Prefetch-Awar e Shar ed-Resour ce Management for Multi-Core Systems

Eiman Ebrahimi Chang Joo Leg Onur Mutlui Yale N. Patt

THigh Performance Systems Group
Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, Texas 78712-0240

iDepartment of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA

TR-HPS-2010-005
December 2010

This page is intentionally left blank.

Prefetch-Awar e Shar ed-Resour ce Management for Multi-Core Systems

Eiman Ebrahimi Chang Joo Lege Onur Mutlui Yale N. Patt

tDepartment of ECE iDepartment of ECE
Univ. of Texas at Austin Carnegie Mellon Univ.
{ebrahimi, cjlee, paji@ece.utexas.edu onur@cmu.edu
Abstract

Chip multiprocessor (CMP) systems share a large portiothefrhemory subsystem among multiple cores. Recent proposals
have addressed high-performance and fair management eé thleared resources; however, none of them take into account
prefetch requests. Without prefetching, significant gennce is lost, which is why existing systems prefetch. Btaking into
account prefetch requests, all recent shared-resourceagement proposals often significantly degrade both peidioca and
fairness, rather than improve them in the presence of piiieg.

This paper is the first to propose mechanisms that both matiegshared resources of a multi-core chip to obtain high-
performance and fairness, and also exploit prefetchingapfdy our proposed mechanisms to two resource-based mareade
techniques for memory scheduling and one source-thrgttimssed management technique for the entire shared melystgns.

We show that our mechanisms improve the performance of aedsgstem that uses network fair queuing, parallelism-a&awar
batch scheduling, and fairness via source throttling byo%,.10.9%, and 11.3% respectively, while also significaintiyroving
fairness.

1. Introduction

Chip multiprocessor (CMP) systems share a large portioheftemory subsystem among the multiple cores. This
shared memory system typically consists of a last-levalesheache, on-chip interconnect, shared memory contsoller
and off-chip memory. When different applications concatlg execute on different cores of a CMP, they generate
memory requests that interfere with memory requests ofradpelications in the shared memory resources. As a
result of this inter-application interference, memoryuests of different applications delay each another. Thises
each application to slow down compared to when it runs iraismh. Recent research (e.g., [20, 19, 3]) has proposed
different mechanisms to manage this interference in theeshaesources in order to improve system performance
and/or system fairness.

On the other hand, memory latency tolerance mechanismsitcaldo improving system performance as DRAM
speed continues to lag processor speed. Prefetching issomaanly-employed mechanism that predicts the memory
addresses a program will require, and issues memory regjteeiose addresses before the program needs the data.
Prefetching improves the standalone performance of mapljcations and is currently done in almost all commercial
processors [30, 6, 11, 22]. Recent research [2] proposeHigeint dynamic adaptation of prefetcher aggressiveness
to make prefetching effective and efficient in CMP systems.

Ideally we would like CMP systems to both obtain the perfamsebenefits of prefetching when possible, and
also reap the performance and fairness benefits of shamedroesmanagement techniques. However, shared resource

management techniques that otherwise improve systemrp&fwe and fairness significantly, can also significantly

degrade performance/fairness in the presence of prefgfcfiihe reason: these techniques are designed for demand
requests and do not consider prefetching.

Figure 1 illustrates this problem on a system that uses #taility of service (QoS)-capable memory sched-
uler, network fair queuing (NFQ) scheduler [20]. Results averaged over 15 multiprogrammed SPEC CPU2006
workloads on a 4-core systémand normalized to a system that uses a common first-readycdinse-first-serve
(FR-FCFS) memory scheduler [26]. Figure 1 (a) shows how Nf€rts average system performance and average
maximum slowdown (one metric of unfairness) in a system witprefetching. Figure 1 (b) shows this in the pres-
ence of aggressive stream prefetching. This figure showsedhen though NFQ improves performance and reduces
maximum slowdown on a system that does not have a prefei€laggressive prefetching is enabled, we see a very
different result. On a system with prefetching NFQ degragmaformance by 25% while significantly increasing max-
imum slowdown, because its underlying prioritization alfon does not differentiate between prefetch and demand
requests. As a result, prefetches can be unduly prioritigethe memory scheduler, causing system performance and
fairness degradation.

In this paper, we demonstrate that different shared resonranagement techniques suffer from this problem,
i.e., they can degrade performance significantly when epalavith prefetching. Our goal is to devise general
mechanisms that intelligently take prefetches into actauithin shared resource management techniques to ensure
their effectiveness for both performance and fairnessémpttesence of prefetching.

We provide mechanisms for management of prefetch requests i

: 16,
gé - %g‘;‘;;‘jgﬂs three recently proposed shared resource management dqeelni
§ZZ: N - Two of these techniques aresource-basednemory scheduling
82 i %z E techniques: network fair queuing (NFQ) [20] and parallaliaware

§§ E %% g batch scheduling (PARBS) [19]. The third technique iscarce
"% et goax 2 prer gMax throttling-basedechnique for coordinated management of multiple
(a) No Prefetching (b) Stream Pref shared resources (FST) [3].

. . _ Basic | deas Our mechanisms build upon three fundamental ideas.
Figure 1. Harmonic mean of speedups and maximum

slowdown on system using NFQ memory scheduler First, we use accuracy feedback from the prefetchers talddww
(normalized to FR-FCFS)

prefetch requests should be handled in each ofeékeurce-based
techniques. The key idea is ot treat all prefetches the same. An application’s prefetcesild be treated similar
to the demand requestslly wherthey are useful.

Second, treating useful prefetches like demands can signtfy delay demand requests of memory non-intensive

10ur system configuration, metrics, and workloads are d&uisn Section 5. In Figure 1, the stream prefetcher of Tatiteused. Prefetch and demand
requests are treated alike with respect to NFQ's virtuasfinime calculations.

2

applications because such requests can get stuck behindaeprefetches (and demands) of memory-intensive
applications. This degrades system performance and fa&rfi® solve this problem, we introduce the idedefand
boosting the key idea is to boost the priority of the demand requekt®a@mory non-intensive applications over
requests of other applications.

Third, with source throttling-based resource managememt observe that uncoordinated core and prefetcher
throttling can cause performance/fairness degradaticause throttling decisions for cores can contradict those f
prefetchers. To solve this problem, we propose mechanikatscoordinate core and prefetcher throttling based on
interference feedback that indicates which cores are haifajrly slowed down.

Summary of Evaluation We evaluate our mechanisms on three different shared resouanagement techniques
on a 4-core CMP system. Compared to a system with stateeeduthprefetcher aggressiveness control [2], we find
that our mechanisms improve the performance of an NFQ-h&#dRIBS-based, and FST-based system on average by
11.0%, 10.9%, and 11.3% while at the same time reducing maxisiowdown by 9.9%, 18.4%, and 14.5%.

Contributions This paper makes the following contributions:

1. It demonstrates a new problem in multi-core shared resomanagement: prefetching can significantly degrade
system performance and fairness of multiple state-ofattieshared resource management techniques. This problem
still largely exists even if state-of-the-art prefetchierottling techniques are used to dynamically adapt prafatc
aggressiveness.

2. It shows that simply prioritizing accurate prefetched deprioritizing inaccurate ones within shared resource
management techniques does not solve the problem; premlifirefetches can significantly degrade the performance
of memory non-intensive applications. We introduce thaeidedemand boosting to prevent this.

3. Itintroduces new general mechanisms to handle prefeiohshared resource management technigues to syner-
gistically obtain the benefits of both prefetching and stiaesource management techniques in multi-core systems.
We apply our mechanisms to three state-of-the-art shassliree management techniques and demonstrate in detalil
how these techniques should be made aware of prefetchingpf@bensive experimental evaluations show that our

proposal significantly improves fairness and performarfabese techniques in the presence of prefetching.

2. Background

In the sections that follow, we briefly describe the thrededént shared resource management techniques that
we discuss in this paper. We also give a brief introductioa siate-of-the-art prefetcher control technique [2] that
improves system performance and fairness in the presenoefidtching in CMP systems. We first briefly describe

what we mean by system fairness.

