.

However, when both LLC size and the number of DRAM channels are re-

duced in Figure 4.11(a), MorphCore’s performance improvement is only 20% as

compared to 33% for the baseline memory system. More noticeably, MorphCore

reduces performance for ocean over OOO-2. This is because with a 1MB LLC,

8 threads put significant pressure on the LLC capacity and the miss rate increases

which increases the DRAM bandwidth demand. With only a single DRAM channel,

the bus contention and the DRAM bank interference increases which hurts perfor-

mance. OOO-2 does not experience such contention and interference because it

runs only 2 threads. To show that the decrease in ocean’s performance is because

of the significant DRAM row buffer and bank interference, we increase the number

of DRAM banks per channel to 16 in Figure 4.11(b) keeping the 1MB LLC size and

47

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

fft ocean radix gmean

S
p
ee

d
u
p
 N

o
rm

.
to

 O
O

O
-2

 (
%

)

OOO-2 MorphCore

(a) Baseline Mem System. 2MB LLC 2 Channels 8 banks/channel

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

fft ocean radix gmean

S
p
ee

d
u
p
 N

o
rm

.
to

 O
O

O
-2

 (
%

)

OOO-2 MorphCore

(b) 2MB LLC 1 Channel 8 banks/channel

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

fft ocean radix gmean

S
p
ee

d
u
p
 N

o
rm

.
to

 O
O

O
-2

 (
%

)

OOO-2 MorphCore

(c) 1MB LLC 2 Channels 8 banks/channel

Figure 4.10: Effect of Mem system parameters.

48

 0

 20

 40

 60

 80

 100

 120

 140

 160

fft ocean radix gmean

S
p
ee

d
u
p
 N

o
rm

.
to

 O
O

O
-2

 (
%

)

OOO-2 MorphCore

(a) 1MB LLC 1 Channel 8 banks/channel

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

fft ocean radix gmean

S
p
ee

d
u
p
 N

o
rm

.
to

 O
O

O
-2

 (
%

)

OOO-2 MorphCore

(b) 1MB LLC 1 Channel 16 banks/channel

Figure 4.11: Effect of Mem system parameters (contd.).

49

the single DRAM channel. By doing so, ocean recovers the performance loss.

These experiments show that as the adaptivity of processor cores to TLP

increases with proposals like MorphCore, the memory system needs to adapt as

well. For example, dynamically increasing the LLC cache size and the DRAM

bus/bank bandwidth with increased TLP would help. Adaptive memory system

design is an exciting research area. Another solution to this problem is a better

mode switching policy that takes into account the contention in the memory system.

For example, a better mode switching policy would switch into OutOfOrder mode

even when the software exposes high TLP but when the memory system cannot

sustain the capacity and bandwidth requirements of high TLP. Designing better

mode switching policies is also an exciting future research area.

4.3.7 Effect of Increasing the Superscalar Width

MorphCore builds on the baseline OOO-2 core which has the superscalar

width (a.k.a. issue width) of 4. We want to know if MorphCore can provide sim-

ilar performance improvement when built over an OOO-2 core with an increased

superscalar width. We first show in Figure 4.12 that increasing the width from 4 to

6 increases the performance of the OOO-2 core for our MT workloads.

Figure 4.13 shows that a 6-wide MorphCore and a 6-wide OOO-4 still pro-

vide significant performance improvement over a 6-wide OOO-2. However, Mor-

phCore reduces performance for one benchmark, lu, compared to both OOO-2 and

OOO-4.

The benchmark lu has high ILP and achieves a significant performance

improvement of 33% on OOO-2 when the core’s width is increased from 4 to 6

as shown in Figure 4.12. However a 6-wide MorphCore is not able to achieve

significantly higher throughput for lu because 8-threaded in-order execution is not

able to expose enough ILP to saturate the 6-wide issue MorphCore and match the

performance of 6-wide OOO-2.

A solution to this problem is a better mode switching policy that takes into

50

account the ILP and MLP exploited by the in-order and OOO execution and decides

the mode accordingly. Designing better mode switching policies for adaptive cores

like MorphCore is a future research direction.

 0

 20

 40

 60

 80

 100

 120

 140

w
eb

-1

qs
or

t

ts
p

O
LTP-1

O
LTP-2

O
LTP-3

bl
ac

k

ba
rn

es

ff
t

lu oc
ea

n

ra
di

x
ra

y
w

at
er

gm
ea

n-
A

LL

S
p
ee

d
u
p
 N

o
rm

.
to

 4
-w

id
e

O
O

O
-2

 (
%

)
6-wide OOO-2

Figure 4.12: Benefit of increasing the width for the baseline OOO-2 core.

 0

 50

 100

 150

 200

 250

w
eb

-1

qs
or

t

ts
p

O
LTP-1

O
LTP-2

O
LTP-3

bl
ac

k

ba
rn

es

ff
t

lu oc
ea

n

ra
di

x
ra

y
w

at
er

gm
ea

n-
A

LL

S
p
ee

d
u
p
 N

o
rm

.
to

 6
-w

id
e

O
O

O
-2

 (
%

)

6-wide OOO-4 6-wide MorphCore

Figure 4.13: Sensitivity to the issue width showing benefit of the increased width

for OOO-4 and MorphCore

51

Chapter 5

Adapting to Instruction-Level Parallelism (ILP) and

Memory-Level Parallelism (MLP)

In Sections 2.3.2 and 2.3.3, I showed a high-level design of MorphCore

that dynamically varies both superscalar width and out-of-order window size of

the core to adapt to Instruction-Level Parallelism (ILP) and Memory-Level Paral-

lelism (MLP) present in the single-thread programs. In this chapter, I will present

the detailed microarchitecture of MorphCore for doing so. Note that our proposed

MorphCore design operates as an out-of-order core when it adapts to ILP and MLP,

even though the microarchitecture supports in-order execution (via InOrder mode

when TLP is available). An obvious option for low-power and perhaps for low-

energy operation is a single-threaded in-order mode. We call this mode InOrder-ST

Mode. We have designed and investigated the InOrder-ST mode with the goal of

providing energy savings. We first describe a high-level architecture of InOrder-

ST Mode. We then evaluate the performance and energy of the InOrder-ST Mode

and show that InOrder-ST mode in fact does not save energy as compared to the

OutOfOrder mode.

5.1 InOrder Mode for Single-threaded Programs

The InOrder-ST Mode executes a single-thread program. It turns off all ad-

ditional structures required for multi-threading (e.g. multiple PCs). Like the multi-

thread InOrder mode, it turns off OOO-renaming, OOO-scheduling, and load/store

queue lookups to save energy, and turns on a simple in-order renaming and in-order

scheduling logic. To further save energy, InOrder-ST mode also turns off parts of

the structures that are not used in single-thread in-order execution, reducing per-

52

access energy of these structures. We describe in detail how OOO execution struc-

tures can be partially turned off in Section 5.2. These structures include the Phys-

ical Register File (PRF), Reservation Stations (RS), ROB, and Load/Store Queue

(LSQ). Only a small portion of the PRF is required in order to store the architec-

tural state of the thread, the rest of the PRF is turned off. For RS and ROB, only a

small portion is needed to be ON since scheduling is constrained to the head of the

sequential instruction stream. For the LSQ, some of the entries are ON since they

are used as Store Buffer entries holding data waiting to be written into the d-cache.

InOrder-ST mode also reduces the width of the core. Each of the fetch-,

decode-, rename-, schedule-, execute-, and commit-width is reduced from 4- to 2-

instructions per cycle (we describe in detail how this is done in Section 5.2). At a

high level, for each pipeline stage in the core, half of the latches and the associated

clock delivery network is turned off, reducing the throughput of the pipeline by half.

This reduces both static and dynamic energy associated with clock and pipeline

latches. Note that the dynamic energy spent on doing the useful work per instruction

(e.g. to decode and execute an instruction) remains the same.

5.1.1 Problem: Poor Energy Efficiency

Figure 5.1 shows the performance-energy trade-off of MorphCore always

operating in InOrder-ST mode (2-wide in-order) and MorphCore always operating

in OutofOrder mode (4-wide 192-entry ROB OOO). Our performance simulation

parameters and energy estimation methodology (using a modified version of Mc-

PAT [26]) is presented in Section 6.4. The InOrder-ST mode loses 60% perfor-

mance and increases energy consumption by 30%. It may come as a surprise at

first that the InOrder-ST mode increases energy, since there are a number of energy

savings features incorporated in its design. However, because of in-order execu-

tion, the core loses a significant amount of performance. As the execution time

increases, both leakage energy and dynamic energy increase (the dynamic energy

increases due to increased clock activity). In the case of InOrder-ST, the increase

in energy due to a significant increase in execution time far outweighs the energy

53

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.4 0.6 0.8 1 1.2 1.4

E
n
er

g
y
 n

o
rm

.
to

 O
u
to

fO
rd

er
 M

o
d
e

Performance norm. to OutofOrder Mode

gmean

OutofOrder Mode

InOrder-ST Mode

Oracle

Figure 5.1: Performance-energy trade-off of various operating points. Averaged

over all SPEC 2006 benchmarks

reduction because of “lean” structures and an in-order pipeline.

