Improving GPU Performance via
Large Warps and Two-Level Warp Scheduling

Veynu Narasiman Chang Joo Lee Michael Shebgnowustam Miftakhutdinov Onur Mutfu Yale N. Patt

High Performance Systems Group
Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, Texas 78712-0240

TNVIDIA Research
Santa Clara, CA 95050

1Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213-3890

TR-HPS-2010-006
December 2010

This page is intentionally left blank.

Improving GPU Performance via
Large Warps and Two-Level Warp Scheduling

Abstract

Due to their massive computational power, graphics praogssnits (GPUs) have become a popular platform for
executing general purpose parallel applications. GPU pamgming models allow the programmer to create thousands
of threads, each executing the same computing kernel. GRasiethis parallelism in two ways. First, before execu-
tion, threads are grouped into fixed-size SIMD batches kreswarps and second, many such warps are concurrently
executed on a single GPU core. Despite these techniquespthputational resources on GPU cores are still under-
utilized, resulting in performance far short of what could telivered. Two reasons for this are conditional branch
instructions and stalls due to long latency operations.

To improve performance of GPUs, the computational resaawailable must be more effectively utilized. To accom-
plish this, this paper proposes two independent ideas:atgelwarp microarchitecture and a two-level warp schedylin
policy. We show that when combined, our mechanisms impenermance by 17.0% over traditional GPU cores for
a wide variety of general purpose parallel applicationsttieretofore have not been able to exploit the available
resources of the GPU chip.

1. Introduction

Over the past few yeargraphics processing unif&PUs) have become a popular platform for executing
general purpose parallel applications. Programming systich as CUDA [23], ATI Stream Technology [1],
and OpenCL [14] allow programmers to parallelize an apgibeainto thousands of threads each of which
executes the same code. These threads are executed by a @®&ialial thereby significantly reducing the
execution time of the application. Previous work [26, 10% Isaown that some applications experience an
order of magnitude speedup when run on a GPU instead of a CPUs@re able to achieve such speedups
because of the sheer amount of computational power theyeg®ss relation to CPUs. They exploit this
power by utilizing thehread-level parallelisnfTLP) exposed by the programmer.

GPU cores take advantage of TLP in two major ways. First, leeéxecution, GPUs statically group
threads executing the same code into fixed sized batchesrkaswarps® These warps are executed on a
processing core that employs a scalar front end (fetch aodddg and a SIMDgingle instruction, multiple
data) backend. The number of threads in a warp is usually equaet&tMD width of the core so that a warp
can execute an instruction for all its threads across thel5ibbsources in parallel. In a given cycle, each
thread belonging to the same warp executes the same ingitruget on a different piece of data. This style
of processing amortizes the cost of fetch and decode aclideseads in a warp thereby allowing more chip
area to be dedicated to data processing (i.e., computatesw@urces) rather than control [23].

Second, GPU cores concurrently execute multiple warps dnghescore. For example, 32 warps, each

consisting of 32 threads (for a total of 1024 threads), chbeahssigned to execute on the same core. When

"Warp sizes for current NVIDIA [23] and ATI [1] GPUs are 32 andl @spectively.

3

one warp is stalled, other warps can continue to executehnh@ps tolerate data dependencies, branch

penalties, and long latency operations, especially memsayests that miss in the cache.

The Problem: Underutilized Computational ResourcedDespite these techniques, the computational re-
sources on a GPU core are still underutilized. For examplaymng threads into warps is only efficient if
those threads remain on the same dynamic execution paths@gme PC) throughout their execution. Al-
though this holds true for many graphics applications, sgeeeral purpose parallel applications exhibit
more complex control flow behavior among the parallel theedde to frequent conditional branches in the
code. Conditional branch instructions can cause threadsuarp to take different dynamic execution paths,
or diverge Since existing GPU implementations allow a warp to have onk active PC at any given time,
these implementations must execute each path sequentaiy, the warp executes the threads that follow
the taken path of the branch (the not taken threads are mafiie@hen the warp executes the not taken path
threads (masking off the taken path threads). This leadsaerl utilization of SIMD resources while warps
are on divergent control-flow paths because the warp musuéxevith a fewer number of active threads than
the SIMD width of the core. This loss of efficiency continuetiluithe divergent paths finish and a control
flow merge point is reached. At this time, the warp is brougtdlato its original active thread count (i.e., the

active thread count before the divergent branch instraftimd execution proceeds efficiently.

Another example of unused computational resources occhenva GPU core is unable to effectively
hide the latency of long latency operations. The warp imt$iton fetch scheduling policy employed on a
GPU core can significantly affect the core’s ability to hidels latencies. For example, commonly-employed
scheduling policies that give equal priority to each warp.(iround-robin scheduling) tend to result in all
the warps arriving at the same long latency operation athityuthe same time. Therefore, there are no other
warps to execute to hide the latency. On the other hand, @mgpwarps to progress at very different rates can
result in starvation and destroy the data locality amongatagps. For example, data brought into the cache
and row buffers opened by one warp are likely to be accessad by other warps. However, allowing warps

to progress very unevenly may destroy this locality.

Figure 1 illustrates the unused computational resourceésfd cores for a set of general purpose parallel
benchmarks. Each benchmark is represented by a stackeddieating the percentage of cycles a certain
number of the computational resources (i.e., function@byare active. For this experiment, both the SIMD
width and warp size is set to 32, and 32 warps are concurrextdguting on the same core using a round-
robin scheduling policy. As previously mentioned, brandredyence results in a reduction of the number
of active threads in a warp which leads to underutilizatibthe computational resources. The leftmost five
benchmarks suffer from this problem indicated by the faat there is a large percentage of cycles where

only a fraction of the FUs are active. On the other hand, thlktmost benchmarks suffer less from branch

4

divergence but rather experience a significant fractionyofes where none of the FUs are active (idle FU
cycles). The main reason for these idle cycles is that alinost) warps are stalled waiting on a long latency
operation (e.g., waiting on data from memory). Even with sgnwarps concurrently executing (32 warps
for this experiment), several benchmarks show a signifif@ution of idle cycles. For example, the bfs

benchmark spends approximately 95% of its execution timléreg.
100 P

Active FUs:
o[
1-7
| 815
16-23 [
24-31
- 32 I

80

60

40

20

Percentage of Total Cycles

Figure 1. Computational resource utilization, SIMD width a nd warp size is 32
Our Goal is to improve application performance on GPUs by betterzitiy computational resources. To
this end, we propose two mechanisms each of which aims t@eeole of the two major causes of resource

underutilization: branch divergence and long latency afiens.

Key ldeas To alleviate the performance penalty due to branch diverzgemwe propose thkarge warp
microarchitecture(LWM). Existing GPU cores statically create many warps eath a modest number of
threads (usually equal or close to the SIMD width of the corbjstead, we propose creating fewer but
correspondingly larger warps (that have significantly éargumber of threads than the SIMD width of the
core), and dynamically creating SIMD width sized sub-wdrpm the active threads in a large warp. The key
insight is that even in the presence of branch divergeneee thill likely be a large number of active threads
in the large warp. These active threads can be dynamicadlypgd together into fully populated sub-warps

that can better utilize the SIMD resources on the core.