2.1. Fairnessin the Presence of Prefetching

We evaluate fairness of a multi-core system executing aifprdgrammed workload using th&/ ax Slowdown
metric. This metric shows the maximum individual slowdowattany application in the workload experiences, as
an indicator of the minimum service that any applicationhe tvorkload receives.Individual Slowdown (ISpf
each application is calculated &$,4req/Taione: WhereTgq,-q iS the number of cycles it takes an application to run
simultaneously with other applications, afif],.. is the number of cycles it would have taken the application to
run alone on the same system. In all of our evaluations, weansagggressive stream prefetcher when calculating
each benchmark’s,;,,.. as our stream prefetcher significantly improves averag®peance and makes for a better
baseline system. In addition to théax Slowdown metric, we also show the commonly useafairnessmetric [9, 4,

18] calculated as:

MAX{ISo,151,....,1Sn_1}
MIN{I1So,IS1,....,1S8n_1}

Unfairness =
2.2. Network Fair Queuing Memory Scheduling

Nesbit et al. [20] propose network fair queuing (NFQ), a mgmszheduling technigue based on the concepts of
fair network scheduling algorithms. NFQ's goal is to praviguality of service to different concurrently executing
applications based on each application’s assigned fraofimemory system bandwidth. NFQ’s QoS objective is that
“a threadi that is allocated a fractioR of the memory system bandwidth will run no slower than the eséimead on
a private memory system running at that fractief the frequency of the shared physical memory system.” NFQ
determines airtual finish timefor every request of each thread. A memory request’s virtingh time is the time
it would finish on the thread’s virtual private memory systénmemory system running at the fractiénof the
frequency of the shared memory system). To achieve thisctibge memory requests are schedubadliest virtual
finish time first NFQ provides no specification of how prefetches should dmtéd.

2.3. Parallelism-Awar e Batch Scheduling

Mutlu and Moscibroda [19] propose parallelism-aware battieduling (PARBS), a memory scheduling technique
aimed at improving throughput by preserving intra-threadlbparallelism while providing fairness by avoiding star-
vation of requests from different threaéihere are two major steps to the PARBS algorithm: First, PSRBnerates
batches from a number of outstanding memory requests, aawtesthat all requests belonging to the current batch
are serviced before the formation of the next batch. Thistbag technique avoids starvation of different threads and
is aimed at improving system fairness. Second, PARBS preséntra-thread bank-level-parallelism while servic-

ing requests from each application within a batch. This stggroves system throughput by reducing each thread’s

2We assume each core of a CMP runs a separate applicationseridaiterm thread and application interchangeably.

4

memory related stall time. PARBS does not specify how to laprkfetches in either of these two steps.

2.4. Hierarchical Prefetcher Aggressiveness Control

Ebrahimi et al. [2] propose hierarchical prefetcher aggikemess control (HPAC) as a prefetcher throttling sohutio
to improve prefetching performance in CMPs. HPAC's goaldscontrol/reduce inter-thread interference caused
by prefetchers. It does so by gathering global feedbackrimftion about the effect of each core’s prefetcher on
concurrently executing applications. Examples of glokaldback are memory bandwidth consumption of each core,
how much each core is delayed waiting for other applicatiorize serviced by DRAM, and cache pollution caused
by each core’s prefetcher for other applications in theeath@ache. Using this feedback, HPAC throttles each core’s
prefetcher. By doing so, Ebrahimi et al. [2] show that HPA@ eaable system performance improvements using
prefetching that are not possible without it. In our papeg, wge HPAC in our baseline system since it significantly
improves the performance of prefetching in multi-core eyst and therefore constitutes a stronger baseline.

2.5. Fairnessvia Source Throttling

Ebrahimi et. al. [3] propose fairness via source throttlfR&T) as an approach to providing fairness in the entire
shared memory system. FST dynamically estimates how muaih aggplicationi is slowed down due to inter-core
interference that results from sharing the memory systeth ather applications. Using these estimated slowdowns,
FST calculates an estimate for system unfairness. In addiEiST also determines the core experiencing the largest
slowdown in the system, referred to App-slowestand the core creating the most interference App-slowest
referred to adApp-interfering If the estimated unfairness is greater than a thresholdifspe by system software,
FST throttles dowrApp-interfering(i.e., it reduces how aggressively that application ace#se shared memory
resources), and throttles Wpp-slowest In order to throttle down the interfering thread, FST lisnihe number of
requests that the thread can simultaneously send to thedstesources and also the frequency at which it does so.

In order to estimate each application’s slowdown, FST tsdnker-thread interference in the memory system. FST
estimatedothhow much each applicatidns actually being slowed down due to inter-core interfeeandalsohow
much each other corje(j # i) contributes to the interference experienced by éotdnfortunately, FST assumes all
requests are demand requests and does not consider pirefetch

3. Motivation

In this section, we motivate why special treatment of pafetquests is required in shared resource management
techniques to both 1) achieve benefits from prefetching 2nhhaintain the corresponding techniques’ performance
benefits and/or fairness/QoS capabilities.

Every shared resource management technique has a patdtizalgorithm that determines the order in which

5

Initial State Policy () Do not irﬁ::(l)ll.lic?g/agr?)g prefetches Includei?(—lzifg%::r(\g?s in batches
. Include all prefetches in batch when any demands are present based on prefetch accuracy o

,_ [B Py p2 P1 P1:U prefetches from Core 1

3 p2 < |] P2 : Useful prefetches from Core 2

5 D1 P1L 10O i P2 D2 P2 P1 Pl Pl D1, D2: Demands from Cores 1 and 2 respectiv
= P2 D2 8 i D2 D2 Pl P1 ¢ P2 P2 PR— :

2 D2 P1 : % . D1 P1 D2 D2 D2 D2 | Batch ‘

< P1 D2 ‘ol [P1 | PLi | I DL D2 0> Y - S S

\ Bank 1\ \ Bank 2\ \ ank 1\ \ Bank 2 \ Bank 1\ \ Bank 2\ \ Bank 1\ \ Bank 2

Figure 2. Example 1: Different policies for treatment of pre fetches in PARBS batch formation

requests are serviced. For example, NFQ prioritizes segiaequests that have earligrtual finish times PARBS
prioritizes requests included in the formed batch by schieguhem all before a new batch is formed. In resource-
based management techniques, the first key idea of our mbjmthat usefulness of prefetch requests should be
considered within each management technique’s priotitimgoolicy. As such, not all prefetches should be treated
the same as demand requests, and not all prefetches shodéghberitized compared to demand requests. However,
this is not enough; in fact, prioritizing accurate prefeisttauses starvation to demands of non-intensive applisati
To solve this problem, the second key idea of our proposal Isobst the priority of demand requests of such non-
intensive applications so that they are not starved.

We motivate these two key ideas with two examples.

Example 1. Figure 2 shows the effect of prefetching on PARBS. The figln@ns a snapshot of the memory
request buffers in the memory controller for banks 1 and 2 ifitial state of these queues right before a new batch
is formed can be seen on the left. Based on PARBS’s batchgugitim, a maximum number of requests from any
given thread to any given bank are marked to form a batch. Eetssume PARBS marks three requests per-thread
per-bank when forming a batch. Additionally, let us assuhag application 1's prefetches are useless or inaccurate
while application 2’s prefetches are useful or accuratgufeé 2 shows two simplistic policies, (a) and (b), and our
proposed approach, policy (c), for handling prefetchesARBS’s batching phase. Figure 3 shows the respective
memory service timelines.

Policy (a): mark prefetches and demands from each threda alihen creating a batchzigure 2 shows that all the
requests in the memory request queues of the two banks dueéatin the batch with this policy. Within each batch,
PARBS prioritizes threads that that are “shorter jobs” imtg of memory request queue length. Since thread 1 has
a shorter queue length (maximum 2 requests in any bank) thiead 2 (maximum 3 requests in any bank), thread 1
is prioritized over thread 2. As a result, as Figure 3 (a) shalwead 1's inaccurate prefetches to addresses Y, X and
Z are prioritized over thread 2's demands and useful preéstc This leads to unwarranted degradation of thread 2's
performance without any benefit to thread 1 (as its prefeteine useless).

Policy (b): never mark prefetche3his policy provides a naive solution to policy (a)'s praiie by not marking any

6

prefetches. This is helpful in prioritizing the demandstottd 2 over the useless prefetches of thread 1. However, by
not marking any prefetches, this policy also does not ineling useful prefetches of thread 2 in the generated batch.
Figure 3 (b) shows that thread 2’s useful prefetches to add=eL and M are now delayed since all prefetches are
deprioritized. Hence thread 2 issues demands for addrésaed M before the prefetches are serviced, and so the

benefit of those accurate prefetches significantly decsedses causes a loss of potential performance.