To show that the poor energy efficiency of InOrder-ST mode is not because

of the decision to always operate MorphCore in InOrder-ST mode, we are also

showing an “Oracle” point on the figure, which is MorphCore operating with an

oracle mode switching policy between OutofOrder and InOrder-ST Modes (for ev-

ery interval the oracle chooses the mode that minimizes the energy consumption

during the interval. More details on oracle mode switching policies are presented

in Section 6.5). Figure 5.1 demonstrates that a perfect mode switching policy that

chooses InOrder-ST mode for an interval only when it minimizes energy consump-

tion during the interval only saves 1% energy. Therefore, we conclude that in fact,

InOrder-ST mode does not save energy.

5.2 Microarchitectural Support

Figure 5.2 shows the proposed MorphCore architecture which is based on a

traditional big OOO core shown in Figure 2.1. The bottom part of Figure 5.2 shows

the logical pipeline stages in the core. The blocks above show the pipeline latches

54

Figure 5.2: The MorphCore microarchitecture with the ability to reduce width and

window size

and the structures accessed in each logical stage. The figure shows the structures

and pipeline latches that are always ON. It also shows the structures and latches

that are partially turned off when width or window size is reduced, and are ON

otherwise. The MorphCore supports 4-wide width and 192-entry OOO window.

When the core operates in one of the three low-power modes, it reduces width (to

2-wide) or window size (to 48-entry) or both.

5.2.1 Reducing the Superscalar Width

The MorphCore microarchitecture reduces the superscalar width of the core

by turning off half of the following structures: pipeline latches and associated

clock network throughout the core, instruction decoding logic, dependency check-

ing logic in the Rename stage, execution units and bypass network. For full-width

operation, all of these structures are fully ON. Special control bits are also set in

each pipeline stage to correctly handle the maximum throughput of the pipeline

(e.g., the number of bytes fetched from the Icache, the number of bytes fed to the

55

decoders, the number of instructions that can be scheduled or committed per cycle,

the number of PRF read/write operations done per cycle, etc.).

Figure 5.3: Turning off pipeline latches and clock network

5.2.1.1 Pipeline Latches and the Clock Network

Figure 5.3 shows a traditional pipeline and MorphCore’s pipeline that sup-

ports reducing pipeline width. Half of the pipeline latches and the clock delivery

network is off in reduced width modes. The design proposed in my thesis is similar

to “register-level clock gating” described in [20]. Note that the Valid bit latches

are always ON, but half of them are set to the “Not Valid” value in reduced width

operation. This is done to ensure that the logic that is fed by the pipeline latches

does not produce incorrect results in reduced width operation. The clock delivery

network is divided into two separate networks: one that delivers clock to always

ON latches, and the other that delivers clock to latches that could be turned off in

reduced width operation.

The biggest energy savings from reducing the core width come from dis-

abling pipeline latches and clock network (we assume power gating). In a tradi-

tional pipeline the clock delivery network consumes a significant amount of dy-

namic/leakage energy. However, in reduced width modes half of the clock network

is turned off (and thus does not switch), resulting in significant energy savings. Tra-

ditionally, fine-grain clock-gating (FG-CG) is used to save clock dynamic energy.

56

However, FG-CG is very local is its scope by design, and is typically limited to dis-

abling clock switching only at the latches, resulting in limited energy savings. By

choosing to turn off half of the latches throughout the core for a significantly long

time, we enable turning off completely half of the clock delivery network, resulting

in more significant energy savings.

5.2.1.2 Decode, Rename and Execution Stages

Since reduced width modes fetch, decode, rename, execute and commit 2

instructions per cycle, and the baseline core supports 4-wide operation, we turn off

half of the decoding logic in Decode Stage (Figure 5.4), as well as dependency

checking logic in the Rename Stage (Figure 5.5), and half of the execution units.

This saves both leakage and dynamic energy. We also turn off half of the bypass

network by adding transmission gates in the path of bypass wires. The gates are

disabled in reduced width modes (Figure 5.6). This reduces the length of bypass

wires and, thus, the capacitance that needs to be switched on every bypass operation

in the reduced width modes, resulting in dynamic energy savings.

Figure 5.4: Turning off half of instruction length detection logic and decoders.

57

Figure 5.5: Turning off half of the dependency check logic in the Rename stage.

Figure 5.6: Turning off execution units and bypass wires

58

5.2.2 Reducing the OOO Window Size

We collectively call the structures that support OOO execution as the “OOO

window”. These structures include the Physical Register File (PRF), Reservation

Stations (RS) (a.k.a. issue queue), ROB, and Load/Store Queue (LSQ). Reducing

the OOO window size (which is typically the size of ROB) means reducing the

number of “active” entries in each of these structures (see Figure 5.2). We reduce

the window size from 192-entries (ROB size) to 48-entries, we also reduce the size

of RS (from 60 to 20), Load Queue (from 70 to 20), Store Queue (from 50 to 10),

and PRF (from 192 to 60). Special control bits are also set in each pipeline stage

to correctly handle the circular addressing nature of the ROB and the allocation of

PRF, RS and LSQ entries.

Figure 5.7: Associative (CAM) and indexed (RAM) structures that support reducing

the size at runtime

RS and LSQ are associative structures built with CAMs, whereas PRF and

ROB are indexed structures built with RAMs. Figure 5.7 (a) shows a simplified

circuit of an associative structure. In the baseline structure, all entries are active,

and each search operation compares all entries, an expensive operation. In an asso-

ciative structure that supports reducing the size at runtime (Figure 5.7 (b)), a trans-

mission gate is added in the path of the search port [5]. (We use such structures for

59

RS and LSQ). When the window size is reduced, the gate is disabled, reducing the

number of entries that a search operation needs to compare, reducing energy per

search operation.

Figure 5.7 (c) shows a simplified circuit of a RAM structure. In the base-

line structure, all RAM cells put capacitive load on the bit line, and thus, each

pre-charging/dis-charging of the bitline is an expensive operation (especially for

large multi-ported structures). A RAM structure that supports reducing the size at

runtime (Figure 5.7 (d)) uses a circuit technique called bitline segmentation which

was proposed and evaluated using circuit simulations by [9, 5] . In this technique,

the cells that could be disabled are connected to a local bitline which is then con-

nected to the main bitline through a buffer. The buffer is turned off during reduced

size operation, taking away a significant capacitive load from the bitline, and thus,

reducing energy per access.

60

Chapter 6

Mode Switching Policy for Adapting to ILP/MLP and

Evaluation

MorphCore supports five modes: a highly-threaded in-order SMT mode,

and four out-of-order modes with different widths and window sizes. In Chapter 5,

I described the four out-of-order modes of the MorphCore microarchitecture that

are obtained by varying the superscalar width and the out-of-order window size. In

this chapter, I describe the switching policy that the MorphCore microarchitecture

uses to switch between these four operating modes to adapt to ILP/MLP present in

single-thread programs.

6.1 MorphCore Procedure for Changing Modes

Mode switching is handled by a micro-code routine. The micro code routine

drains the core pipeline including the Store Buffer. When changing the width of the

core, it turns OFF or turns ON the structures mentioned in Section 5.2.1, and sets

the control bits in each pipeline stage accordingly.

When reducing the window size, a large portion of the Physical Register

File (PRF) will be disabled. Thus, the micro-code routine re-maps and moves the

architectural registers currently mapped to soon-to-be-disabled PRF entries to the

PRF entries in the ON partition. On increasing the window size, this operation is

not needed. The micro-code routine then turns OFF or turns ON the structures men-

tioned in Section 5.2.2, and sets the control bits in each pipeline stage accordingly.

After the micro-code routine is complete, MorphCore resumes normal execution.

61

6.2 The Sampling-Based Mode Switching Policy

We present a low-overhead yet effective mode switching policy that switches

between the four out-of-order modes and automatically decides the operating mode

of the core at runtime based on the characteristics of the workload and the objec-

tive set by the power-management firmware of the chip. The objective could be

highest performance, or maximum energy savings while satisfying the constraint of

sustaining performance within x% of the highest performance mode. Note that the

operating mode could also be set directly by the runtime software (e.g., with the

help of the programmer). We leave such mechanisms for future research.