To reduce the number of idle FU cycles, we propose a novelléwelround-robin warp instruction fetch
scheduling policy which can be applied on top of conventi@mRU core architectures as well as the LWM.
This policy assigns a set of warps into a fetch group (e.gw&ts could be split up into 4 fetch groups of
8 warps each). The scheduling policy selects a fetch groygideitize and schedules warps froomly that
fetch group in a round-robin fashion until no warp from thatch group can be scheduled (i.e., all of the
warps in the fetch group are stalled). At this point, the rfekth group is selected and the policy repeats.
Note that the scheduling policy within a fetch group is rowatdin, and switching from one fetch group to
another is also done in a a round-robin fashion (hence twe-i®und-robin). The key insight is that each

fetch group reaches a long latency instruction at diffeperimts in time; as such, when the warps in one fetch

5

group are stalled, warps from another fetch group can beutixecthereby effectively tolerating the latency.
Since a fair round-robin policy is used at each level of scitiad, our two-level policy is still able to exploit
the data locality between warps (which the conventionahdsrobin scheduling policy does very well). The
overall result is reduced idle FU cycles leading to perfanoeimprovement.

Contributions: In this paper, we make the following contributions:

1. We propose a novel microarchitecture to mitigate thequardnce loss due to branch divergence on
GPU cores. Our proposal introduces large warps and incladymamic mechanism to break down large
warps into fully populated (or close to fully populated) subrps.

2. We propose a new two-level warp instruction fetch schadupolicy and show that such a policy
significantly reduces the number of idle execution cycles wulong latency instructions. We show that this
policy can be used with either an existing GPU microarchiteror with the large warp microarchitecture.

3. We show that our two proposals can be combined. Togetteyr significantly improve performance (by
17.0% on average) over a wide range of general purpose @laaplplications by more efficiently utilizing the

massive computational resources found on GPU cores.
2. Background

We first describe in detail the microarchitecture of a sirf@RU core? Although we discuss and evaluate

only a single GPU core, it should be noted that many such @eeseplicated on the GPU.

2.1. GPU Core Pipeline

Figure 2 illustrates the baseline architecture of a singktJ&ore composed of a scalar front end (fetch
and decode) and a SIMD backend. GPU programming models glleywrogrammer to create thousands of
threads, each executing the same code. Before executimge threads are grouped into fixed size SIMD
batches called warps. Each warp contains threads with catige thread IDs and the number of threads in
the warp is equal to the SIMD width of the core (N in Figure 2)amy warps (M warps in Figure 2 for a total
of M x N threads) are assigned to execute concurrently on a sirfglé care.

In the fetch stage, the scheduler selects a warp from thefliglady warps. The baseline fetch scheduling
policy uses a round-robin scheduler giving equal prioritygich warp [9, 17]. Associated with each warp is
a warp ID, a bit vector called the active mask, and a singlgfrm Counter (PC). The active mask indicates
whether or not the corresponding thread in a warp is culyeattive. When a warp is originally created, all
of its threads are activeHowever, branch divergence can cause threads within a wdrgdome inactive.

Our baseline processor imposes a strict barrel processougl30, 28] where once a warp is selected in

the fetch stage, it cannot be selected again until the wamplaies execution. After a warp is selected by

20ur term “GPU core” corresponds to a single Streaming Mutigssor (SM) in NVIDIA's terminology [20].
3If the total number of threads is not a multiple of the wargsthen a single warp may be created without all threadseactiv

the scheduler, the instruction cache is accessed at the Bf@ @farp and the instruction is decoded thereby
completing the scalar portion of the pipeline. Next, thastg values for all threads in the warp are read in
parallel from the register file which is indexed by warp ID aadister ID as shown in Figure 2. These register
values are then fed into the SIMD backend of the pipeline aegeocessed in parallel across multiple SIMD
lanes. Once a warp reaches the final stage of the pipelireCitsnd active mask are updated and the warp is
again considered for scheduling.

2.2. Memory Model

Warp ID Active mask PC
7 [101.....1011)x30000000

1 [001....0000] x500202 o core. All threads have access to global memory and data filobrab

Scheduler=~—""% .

Figure 2 also illustrates the memory model for the baseliffJG

memory is cached on chip in the global memory D-cache. Arrenti

i

|-cache Fetch unit

i

‘ Decoder

cache line can be read (or written) in parallel in a singlasgection and

therefore a warp accessing global memory can be satisfiedimgie

-
=
o
=
=
z L1 L
N

P waposregni] EE] - re - = transaction if all threads in the warp access data in the sactee line.

i Warp ID.Reg ID—of =] +++ s s g :

; : " Registerfiest | | If the threads within a warp access different cache linesdlaccesses
Warp M-1's reg fil{ = ------ i

will be serialized resulting in stalls in the pipeline. Tisimilar to the

Global

[}
=
1
—
memory
D-cache
O‘
[
=
]
—

or more threads in the warp access a line not present in thectte

Private
memory

entire warp stalls and is put aside, allowing other warpsow through

E=)
""" scatter/gather support in Intel's Larrabee microarchitex[27]. If one
B

the pipeline while the data is fetched from global memory.

In addition to the global memory data cache, each threachalsac-
Figure 2. GPU core pipeline
cess to a small amount of on-chip private memory which storieate
data of each thread (i.e., local variables). This helpscheostly accesses to main memory for applications
where each thread’s private data is too large for the ragiée This on-chip memory is highly banked (one
bank per SIMD lane) so that threads in a warp can read private effficiently in parallel. This memory
corresponds to private memory in OpenCL [14].

2.3. Conditional Branch Handling

Figure 3, adapted from Fung et al. [9, 8], illustrates theebase branch handling mechanism currently
employed by GPU cores. In this example, there is only a singig consisting of four threads, each of
which is executing the same static code whose control flophlgrsshown in Figure 3(a). Since a warp can
only have a single active PC at any given time, when branaérgénce occurs, one path must be chosen first
and the other is pushed on a divergence stack associatedhitharp so that it can be executed later. The
divergence stack is also used to bring the warp back togethes the divergent paths have been executed

and all threads have reached a control flow merge (CFM) pdirdivergence stack entry consists of three

7

fields: a re-convergence PC, an active mask, and an executEXe€uting the divergent paths serially but

then re-converging at the CFM point can be accomplished bygdbe following:

1) When the branch outcomes for the threads in the warp arthagtame (i.e., a divergent branch), push
ajoin entry onto the divergence stack. The join entry has bothdhsonvergence PC and execute PC fields
equal to the compiler identified control flow merge (CFM) daafithe branch. The active mask field is set
to the current active mask (i.e., the active mask when thedbrinstruction was executed). Next, one of the
two divergent paths is selected to execute first and the muR€ and active mask of the warp are updated
accordingly. Lastly, another entry, tliivergententry, is pushed on the divergence stack. The execute PC
and active mask of this entry correspond to the divergerit fhatt was not selected to be executed first. The

re-convergence PC for this entry is set equal to the CFM pditite divergent branch.

2) When a warp reaches the last stage of the pipeline, itemeergence stack is accessed to see if the next
PC of the warp is equal to the re-convergence PC at the topeddttitk. If so, the entry is popped, and the

active mask and execute PC fields of the entry become thentatéve mask and PC of the warp.

Dti)‘:g'r'%%mpc Al 1111 Current PC: A Current PC: B Current PC: C Current PC: D
Active mask: 1111 Active mask: 1011 Active mask: 0100 Active mask: 1111
Divergence stack Divergence stack Divergence stack Divergence stack
PC: B| Divergent
entry
. "™ D | 0100| C .
Join entry Join entn
L —~ D | 1111 | D —= D | 1111 | D
%%?geo po?x\{PC: D 1111 Reconvergence Active Execute Rec PC Active Execute Rec PC Active Execute Rec PC Active Execute
(Rec) PC mask PC mask PC mask PC mask PC
(a) Control flow graph (b) Initial state (c) After executing A (d) After executing B (e) After executing C

Figure 3. Stack based re-convergence for baseline GPU cores
Figures 3(b) through (e) show the state of the current PG;uh@nt active mask, and the divergence stack
for a warp at relevant points in time as it executes the coffitrar graph of Figure 3(a). Inside each basic
block of Figure 3(a) is a bit vector indicating whether or tiné corresponding thread in the warp needs to
execute the instructions in that basic block, i.e., theeniractive mask of the warp. The SIMD lanes are
fully utilized as the instructions in block A execute but areerutilized as the divergent paths (blocks B and
C) execute. Once all threads reach block D, the warp is redtr having four active threads and execution
once again proceeds efficiently. However, the under-atilin of SIMD resources before re-convergence at

the control flow merge point can lead to significant perforoedegradation.