Our Approach: A key principle in this paper is to DRAM (B Come 71— ariiea

P1:Useless prefetches

treat only accurate prefetches as demands in shared re- 837K 1 [PL=Y. DI-ALD2ZEP2ZL) P2 Uselul prefetches
Bank 2 [P1-X) P1-Z| D2-F[D2-GJ P2-M

source management. Figure 2 (c) concisely shows how e 1 stall Compue) % comute
H . . | stall | '
this is done for PARBS. Using feedback from different €02 |

(a) Include all prefetches in batcﬁeSHit Pref - L

DRAM ; ! Hit Pref - M
ank 1 [D1-A(_D2-E| P1-Y(P2-L)

gent decision about whether or not to include prefetches B

Bank 2 [D2-F Dz—Gi PL-X[Pl—Zj:: P2 - M)

when forming batches. Since thread 2’s prefetches are g1 —

stall . p
useful, we include them in the batch, while thread 1's ©°"¢? D), A
| |

. ' Miss — L Miss - M
useless prefetches are excluded. As a result, benefits (b) Do not include any prefetches
when any demands are present

threads’ prefetchers, PARBS can make a more intelli-

from prefetching for thread 2 is maintained, as shown in gRﬂ‘

ank 1| D1-A(D2-E[P2-L] P1-VY

Figure 3 (c). Excluding thread 1's useless prefetches Bank2 D2=F| D2=G| P2=M_ PL-X PL-32

Core 1's saved stall cycles compared to (a)

. . stall D I
from the batch improves system fairness as these re- Corel Core 2's saved stall cycles compared to (a)

' Compute
stall
quests do not unduly delay thread 2's demands and use- ©°'¢ 2 Compute [| Compute)
) - - i f_
ful prefetches, and thread 2's slowdown is reduced with- el S
(c) Include prefetches in batches
out increasing thread 1's slowdown. Figure 3 (c) shows based on prefetch accuracy

] o]] Figure 3. Memory service timeline for requests of Figure 2
that this policy improves both applications’ performance

compared to policies that treat all prefetches equallyjvatihg the need for distinguishing between accurate and in

accurate prefetches in shared resource management.

: [{P/D, Core #} - addreés

(_P2-H)i P2: Useful prefetches from Core

Service Order

Boosted Demands

\ Bankl\ \ Bankz\ \ Bankl\ \ Bankz\ \ Bankl\ \ Bankz\ \ Bankl\ \ Bankz\

@T=t1 b)yT=t2 (c)T=t3 d)T=t3
No Demand Boosting With Demand Boosting

Figure 4. Example 2: No demand boosting vs. Demand boosting

Example 2. Figure 4 shows the problem with just prioritizing accuratefptches, and concisely shows our
solution for a system using PARBS. When including accuragéepches into the batches formed by PARBS, in the
presence of prefetch-friendly applications (like apgica 2 in Figure 4), the size of the batches can increase.eSinc
memory non-intensive applications (like application 1 igu¥e 4) generate memory requests at a slow pace, every
time a batch is formed (Timdl shown in Figure 4(a)), memory non-intensive applicatiofisivave a small number
of their requests included. At timt®, more requests from the memory non-intensive applicatidmea Without our
proposed mechanism, since the current batch is still beingced, these requests have to wait until the current batch
is finished (Figure 4 (c)), which could take a long time sinseful prefetch requests that were entered into the batch
made the batch size larger. In this paper, we propose demzogtibg, which prioritizes themall numberof the
non-intensive application’s requests over others. In Fgu(d), at time3, the two demand requests from application
1 to addresses K and L are boostetb the current batch and prioritized over the existing reqgiéstm application
2 within the batch. This allows application 1 to go back tocdtenpute phase quickly. Doing so does not degrade

application 2's performance significantly as the non-istem application 2 inherently has very few requests.

4. High Performance and Fair Shared Resource Management in the Presence of Prefetching

In this section, we describe in detail our proposal for hamdprefetches in the two types of resource management
techniquesresource-basednd source-basedWe also introducglemand boostingwvhich is orthogonal to the em-
ployed resource management technique. Since demandtgpastiommon to both resource-based and source-based
techniques, we describe it first in Section 4.1. Then, we ril@sdin detail how to apply our insights (described in
Sections 1 and 3) to each resource management techniqua igBections 4.2 and 4.3).

4.1. Demand Boosting

Problem and Main Idea: As described in Section 3, the first component of our propisdaltreat useful prefetches
to be as important as the demands. Memory-intensive andtprefriendly applications can generate many such re-
guests, which can cause long delays for the demands of aentlyrexecuting non-intensive threads. As a result,
system performance and fairness can degrade because @fplarfprmance degradations to memory non-intensive
applications. To mitigate this problem, we propakamand boostindpr such non-intensive applications. The key
idea is to prioritize the non-intensive applicatiosi®mall number of demand requestger others, allowing that appli-
cation to go back to its compute phase quickly. It must bedhthat doing so does not significantly degrade other
applications’ performance because the non-intensiveegifun inherently has very few requests.

Why the Problem Exists. The potential forshort-termstarvation of a non-intensive application’s demands in-

creases in each of the techniques we consider for diffeezrstans. In NFQ and FST, potential for starvation is created

8

by the prioritization of DRAM row buffer hits in the memoryseduler, coupled with high row buffer locality of accu-
rate prefetches that are considered as important as demPABRS8 S uses the batching concept to mitigate this inherent
issue due to prioritizing row-buffer hit requests. HowegweiSection 3 we proposed including accurate prefetches int
PARBS's batches. The slow rate at which non-intensive tgganerate their requests, together with the large batches
generated using requests from prefetch-friendly appticat causes potential for starvation in PARBS.

To summarize, elevating the priority of accurate prefemtuests from memory intensive applications causes the
small memory related stall times of non-intensive appiaret to increase. This significantly hurts the non-inteasiv
applications’ performance (as also observed by prior wdrR]). In addition, when such memory non-intensive
applications are cache friendly, as they stall waiting fait small number of memory requests to be serviced, their
useful requests in the shared cache move up the LRU staclaargkt evicted more quickly by intensive applications’
requests. This, in turn, causes larger performance perdtir such memory non-intensive applications.

Demand Boosting Mechanism: Demand boosting is a general mechanism orthogonal to tre dfpesource
management technique. It increases the performance of meran-intensive applications that do not take advantage
of accurate prefetches by dynamically prioritiziagsmall numberof such applications’ demands. With demand
boosting, the demands of an application that does not hagate prefetcheand has a at most threshold number
of outstanding requests, will be boosted and prioritizegtall otherrequests. For example, in a system using PARBS,
when an application’s demands are boosted, they no longefowva current batch to finish before they are considered
for scheduling. A boosted request X has higher priority thap other request Y regardless of whether or not request
Y is in the current batch.

Delaying a memory-intensive application in lieu of a memiooy-intensive application with inherently small mem-
ory stall times can improve both system performance anddas [19, 13, 3, 10]. In many cases, demand-boosting

enables performance benefits from prefetching that areessiple without it, as we show in Section 6.
4.2. Prefetch-Aware Resource-Based M anagement Techniques

We identify prefetcher accuracy as the critical prefetattmracteristic to determine how a prefetcher's requests
should be treated in shared resource management techniBuefetcher accuracy is defined as the ratio of useful
prefetches generated by a prefetcher to the total numberetétphes it generates. We also investigated using other

prefetcher feedback such as a prefetchdegree of timelineds but found that accuracy has more of a first order

3Note that in the context of demand boosting for PARBS, dentarmbting is significantly different from the “intra-batchénking proposed by the original
PARBS mechanism (which we use in all our PARBS related méashes). PARBS'’s ranking prioritizes requests chosen froquests already containedthin
the current batchusing its ranking algorithm. In contrast, with demand bowstdemand requests from a boosted thread are prioritizedadl other requests.

4A prefetcher’s degree of timeliness is defined as the rati@humber of useful prefetches that fill the last level cawtfere the corresponding demand
request is issued, to the total number of useful prefetches.

effect.