Our basic idea is to sample execution with each of the four out-of-order

operating modes, and then choose the “best-suited” operating mode based on per-

formance and energy consumption and the goal set by the firmware. This process

repeats frequently enough to capture the phase behavior of the workload.

Figure 6.1: Sampling-based mode switching policy

Figure 6.1 shows our mode switching policy. Execution is divided into

coarse-grain, fixed-length quantums, by the number of instructions executed (e.g.,

a quantum size of 10M instructions). Each quantum is further divided into fixed-

length intervals (e.g., an interval size of 100K instructions). At the start of each

quantum, our policy samples the execution of the different modes in the intervals

called sampling intervals. For each sampling interval, the performance and energy

consumption during the interval is recorded for later use. The number of sampling

intervals is 4 × R where R is the Replication Factor. In the figure, R is equal to 1.

62

A value of R equal to r means that each mode is sampled r times, and the perfor-

mance and energy consumption of the sampled execution of the mode will be the

average of r intervals. At the end of sampling intervals, a small firmware routine

is called. This routine chooses the “best-suited” mode based on the data collected

during the sampling intervals and the objective set by the chip firmware. For ex-

ample, if the objective is highest performance (or lowest energy), the mode with

highest performance (or lowest energy) during the sampled execution is chosen. If

the objective is lowest energy while satisfying the constraint of performance within

x% of the highest performance mode, the firmware routine sorts the sampled modes

by their energies consumed, and chooses the lowest energy mode that satisfies the

performance constraint. The core is then operated in the chosen mode for the rest

of the intervals in the quantum. We like to note here that we use the performance

loss constraint on energy savings in our policy as a “knob” to control the time spent

(and instructions executed) in low-power modes.

The effectiveness of the mode switching policy depends on the choice of

quantum size, interval size, and the Replication Factor. The size of the quantum

should be small enough to capture the workload phase behavior, and large enough

to amortize the overhead of sampling. Likewise the size of the sampling inter-

val should be large enough to capture the current “representative” behavior of the

workload and to average the bursty performance events (e.g., a burst of last-level

cache misses, or a burst of compute-intensive or memory-intensive instructions

etc.). Replicated Sampling is another method to average the bursty behavior. How-

ever, the sampling overhead increases with the size of the sampling interval and

with the Replication Factor. We experimented with different quantum and interval

sizes as well as with different replication factors, and based on the results of those

experiments, we have found that a quantum size of 10M instructions, an interval

size of 100K instructions, and a Replication Factor of 1 performs the best for our

simulation configurations and workloads.

63

6.3 Other Mode Switching Policies

In this section, I describe other mode switching policies that I designed and

evaluated, and also why they do not work.

6.3.1 Performance-stats based policies

The mode switching decision can be based on performance statistics such as

instructions issued per cycle, the amount of memory-level parallelism, the number

of branch mispredictions, etc.

6.3.1.1 Determining the window size based on MLP

A policy that makes decisions to increase or decrease the window size based

on the number of parallel memory requests seems to be a good policy at first. How-

ever, this policy does not work in practice for many workloads because a big win-

dow is not only needed for exposing parallel memory/DRAM requests, but also

needed when instructions have medium latencies (e.g., last level cache hits and

their dependents) or when the dependencies between instructions are such that a

big window is needed to expose ILP. Note that when a big window is needed to

expose ILP, a big width is needed as well, even though the absolute instructions

committed per cycle would still be small.

6.3.1.2 Determining the width based on instructions issued per cycle

This policy makes decisions to increase (or decrease) the width of the core

when the number of instructions issued (not committed) per cycle is above a threshold-

1 (or below a threshold-2). This policy works well when the window size is max-

imum. However, when window size is not maximum, this policy makes wrong

decisions because it can incorrectly decrease the width of the core just because the

observed instructions issued per cycle was below threshold-2 (instructions issued

per cycle is only below threshold-2 because of the small window size, and it may

not remain below threshold-2 with a big window size).

64

6.3.1.3 Determining the width and window size based on branch mispredic-

tions

This policy reduces the window size of the core when the number of branch

mispredictions per thousand instructions is above a threshold. The rationale is that

since branch mispredictions are frequent, a big window is not useful because it gets

filled with mostly wrong-path instructions. However, in practice this policy does

not work across the board because capturing only average behavior of branch mis-

predictions is not enough (the threshold changes between different workloads) and

other factors need to be considered as well, e.g., how much memory-level paral-

lelism and ILP gets exposed with big window.

Another policy I considered was to increase the width of the core to maxi-

mum when the core starts fetching instructions from the correct path after a branch

misprediction. The rationale here is that since the core needs to fill the pipeline,

it should start fetching at full rate. However, the performance benefit might not be

there because of the inherent dependencies between the instructions.

6.3.1.4 Determining the window size based on ROB and RS occupation

This policy increases (or decreases) the window size when the number of

entries occupied in ROB and RS is above a threshold-1 (or below a threshold-2).

However, simply looking at the occupation is not enough, and the performance

benefit of more instructions in ROB and RS needs to be taken into account.

6.3.2 Reducing the Overhead of Sampling with Signature-based Policies

The general idea of sampling the modes and then picking the best suited

mode for the current phase of the workload is appealing. An improvement to the

basic idea is to sample once and remember the best suited mode for the particular

phase. The hardware then continuously monitors the program characteristics, and

when a previously seen phase is encountered, the previously selected best suited

mode is executed next. An important ingredient of this policy is how to characterize

65

a phase, or in other words, how to calculate the “signature” of a phase. I designed

two signature schemes: a code-based signature, and a simple performance-stats

based signature.

6.3.2.1 Code-based signature

The code-based signature is based on the scheme proposed in [36]. How-

ever, in my simulations and benchmarks this scheme did not work very well be-

cause, for many benchmarks (like gcc and bzip), it produced hundreds of sig-

natures, making it impractical to store and search the signatures. However, some

improvements could be made to the simple signature that I used.

6.3.2.2 Performance-stats based signature

I also designed a performance-stats based signature that encodes basic per-

formance stats like data cache misses, last-level cache hits and misses, branch mis-

predictions and instruction cache misses into a simple signature. However, I found

that a simple encoding that stores stats values and a search mechanism that com-

pares two signatures based on pre-set thresholds was not enough, since different

programs needed different threshold values. A complex encoding that captures the

high-level phase characteristics based on the performance stats would help.

6.4 Evaluation Methodology

Table 6.1 shows the configurations of the cores and the memory subsystem

simulated using our in-house cycle-level x86 simulator. The only difference be-

tween Tables 6.1 and 4.1 is in the memory system configuration. In Table 6.1 the

last-level cache size is 1MB and the number of DRAM channels is 1, whereas in

Table 4.1 the last-level cache size is 2MB and the number of DRAM channels is

2. The difference in simulation configurations exists because in Chapter 4 we were

evaluating MorphCore on multi-threaded benchmarks which have high resource re-

quirements on the memory system, and hence we used a bigger memory system

66

Table 6.1: Configuration of the simulated machine

Core Configurations

OOO Core: 3.4GHz, 4-wide issue OOO, 14-stage pipeline, 60-entry

unified RS, 192 ROB, 70 LDQ, 50 STQ, 192 INT/FP Physical Reg

File, 1-cycle wakeup/select Functional Units: 4 (multi-purpose).

ALU latencies (cycles): int arith 1, int mul 4-pipelined, fp arith 4-

pipelined, fp divide 8, loads/stores 1+2-cycle D-cache L1 Caches:

32KB I-cache, D-cache 32KB, 2 ports, 8-way, 2-cycle pipelined

OOO-Slow Down-scaling the frequency of OOO core. All other parameters

are same as OOO.

MED Core: 3.4GHz, 2-wide issue OOO, 10-stage, 48-entry ROB/PRF.

Functional Units: Half of OOO. Latencies same as OOO. L1

Caches: 1 port Dcache, other same as OOO.

SMALL Core: 3.4GHz, 2-wide issue In-Order, 8-stage pipeline. Func-

tional Units: Same as MED. L1 Caches: Same as MED.