3. Solution: Large Warp Microarchitecture and Two-level Warp Scheduling

In this section we describe our two new mechanisms: the L#fgs Microarchitecture, and the two-
level round-robin warp instruction fetch scheduling pgligve first describe each mechanism separately, then

discuss how the two can be combined.

3.1. The Large Warp Microarchitecture

To alleviate the performance penalty due to branch divergewe propose thiarge warp microarchitec-
ture (LWM). While existing GPUs assign several warps to conauifyeexecute on the same GPU core, we
propose having fewer but correspondingly larger warps. téted number of threads and the SIMD width of
the core stay the same. The key benefit of having large watpatigully populated sub-warps can be formed

from the active threads in a large warp even in the presenbeaoich divergence.

Large warp width = SIMD width = N 3.1.1. Large Warp Microarchitecture Basic Operation A
x (Rowo [Th Thy | *=+| Thy, large warp is statically composed of consecutive threadshas
s Row 1 e Thono . . .
g "M LT | T on-1 a warp ID and a single PC. It also has an active mask organized
S | Row2 Thyy Thoney | * " " | Thaya
8 : : : as a two dimensional structure where the number of columns is
()
= . . .
g equivalent to the SIMD width of the core. Figure 4 shows the
Row K-1 Thyony| Thn-nes " " " | Thaks

Fi . organization of the active mask of a large warp of size<kN

igure 4. Large warp active mask

threads executing on a core with a SIMD width of N. Each cell

in Figure 4 is a single bitindicating whether or not the cepending thread is currently active. Notice that the

actual storage cost does not change compared to the baskli@daseline processor would have K separate

N-bit wide active masks instead (i.e., it would have K sefgavearps).

From fetch stage Once a large warp is selected in the fetch stage, the ingtrucache is
01110 «nwsens 1 accessed at the PC of the large warp and the instruction sdéecin the
N 0 following cycle just as in the baseline processor. In patalith decode,

SIMD-width sized sub-warps are created which can then floaudh the rest

I of the pipeline. Figure 5 shows the hardware structuresétiisupport the
| Sub-warp logic | large warp microarchitecture. When forming sub-warps,dgbal is to pack
l Sub-warp as many active threads as possible into a sub-warp so as ttotbee the

To register read stage
SIMD resources further down the pipeline. To accomplisk,tBpecialized
Figure 5. sub-warping logic
sub-warping logic examines the two dimensional active mafsthe large

warp and aims to pick one active thread from each column.

Sub-warp Creation: When determining how to pack active threads into a sub-wiag design of the
register file must be taken into consideration since it iserafive that the register values for a sub-warp can
be sourced in parallel. Figure 6(a) shows the design of thister file for the baseline microarchitecture (no
large warps). Since consecutive threads are staticallypgd into warps and this assignment never changes,

the register file can be conceptually designed as a very widgesbanked structure indexed by warp 1D

9

concatenated with the register ID as shown in Figure (#)owever, having a single address decoder does
not give enough flexibility for the LWM to pack threads intdoswarps. Ideally, we want to allow any set of
active threads to be packed into a sub-warp. This would reqbi register file to have a number of ports
equivalent to the SIMD width of the core. Such a design woelguire considerable increase in area and
power. Therefore, we use a register file design similar toothe used by Jayasena et al. [11] and Fung et
al. [9, 8] and shown in Figure 6(b). The register file is spfitinto separately indexable banks, one bank per
SIMD lane. This design is cost-effective and provides mudmenilexibility in grouping active threads into
sub-warps than the baseline register file. Using this desigrcan now group threads into a sub-warp as long

as they come from different columns in the large warp’s &cthask.

Warp O} F——— ., .,...
reg file

Warp 2'5 =
reg file t]

Large Warp ID. Row. Reg IDE
0,1,2) 7 0,0,2) 1 B4 0,0,2)[

Warp 1's
reg file

=

Warp ID.Reg ID|
P(L 2)9

== E | %

i 11

Large warp 1's
Eg regglster firt)es

Address decoder
i
I

Address decoder

Address decoder
Address decoder

Nl

N\ | N\ [~ N
Lane 0 Lane 1 Lane N-1 Bank 0, Bank 1y Bank N-4
Lane 0 Lane 1 Lane N-
(a) Baseline register files (b) Large warp microarchitecture register files

Figure 6. Large warp vs baseline register file design

Figure 7 illustrates the dynamic creation of sub-warps feolarge warp of 32 threads executing on a core
with a SIMD width of four. Due to branch divergence, the lavggap is shown with only a subset of its threads
active in Figure 7(a). Each cycle, the hardware searchds ealamn of the active mask in parallel for an
active thread and if found, selects those threads to be grbiqgether into a sub-warp. Once an active thread
is selected, the corresponding bit in the active mask igetkalf there are still active threads remaining, a
stall signal is sent to the fetch stage of the pipeline siheddrge warp has not yet been completely broken
down into sub-warps. Once all bits in the active mask have loésared, sub-warping for the current warp
is complete and sub-warping for the next large warp (seteictehe fetch stage) begins. Figure 7 illustrates
how a large warp is dynamically broken down into four sub{vgaover four successive cycles. Notice that
in each cycle an active mask and row IDs are created for théyrfewned sub-warp. The selected threads
are highlighted each cycle and the newly created sub-wagtige mask and row IDs are shown beneath the
large warp’s active mask.

Note that the baseline processor would form eight diffeveanps of four threads each rather than grouping
all 32 threads into a large warp. Therefore, while the dieatgcode executes, SIMD resources will be

underutilized since each warp contains fewer active trad¢iaan the SIMD width. However, with large warps,

4Such large SRAMs can't be built due to timing/energy consitiens [4], so even the baseline register file is slightlpkes.

10

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

p|lo|lo|r|r|o|o|o
olo|r|r|lo|r|o|o
rlr|lo|o|lo|o|o]| o
olo|r|o|o|o|o|o
r|lo|lo|r|o|o|o|o
olo|r|r|lo|lo|o|o
r|lo|lo|o|o|o|o]|o
olo|r|o|o|o|o|o

r|o|lo|lo|o|lo|o|o

o|o|o|o|o|lo|o|o

kplo|lo|r|r|r|o|o
olo|r|r|lo|r|r|lo
o|lo|r|o|lo|r|o|r
rlr|o|lolo|o|r|o
olo|r|o|o|r|o|o

o|lo|r|r|lo|lr|r|o

r|lo|o|lr|r|lr|lo|o

Pr|lr|lojo|o|lo|r|r

o|lo|r|o|o|lr|o|r

Pr|lr|lojo|o|lo|r|r

Row 7

After fetch : Active mask: Active mask: Active mask: Active mask: :
(a) Cycle X 5\1\1\1\1\ \1\1\1\1\ \1\1\1\1\ \1\0\1\1“

Row IDs: Row IDs: Row IDs: Row IDs:

..