In all of the mechanisms we propose, we measure prefetchramycon an interval by interval basis. An interval
ends wherl" = 8192 cache lines are evicted from the last level cache, whieig empirically determined. Every
interval, feedback information on the number of useful erefies and total sent prefetches of each prefetcher is
gathered. Using this feedback information, the accuradh@fprefetcher in that interval is calculated and used as an
estimate of the prefetcher accuracy in the following indknin the following subsections, we discuss how to redesign

underlying prioritization principles of the different tegiques.

4.2.1. Parallelism-Aware Batch Scheduling PARBS usedatchingto provide a minimum amount of DRAM ser-
vice to each application by limiting the maximum number afuests considered for scheduling from any one appli-
cation. Inaccurate prefetches of an application A can hagative impact on system performance and fairness in two
ways. First, they get included in batches and get prioktiaeer other applications’ demands and useful prefetches
that were not included. As a result, they cause large pedooa degradation for those other applications without
improving application As performance. Second, they redtie fairness provided by PARBS to application A by
occupying a number of slots of each batch that would otherwésused to give application A's demands a minimum
amount of useful DRAM service.

We propose the following new batch scheduling algorithmrtalde potential performance improvements from
prefetching, while maintaining the benefits of PARBS. ThetkeAlgorithm 1 is that it restricts the process of marking
requests to demands and accurate prefetches. As a restéfetch-friendly application will be able to benefit from
prefetching within its share of memory service. On the otleend, inaccurate requests are not marked and are hence

deprioritized by PARBS.

Algorithm 1 ParallelismAware Batch Scheduler’s Batch Formation (Prefetch-AWRARBS, P-PARBS)
Forming a new batch: A new batch is formed when there are no marked requests lgfeimemory request buffer, i.e., when
all requests from the previous batch have been completelicee.
Marking: When forming a new batch, the scheduler marks ugaoking-Capoutstanding demarahd also accurate prefetch
requests for each application; these requests form the new batch.

4.2.2. Network Fair Queuing NFQ usesearliest virtual finish time firstnemory scheduling to provide quality of
service to concurrently executing applications. Inactupaefetches of some application A can have negative impact
on system performance and fairness in two ways: First, itiegfion A's inaccurate prefetches get prioritized over
demands or accurate prefetches of some other applicatiomeRalthe former’s earlier virtual finish time, system
performance will degrade. Application B’s service is deldywhile application A does not gain any performance.

Second, since NFQ provides service to application As ineatte prefetches, the virtual finish times of application

10

A's demands grows larger than when there was no prefetcfiihg. means that application As demand requests will
get serviced later compared to when there is no prefetchfigce application A's prefetches are not improving its
performance, this ultimately results in application A'sfoemance loss due to unwarranted waste of its share of main
memory bandwidth.

We propose the following prioritization policy for the NFQ@ifk scheduler. When this scheduler prioritizes requests
based on earliest virtual finish time, this prioritizati@pierformed only for demand accesses atcurateprefetches.

Doing so prevents the two problems described in the preypauagraph. Algorithm 2 summarizes the proposed NFQ

policy.

Algorithm 2 Network Fair Queuing’s Bank Scheduler Priority Policy (feteh-Aware NFQ, P-NFQ)
Prioritize ready commands (highest)
Prioritize CAS commands
Prioritize commands for demandad also accurate prefetch requests with earliest virtual finish-time
Prioritize commands based on arrival time (lowest)

4.3. Prefetch-Aware Source-Based Management Techniques

We propose prefetch handling mechanisms for a resentce-basedhared resource management approach,
FST [3]. We briefly described FST’s operation in Section ZZ8T does not take into accouinterference gener-
ated for prefetcheandinterference generated by the prefetcbésach application.

We incorporate prefetch awareness into FST in two major vigysa) determining how prefetches and demands
should be considered in estimating slowdown values, andddinating core and prefetcher throttling using FST'’s

monitoring mechanisms.

4.3.1. Determining Application Slowdown in the Presence of Prefetching FST tracks interference in the shared
memory system to dynamically estimate the slowdown expeéd by each application. Yet, it cannot compute
accurate slowdown values if prefetching is employed bex&ST is unaware of prefetches. We describe a new
mechanism to compute slowdown when prefetching is employed

When requests A and B from two applications interfere witbheather in a shared resource, one request receives
service first and the other isterfered-with Let us assume that request A was theerfering and request B was
theinterfered-with Thetypeof memory request A classifies the interferencepaefetch-causedr demand-caused
interference. The type of memory request B classifies tlexfirence aprefetch-delayingr demand-delayingter-
ference.

FST defines individual slowdowmS, asTspared/Taione t0 €Stimate system unfairness. In order to estinigtg, .

when running in shared mode, FST makes an estimation of ‘timeber ofextra cyclest takes an application to

11

execute due to inter-core interference in the shared merespurces.” This is known 88 .,.cess (Texcess = Tshared —
Tatone)-

When estimatingl...ss in the presence of prefetching, we find that it is importanuse the following two
principles. First, botlprefetch-causednddemand-causeithiterference should be considered. Second, deiyand-
delayinginterference should be used to calculate slowdown valugséitne. This means that when calculating core
i's Tercess, iNterference caused for its demandsdither demands or prefetches of other cojg§ # i) should be
accounted for. This is because ultimately both prefetchdamand requests from an interfering core can cause an
interfered-withcore to stall. On the other hand, even thoumbfetch-delayingnterference reduces the timeliness
of interfered-with prefetches, it does not significantlgvgldown the corresponding core. If an accurate prefetch is
delayed until the corresponding demand is issued, tha¢tatefvill be promoted to a demand. Further delaying of that
request will contribute to the slowdown estimated for thepextive core because any interference with that request
will be considerediemand-delayinfrom that point on.

Algorithm 3 summarizes how our proposal handles prefetthesake FST prefetch-awareFST uses a bit per
core to keep track of when each core was interfered with. W te this bit-vector as thinterferencebit-vector in

the algorithm. Also, arfzcessCycles counter is simply used to track.....ss for each core.

Algorithm 3 Prefetch-aware FST (P-FST) estimationildf....s for corei

Every cycle

if inter-core interference created by any cpseprefetch requests or demand requests for corei’s demand requests then
set cord’s bit in the Inter ference bit-vector

end if

if Corei’s bit is set in thelnter ference bit-vectorthen
IncrementEzcessCycles counter for core

end if

4.3.2. Coordinated Core and Prefetcher Throttling FST throttles cores to improve fairness and system perfor-
mance. On the other hand, HPAC is an independent technigihie¢hitottles prefetchers to improve system perfor-
mance by controlling prefetcher-caused inter-core ieterice. Unfortunately, combining them without coordimati
causes contradictory decisions. For example, the mosesl@own core’s prefetcher can be throttled down (by the
prefetch throttling engine, i.e., HPAC'’s global control) ilehthe core is being throttled up (by the core throttling
engine, i.e. FST). As a result, fairness and performanceadegand potential performance benefits from prefetching
can be lost. Therefore, we would like to coordinates thesdews of core and prefetcher throttling. The key insight
is to inform/coordinate HPAC's throttling decisions witlsT's decisions using the interference information colelct

by FST. We achieve this in two ways.

5We present our changes to the origiffak.c.ss estimation algorithm [3]. For other details Gz ccss estimation we refer to [3].

12

The first key idea is to use the slowdown information that F&thgrs for core throttling to make better prefetcher
throttling decisions. To do this, we only apply HPAC's glbpeefetcher throttle down decisions to a core if FST has
detected the corresponding core tody;,scr fering- 6 As such, wdilter some of the throttle-down decisions made by
HPAC. This is because HPAC can be very strict at prefetctrettting due to its coarse classification of the severity
of prefetcher-caused interference. As a result, it thestdome prefetchers downnservativelyeven though they are
not affecting system performance/fairness adversely. Wildhis by using the information FST gathers about which
cores are actually being treated unfairly as a result ofiotee interference.

The second key idea is to use FST's ability in tracking irtere cache pollution to improve how well HPAC detects
accurate prefetchers. This is useful because HPAC can estifaate a prefetcher’s accuracy due to its interference-
unaware tracking of useful prefetches. HPAC does not cotsurate prefetches for cor¢hat were evicted by some
other core’s requests before being used. This can cause tPACorrectly throttle down coris accurate prefetcher
and degrade its performance. To avoid this, we use FST sijparl filter to detect when an accurate prefetch for core
i was evicted due to another cqierequest. For this purpose, we extend FST’s pollutionrfétgries to also include
a prefetch bit. Using this, we account for useful prefetobndsted by another core’s requests in HPAC's estimation
of each prefetcher’s accuracy.