MorphCore Core: 3.315GHz (2.5% slower than OOO), Other parame-

ters are same as OOO. Functional Units and L1 Caches:

Same as OOO. Modes: OutofOrder mode (4-wide 192-entry

OOO), BigWid+MedWin mode (4-wide 48-entry window), Med-

Wid+BigWin (2-wide 192-entry window), and MedWid+MedWin

(2-wide 48-entry window). Mode switching policy: Sampling-

based mode switching policy. 3 configurations: lowest

energy while performance within 5% (15%) of OutofOrder

mode (MorphCore-5, and MorphCore-15) and lowest energy

(MorphCore-LE).

Memory System Configuration

Caches L2 Cache: private L2 256KB, 8-way, 5 cycles. L3 Cache: 1MB

write-back, 64B lines, 16-way, 10-cycle access

Memory 8 banks/channel, 1 channel, DDR3 1333MHz, bank conflicts,

queuing delays modeled. 16KB row-buffer, 15 ns row-buffer hit

latency

67

in that evaluation. The simulator faithfully models microarchitectural details of the

core, cache hierarchy and memory subsystem, e.g., contention for shared resources,

DRAM bank conflicts, banked caches. To estimate the area and power/energy of

different core architectures, we use a modified version of McPAT [26]. Note that all

core configurations have the same memory subsystem (L2, L3 and main memory).

Our primary goal is to save core energy (core includes L1 caches but not

L2 and L3 caches). We evaluate MorphCore with 3 configurations, MorphCore-5,

MorphCore-15, andMorphCore-LE. The mode switching policy is set to 3 different

objectives in these 3 configurations. In MorphCore-5 (MorphCore-15) the objec-

tive is to minimize energy while satisfying the constraint of performance within 5%

(15%) of the OOO core. In MorphCore-LE the objective is to minimize energy

without any consideration of performance loss (LE stands for lowest energy). Un-

less otherwise noted, we use a quantum size of 10M instructions, an interval size of

100K instructions, and a Replication Factor of 1. We also compare MorphCore’s

energy efficiency against a frequency-scaled OOO core.

We simulate all 29 single-threaded SPEC 2006 applications. Each SPEC

benchmark is run for 200M instructions with the ref input set, where the represen-

tative slice is chosen using a Simpoint-like methodology.

6.5 Results

6.5.1 Energy Savings

Figure 6.2 shows the energy savings obtained by MorphCore over the base-

line OOO core for all 29 SPEC2006 benchmarks (See Section 6.4 for description of

3 different MorphCore configurations). By providing hardware support for efficient

low-power operating modes, each tailored towards a specific workload behavior,

and then choosing the best-suited operating mode at runtime for the currently ex-

ecuting workload phase, MorphCore is able to save energy on average by 4%, 6%

and 8% (up to 15%).

68

-2
 0
 2
 4
 6
 8

 10
 12
 14
 16

p
er

l

b
zi

p
2

g
cc

m
cf

g
o

b
m

k

h
m

m
er

sj
en

g

li
b

q
u

an

h
2

6
4

o
m

n
et

p
p

as
ta

r

x
al

an
c

b
w

av
es

g
am

es
s

m
il

c

ze
u

sm
p

g
ro

m
ac

s

ca
ct

u
s

le
sl

ie

n
am

d

d
ea

lI
I

so
p

le
x

p
o

v
ra

y

ca
lc

u
li

x

G
em

s

to
n

to

lb
m

w
rf

sp
h

in
x

g
m

ea
nE

n
er

g
y

 S
av

in
g

s
o

v
er

 O
O

O
 (

%
)

MorphCore-5% perf loss
MorphCore-15% perf loss

MorphCore-LE (Least Energy)

Figure 6.2: Energy-efficiency of MorphCore over OOO core.

6.5.2 Analysis

We explain the energy savings obtained by MorphCore by analyzing sev-

eral benchmarks and by showing the coverage (fraction of instructions executed)

in each of the modes in Figure 6.3 and the performance-energy trade-off of the 3

MorphCore configurations in Figure 6.4.

The benchmark lbm benefits significantly (14% energy savings) in all 3

configurations. Figure 6.3 shows that almost all of the instructions are executed

in 2-wide 192-entry mode (it is a memory-bound benchmark with mostly stable

phase behavior), and Figure 6.4 shows that reducing pipeline width does not hurt

performance significantly (less than 3%). Because of these two factors, lbm is able

to significantly improve energy efficiency with the MorphCore architecture.

Gems is another benchmark that benefits significantly (15% in MorphCore-

LE) by executing most of instructions in 2-wide 48-entry mode, and not hurting

performance significantly. perl, bzip2, h264, and astar are examples of

benchmarks that execute more instructions in low-power modes with MorphCore-

LE as compared to MorphCore-5 or MorphCore-15, and provide more energy sav-

ings. However, the amount of energy savings depends on the performance loss that

they encounter. For example, h264 executes a lot more instructions in low-power

modes as compared to astar (see Figure 6.3), however h264’s increase in en-

69

ergy savings is much lower as compared to astar’s (Figure 6.2). This is because

h264 loses performance significantly in the MorphCore-LE configuration, whereas

astar does not (Figure 6.4). Note that for several benchmarks, gamess, namd,

dealII, povray, calculix and tonto, MorphCore increases energy con-

sumption by 1% or 2% over the baseline OOO core. These benchmarks are mostly

compute bound, and the most appropriate mode for these benchmarks in terms of

energy is the 4-wide 192-entry mode. However, because MorphCore runs at 2.5%

slower frequency, and it samples the execution of 3 low-power modes coupled with

the fact that sometimes it can make wrong decisions for the whole quantums based

on the sampling of 100K instructions, MorphCore increases energy consumption

and reduces performance over OOO.

70

 0

 20

 40

 60

 80

 100

p
er

l

b
zi

p
2

g
cc

m
cf

g
o

b
m

k

h
m

m
er

sj
en

g

li
b

q
u

an

h
2

6
4

o
m

n
et

p
p

as
ta

r

x
al

an
c

b
w

av
es

g
am

es
s

m
il

c

ze
u

sm
p

g
ro

m
ac

s

ca
ct

u
s

le
sl

ie

n
am

d

d
ea

lI
I

so
p

le
x

p
o

v
ra

y

ca
lc

u
li

x

G
em

s

to
n

to

lb
m

w
rf

sp
h

in
x

am
ea

n

F
ra

c
o

f
in

st
s

(%
)

2-wide, 48-entry mode
2-wide, 192-entry mode
4-wide, 48-entry mode

4-wide, 192-entry mode

(a) MorphCore-5

 0

 20

 40

 60

 80

 100

p
er

l

b
zi

p
2

g
cc

m
cf

g
o

b
m

k

h
m

m
er

sj
en

g

li
b

q
u

an

h
2

6
4

o
m

n
et

p
p

as
ta

r

x
al

an
c

b
w

av
es

g
am

es
s

m
il

c

ze
u

sm
p

g
ro

m
ac

s

ca
ct

u
s

le
sl

ie

n
am

d

d
ea

lI
I

so
p

le
x

p
o

v
ra

y

ca
lc

u
li

x

G
em

s

to
n

to

lb
m

w
rf

sp
h

in
x

am
ea

n

F
ra

c
o

f
in

st
s

(%
)

(b) MorphCore-15

 0

 20

 40

 60

 80

 100

p
er

l

b
zi

p
2

g
cc

m
cf

g
o

b
m

k

h
m

m
er

sj
en

g

li
b

q
u

an

h
2

6
4

o
m

n
et

p
p

as
ta

r

x
al

an
c

b
w

av
es

g
am

es
s

m
il

c

ze
u

sm
p

g
ro

m
ac

s

ca
ct

u
s

le
sl

ie

n
am

d

d
ea

lI
I

so
p

le
x

p
o

v
ra

y

ca
lc

u
li

x

G
em

s

to
n

to

lb
m

w
rf

sp
h

in
x

am
ea

n

F
ra

c
o

f
in

st
s

(%
)

(c) MorphCore-LE

Figure 6.3: MorphCore’s modes coverage (fraction of instructions executed).

71

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

perl 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

bzip2 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

mcf

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

hmmer
 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

libquantum
 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

h264

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

astar
 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

xalanc
 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

milc

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

zeusmp 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

cactus 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

dealII

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

Gems 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

lbm 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

gmean-ALL

Legend:

OOO
MorphCore-5

MorphCore-15
MorphCore-LE

Figure 6.4: Performance-energy trade-off of various MorphCore’s configurations

for several SPEC2006 benchmarks. X-axis is performance and Y-axis is energy

consumption normalized to OOO core.