(b) Cycle X +1 (c) Cycle X + 2 (d) Cycle X +3 (e) Cycle X +4
Figure 7. Dynamic creation of sub-warps

the inactive slots present in the baseline processor aeel fillith active threads during sub-warp creation.
Therefore, only four efficiently packed sub-warps are @datnd SIMD resources are better utilized.

How a Large Warp Handles Divergence and Re-convergencd:arge warps handle divergence and re-
convergence much the same way that baseline warps do. Howeven a large warp executes a branch
instruction, it is not known for sure whether or not the lavgarp diverged until the last sub-warp completes
execution. Therefore, the new active mask and the activ&ksnasbe pushed on the divergence stack are
buffered in temporary active mask buffers. Once all subpsaromplete execution, the current active mask
and PC of the large warp are updated and divergence stadkeate pushed on the large warp’s divergence
stack (if the large warp in fact diverged). The divergen@elkstis popped just as described in the baseline
processor in Section 2.3 except that the divergence statdkeisked for a matching entry only after all sub-
warps have completed execution.

Barrel Processing in the Large Warp Microarchitecture: In the baseline GPU core, multiple warps are
executed in a barrel processing fashion such that once aisveetected by the scheduler in the fetch stage, itis
not considered again for scheduling until the warp complet@cution. For the large warp microarchitecture,
we impose a similar restriction that once a large warp isctetk it is not considered for scheduling again
until all sub-warps have completed execution. Using this restrictiwere is no need for hardware interlocks

for dependency handling just as in the baseline processor.

3.1.2. Large Warp Microarchitecture Optimizations We describe two optimizations for the LWM. The
first optimization deals with the possible additional meyivergence caused by dynamic sub-warping. The
second optimization aims to exploit the concept of largepsdo reduce the latency of unconditional control
instructions that cannot cause divergence and therefdyecbange the PC.

Memory Divergence Optimization: A well known software technique employed by many GPU program
mers is to coalesce accesses to global memory [23, 22, 15he Sonsider this the single most important
performance consideration for programming GPUs [22]. &fare, GPU programmers take special effort to

ensure that consecutive threads access consecutive mématipns. If the addresses are not consecutive

11

(i.e., memory divergence), each warp will require multiptensactions to global memory which can signif-
icantly degrade memory throughput and therefore perfonmaihe same problem exists for accessing data
that has been cached. If all addresses do not map to the sathreloee, multiple serial cache accesses must
be made due to port contention.

The LWM can cause additional memory divergence not fountderbaseline since non-consecutive threads
can be grouped together into a sub-warp during dynamic sadping. To avoid this, when a large warp is
executing an instruction that accesses global memorywsaups are formed corresponding to each row of
the active mask. Although this does not pack threads intevgarps as efficiently, it avoids the additional
memory divergence created if we used the regular sub-warpiechanism.

Unconditional Control Flow Optimization: When a warp in the baseline processor executes an uncon-
ditional control flow instruction (i.e., a jump), only a sieg?C update is needed. The same is true for large
warps and therefore there is no need to create multiple safpswhen a large warp executes a jump instruc-
tion. Creating multiple sub-warps is wasteful since susivessub-warps would just overwrite the same value
to the PC that the previous sub-warp wrote. Thus, sub-wgrfaina large warp executing a jump instruction
completes in just a single cycle, allowing sub-warping foe hext large warp to begin sooner. Note that for
a large warp size of 256 threads and a SIMD width of 32, thiswipation saves 7 cycles (assuming that the

large warp is fully populated) because it creates only orfevgarp instead of 8.

3.2. Two-level Warp Instruction Fetch Scheduling

As previously mentioned, GPU cores concurrently executeymarps on the same core which helps avoid
stalls due to long latency operations. However, the warpunsbn fetch scheduling policy employed on the
GPU core can considerably affect the core’s ability to hategllatencies. In this section, we propose a novel
two-level round-robin scheduling policy which more efigety hides long latencies and therefore reduces
idle FU cycles. We first describe our new scheduling policthiea context of the baseline processor (not the
LWM) and later describe how the two can be combined.

The baseline processor uses a round-robin warp instrufgtoh policy giving equal priority to all concur-
rently executing warps throughout the entire executiorhefgarallel program [17, 9]. This policy results in
warps progressing through the program at approximatelgainge rate which is beneficial since warps tend to
have a lot of data locality among them. Recall from SectidnZthat programmers are encouraged to make
consecutive threads access consecutive locations in ngegmoeduce memory divergence. This implies that
the memory requests created by different warps have signifgpatial locality (i.e., they all map to the same
row buffer). Therefore, when a warp executes a memory rdgbas misses in the cache, other warps are
likely to produce cache misses that map to the same row buffeiis row buffer locality can be exploited

as long as the requests are generated close enough to eaclinatime. A fair round-robin policy allows

12

this to happen whereas a scheduling policy that results iy weeven warp progression could destroy such
locality since an opened row buffer may be closed beforeratlagps access it. However, a pure round-robin
scheduling policy also tends to make all warps arrive at #meslong latency operation at roughly the same
time. Since all (or most) of the warps are stalled, there ateenough active warps to execute instructions

from to hide the long latency resulting in several idle FUlegc

To this end, we propose a two-level round-robin schedulialicp. With this policy, the concurrently
executing warps are grouped into fixed size fetch groups.ekample, 32 warps could be grouped into 4
fetch groups each with 8 warps (i.e., fetch group size efglal3he scheduling policy selects a fetch group
to prioritize and schedules warps from only that fetch grau@a round-robin fashion until no warp from
that fetch group can be scheduled (i.e., all the warps inféitah group are stalled). When this happens,
the next fetch group is selected and the policy repeats. thatethe scheduling policy within a fetch group
is round-robin, and switching from one fetch group to anoikelso done in a round-robin fashion (hence
two-level round-robin). Prioritizing a single fetch groppevents all warps from arriving at the same long
latency operation at the same time. Instead, a smaller sobsearps (i.e., a fetch group) arrives at the
long latency operation together and therefore there ateuicttons from other warps (in another fetch group)
to execute while the warps in the original fetch group ardlexdta In addition, since this policy switches
between fetch groups in a fair round-robin fashion, it issablpreserve the row buffer locality between warps
(which the conventional round-robin scheduling policy sleery well). In summary, the two-level round-
robin scheduling policy allows just enough separation leetwwarps to effectively hide long latencies, but

not too much as to destroy the row buffer locality among them.

Figure 8(a) shows how execution would proceed on a GPU copoging the conventional round-robin
scheduling policy among all warps, and Figure 8(b) showsstmme core using a two-level round-robin
scheduling policy. In this simplified example there are li@ltavarp contexts. Using the conventional round-
robin scheduling policy, all warps progress evenly throtlghcompute phase of the program but then all stall
waiting on data to return from memory resulting in idle FU iegcbefore more computation can be done. On
the other hand, using a two-level round-robin policy witrefch groups of 8 warps each reduces the number
of idle cycles as shown in Figure 8(b). Using the two-levdigypthe warps in fetch group 0 proceed through
the computation in half the time it took all 16 warps to do sd #merefore reach the long latency operation
(a memory request in this case) sooner. Since all warpséh fioup 0 are now stalled, a fetch group switch
occurs and warps in fetch group one begin to execute the clengiiase of the program while the requests
created by fetch group O are serviced. Likewise, when datang from memory, fetch group 0 resumes
computation which again overlaps with memory requestsdoearviced. In summary, the two-level policy

has reduced the number of idle FU cycles thereby improvimfppaance.