Algorithms 4 and 5 summarize the above mechanisms that c@tedcore and prefetcher throttling.

Algorithm 4 Prefetch-Aware FST (P-FST) Core and Prefetcher Throttling

if Estimated Unfairness > Un fairness Threshold then
Throttle downAppinter fering
Throttle down prefetcher of Appinier fering if HPAC indicates global throttle down for this prefetcher
Throttle upAppslowest

end if

Allow HPAC to throttle up prefetchers as it requires

Apply HPAC's local throttle down decisions

Algorithm 5 Enhancing prefetcher accuracy information using FST'dupioh filters

if Last-level cache hit on prefetched cache kihen
increment useful prefetch count

end if

if Last-level cache miss due to inter-core interference asctled by FSTand evicted line was prefetch requebien
increment useful prefetch count

end if

Prefetch accuracy = useful prefetch count / total prefetaimt

5. Methodology
Processor Model: We use an in-house cycle-accurate x86 CMP simulator for waluation. We faithfully model

61f HPAC's local throttling component fore coialetects that the core’s prefetcher is not performing widt prefetcher is still throttled down regardless of
FST's decision. This helps both cadre and other cores’ performance.

13

all port contention, queuing effects, bank conflicts, arfteotmajor DDR3 DRAM system constraints in the memory
system. Table 1 shows the baseline configuration of eachatatdhe shared resource configuration for the 4-core

CMP system we use.

15 stage out of order processor, decode/retire up to 4 ictiins
Issue/execute up to 8 micro instructions; 128-entry reobdéer
Front end Fetch up to 2 branches; 4K-entry BTB; 64K-entry Hybrid bitapeedictor
. L1 I-cache: 32KB, 4-way, 2-cycle, 64B line ; L1 D-cache: 32KBway, 2-cycle, 64B line
On-chip caches Shared unified L2: 2MB , 16-way, 16-bank, 20-cycle, 1 porB Gide size

Prefetcher Stream prefetcher with 32 streams, prefetch degree of 4peefdtch distance of 64 cache lines [30, 28]
On-chip, Open-row PARBS [19]/NFQ [20]/FR-FCFS [26] schigtypolicies
128-entry MSHR and memory request queue
667MHz bus cycle, DDR3 1333MHz [17]
8B-wide data bus, 8 DRAM banks, 16KB row buffer per bank
DRAM and bus Latency: 15-15-15ns R P-t RC' D-C'L), corresponds to 100-100-100 processor cycles
Round-trip L2 miss latency: Row-buffer hit: 36ns, confli6Bns

Table 1. Baseline system configuration

Execution core

DRAM controller

Benchmarks: We use the SPEC CPU 2000/2006 benchmarks for our evaludmeh benchmark was compiled
using ICC (Intel C Compiler) or IFORT (Intel Fortran Compilavith the -O3 option. Each benchmark runs the

reference input set for 50 million x86 instructions seleldby Pinpoints [23].

We classify a benchmark amsemory-intensivé its L2 Cache Misses per 1K Instructions (MPKI) is greatear
three and otherwise we refer to it a®mory non-intensiv&Ve say a benchmark haache localityif the number of L2
cache hits per 1K instructions for the benchmark is greatan five. An application is classified pgefetch-friendlyif
its IPC improvement due to prefetching when run in isolatiomore than 10%. If its IPC degrades, it is classified as
prefetch-unfriendiand otherwise agrefetch-insensitiverhese classifications are based on measurements made when
each benchmark was run alone on the 4-core system. Tablew she characteristics of 18 of the 29 benchmarks

(due to space limitations) that appear in the evaluated vads when run on the 4-core system.

Workload Selection We used 15 four-application workloads for our evaluatioftse workloads were chosen such
that each workload consists of at least mvemory-intensivapplications (MPKI greater than three) and an application
with cache locality All but one workload has at least opeefetch-friendlyapplication since the goal of the paper is
to demonstrate how to improve system performance due t@fotghg in systems that employ the different shared
resource management mechanisms. The one workload witheafetghn-friendly applications consists of memory-
intensive and prefetch-unfriendly applications.

Parameters used in evaluation: In all our mechanisms, the threshold to determine whetheagplication’s
prefetcher is accurate is 80%. In P-NFQ and P-FST, an apiplicanust havefewer thanten memory requests in
the memory request queue of the memory controller to be denssil fordemand boostingand fewer than 14 requests

in P-PARBS (Section 6.5 shows that the reported results@treary sensitive to the value chosen for this threshold).

14

| [[No prefetchingj Prefetching I [[No prefetchingj Prefetching |
[Benchmar} Type [[IPC] MPKI[[IPCIMPKIJHPKIJAcc(%) Cov(%)|Benchmark Type [[IPC| MPKI[] IPC[MPKI[HPKIJAcc(%) Cov(%)

art FP00|{|0.23 25.7(0.25 13.73 105 61 55|| sphinx3 | FP06(|0.26 12.82|0.51 2.71] 14.5 58 79
gromacs | FP06([1.17 0.22| 1.2 0.0 11 66 70|| leslie3d | FP06||0.29 21.37|0.55 4.73 22.3 94 78
Ibm FP06/(|0.33 19.3]/0.36 3.43 27.4 94 82|| bwaves | FP06(|0.26 22.43|0.33 2.3 11.3 100 90|
GemsFDTD FP06((0.38 12.67|0.67] 0.07 17.§ 93 99 astar [INTO06{(0.17 23.04|0.17 21.4 10.4 25 8
omnetpp |INT06|(0.34) 8.79|0.34 8.72 5 11 19|| vortex [INTO00||0.97 1.21|0.93 1.15 7 27| 14
zeusmp | FP06||0.66 3.97|0.7§ 1.92 17 67 52| swim | FP00||0.39 16.85|0.48 0.57 20 100 97
bzip2 |INTO6(|1.57 0.96(|1.65 0.64 7.8 95 35|| h264ref [INTO6||1.89 0.77|1.86 0.43 2 56 55
perlomk [INTOO|| 1.8 0.04| 1.8 0.03 5.4 16 35|| crafty [INTOO||1.56 0.26(1.61 0.19 8 34 29
xalancbmk|INT06||1.07| 0.83(0.93 0.99 18.8 11 18||libquantun}INTO06||0.26 11.84|0.29 2.21] 0.52 100 81

Table 2. Characteristics of 18 SPEC 2000/2006 benchmarks: | PC and MPKI (L2 cache Misses Per 1K Instructions) with and wit hout

prefetching, HPKI (L2 cache Hits Per 1K Instructions) with p refetching, and prefetcher accuracy and coverage

The parameter setup for each of the FST and HPAC techniqube same as those reported in [3] and [2] respec-
tively. For PARBS [19], we use the sarMarking Capthreshold as used in the original paper, five memory requests
per thread per bank.

Metrics. To measure CMP system performance, we Hsemonic mean of speedups (Hspeediif], and
Weighted speedup (Wspeed{®j]. To demonstrate fairness improvements, we repakSlowdownand alsdJn-
fairnessas defined in [4, 18] (see Section 2.1). Sittspeedupprovides a balanced measure between fairness and
system throughput [16], we use it as our primary evaluati@trimy In the metric definitions belowV is the number
of cores in the CMP systend,PC*°"¢ is the IPC measured when an application runs alone on onérctite CMP
system (other cores are idle), ah®C"*"d js the IPC measured when an application runs on one core e

applications are running on the other cores.