72

6.5.3 Oracle Switching Policy

In order to find out how much of the “potential” energy savings MorphCore

is able to achieve, we compare our low-overhead sampling-based mode switching

policy to an oracle switching policy. The oracle switching policy decides the op-

erating mode at 100K instruction intervals. Note that the mode switching interval

of 100K instructions for the oracle policy is very fine-grained as compared to our

policy in which a mode is chosen for the whole quantum where a quantum size is

10M instructions. The oracle policy chooses the mode as follows: at the start of

every 100K interval, the policy has the “oracle” knowledge of the performance and

energy consumption of the four out-of-order operating modes for the interval, and

thus the policy can make the optimal decision about which mode to run at the start

of the interval.

Figure 6.5 shows performance-energy trade-off of the 3 MorphCore config-

urations and the 3 corresponding oracle configurations. In Oracle-5 (-15), the oracle

policy chooses the lowest energy mode that satisfies the constraint of performance

within 5% (15%) of 4-wide 192-entry OOO mode. In oracle-LE, it chooses the

mode that minimizes the energy consumption during the interval.

We note that our low-overhead sampling-based policy provides operating

points on the performance-energy trade-off space that are close to the oracle for

many workloads. This means that our policy provides most of the benefit (performance-

efficiency, i.e., performance at given energy consumption, or energy-efficiency, i.e.,

energy consumption at given performance) of the oracle switching policy. However,

workloads like bzip2, libquantum, and xalanc show relatively big difference

between our policy and oracle. These workloads have fine-grained phase behaviors,

and our “sample once and use it for the whole (big) quantum” approach does not

work as well as the oracle policy that chooses the optimal mode for every interval.

73

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

perl 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

bzip2 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

mcf

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

hmmer
 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

libquantum
 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

h264

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

astar
 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

xalanc
 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

milc

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

zeusmp 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

cactus 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

dealII

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

Gems 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

lbm 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

gmean-ALL

Legend:

OOO
M-5

M-15
M-LE

O-5
O-15
O-LE

Figure 6.5: Performance-energy trade-off of MorphCore with M=Sampling and

O=Oracle mode switching policies. X-axis is performance and Y-axis is energy

consumption normalized to OOO core.

74

6.5.4 Dynamic Voltage and Frequency Scaling

Energy consumption of the core changes with the operating voltage Vcc.

The dynamic energy is a quadratic function of Vcc, whereas leakage is an expo-

nential function of Vcc [45]. Thus, reducing Vcc significantly reduces energy con-

sumption. However, the minimum voltage at which the core’s structures operate

reliably limits the down-scaling of voltage. This minimum voltage is often referred

to as Vccmin. Commercial processors are designed with a fixed Vccmin beyond

which the voltage cannot be reduced further. Since we are concerned with energy-

efficiency, we assume that our baseline OOO and MorphCore cores are already

operating at Vccmin. That is why we are interested in mechanisms that can save

energy further without the help of voltage scaling.

Traditionally, the operating frequency of the core is reduced to reduce power

consumption. The effect of reducing frequency on total energy consumption is

shown in Figure 6.6 for 3 MorphCore operating points and 3 slowed-down OOO

core’s points. Slowing down a core by only reducing the frequency of the core can

both increase or decrease its energy consumption. Typically, when the frequency is

reduced, the execution time increases, which increases the leakage energy. On the

other hand, the clock’s dynamic energy may decrease with a slower clock. This may

happen for programs that spend significant time stalled waiting on memory. During

that stalled time period, which typically does not change with core’s frequency (it is

the time memory takes to return the data), a slow clock spends less dynamic energy

since it toggles less as compared to a fast clock.

Figure 6.6 shows that for most of the benchmarks, energy increases with the

slowing down of the core (e.g. compute-bound benchmarks like perl, bzip2,

h264 etc.). However, some memory-intensive programs like mcf, astar, and

lbm decreases energy consumption when the core is slowed down. On average,

slowing down a core only reduces the performance and does not improve energy-

efficiency. On the other hand, MorphCore is able to provide significant energy

savings with similar performance loss.

75

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

perl 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

bzip2 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

mcf

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

hmmer
 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

libquantum
 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

h264

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

astar
 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

xalanc
 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

milc

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

zeusmp 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

cactus 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

dealII

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

Gems 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

lbm 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

gmean-ALL

Legend:

OOO
M-5

M-15
M-LE

S-5
S-10
S-20

Figure 6.6: Performance-energy trade-off of OOO only-frequency scaling vs. Mor-

phCore. M=MorphCore, S=Slowed-down OOO, 5%, 10%, and 20%. X-axis is

performance and Y-axis is energy consumption normalized to OOO core.

76

6.5.5 Quantifying the Frequency of Phase Changes

Our sampling-based mode switching policy described in Section 6.2 and

evaluated in Section 6.5 uses a quantum size of 10M instructions. Recall that in

our policy, the mode is chosen for the whole quantum. Thus, our policy potentially

changes mode every 10M instructions. By doing so it indirectly assumes that the

phase behavior of the programs changes at the granularity of tens of millions of

instructions, and not faster than that.

In order to quantify the phase behavior, and to show the frequency of phase

changes in our programs, we show two experiments with the oracle switching pol-

icy: one in which the mode switching interval size is set to 10M instructions, and

the other in which the interval size is set to 100K instructions. (Note that the oracle

policy evaluated in Section 6.5.3 uses an interval of 100K instructions). The oracle

policy chooses mode as follows: at the start of every interval, the policy has the

“oracle” knowledge of the performance and energy consumption of the four out-

of-order operating modes for the interval, and thus the policy makes the optimal

decision about which mode to run at the start of the interval.

Figure 6.7 shows the results. The best performance-energy trade-off is ob-

tained with interval size of 100K instructions (O-100K- points). More importantly,

it shows that for most of the benchmarks, the performance-energy curve with the

interval size of 10M instructions (O-10M- points) matches very closely to the curve

with interval size of 100K instructions. bzip2, libquantum, xalanc, and

cactus show small differences between the two policies. These benchmarks have

frequent phase changes, and thus the 100K instruction interval size policy adapts

well to the phase behavior in these benchmarks as compared to the policy with 10M

instruction interval size. We thus conclude that a quantum size (mode switching in-

terval) of 10M instructions in our sampling-based policy is adequate for tracking

phase changes in programs.

77

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

perl 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

bzip2 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

mcf

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

hmmer
 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

libquantum
 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

h264

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

astar
 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

xalanc
 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

milc

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

zeusmp 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

cactus 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

dealII

 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

Gems 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

lbm 0.8

 0.9

 1

 1.1

 0.7 0.8 0.9 1 1.1

gmean-ALL

Legend:

OOO
O-100K-5

O-100K-15
O-100K-LE

O-10M-5
O-10M-15
O-10M-LE

Figure 6.7: Performance-energy trade-off of Oracle policies with different interval

sizes. X-axis is performance and Y-axis is energy consumption normalized to OOO.

78

6.5.6 Comparison to Static Configurations

We also compare MorphCore’s adaptive mode switching policy to static

configurations of MorphCore where the core is operated in one of the three low-

power out-of-order modes during the whole execution. This experiment is done to

find out if switching mode at runtime according to the phase behavior of the pro-

gram provides benefit over fixing the mode for the whole execution. Figure 6.8

shows the results (a representative subset of the benchmarks is shown, average is

over all SPEC2006 benchmarks). On average, it shows that switching mode at

runtime provides the optimal performance and energy as compared to static config-

urations. For a benchmark like mcf the optimal point is the 2-wide 192-entry OOO

static configuration, which provides the best performance and energy consumption

as compared to MorphCore’s adaptive mode switching policy and as compared to

other static configurations. This is because the sampling-based mode switching pol-

icy sometimes ends up making a wrong decision for the whole quantum because of

the interval at which the sampling is done.

79

 0

 20

 40

 60

 80

 100

pe
rl

bz
ip

2

m
cf

hm
m

er

lib
qu

an
tu

m

h2
64

as
ta

r
xa

la
nc

m
ilc

ze
us

m
p

ca
ct

us

de
al

II

G
em

s

lb
m

gm
ea

n-
A

LLP
er

fo
rm

an
ce

 n
o
rm

al
iz

ed
 t

o
 O

O
O

 c
o
re

 (
%

)

MorphCore-5
MorphCore-15
MorphCore-LE

2W,48E
4W,48E

2W,192E

(a) Performance

 0

 20

 40

 60

 80

 100

 120

pe
rl

bz
ip

2

m
cf

hm
m

er

lib
qu

an
tu

m

h2
64

as
ta

r
xa

la
nc

m
ilc

ze
us

m
p

ca
ct

us

de
al

II

G
em

s

lb
m

gm
ea

n-
A

LL

E
n
er

g
y
 n

o
rm

al
iz

ed
 t

o
 O

O
O

 c
o
re

 (
%

)

(b) Energy

Figure 6.8: Performance and energy of MorphCore compared to 3 static configura-

tions. Three static configurations: MorphCore always executing in 2W,48E mode,

4W,48E mode, and in 2W,192E mode.