13

Req Warp 8-
Memory| Req Warp—
System| .

core[All Warps Computgs------------- dle Cycles All Warps Computg

Req Warp 15+
(a) Baseline round robin scheduling with 16 warps

~=Time

Fetch Group OFetch Group 1 Fetch Group OFetch Group 1

Idl | Saved Cycles
core[Computg” Compute---------- dle Cycles ~(Computg_Computg?®c =Y
Req Warp
Req Warp¥.
Memory| Req War;) 7=

System)|

Req Warp#
ey Wa?puw.

Req Warp‘l?
(b) Two-level round robin scheduling with 2 fetch groups of 8 warps each

Time
Figure 8. Baseline round-robin vs two-level round-robin sc heduling, total warp count = 16

3.2.1. Fetch Group SizeSetting the fetch group size correctly is very important thoe two-level round-
robin scheduling policy to work effectively. Recall from@&i@n 2, our baseline processor uses a strict barrel
processing model where once a warp is selected in the fedgfe sit cannot be fetched again until the warp
flows through the entire pipeline and finishes execution.ré@fioee, having too small a fetch group size (less
than the number of pipeline stages) will result in immedfateh group switches since after all the warps in
the current fetch group have been selected in the fetch stagearps in that fetch group will be ready to be
fetched since they would all still be in the pipeline. Thereffetch group switches would occur prematurely
(i.e., before the warps are actually stalled on a long lat@peration), which results in a scheduling policy
similar to the baseline round-robin policy. On the otherdatwo large a fetch group size also results in
a scheduling policy similar to the baseline. For examplahdf fetch group size is equivalent to the total
number of warps (i.e., only 1 fetch group containing all tharps), the two-level round-robin policy is by
definition equivalent to the baseline round-robin policixeTkey is to have just enough warps in a fetch group
to effectively fill up the pipeline so that a fetch group switinly occurs once those warps are actually stalled

on a long latency operation.

3.2.2. Generalizing Two-Level SchedulingAlthough we have used memory requests as the long latency
operation in our previous examples and discussions, thdewa scheduling policy is effective in tolerating
any type of stall. For example, GPU ISAs [24] have complekriridions (e.g., sine, cosine, log, and exponent
instructions) and the compute bandwidth for those opamatare much less than that of simple instructions
(since there are fewer complex FUs than simple FUs). If aliwarrive at a complex instruction at roughly
the same time, there will be significant stalling. HoweMee, tivo-level scheduling policy results in a subset of
warps (i.e., a fetch group) reaching the complex operatgether, and allows warps in another fetch group

to execute simple instructions while the original fetchugralowly gets through the complex operation.

3.2.3. Integrating the LWM and Two-level Fetch SchedulingThe Large Warp Microarchitecture and two-
level round-robin scheduling can be combined. Just as ityaygptwo-level scheduling to the baseline pro-

cessor, the fetch group size must be carefully chosen whebicing the LWM and two-level scheduling.

14

Having too small or too large a fetch group size will resulparformance similar to the baseline round-robin
fetch policy. However, with large warps, since there aredetotal warps on the core, there is less flexibility
in choosing the ideal fetch group size. For example, witgdavarps of 256 threads each, there are only
four large warps concurrently executing on the core ancefioee only fetch group sizes of one, two, and four
are possible. Recall from Section 3.1.1 that when imposargeh processing with large warps, once a large
warp is selected in the fetch stage, it cannot be fetchedhagil all of its sub-warps have finished execution.
Therefore, a fetch group size of one is too small (even thaligte are 256 threads in the warp) and will result
in premature fetch group switches. Likewise, a fetch grdme ef four (i.e., all 4 large warps in a single fetch
group) is by definition equivalent to the baseline roundingimlicy. Therefore, only a fetch group size of two
is able to achieve any benefit. This lack of flexibility im@lighat two-level scheduling will be more efficient
at smaller warp sizes (since there will be more flexibilitycimoosing the ideal fetch group size). However,

larger warp sizes better tolerate branch divergence. Weewaluate this tradeoff in our results section.

3.3. Hardware Cost

The hardware cost for the LWM comes from restructuring thgaster file. As shown in Section 3.1.1,
instead of a single address decoder, our mechanism recuiseparate address decoder per SIMD lane.
Previous work [11, 9, 8] estimates that using such a desigumiteein little die area increase. For example,
Jayasena et al. [11] propose stream register files with ediexcess which require dedicated row decoders
for each bank instead of a single shared decoder. They staiwtlplicating the row address decoders results
in an 11% to 18% increase in register file area which corred@ptma 1.5% to 3% increase in chip area of the
Imagine processor [13]. Fung et al. [8] show similar resinticating that having separate address decoders
results in an estimated 18.7% increase in register file arkamh corresponds to 2.5% of GPU area.

In addition to the register file overhead, there are a fewaestorage structures required by the LWM not
present in the baseline GPU core. As explained in Sectiaf arid illustrated in Figure 5, sub-warp creation
is done in parallel with decode by searching the columnseto dimensional active mask of a large warp
and clearing the bits corresponding to the selected thrafdsannot clear the bits in the warp’s actual active
mask (since this would affect correctness) and thereforpg of the large warp’s active mask must be made
before the warp can be broken down into sub-warps. For laggsvof size 256 threads, this corresponds
to 256 bits of storage (1 bit per thread in a large warp). Initimld as explained in Section 3.1.1, the large
warp microarchitecture uses the temporary active maslelsiff/hile executing branch instructions. Since a
temporary buffer is required for each path of the divergeahbh, this corresponds to 512 bits of storage. The
total additional storage is 768 bits (96 bytes).

Two-level warp instruction fetch scheduling does not regjainy additional storage cost. The only change

is a simple logic block in the fetch stage implementing the-tewvel round-robin scheduling policy.

15

4. Comparison to Previous Work

Fung et al. [9, 8] proposed lane-awatgnamic warp formatiofDWF) to address the branch divergence
problem on GPU cores. Since their proposal also addressgsdblem of underutilized SIMD resources, we
extensively compare our work to DWF in this section and quatintely evaluate DWF in Section 6.

DWF has three main disadvantages compared to our work: htead merging in DWF is not as efficient
as dynamic sub-warping of a large warp, 2) DWF can causefgignt additional memory divergence not
found in the LWM or the baseline processor, and 3) the sclimglylolicies described above have several
unintended effects with certain types of control flow whielads to not only lost opportunities for merging
but also destruction of the data locality among warps. Weakte on these issues below.

Incremental Merging: DWF only permits a retiring warp to be merged with the yournigeatching warp
in the list of warps waiting to be scheduled (i.e., the warplpo This can result in inefficient merging
by leaving holes in the active mask of older matching warptha warp pool. We call thisncremental
merging This is especially problematic when diverged threadsheacontrol flow merge (CFM) point.
Both the baseline GPU processor and the large warp micribacthre use a divergence stack to restore each
warp back to its original thread count when the threads rea€i#M point. However, DWF does not use
a divergence stack but instead relies on incremental mgrghts a result, warps may not be brought back
to their original thread count even after the CFM point hasrbeeached. This can offset the benefit DWF
achieves on divergent code resulting in performance degiadcompared to the baseline processor.