N-1
N IPC‘-Sh'aTEd
Hspeedup = —————————, Wspeedup = g Lil
N-1 Ipcqlone o IPC:” one
H =

> Tpoara
= IPC: are

6. Experimental Evaluation

We evaluate the mechanisms described in the previous seaioa 4-core CMP system employing NFQ, PARBS,
and FST in the following three subsections respectivelyteNbat our prefetch-aware NFQ, PARBS, and FST tech-
niques (P-NFQ, P-PARBS, and P-FST) are evaluated on a systérstate-of-the-art prefetcher throttling [2].
6.1. NFQ Results

Figures 5 (a)-(d) show average system performance androness of a system using an NFQ memory scheduler in
different configurations: with no prefetching, prefetapivith and without prefetcher control, and with our proposed
prefetch-aware NFQ. In the policies referred todesnand-pref-equabdemands and prefetches are treated equally
in terms of prioritization based on earliest virtual finisme. In thedemand-prioritizegolicy, demands are always
prioritized over prefetches, and are scheduled earligstalifinish time first. Figure 6 shows system performance for

each of the 15 evaluated workloads for the nine configuratadNFQ that we evaluated. P-NFQ provides the highest

15

system performance and least unfairness among all the agdrtechniques. P-NFQ outperforms the best performing
previous technique (NFQ + HPAC demand-prioritized) by 11&¥8 (HS/WS) while reducing maximum slowdown
by 9.9%. Several key observations are in order:

1. Figure 5 shows that in all cases (with or without prefetdheottling), demand-prioritizechas higher perfor-
mance and lower maximum slowdown thd@mand-pref-equalWe conclude that as we explained in Section 4.2, if
all prefetch requests are treated alike demand requests,d\sestace given to useless prefetches leads to a worse-
performing and less fair system than always prioritizingndeds.

2. The last two bars in each of the subfigures of Figure 5 detradra key insight: without intelligent prioritiza-
tion of demand requests of memory non-intensive applinatisystem performance and fairness do not significantly
improve simply byprioritizing accurate prefetches. Adding the demand bogsbptimization to P-NFQ (with no
boosting) improves performance by 10%/3.8% (HS/WS) andges maximum slowdown by 13.2% compared to

just prioritizing accurate prefetches within NFQ’s aldbr.

0.5 2.2

0.4 L 20
a 218
20.3 L %

% g°
£ 02 | =214

0.1 - 1o

0.0! L 10

(a) Hspeedup (b) Wspeedup (¢) Unfairness (d) Max Slowdown

=NFQ + No Pref

NFQ + Str. Pref (demand-pref-equal)
=NFQ + Str. Pref (demand-prioritized)
=NFQ + Str. Pref (demand-prioritized) + Bgost
=NFQ + HPAC (demand-pref-equal)
=NFQ + HPAC (demand-prioritized)
=NFQ + HPAC (demand-prioritized) + Boo
= P-NFQ (No Boost)

=P-NFQ

Unfairness
OCORRFRFNNWWARAOIO

Quoyoymomomon

Max Slowdown
QP MW s AR N

Figure 5. Average system performance and unfairness on 4-co re system with NFQ

o]

0.8 —
0.7 i
206 1 -
'§ 0.5¢ i
8— 0.4 i
I 0.3 H
0.24 H
0.14 H
00 swim bwaves swim libg Ibm applu Ibm lbm Ibm leslie art gromacs art art lucas

perlbmk crafty perlomk swim omnet gobmk parser twolf Gems sphinx3 astar art gamess leslie ammp
sphlnx3 bzip applu Gems ap3| eslle crafty equake astar zeusmp Ieslle astar Gems gamess xalanc

ortex swim wrf bzip2 vortex eslie % { romacsgromacs
(WLl) (WL2) (WL3) (WL4) (WL5) (WL6) (WL7) (WL8) (WL9) (WLl) (WLl) (WL12) (WL13) L14) (WL15)

Figure 6. System performance (Hspeedup) for each of the 15wo rkloads (legend same as Figure 5)

3. Figures 5 (a)-(d) show that demand boosting improveesygerformance independent of the setup it is used
with. Demand boosting alone improves the performance ofahehprioritized and prefetching with no throttling
by 7.3%/6.7% (HS/WS). When used with demand-prioritized BIRAC, it improves performance by 3.3%/3.6%
(HS/WS). However, demand boosting provides the best sys@wformance and fairness when ugedetherwith

our proposed P-NFQ which prioritizes requests based onaliftnish time first using prefetch accuracy feedback.

16

Note that demand boosting and considering prefetch acgumgmrmation in prioritization decisions are synergistic
techniques. Together they perform better than each onealdla conclude that demand boosting is a general mecha-
nism but is most effective when used together with resourgeagement policies which take prefetcher accuracy into
account in their prioritization rules.

6.2. PARBSResults

Figures 7 (a)-(d) show average system performance androea of different prefetch-demand batching policies
with and without prefetcher control. kiemand-pref-batchinglemands and prefetches are treated equally in PARBS’s
batch-forming (within the batches, demands are priofitizeer prefetches because we find this to be better performing
on average). lmlemand-only-batchingnly demands are included in the batches. Figure 8 showamsyserformance
for each of the 15 evaluated workloads for the nine configomatof PARBS that we evaluated. P-PARBS provides the
highest system performance and the smallest unfairnesagaibof the techniques, improving system performance
on average by 10.9%/4.4% (HS/WS) while reducing maximumwdtan by 18.4% compared to the combination of

PARBS and HPAC with demand-only-batching.

0.54 2.2 40

3.5
0.4] 2.0 3.0l
a 218

3 0.3] é g 2.5

g_ g16 = 20|

£02 2 1.4/ 5 i‘;’
0.1 y :

12 0.5]

0.0! 1.0 0.0l

(a) Hspeedup (b) Wspeedup (c) Unfairness (d) Max Slowdown

= PARBS + No Pref

=PARBS + Str. Pref (demand-pref-batching)
=PARBS + Str. Pref (demand-only-batching)
=PARBS + Str. Pref (demand-only-batching) + Bogs!
=PARBS + HPAC (demand-pref-batching)
=PARBS + HPAC (demand-only-batching)
=PARBS + HPAC (demand-only-batching) + Boos
=P-PARBS (No Boost)

=P-PARBS

Max Slowdown
CORPENNWWAMIO
CUoNRUoNDWo,

Figure 7. Average system performance and unfairness on 4-co re system with PARBS

I

swim bwaves swim libg Ibom applu Ibm Ibm Ibm leslie art gromacs art art lucas
perlbmk crafty perlomk swim omnet gobmk parser twolf Gems sphinx3 astar art gamess leslie ammp
sphinx3 bzip2 applu Gems apsi leslie crafty equake astar zeusmp leslie astar Gems gamess xalanc
vortex swim wrf bzip2 vortex Ibm leslie mesa mesa crafty crafty h264 h264 gromacsgromacs
(WL1) (WL2) (WL3) (WL4) (WL5) (WL6) (WL7) (WL8) (WL9) (WL10) (WL11) (WL12) (WL13) (WL14) (WL15)

Figure 8. System performance (Hspeedup) for each of the 15wo rkloads (legend same as Figure 7)

6.2.1. CaseStudy The goal of this case study is to provide insight into how tleehanisms that we propose improve
performance. It also shows in detail wisymply prioritizing accurate prefetches in shared resource mamagt

techniques does not necessarily impreystem performance and fairne¥ge examine a scenario where two memory

17

intensive and prefetch-friendly applicatiorss\im and sphinxX3concurrently execute with two memory non-intensive
applications perlbomk and vortex Figures 9 (a) and (c)-(f) show individual application foemance and overall
system behavior of this workload. Figure 9 (b) shows the dyioa of the mechanisms proposed for prefetch-aware
PARBS. In Figure 9 (b), each application is represented withbars. The left bar in each pair shows the percentage
of time thatbothdemands and prefetches from the corresponding applicatoa included in P-PARBS's batches vs.
the percentage of time thahly demands were included. The right bar shows the percentagik agémand requests
that were boosted into the batches by the demand-boostinganesm vs. all other batched requests.

P-PARBS both performs significantly better and is much manethan all the other evaluated techniques. This is
due to the following two reasons:

1. Including useful prefetches sfvimandsphinx3alongside demand requests in P-PARBS’s batches allows thes
applications to make good use of their accurate prefetch@significantly improves their performance. Figure 9 (b)
shows thaswimnis andsphinx3s prefetches are included in the batches for 100% and 60%edf €xecution times
respectively. During these periodsyimandsphinx3also achieve better row buffer locality: their row buffetshare
increased by 90% and 27% respectively compared to the gebmvith the best system performance among the other
techniques (HPAC demand-only-batching). In additiswjmandsphinx3s prefetches become 8% and 11% more

timely (not shown in the figure).