80

6.5.7 Varying Only One Parameter (the Width or the Window Size)

Previous work has proposed varying only the width or only the OOO win-

dow size of the core to achieve energy savings. In order to find out if varying both

superscalar width and OOO window size is more performance and energy-efficient,

we compare three MorphCore configurations: one which varies both width and win-

dow size (the proposed microarchitecture, MorphCore-LE), second which varies

only the window size keeping the width to maximum (4), and third which varies the

width and keeping the window size to maximum (192 entry).

Figure 6.9 shows MorphCore varying both width and window size (M-

LE configuration) against MorphCore varying only the OOO window size (M-

VaryWin-LE). Note that in both configurations the objective is set to maximize

energy savings without any consideration of performance loss. The figure shows

that on average varying both width and window size provides optimal operating

points. The effect is more pronounced for memory-intensive benchmarks like mcf,

milc, and lbm that do not get any energy savings with varying only the window

size. These benchmarks require a big window to expose MLP, thus a microarchi-

tecture that varies only the window size will end up with both a big width and a big

window, resulting in poor energy efficiency.

Figure 6.10 shows MorphCore varying both width and window size (M-LE)

against MorphCore varying only the width of the core (M-VaryWid-LE). The fig-

ure shows that on average both M-LE and M-VaryWid-LE configurations provide

the optimal operating points (M-LE provides more energy savings). However, for

compute-intensive benchmarks like perl, hmmer, and h264 varying both width

and window size is more energy efficient. These benchmarks do not require a big

window, thus a microarchitecture that varies the window size as well achieves big-

ger energy savings.

81

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

perl 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

bzip2 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

mcf

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

hmmer
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

libquantum
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

h264

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

astar
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

xalanc
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

milc

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

zeusmp 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

cactus 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

dealII

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

Gems 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

lbm 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

gmean-ALL

Legend:

OOO
M-LE

M-VaryWin-LE

Figure 6.9: Performance-Energy trade-off of varying only OOO window size. X-

axis is performance and Y-axis is energy normalized to OOO core.

82

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

perl 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

bzip2 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

mcf

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

hmmer
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

libquantum
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

h264

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

astar
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

xalanc
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

milc

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

zeusmp 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

cactus 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

dealII

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

Gems 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

lbm 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.6 0.7 0.8 0.9 1 1.1 1.2

gmean-ALL

Legend:

OOO
M-LE

M-VaryWid-LE

Figure 6.10: Performance-Energy trade-off of varying only superscalar width. X-

axis is performance and Y-axis is energy normalized to OOO core.

83

6.5.8 Comparison with the Cores Optimized for Low-Power

MorphCore provides energy savings over a traditional OOO core for single-

thread programs by providing the hardware support for three low-power out-of-

order operating modes and switching between them at runtime. We would like to

find out how MorphCore’s energy efficiency compares to the cores that are specif-

ically designed for low-power (and for low-energy) operation. Two such cores de-

scribed in the Methodology section (Section 6.4) are MED and SMALL. MED is a

2-wide medium OOO window (48-entry) core. SMALL is a 2-wide in-order core.

Figure 6.11 shows the average performance and energy of four cores: a

traditional OOO core, MorphCore, MED, and SMALL. We note that MorphCore

point is MorphCore-LE (the configuration with least energy consumption). The

figure shows that SMALL is not energy-efficient because it is an in-order core and

loses performance significantly. This increases leakage energy significantly which

outweighs any energy benefit because of its lean microarchitecture. MED is very

energy-efficient, and saves 38% energy. Although the data shows that MorphCore

does not achieve energy savings close to MED, it shows that MorphCore brings

energy efficiency of a big core more towards the low-power optimized cores.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

gmean-ALL

Legend:

OOO
M-LE
MED

SMALL

Figure 6.11: Performance-Energy trade-off of MorphCore-LE vs. cores that are

optimized for low-power. X-axis is performance and Y-axis is energy normalized

to OOO.

84

Chapter 7

Related Work

7.1 Reconfigurable Cores

Most closely related to our work are the numerous proposals that use recon-

figurable cores to handle both latency and throughput sensitive workloads [19, 3,

21, 34, 33, 44, 10, 11]. All these proposals share the same fundamental idea: build

a chip with “simpler cores” and “combine” them using additional logic at runtime

to form a high performance out-of-order core when high single thread performance

is required. The cores operate independently in throughput mode.

Core Fusion [19], Federation Cores [3], Widget [44], and Forwardflow [10]

provide scalability without any compiler/ISA support, similar to MorphCore, so

we first discuss them. Core Fusion [19] is an architecture where four medium-

sized OOO cores (2-wide, 48 entry OOO window) “fuse” to form a large (poten-

tially 8-wide) out-of-order core when TLP is low. Federation Cores combines 2

in-order cores to form a lightweight OOO core. Widget and Forwardflow are sea-

of-resources designs that dynamically allocate simple and distributed resources to

achieve OOO-like performance.

There are several shortcomings with the approach of combining simpler

cores to form a large OOO core. First, the performance benefit of fusing the cores

is limited because the constituent small cores operate in lock-step. Furthermore,

fusing adds latencies between the pipeline stages of the fused core, and requires

inter-core communication if dependent operations are steered to different cores.

This approach of obtaining high performance is exactly opposite of the “low-latency

instruction execution” design approach of traditional large cores (the IPC drops sig-

nificantly if latency between the pipeline stages/blocks is increased in a large core),

85

and thus the “fused-core” does not achieve performance high enough to justify the

power/area/complexity cost of fusion. Figure 7.1 shows the effect of increasing

latencies of different pipeline stages on the performance of a big OOO core (the

parameters of the baseline OOO core are shown in Table 6.1). The figure shows

that increasing the latency of a data cache access by 1 cycle costs 4% performance.

Increasing the execution latency of back-to-back (dependent) operations costs sig-

nificant 11% performance. Increasing the number of cycles the front-end pipeline

takes to rename the instructions and increasing the number of cycles a branch mis-

prediction signal takes to get to the front-end costs 5% performance (the 3rd bar).

When all of the above mentioned latencies are added to an OOO core (which a fused

big OOO core would most likely end up with), the fused OOO core performance

is 17% lower (4th bar) than a baseline OOO core that does not incur these laten-

cies. Second, Switching modes in fused architectures incurs high overhead due to

instruction cache flushes and data migration between the data caches of small cores.

 0

 20

 40

 60

 80

 100

p
er

l

b
zi

p
2

g
cc

m
cf

g
o
b
m

k

h
m

m
er

sj
en

g

li
b
q
u
an

h
2
6
4

o
m

n
et

p
p

as
ta

r

x
al

an
c

b
w

av
es

g
am

es
s

m
il

c

ze
u
sm

p

g
ro

m
ac

s

ca
ct

u
s

le
sl

ie

n
am

d

d
ea

lI
I

so
p
le

x

p
o
v
ra

y

ca
lc

u
li

x

G
em

s

to
n
to

lb
m

w
rf

sp
h
in

x

g
m

ea
n

IP
C

 n
o
rm

al
iz

ed
 t

o
 b

as
el

in
e

O
O

O
 c

o
re

 (
%

)

baseline+1 additional data cache cycle
baseline+1 additional cycle for back-to-back ops

baseline+7 additional cycles for rename +2 cycles for branch recovery
baseline+All of the above additional latencies

Figure 7.1: Effect of increasing latencies on an OOO core performance

Other reconfigurable core proposals, like TFlex [21], E2 dynamic multi-

core architecture [34], Bahurupi [33], and Core Genesis [11], use the same basic

idea of combining distributed and simple resources to obtain high performance, but

they use compiler support in order to improve instruction steering and to reduce the

86

number of accesses that need to be done to centralized structures, and thus improve

upon the initial Core Fusion idea. However they require complicated compiler anal-

ysis and instruction scheduling in order to map instruction blocks to distributed

hardware. MorphCore does not require compiler/ISA support, and therefore can

run legacy binaries without modification.

7.2 Heterogeneous Chip-Multiprocessors

Heterogeneous (or Asymmetric) Chip Multiprocessors (ACMPs) [24, 25,

12, 29, 38] have been proposed to handle workloads with serial and parallel phases.