Additional Memory Divergence: Since DWF reassigns threads to warps during merging, dftefitst
divergent branch, warps in DWF may no longer contain consexthreads. This results in additional memory
divergence not found in either the LWM or the baseline preoes

Inefficiency of Scheduling PoliciesThe scheduling policies behind DWF try to keep warps togdite,
progressing at the same rate) in order to maximize oppdrtsriior merging threads. However, the proposed
scheduling policies cannot always achieve this goal. AgFatral. point out, the majority scheduling policy
suffers from the problem of starving threads that take yaesdecuted paths. However, these threads must
eventually execute and SIMD resource utilization will beywew when they do. Starving threads also
present a problem with memory locality. When they evenyueXecute, data that used to be present in the
cache may not be there anymore and open DRAM row buffers meg been closed. The post-dominator
priority scheduling policy, which prioritizes warps thave passed the least number of post-dominators (i.e.,
CFM points) can also have a similar effect. For applicatiaitsr loop divergence (i.e., where each thread
iterates over a loop for a different number of iterations) anbalanced nested branching, the number of post-
dominators passed is not a good indicator of which warps teeatch up and can therefore result in excessive

warp separation. In summary, it is difficult to find an idedieduling policy that always keeps warps together.

16

In contrast, by having large warps, a large number of threaglguaranteed to remain together (by definition
of the large warp) even in the presence of biased branchags dwergence, or imbalanced nested branching.
Furthermore, our two-level warp scheduling policy doesswiter from the starvation issues associated with

the scheduling policies in DWF since at each level of schedué fair round-robin policy is used.

5. Methodology
We use a cycle accurate simulator that simulates parallthads, each executing the same compute

kernel. In the results we present, we simulate a single GR&amcurrently executing 1024 threads. Table 1

presents the relevant system parameters used in our siomgdibr the baseline processor.

1-wide fetch and decode stages, round-robin warp schegpbiicy

4KB single-ported instruction cache

SIMD backend In order, 5 stages, 32 parallel SIMD lanes

64KB register file (16 32-bit registers per thread, 1024 corently executing threads)

Register file and on-chip memorigs32KB, 4-way set associative single cycle data cache, 1 readlpwrite port, and 128-byte line siz
128KB, 32-banked private memory (128 bytes per thread)

Open-row, first-come first-serve scheduling policy, 8 badk&B row buffer per bank

100 cycle row-hit latency, 300 cycle row-conflict latencg81GB/s memory bandwidth

Table 1. Baseline GPU core and memory configuration

Scalar frontend

Memory system

Since the x86 ISA does not have instructions to aid with daortal branch divergence/re-convergence of
parallel threads like GPU ISAs do [24], we created instrutaton tools to identify conditional branch in-
structions and their control flow merge points. We used alaitprocedure to identify barrier synchronization
points since x86 does not support single instruction basgachronization present in GPU ISAs [24].

We created parallel applications adapted from existingcberark suites including Rodinia [7],
MineBench [19], PARSEC [5], and NVIDIA's CUDA SDK code sarapl[21] in addition to creating one
benchmark of our own (blackjack). Each benchmark was pizadd using POSIX threads (Pthreads) and
compiled with Intel’s ICC compiler. We optimized each bemark for GPU execution using principles found
in [26] and [15]. Each benchmark runs to completion and aiasif 100 million to 200 million dynamic in-
structions across all 1024 threads. Table 2 lists the beadtsywe used and briefly describes each one and
also classifies each benchmark according to divergent briaensity and idle functional unit intensity. For
idle FU intensity, we consider benchmarks where the FUs angptetely idle less than 20% of the time to
be low, 20% to 40% to benedium and greater than 40% idle cycles is considered thigh. For branch
intensity, we calculated the average number of active ttergeer retired warp. Since warps start out fully
populated (i.e., with 32 threads), only branch divergeraeaause warps to retire with an active thread count
of less than 32. If the average active thread count per warggseater than 30, we consider the branch in-
tensity to bdow. Average active thread counts between 20 and 30 are clasagiieedium and below 20 are
consideredhigh. Note that since the average active thread count is compatektired warp (not per cycle),
the idle FU cycles are factored out of this metric.

The metric we use to compare performance is retinstructions per cycl¢IPC). Note that when a warp

17

| Benchmark | Description | Divergent Branch Intensity Idle FU Intensity |

blackjack Simulation of blackjack card game to compute house edge high low
sort Parallel bucket sort of a list of integers high low
viterbi Viterbi algorithm for decoding convolutional codes medium low
kmeans Partitioning based clustering algorithm medium low
decrypt Advanced Encryption Standard decryption algorithm low low

blackscholes| Computational finance, calculate the price of put/call i low medium

needleman Calculate optimal alignment for DNA sequences low medium
hotspot Processor temperature simulation low high

matrixxmult Classic matrix multiplication kernel low medium
reduction Parallel sum of a large vector of integers low high
histogram Compute histogram for ASCII characters in a large text file low high
bfs Breadth first search graph traversal high high

Table 2. Benchmarks

(or a sub-warp) executes an instruction, we treat eacheatitiead in the warp (or sub-warp) as executing a

single instruction. Therefore, if the warp (or sub-war@esis 32 threads, the maximum possible IPC is 32.

6. Results

6.1. Overall IPC Results for the Large Warp Microarchitecture and Two-Level Scheduling

Figures 9 and 10 show the IPC and computational resourdeatitiln for the baseline architecture (32
warps of 32 threads each, round-robin scheduling), dynararp formation (DWF), the large warp microar-
chitecture only (LWM), two-level scheduling only (2Levyéthe large warp microarchiteture combined with
two-level scheduling (LWM+2Lev). Note that the SIMD widtB2) and total thread count (1024) supported
by the core is the same for each configuration. For DWF, weemehted both the majority and post domina-
tor priority scheduling policies and chose the best perfogiof the two for each benchmark. For the LWM,
we created 4 large warps of 256 threads each. For two-leheldsding only (i.e., two-level scheduling ap-
plied on top of the baseline), we set the fetch group size te8 4 fetch groups, each consisting of 8 regular
sized warps). For the combination of LWM and two-level saligd), we again formed 4 large warps of 256

threads each and set the fetch group size to 2 (i.e., 2 fetzlpgr each consisting of 2 large warps).
32

3271 = Baseline 0.6
7| =DWF
1| =LWM
i{=2lev
+H =LWM+2Lev

N
- (=]
I A

l
B

 —

Q.

QO Q\ Q Q{Q
Figure 9. IPC for baseline, DWF, LWM only, 2-level schedulin g only, and LWM with 2-level scheduling

As expected, the LWM only (third bar) significantly improvesrformance for branch-intensive applica-

tions (the leftmost 4 benchmarks), whereas two-level sgliregi only (fourth bar) does not provide much

18

benefit compared to the baseline for these applications. r@&son for this is that these benchmarks make
very good use of the on chip data cache and private memoryhardfore are compute bound. However,
they do contain frequent divergent branches which is thenmeason for performance degradation for these
applications. This is justified by looking at the computatibresource utilization for these applications in
Figure 10. There are relatively few idle cycles (0 active Jtds these benchmarks even in the baseline ar-
chitecture, however they do have a significant number ofesyethere only a small portion of the FUs are
active. The LWM improves this by efficiently packing actitedgads into sub-warps, thereby increasing SIMD

utilization and improving performance.
100

Active FUs:
o[
1-7
8-15
16-23 [
24-31
32 I

80
60

40

20

Percentage of Total Cycles

Figure 10. Functional unit utilization for baseline, DWF, L WM, 2-level scheduling, and LWM with 2-level scheduling
On the other hand, the rightmost benchmarks have the oppbsfiavior. For these idle-FU-intensive
benchmarks, the LWM alone does not provide much benefit batléwel scheduling is very effective in
reducing idle FU cycles as shown in Figure 10 and therefopganes performance for these applications.
In summary, LWM alone improves performance by 7.6%, twalescheduling alone improves perfor-
mance by 10.1%, and when our two mechanisms are combinetetiefits of each are mostly preserved
resulting in 17.0% performance improvement on averagesaat benchmarks. DWF degrades performance

compared to the baseline for the reasons described in &ektio

6.2. Analysis of the Large Warp Microarchitecture

In this section, we show the effect of varying the large wage ®nd also show the effect of the LWM
optimizations we presented in Section 3.1.2. In order ttateothe effect of the LWM, we used only the
baseline round-robin policy (i.e., not two-level schedg)ifor these results.