=—swim
=perlbmk
=sphinx3
=vortex

Per centage

swim perlbmk sphinx3 vortex

" NoPref. Str. Pref. StrPref. HPAC HPAC P-PARBS P-PARBS
Dem-Pr-E¢Dem-FirstDem-Pr-Edem-First (No Boost)

(a) PARBS case study: individual application behavior (b) Left bars: dem-pref-batching vs dem-only-batchinggjm
right bars: requests boosted vs batched normally

0.64 2.8 4.0 4.5
F 2.6]

05l It 3.5 4.0
2 0.4] - 218 85l S 3.0 —PARBS + No Pref
'g § 1.6 c 2 2.5} =PARBS + Str. Pref (demand-pref-batching
=1 0.3 B =3 %‘21 8 2.0, 2705 2.04 ==PARBS + Str. Pref (demand-only-batching
T 0.2] L= 1.0d c 1.5 151 =PARBS + HPAC (demand-pref-batching)

' 0.8 2 1.0l gL =PARBS + HPAC (demand-only-batching)
01l 96 : = 10 —P-PARBS (No Boost)
03 0.5, 0.5 —P-PARBS
0.0 = 0.0° 0.0° 0.0°
(c) Hspeedup (d) Wspeedup (e) Unfairness (f) Max Slowdown

Figure 9. PARBS case study

2. Boosting the demands of the prefetch insensitive and menam-intensive applicatiorjortex allows it to get

quick memory service and prevents it being delayed by theymaquests batched fawimandsphinx3 Because

18

vortexs requests are serviced quickly, its performance increagdso, sincevortexis memory non-intensive, this
boosting does not degrade other applications’ performaiggeficantly.

The last two sets of bars in Figure 9 (a) show the importandbetlemand boosting optimization. Whewinis
andsphinx3s prefetches are included in the batchesitexs performance degradesdemand boosting not used.
This happens because of inter-core cache pollution caugesvion and sphinx3 Hence, even thougbwirris and
sphinx3 performance improves significantly without boostingemll system performance does not improve over
the HPAC demand-only-batching (Figures 9 (c)-(d)). In castirwithdemand boostingvortexs performance also
improves which enables P-PARBS to perform 13.3%/7.6% (HS/Bétter than the best previous approach while also

reducing maximum slowdown by 17.8%.

6.3. FST Results

Figures 10 (a)-(d) show average system performance andrneda of FST in the following configurations: with-
out prefetching, with aggressive stream prefetching, WifPAC, and our proposed coordinated core and prefetcher
throttling, i.e., P-FST (with and without demand boostingilgure 11 shows system performance for each of the 15
evaluated workloads for the five configurations of FST thatewaluated. P-FST provides the highest performance
and best fairness among the five techniques. Several otiseisare in order:

1. When prefetching with no throttling is used, in five of therkloads prefetcher-caused interference is noticeable
and is left uncontrolled by FST. This results in large degtamhs in system performance of 5% or more (WLS5,
WL11, WL12, WL14, and WL15). In these workloads, FST does atect the applications causing prefetcher
interference to beé\pp-interfering Because of these workloads, prefetching with no thragjtlilves not improve
average system performance significantly compared to rfetpteéng as shown in Figure 10. This shows the need for

explicit prefetcher throttling when prefetching is usediST.

05—

2.2

3.0

4.0

o4 2.0 2.5 c 23
S 03 S 18 g20 é 2.5
g_ E16 7 1.5 3 2.0 —FST + No Pref
0.2} € 1.54 —FST + Str. Pref
T = 14 510] 1.0l —FST + HPAC (uncoordinated)
0.14] = =P-FST (No Boost)
1.2 0.54 0.51 hrer
0.0! 1.0¢ 0.0! 0.0!
(a) Hspeedup (b) Wspeedup (c) Unfairness (d) Max Slowdown

Figure 10. Average system performance and unfairness on 4-c ore system with FST

2. When HPAC [2] and FST [3] are naively combined with no caaation, four of the 15 workloads lose significant
prefetching performance (workloads WL1, WL3, WL4, and WLB) such cases, HPAC throttles down some useful

prefetchers unnecessarily. This happens due to: a) exeesbdttling caused by HPAC's coarse classification of

19

T J|=FST + No Pref
0.24= FST + Str. Pref (demand-prioritize

"7 1= FST + HPAC (uncoordinated)

0.11}=P-FST (No Boost)

=P-FST

swim bwaves swim libg lbm applu lbm Ibm Ibm leslie art gromacs art art lucas
perlbmk crafty perlomk swim omnet gobmk parser twolf Gems sphinx3 astar = art gamess leslie ammp
sphinx3 bzip2 " applu Gems apsi ‘leslie crafty equake astar zeusmp leslie astar "Gems gamessxalanc
vortex swim wr zip2 vortex Ibm leslie mesa mesa craﬂ% craﬂ{ h264 h264 gromacgromacs
(WLI) (WL2) (WL3) (WL4) (WL5) (WL6) (WL7) (WL8) (WL9) (WL10)(WL1)(WL12)(WL13)%NL14) L15)

Figure 11. System performance (Hspeedup) for each of the 15w orkloads

interference, and b) underestimation of prefetcher aayudae to interference-unaware tracking of useful prefesch
(described in Section 4.3.2). Unnecessary throttling rmake system more unfair compared to no prefetcher throt-
tling. This happens when a prefetch-friendly applicatiathwhe largest slowdown in the absence of prefetching is
unnecessarily throttled. With no prefetcher throttlinggls an application gains significant performance, whicluin t
reduces system unfairness. When HPAC throttles down tHetplers of such applications too much, this fairness
improvement is lost. We conclude that even though a naivebawation of HPAC and FST improves average system

throughput, this comes at the cost of increasing systenimefss significantly compared to no throttling.

3. Our P-FST technique (with demand-boosting) addressesptbblems described above by coordinating
prefetcher and core throttling, and improves performancéh3%/5.6% (HS/WS) while reducing maximum slow-
down by 14.5% compared to the best performing of the othdmigces (i.e. the uncoordinated FST and HPAC
combination). Compared to the configuration with the leaak relowdown, i.e. the combination of prefetching
with no throttling and FST, P-FST with boosting performs2e4/10.3% (HS/WS) better while reducing maximum

slowdown by 10.3%.

6.4. Effect on Homogeneous Wor kloads

Multi-core systems are sometimes used to run multiple copi¢he same application in server environments. Ta-
ble 3 shows system performance and fairness deltas of P-NMRQ@ared to NFQ + HPAC (demand-prioritized) for
a prefetch friendly (four copies of sphinx3) and a prefetafriendly (four copies of astar) workload. Our proposal
improves system performance and reduces max slowdowndartfetch friendly workload, while it does not signif-
icantly affect the prefetch unfriendly one. In the prefeticéndly workload, prioritizing accurate prefetches iropes
each benchmark’s performance by making timely use of thoserate prefetches. This is not possible if all prefetches

are treated alike.

20

~

Four copies of sphinx3 (prefetch friendly}] Four copies of astar (prefetch unfriendly
AHS | AWS A Max Slowdown AHS | AWS A Max Slowdown
7.9% | 7.9% -8.1% -1% -1% 0.5%

Table 3. Effect of our proposal on homogeneous workloads in s ystem using NFQ memory scheduling

6.5. Sensitivity to System and Algorithm Parameters

Table 4 shows how P-NFQ performs compared to NFQ + HPAC (derpéndtized) on systems with two/four
memory channels or 8MB/16MB shared last level caches. Bweangh using multiple memory channels reduces
contention to DRAM, and using larger caches reduces cachimtion, P-NFQ still performs significantly better
while reducing maximum slowdown. We conclude that our ma@@ma provides performance benefits even on more

costly systems with higher memory bandwidth or larger sth@sehes.