These proposals augment one or a few large out-of-order cores with many in-order

and small out-of-order cores. The large core is used to run program phases with

low TLP while the small cores run phases with high TLP. The ACMP has two

limitations: (1) the ACMP’s configuration, the number of large and small cores,

is fixed at design time. This limits the ACMP’s ability to adapt to varied amount

of TLP found in applications. (2) the ACMP may incur a high cost when a thread

is migrated between a small and a large core: it incurs the cost of turning ON and

migrating the thread state/data to the “accelerator” core(s) (Data Marshaling [39]

has been proposed to alleviate this problem, however DM requires complicated

compiler support and may not be applicable to all workloads). This limits the ability

of the ACMP to provide acceleration at relatively fine-grained intervals.

7.3 Adapting a Core’s Resources to ILP and MLP

Several studies have proposed adapting an OOO core’s resources to fit the

workload characteristics in order to save energy and power. These proposals fall in

two categories: proposals that vary the size of structures supporting OOO execution,

and proposals that vary pipeline width.

Buyuktosunoglu et al. [5, 6] propose varying the number of Reservation Sta-

tion (RS) entries and describe the circuit implementation for doing so. Ponomarev

et al. [32] propose adapting the size of the RS, load/store queue and ROB.

87

Bahar et al. [2] and Maro et al. [28] propose disabling cluster(s) in a clustered-

architecture (a cluster is made up of execution units, the register file and the RS).

Maro et al. [28] also propose clock-gating the disabled clusters. Hu et al. [16] pro-

pose power-gating the functional units. Flicker [31] proposes varying the pipeline

width across the whole core.

Our contributions over previous work are as follows: First, by varying both

superscalar width and OOO window size, we not only achieve the collective benefit

of previous schemes that vary only one resource at a time, we also get the bene-

fit of reducing both resources simultaneously through the 2-wide 48-entry mode.

Section 6.5 shows that several benchmarks benefit from the 2-wide 48-entry mode.

Gems obtains the largest energy savings of 17% by executing almost all instructions

in this mode. Also, note that the MorphCore-LE configuration which achieves the

largest energy savings across all benchmarks spends most of its time in 2-wide

48-entry mode. Thus, we conclude that varying both superscalar width and OOO

window size results in an adaptive processor that provides a wide operating range

through 4 operating modes and maximum energy savings as well. Second, we pro-

pose a simple yet-effective policy to decide the width and window size combination.

Previous work that varies only one resource at a time does so based on the utiliza-

tion or occupancy of the resource, e.g., when varying the number of functional

units that are ON, one can look at the utilization of ALUs that are currently ON,

and depending on this utilization being above or below a certain threshold, some

ALUs could be turned ON or OFF. When varying multiple resources, the benefit

of the combination of resource sizes needs to be determined. We have proposed a

simple yet effective sampling-based mode switching policy to decide the width and

window size, and we show that it provides benefit close to the oracle. Third, even

though Flicker [31] mentions reducing the pipeline width of the core, it doesn’t de-

scribe the microarchitecture for doing so or the resultant energy savings. To our

knowledge, our proposal is the first to describe in detail a mechanism for turning

off half of the pipeline width and describe the resulting energy savings.

88

7.4 Techniques to Scale a Core’s Performance and Energy

7.4.1 Dynamic Voltage and Frequency Scaling

Dynamic Voltage and Frequency Scaling (DVFS) [15, 4] is a widely-used

technique to scale a core’s performance and energy (e.g., Intel Turbo Boost [18]).

For example, a large OOO core can be run at higher voltage and frequency to in-

crease its performance and to achieve the performance comparable to the small

cores for multi-threaded workloads. However, increasing performance using DVFS

costs a significant increase in energy consumption (energy is a quadratic function of

voltage). Thus, DVFS is not an efficient way of increasing OOO core performance.

In contrast, MorphCore increases the baseline core performance significantly while

reducing energy consumption for multi-threaded workloads. On the other hand,

decreasing energy consumption using DVFS is a very effective technique since en-

ergy reduces quadratically with voltage/frequency whereas performance reduces

only linearly with voltage/frequency. However, the minimum voltage at which the

core’s structures operate reliably limits the down-scaling of voltage. That is why

microarchitectural proposals like MorphCore are very effective in saving energy

further without the help of voltage scaling.

7.4.2 Simultaneous Multi-Threading

Simultaneous Multi-Threading (SMT) [14, 47, 42] was proposed to improve

resource utilization by executing multiple threads on the same core. However, un-

like MorphCore, previously proposed SMT techniques increase the area and com-

plexity of the core (which may increase energy requirements), whereas MorphCore

leverages existing structures and does not increase area and complexity. Hily and

Seznec observed in [13] that out-of-order execution becomes unnecessary when

thread-level parallelism is available. The MorphCore microarchitecture saves en-

ergy and improves performance when executing multi-threaded workloads by build-

ing on their insight.

89

Chapter 8

Conclusion

8.1 Summary

I propose the MorphCore microarchitecture which is designed to improve

the performance and energy-efficiency of both single-threaded and multi-threaded

programs. MorphCore does so by adapting to TLP, ILP, and MLP in programs, and

by operating in one of five modes: (1) as a 4-wide 8-way-threaded in-order SMT

core, (2) as a 4-wide 192-entry OOO core, 3) as a 4-wide 48-entry OOO core, 4) as a

2-wide 192-entry OOO core, and 5) as a 2-wide 48-entry OOO core. My evaluation

with single-threaded benchmarks from SPEC2006 and 14 multi-threaded bench-

marks shows that MorphCore provides high performance and energy efficiency as

needed by adapting to the behavior of the program. When highest performance

is desired for single-thread workloads, MorphCore provides performance similar

to a traditional out-of-order core. When the goal is to save energy for single-

threaded workloads, MorphCore reduces energy by 8%. When highest performance

on multi-threaded workloads is desired, MorphCore provides performance similar

to throughput-optimized cores, significantly higher (21%) than the baseline out-of-

order core.

I therefore suggest that MorphCore is a promising direction for increasing

performance, saving energy, and accommodating workload diversity while requir-

ing small changes to a traditional out-of-order core.

8.2 Limitations and Future Work

The work presented in this thesis can certainly be extended. I envision future

work in six areas:

90

• New modes and mode switching policies: I proposed a simple mode switch-

ing policy based on the number of active threads. Future research can explore

other mode switching policies based on estimating the benefit or loss of In-

Order mode over OutofOrder mode. For example, exploring policies that

take into account: locality and parallelism in DRAM, last-level cache ca-

pacity pressure, and contention for resources in the core (Icache, TLB etc.).

Similarly, future research can explore new execution modes, such as a hybrid

in-order/out-of-order mode for applications with medium parallelism. An-

other area of future research is to enable turning off parts of physical register

file even in InOrder mode when fewer threads are needed to sustain the high

core throughput.

• OS and runtime systems research: MorphCore provides new research op-

portunities for OS and runtime systems to develop hardware/software co-

operative mechanisms to schedule and accelerate threads on MorphCore, e.g.

based on resource constraints, software hints provided by the application, and

runtime measurements from the hardware.

• New uses of many threads on the core: MorphCore provides an area- and

energy-efficient way to support many threads on the core. It opens up new

research opportunities in the area of speculative multi-threading and improv-

ing the single-thread performance using speculative helper threads on a single

core.

• Cache/memory system design: Future research can explore cache/memory

system design (cache replacement, insertion, or partitioning policies, mem-

ory scheduling etc.) for heterogeneous architectures like MorphCore. For

example, how to design a cache and a memory system that sometimes sup-

port 2 fast threads and at other times support 8 slow threads.

• Mechanisms to quickly fill/spill threads: MorphCore provides the capability

to efficiently run many threads in-order on the core. However, the number

91

of threads that can run on MorphCore simultaneously is limited by the space

in the Physical Register File. Future research can explore energy-efficient

extreme multithreading like GPUs on MorphCore by studying methods to

quickly fill/spill thread contexts.

• Implications for Composite Core designs: The work in this thesis shows that

varying both superscalar width and OOO window size provides maximum

energy savings, and a wide operating range in terms of the performance-

energy trade-off. Researchers have recently proposed Composite Core [27]

that has heterogeneity built-in (a core with one front-end and two back-ends,

in-order and out-of-order). Composite Core provides a separate back-end for

in-order execution as opposed to the more performance and energy-efficient

approach taken by MorphCore that provides support for highly-threaded in-

order SMT execution by reusing many structures of the core (including the

Physical Register File and the Reservation Station). Future research can ex-

plore new composite core designs that have dedicated pipelines for different

widths and window sizes.