We vary the large warp size from the baseline of 32 threadsvaep to a maximum of 512 threads per
warp® As seen in Figure 11, increasing the warp size improves peeace up until a warp size of 256
threads. Increasing the warp size gives more potentiah®istib-warping logic to create efficiently packed

sub-warps and therefore in general, larger warp sizes avefioéal. However, a warp size of 512 threads

SWe do not evaluate a large warp size of 1024 since given tie barrel processing model we employ for large warps, hgvin
only a single large warp will result in very inefficient usetbé pipeline.

19

actually performs slightly worse. The reason for this ist thiaa warp size of 512 threads, there are only 2
large warps on the core. In benchmarks with very biased besi¢e.g.blackjackandsori), there will be
times where each of the 2 large warps may only have a few atttreads. Having only 2 large warps with
just a few active threads each is not enough to fill the pipeliasulting in several idle FU cycles and thereby
reducing performance. Although a warp size of 256 threaddss affected by this, the problem is more

pronounced at larger warp sizes.

= Baseline
= WM64

= WM128
=LWM256

]

ey

N
%
N

=

Figure 11. Effect of large warp size

Figure 12 shows the effect of the memory divergence and witonal control flow optimizations we
presented in Section 3.1.2. The memory divergence opttinizdoes not provide much benefit. The reason
for this is that memory instructions for which consecutikieeads access consecutive memory locations tend
to be on control-independent code. Therefore, when a laggp meaches such an instruction, its active mask is
fully populated with all active threads. As such, the dynasub-warping mechanism cannot combine threads
from different rows in the active mask and therefore no addél memory divergence occurs regardless of
whether this optimization is turned on or off. This mechani&ould be effective when coalesced (i.e.,
consecutive) memory instructions appear on control-deégencode paths. However, we find this to be rare
in our benchmarks. The unconditional control flow optimiaatdoes slighty improve performance (by about
1%) by taking advantage of the fact that a large warp only seesdingle PC update which is valid for all

threads in the large warp.

32 = Baseline

= WM no opt
= WM-+memop
= L WM+jmpopt
= WM-+allopt

]

()
N

9
2

Figure 12. Effect of LWM optimizations

20

6.3. Analysis of Two-level Scheduling

In this section, we apply two-level scheduling on top of theddine microarchitecture (not LWM) and vary
the fetch group size. Since there are 32 total warps in owlives we use fetch group sizes of 1, 2, 4, 8, 16
and 32 warps. In our notation, “2Lev8” stands for two-levehaduling, with a fetch group size of 8 (i.e., 4

fetch groups each consisting of 8 warps). Figure 13 showt@eas we vary the fetch group size.
325 32

271 = Baseling — 0.6
30+ 2levl 30+——
284 =2-EV I - 28—
261 =2Lev2 M 05mmmrer 261
243 =2Lev4 —— _ o Y/ E E—
221 =2Lev8 = 0.4 | 22—
20+ =2Lev16 — : 20—
18341 =2Lev32 = 184+———
16 0.3 - 164
= 14] 144
127 124
10 0.2 107
81 81
64 1 | 64
& 0.1 &
23 21
ik LI LA LA N B o L oolMMBEE o
SR . o s > o s N 0 N
3 > S Q RS S O N L G S
@ Q' X N g
A I D NC A I A O s "9 N
X 5 & & & T @ & S

Figure 13. Effect of fetch group size on two-level schedulin g
For the benchmarks on the left, there is no variation sinesdtbenchmarks have very few idle cycles even
with the baseline round-robin policy. However, the righsnleenchmarks show that when the fetch group size
is too small or too large, there is no performance benefit étehfgroup sizes of 8 and 16 do provide benefit.
As previously mentioned in Table 1, we model a simple 7-stapgeline. Therefore, a fetch group size of 8
works best since 8 warps are enough to keep the pipeline gugn(the barrel processing model) and a fetch
group switch only happens when warps are actually stalled lmmg latency operation. A fetch group size
of 16 still provides benefit but not as much. 16 warps is moas thecessary to keep the pipeline busy and
results in a larger subset of warps arriving at the long leyesperation together (since the fetch group size is

larger) and therefore is unable to hide latencies as wel\vaarfs.

6.4. Interaction between the LWM and Two-level scheduling

Figure 14 illustrates the interaction between the LWM ana-tewel scheduling. In our notation,
“LWM256+2Lev2” corresponds to the large warp microarcbitee with 256 threads per warp employed
with two-level scheduling with a fetch group size of 2 largarps. For each warp size configuration, we plot
only the best performing fetch group size for that configorate.g., for baseline warp sizes with two-level
scheduling, we only plot performance for a fetch group siz8 warps since that was the best performing
option as shown in Section 6.3).

As expected, for the leftmost benchmarks, increasing thgp wae up to 256 threads improves perfor-
mance. However, for the rightmost benchmarks, increadiegaarp size slightly decreases the benefits of
two-level scheduling (yet still significantly improves fmance compared to the baseline). As discussed

earlier in Section 3.2.3, this is because with the LWM theeefawer total warps on the core and therefore

21

= Baseline 0.6
= Baseline+2Lev8|
= L WM64+2Lev4

=LWM128+2Lev4

= LWM256+2LevZ
= LWM512+2Levl;

-

Figure 14. Interaction between LWM and two-level schedulin g

less flexibility in choosing an ideal fetch group size.

Overall, a large warp size of 256 threads employed togetlitrtwo-level scheduling with a fetch group
size of 2 (LWM256+2Lev2) performs best when averaged acatidsenchmarks. Due to the fact that some
applications benefit more from larger warps, and others deebat smaller warp sizes, a GPU core supporting
hybrid warp sizes (the warp size could be set by the programomeeprofiler at compile time) is an interesting

solution. We leave this for future work.

7. Related Work

7.1. Conditional Execution on Vector, Stream, and Graphic$rocessors

Using a bit mask to execute conditional code in processatsttploit SIMD parallelism is an old concept.
The llliac 1V [6] had amode bitper Processing Element (PE) which either turned on or off adBifing
execution of a single instruction. Likewise, CRAY-1 [25]cha vector maskegister which was used to
vectorize loops with if/else statements. These bit maskakin to the active mask currently found on existing
GPU cores, where each bit in the active mask can activateamtigate the corresponding SIMD lane.

Allen et al. [3] introduced the idea of predicated executiBredicated execution has been extensively used
on GPUs to implement conditional code. Predicated exetwilows GPU cores to implement conditional
code without branch instructions but does not deal with ttodlem of underutilized SIMD resources when
SIMD lanes are masked off by predicate bits.

Smith et al. [29] introduced the concept dénsity-time executiowhereby the time taken to execute a
masked vector instruction is a function of the number of tralkeies in the mask. In their scheme, false values
in the vector mask register are skipped thereby reducingntimeber of cycles it takes to execute the vector
instruction. Rather than skipping over false values, owraach finds active operations from threads in a
large warp to fill the holes caused by branch divergence.