92

Bibliography

[1] MySQL database engine 5.0.1. http://www.mysql.com.

[2] R. I. Bahar and S. Manne. Power and energy reduction via pipeline balancing.

In Proceedings of the 28th Annual International Symposium on Computer Ar-

chitecture, ISCA ’01, pages 218–229, New York, NY, USA, 2001. ACM.

[3] M. Boyer, D. Tarjan, and K. Skadron. Federation: Boosting per-thread perfor-

mance of throughput-oriented manycore architectures. ACM Trans. Archit.

Code Optim. (TACO), 2010.

[4] T. Burd and R. Brodersen. Energy efficient CMOS microprocessor design. In

Proceedings of the Twenty-Eighth Hawaii International Conference on System

Sciences, 1995.

[5] A. Buyuktosunoglu, D. Albonesi, S. Schuster, D. Brooks, P. Bose, and P. Cook.

A circuit level implementation of an adaptive issue queue for power-aware mi-

croprocessors. In Proceedings of the 11th Great Lakes Symposium on VLSI,

GLSVLSI ’01, pages 73–78, New York, NY, USA, 2001. ACM.

[6] A. Buyuktosunoglu, T. Karkhanis, D. H. Albonesi, and P. Bose. Energy ef-

ficient co-adaptive instruction fetch and issue. In Proceedings of the 30th

Annual International Symposium on Computer Architecture, ISCA ’03, pages

147–156, New York, NY, USA, 2003. ACM.

[7] Z. Chishti and T. N. Vijaykumar. Optimal power/performance pipeline depth

for SMT in scaled technologies. IEEE Trans. on Computers, Jan. 2008.

[8] A. J. Dorta et al. The OpenMP source code repository. In Euromicro, 2005.

93

[9] K. Ghose and M. B. Kamble. Reducing power in superscalar processor caches

using subbanking, multiple line buffers and bit-line segmentation. In Pro-

ceedings of the 1999 International Symposium on Low Power Electronics and

Design, ISLPED ’99, pages 70–75, New York, NY, USA, 1999. ACM.

[10] D. Gibson and D. A. Wood. Forwardflow: a scalable core for power-constrained

CMPs. In ISCA, 2010.

[11] S. Gupta, S. Feng, A. Ansari, and S. Mahlke. Erasing core boundaries for

robust and configurable performance. InMICRO, 2010.

[12] M. D. Hill and M. R. Marty. Amdahl’s law in Multicore Era. Technical

Report CS-TR-2007-1593, Univ. of Wisconsin, 2007.

[13] S. Hily and A. Seznec. Out-of-order execution may not be cost-effective on

processors featuring simultaneous multithreading. In HPCA, 1999.

[14] H. Hirata et al. An elementary processor architecture with simultaneous in-

struction issuing from multiple threads. In ISCA, 1992.

[15] M. Horowitz et al. Low-power digital design. In IEEE Symposium on Low

Power Electronics, 1994.

[16] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and P. Bose.

Microarchitectural techniques for power gating of execution units. In Pro-

ceedings of the 2004 International Symposium on Low Power Electronics and

Design, ISLPED ’04, pages 32–37, New York, NY, USA, 2004. ACM.

[17] Intel. Intel 64 and IA-32 Architectures Software Dev. Manual, Vol-1, 2011.

[18] Intel Turbo Boost Technology. Intel Corporation.

[19] E. Ipek et al. Core fusion: accommodating software diversity in chip multi-

processors. In ISCA-34, 2007.

94

[20] H. Jacobson, P. Bose, Z. Hu, A. Buyuktosunoglu, V. Zyuban, R. Eickemeyer,

L. Eisen, J. Griswell, D. Logan, B. Sinharoy, and J. Tendler. Stretching the

limits of clock-gating efficiency in server-class processors. In Proceedings of

the 11th International Symposium on High-Performance Computer Architec-

ture, HPCA ’05, pages 238–242, Washington, DC, USA, 2005. IEEE Com-

puter Society.

[21] C. Kim et al. Composable lightweight processors. In MICRO-40, 2007.

[22] D. Koufaty and D. Marr. Hyperthreading technology in the Netburst microar-

chitecture. IEEE Micro, 2003.

[23] H. Kredel. Source code for traveling salesman problem (tsp). http://krum.rz.uni-

mannheim.de/ba-pp-2007/java/index.html.

[24] R. Kumar et al. Single-isa heterogeneous multi-core architectures: The po-

tential for processor power reduction. In MICRO 36, 2003.

[25] R. Kumar et al. Single-ISA Heterogeneous Multi-Core Architectures for Mul-

tithreaded Workload Performance. In ISCA 31, 2004.

[26] S. Li et al. McPAT: an integrated power, area, and timing modeling frame-

work for multicore and manycore architectures. In MICRO 42, 2009.

[27] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski, T. F.

Wenisch, and S. Mahlke. Composite cores: Pushing heterogeneity into a

core. In Proceedings of the 2012 45th Annual IEEE/ACM International Sym-

posium on Microarchitecture, MICRO-45, pages 317–328, Washington, DC,

USA, 2012. IEEE Computer Society.

[28] R. Maro, Y. Bai, and R. I. Bahar. Dynamically reconfiguring processor re-

sources to reduce power consumption in high-performance processors. In

Proceedings of the First International Workshop on Power-Aware Computer

Systems-Revised Papers, PACS ’00, pages 97–111, London, UK, UK, 2001.

Springer-Verlag.

95

[29] T. Y. Morad et al. Performance, power efficiency and scalability of asymmet-

ric cluster chip multiprocessors. 2006.

[30] NVIDIA Corporation. CUDA SDK code samples, 2009.

[31] P. Petrica, A. M. Izraelevitz, D. H. Albonesi, and C. A. Shoemaker. Flicker:

A dynamically adaptive architecture for power limited multicore systems. In

Proceedings of the 40th Annual International Symposium on Computer Archi-

tecture, ISCA ’13, pages 13–23, New York, NY, USA, 2013. ACM.

[32] D. Ponomarev, G. Kucuk, and K. Ghose. Reducing power requirements of

instruction scheduling through dynamic allocation of multiple datapath re-

sources. In Proceedings of the 34th Annual ACM/IEEE International Sym-

posium on Microarchitecture, MICRO 34, pages 90–101, Washington, DC,

USA, 2001. IEEE Computer Society.

[33] M. Pricopi and T. Mitra. Bahurupi: A polymorphic heterogeneous multi-core

architecture. ACM TACO, January 2012.

[34] A. Putnam et al. Dynamic vectorization in the E2 dynamic multicore archi-

tecture. SIGARCH Comp. Arch. News, 2011.

[35] D. Sager, D. P. Group, and I. Corp. The microarchitecture of the pentium 4

processor. Intel Technology Journal, 1:2001, 2001.

[36] T. Sherwood, S. Sair, and B. Calder. Phase tracking and prediction. SIGARCH

Comput. Archit. News, 31(2):336–349, May 2003.

[37] J. Stark et al. On pipelining dynamic instruction scheduling logic. In

MICRO-33, 2000.

[38] M. A. Suleman et al. Accelerating critical section execution with asymmetric

multi-core architectures. In ASPLOS, 2009.

[39] M. A. Suleman et al. Data marshaling for multi-core architectures. ISCA,

2010.

96

[40] SysBench: a system performance benchmark v0.4.8. http://sysbench.sourceforge.net.

[41] Tornado Web Server. Source code. http://tornado.sourceforge.net/, 2008.

[42] D. M. Tullsen et al. Simultaneous multithreading: Maximizing on-chip par-

allelism. In ISCA-22, 1995.

[43] E. Tune, R. Kumar, D. M. Tullsen, and B. Calder. Balanced multithread-

ing: Increasing throughput via a low cost multithreading hierarchy. In Pro-

ceedings of the 37th Annual IEEE/ACM International Symposium on Microar-

chitecture, MICRO 37, pages 183–194, Washington, DC, USA, 2004. IEEE

Computer Society.

[44] Y. Watanabe et al. Widget: Wisconsin decoupled grid execution tiles. In

ISCA, 2010.

[45] C. Wilkerson, H. Gao, A. Alameldeen, Z. Chishti, M. Khellah, and S.-L. Lu.

Trading off cache capacity for low-voltage operation. Micro, IEEE, 29(1):96–

103, Jan 2009.

[46] S. C. Woo et al. The SPLASH-2 programs: Characterization and method-

ological considerations. In ISCA-22, 1995.

[47] W. Yamamoto et al. Performance estimation of multistreamed, superscalar

processors. In Hawaii Intl. Conf. on System Sciences, 1994.

97