Kapasi et al. [12] introducedonditional streamswhich allow stream processors to conditionally filter an
input stream before it is processed. For example, if comjmtaeeded to be done on only the positive values

of a stream of integers, a separate kernel would have to lagectdy the programmer which conditionally

22

filters out the negative values. This condensed outputrstleEscomes the input stream to the kernel perform-
ing the actual computation. This leads to more efficient dsbeSIMD pipeline on stream processors since
computations that are not needed are not performed. Howdagmechanism requires 1) communication
between different SIMD lanes in order to filter an input stneathich is costly in terms of hardware complex-
ity, and 2) effort from the programmer to declare conditiosteeams and implement new kernels to perform
the filtering. In contrast, our approach 1) does not requir@munication between SIMD lanes and 2) is a
pure hardware mechanism that improves SIMD utilizatiorhia presence of branch divergence. It does not
require programmer or programming model support, and camare the performance of existing code.

Krashinsky et al. [16] propose the Vector-Thread architex{VT), which employs a control processor
and a vector of virtual processors (VPs). The control pregesses vector-fetch commands to broadcast the
same instruction to all the VPs. However, if divergence ogceach VP also has the ability to direct its own
control flow with thread-fetch commands. In this sense, tiohitecture is not strictly SIMD. In contrast,
our mechanism uses a strictly SIMD backend and tolerateechrdivergence by dynamically breaking down
large warps into efficiently packed sub-warps.

Meng et al. [18] propose Dynamic Warp Subdivision (DWS) vetgrwhen a warp diverges, two warp-
splits are formed which can be scheduled independentiyhofitjh this does not increase SIMD resource
utilization, it may increase the amount of Memory-Level &etism (MLP) since both sides of a divergent
branch can be executed concurrently. As such, DWS is ortedo our mechanism and can be employed on

top of the large warp microarchitecture by splitting up a&awarp upon branch divergence.

7.2. Fetch Scheduling

Many previous proposals analyzed and proposed scheduliinggs for threads on MT or SMT cores [2,
32, 31]. However, none of these policies were designed foediding warps on GPUs. In fact, many of
these policies were evaluated on workloads consisting dtipreidifferent applications and not threads of the
same application. GPU scheduling is unique in that the wiarps scheduled have much data locality among
them. Also, GPUs support many more warp contexts simultasigcompared to these MT and SMT cores
allowing zero cycle context switching among all concurkgekecuting warps.

Lakshminarayana et al. [17] evaluate several possiblé fetbeduling policies for GPUs. However, the
policies they evaluate do not include the two-level schiedullescribed in this paper. Furthermore, most of
the scheduling policies they evaluate result in warps meging uniformly through the program (similar to
pure round-robin) so that data locality among warps can péérd. In contrast, our two-level policy allows
warps to arrive at a long latency instruction slightly afasm each other in time thereby more effectively
hiding the latency. Our policy also exploits the data Idyasimong warps since at each of the two levels of

scheduling, a fair round-robin policy is used. We also nbtg the policies evaluated in [17] can be used as

23

the scheduling policy within either of the two levels of owotlevel policy.
8. Summary and Conclusion

In this paper, we propose two new mechanisms to improve GPdrpeance by better utilizing the com-
putational resources on GPU cores in the presence of brametgdnce and long latency operations.

To alleviate the performance penalty caused by branch giivere, we propose the large warp microar-
chitecture. While existing GPU cores concurrently executdtiple SIMD-width sized warps, we propose
forming fewer but correspondingly larger warps and dynaatfyccreating efficiently packed SIMD-width
sized sub-warps from the active threads in a large warp. [€aids to improved SIMD resource utilization in
the presence of branch divergence. To improve long latepieyance, we propose a novel two-level round-
robin warp instruction fetch scheduling policy. This pgligrevents all warps from arriving at the same long
latency operation at the same time, thereby reducing icdeuion cycles.

Our experimental evaluations show that each mechanisnifisegmtly improves performance. Combined
together, both techniques improve performance by 17.0%verage for a wide variety of general purpose
parallel applications. We believe that our mechanismsiase the scope of general purpose parallel applica-
tions that can achieve significant speedup when executedzéia

References
[1] Advanced Micro Devices, IncATI Stream Technologyttp://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM

TECHNOLOGY/Pages/stream-technology.aspx.

2] A.Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. Afiria processor architecture for multiprocessingl$CA-17 1990.

3] J.R. Allen, K. Kennedy, C. Porterfield, and J. Warren. @asion of control dependence to data dependendeOlRL, 1983.

4] B. Amrutur and M. Horowitz. Speed and power scaling of IRAIEEE JSCC35(2):175-185, Feb. 2000.

5] C. Bienia et al. The PARSEC benchmark suite: Charaatidn and architectural implications. RACT-17 2008.

6] W. J. Bouknight et al. The llliac IV systenRroceedings of the IEEB0(4):369 — 388, Apr. 1972.

7] S. Che et al. Rodinia: A benchmark suite for heterogesemmputing. IHISWGC 2009.

8] W.W. L. Fung et al. Dynamic warp formation: Efficient MIMEontrol flow on SIMD graphics hardwarCM TACQ

9] W.W. L. Fung et al. Dynamic warp formation and schedulfogefficient GPU control flow. Ir'MICRO-4Q 2007.

[10] W.-M. Hwu et al. Compute unified device architecturelaggtion suitability.Computing in Science Engineeringay-jun 2009.

[11] N.Jayasena, M. Erez, J. Ahn, and W. Dally. Stream regides with indexed access. HPCA-1Q 2004.

[12] U. Kapasi et al. Efficient conditional operations fotaiparallel architectures. IMICRO-33 2000.

[13] B. Khailany et al. VIsi design and verification of the igiae processor. IICCD, 2002.

[14] Khronos GroupOpenCL Parallel Computing for Hetergeneous Devices
http://www.khronos.org/developers/library/overviepéncloverview.pdf.

15] D. Kirk and W. W. Hwu.Programming Massively Parallel Processors: A Hands-onrapph Elsevier Science, 2010.

16] R. Krashinsky et al. The vector-thread architectund SCA-31 2004.

17] N. B. Lakshminarayana and H. Kim. Effect of instructifich and memory scheduling on gpu performancalMbrkshop on

Language, Compiler, and Architecture Support for GPGRUL10.

18] J. Meng et al. Dynamic warp subdivision for integratedrizh and memory divergence tolerancel3€A-37 2010.

19] R. Narayanan et al. MineBench: A benchmark suite foadaining workloads. InISWC 2006.

20] J. Nickolls and W. Dally. The GPU computing eMicro, IEEE, 30(2):56 —69, 2010.

21] NVIDIA. CUDA C SDK Code Sampldsttp://developer.download.nvidia.com/compute/cadivebsite/samples.html.

22] NVIDIA. CUDA Best Practices Guide Version 32D10.

23] NVIDIA. CUDA Programming Guide Version 3.2010.

24] NVIDIA. PTX ISA Version 2,2010.

25] R. M. Russell. The CRAY-1 computer systeBommunications of the ACN1(1):63-72, Jan. 1978.

26] S. Ryoo et al. Optimization principles and applicatp@rformance evaluation of a multithreaded GPU using CUDAFPoOPR

2008,

27] L. Seiler et al. Larrabee: A many-core x86 architectiamevisual computinglEEE Micro, 29(1):10-21, jan-feb 2009.

28] B.J. Smith. A pipelined shared resource MIMD compultetCPP, 1978.

29] J. E. Smith, G. Faanes, and R. Sugumar. Vector instmaeét support for conditional operations.I8CA-27 2000.

30] J. E. Thornton. Parallel operation in the control de6@® INAFIPS

31] D. M. Tullsen and J. A. Brown. Handling long-latency tfsain a simultaneous multithreading processoMICRO-34 2001.

32] D. M. Tullsen et al. Exploiting choice: Instruction &t and issue on an implementable simultaneous multithmgaatiocessor.
In ISCA-23 1996.

24