Single Channel Dual Channel Four Channel
AHS | AWS | AMaxSlowdown || AHS | AWS | A Max Slowdown [[AHS | AWS | A Max Slowdown
11% 8.6% -9.9% 5% 5.7% -3.7% 4% 6.3% 0.7%
2MB Shared Cache 8MB Shared Cache 16MB Shared Cache
AHS | AWS | AMaxSlowdown || AHS | AWS | A Max Slowdown [[AHS | AWS | A Max Slowdown
11% 8.6% -9.9% 6.3% | 5.3% -9.1% 49% | 3.9% -6.6%
Table 4. Effect of our proposal on system using NFQ memory sch eduling with different microarchitectural parameters

Figure 12 shows how sensitive the performance benefits aétte

niques we propose (compared to the best previous technigeach

case) are to the boosting threshold. For all shown thresh&eNFQ

and P-FST show performance within 1% of that of the chosesthr

? 7.0 7 «P-NFQ
o <5 60 — -+P-PARBS [——
old. For P-PARBS, this is the case for all values between t2&n 3 50— — ~ P.FST
>
<

4'04 6 8 10 12 14 16 18 20 22 24 26

In P-PARBS, with thresholds less than 14, not enough regudesn
Figure 12. Sensitivity to boosting threshold
prefetch-unfriendly benchmarks get boosted. We conclhde the
benefits of our mechanisms are not highly sensitive to theemthreshold value.
6.6. Hardware Cost
Table 5 shows the required storage of our mechanisms on tepdf of the shared resource management tech-
niques. Our mechanisms do not require any structures thatrathe critical path of execution. Additionally, none

of the structures we add/modify require large energy to seamd none are accessed very often. As such, significant

overhead is not introduced in terms of power.
7. Related Work

To our knowledge, this paper is the first to provide mechanitmat aim to improve both performance and fairness
of fair shared resource management techniques in the presdmprefetching. The major contributions of this work
are general mechanisms for how prefetches should be coadidethe prioritization decisions of resource-based and

source-based shared resource management. We have alreatied extensive quantitative and qualitative com-

21

P-NFQ Closed form for N cores (bits) N=4(bits)
Boosting bits in memory request queue entries 32xN 128
Counters for number of requests per core in memory requestaju 8xN 32
Total storage required for P-NFQ 40 x N 160
P-PARBS

Counters for number of requests per core in memory requesigu 8xN 32
Total storage required for P-PARBS 8xN 32

P-FST
Boosting bits in memory request queue entries 32xN 128
Counters for number of requests per core in memory requesigu 8xN 32
Prefetch bits in pollution filter used for coordinated conel refetcher throttling| Pol. Filter Entries (2048) x N 8192
Total storage required for P-FST 2088 x N 8352

Table 5. Hardware cost of our proposed enhancements

parison to the three techniques that we apply our mechartisifté-Q [20], PARBS [19], and FST [3]) in previous
sections. Here, we briefly discuss other related work ingiobfaware DRAM controllers, shared resource manage-

ment, and prefetch filtering.

7.1. Prefetch-Aware DRAM Controllers

Lee et. al. [12] propose using prefetch accuracy infornmatim determine whether to prioritize demands over
prefetches or to treat them equally in terms of memory sclimgluTo our knowledge, this is the only prior work that
deals with how prefetches should be dealt with in a sharemlires. However, this work targets handling prefetches
in a DRAM-throughput-oriented FR-FCFS scheduler that isdesigned to provide fairness/QoS. Our paper makes
two major contributions beyond this work. First, it is thesfito address how prefetches should be considered in
fair/QoScapable memory scheduling techniques that are shown tadersignificantly higher performance than
throughput-oriented DRAM schedulers. Second, it provigeseralized prefetch handling techniques not only for
memory scheduling but also for a more general source thrgthased management technique that aims to manage
multiple shared resources.

Lee et. al. [12] also observe the need for prioritizing dechesquests olpplications which do not have accurate
prefetchers They prioritize the demands of such applications over nrgmeguests of prefetch friendly applications
which are not row buffer hitsThey place no condition on the memory intensity of the aggtions that are prioritized
this way. Our demand boosting mechanism employs a more sgjgeeprioritization for a more limited class of re-
guests. We prioritize demand requests of applicationshviieboth not prefetch-friendlyand memory non-intensive
overall other memory requests. We find this to be more effective than th@rifization mechanism because it does
not cause starvation or slowdown as it never boosts interggiplications’ requests. In fact, in Figure 5, the P-NFQ
(No boost) experiment includes the prioritization propbbg this prior work, on top of which, our P-NFQ improves
performance by 10%. Note that the critical element thatralthis aggressive boosting is that it is only performed for

non-intensive phases of an application where it has a lanitenber of requests requiring service.

22

7.2. Other Shared Resource M anagement Techniques

Many previous papers deal with management of other shasedirees such as caches [9, 24, 25, 7, 8, 21] or on-
chip interconnect [14, 1, 5] to improve system performanu#/ar fairness. However, none deal with how prefetches
should be intelligently dealt with in the mechanisms theypmse. As such, this paper is orthogonal to prior work in
shared resource management, and we believe the ideas veatpirethis paper can be used to enhance other shared
resource management techniques in the presence of priefgtch

7.3. Prefetch Filtering

Prior papers on prefetch filtering propose techniques teaetnd eliminate prefetches that are found to be useless
in the past [29, 31, 15]. However, conservative prefetchriiiitetechniques cannot filter out all useless prefetchds, ye
aggressive ones can remove many useful prefetches [12]. nd/¢hat our proposals are complementary to prefetch
filtering. For example, P-NFQ increases system performbagdel.1%/8.2% (HS/WS) while reducing max slowdown
by 10.9% on a baseline where a state-of-the-art hardwaeeirfiff mechanism [31] is used with NFQ + HPAC.

8. Conclusion

This paper demonstrates a new problem in CMP designs: atdle-art fair shared resource management tech-
niques, which significantly enhance performance/fairnesbe absence of prefetching, can largely degrade perfor-
mance/fairness in the presence of prefetching. To solgqttiblem, we introduce general mechanisms to effectively
handle prefetches in multiple types of resource manageteehhiques.

We develop three major new ideas to enable prefetch-awaredmesource management. We introduce the idea
of demand boostinga mechanism that eliminates starvation of applicatioasdhe not prefetch-friendly yet memory
non-intensive, thereby boosting performance and fairnéssy type of shared resource management. We describe
how to intelligently prioritize demands and prefetcheshivithe underlying fair management techniques. We develop
new mechanisms to coordinate the actions of prefetcheramcdtierottling mechanisms to make synergistic decisions.
To our knowledge, this is the first paper that deals with gokfes in shared multi-core resource management, and
enables such techniques to be effective and synergisticpsétfetching.

We apply these new ideas to three state-of-the-art muté-sbared resource management techniques. Our exten-
sive evaluations show that our proposal significantly impsosystem performance and fairness of two fair memory
scheduling techniques and one source-throttling-basagdhmemory system management technique (by more than
10% in 4-core systems), and makes these techniques effedgtiv prefetching. We conclude that our proposal can be
a low-cost and effective solution that enables the employroéboth prefetching and shared resource management

together in future multi-core systems, thereby ensurinigriusystems can reap the performance and fairness benefits

23

of both ideas together.

References

[1] R. Das et al. Application-aware prioritization mechsems for on-chip networks. IMICRO, 2009.
[2] E. Ebrahimi et al. Coordinated control of multiple prifieers in multi-core systems. MICRO, 2009.
[3] E. Ebrahimi et al. Fairness via source throttling: A cgndible and high-performance fairness substrate for nooli
memory systems. IASPLO$2010.
[4] R. Gabor, S. Weiss, and A. Mendelson. Fairness and thmowtgn switch on event multithreading. MICRO-39 2006.
[5] B. Grot et al. Preemptive virtual clock: A flexible, effenit, and cost-effective QoS scheme for networks-on-a-dhip
MICRO, 2009.
[6] G. Hinton et al. The microarchitecture of the Pentium dgassorintel Technology JournaFeb. 2001. Q1 2001 Issue.
[7] L. R. Hsu et al. Communist, utilitarian, and capitalisicbe policies on CMPs: caches as a shared resour€Adi-15
2006.
[8] R. lyer et al. QoS policies and architecture for cachefragy in CMP platforms. I'6IGMETRICS’07June 2007.
[9] S. Kim et al. Fair cache sharing and partitioning in a amipltiprocessor architecture. PACT, 2004.
[10] Y. Kimetal. ATLAS: A scalable and high-performance ediling algorithm for multiple memory controllers. HPCA-16
2010.
[11] H. Q. Le et al. IBM POWERG6 microarchitectur®M Journal of Research and Developmesit:639—-662, 2007.
[12] C.J. Lee et al. Prefetch-aware DRAM controllersMICRO-41, 2008.
[13] C. J. Lee et al. Improving memory bank-level paralleis the presence of prefetching. MiCRO-42 2009.
[14] J. W. Lee et al. Globally-synchronized frames for gidead quality-of-service in on-chip networks.IBICA-35 2008.
[15] W.-F. Lin, S. K. Reinhardt, D. Burger, and T. R. PuzaMltdfing superfluous prefetches using density vectordCiaD,
2001.
[16] K. Luo, J. Gummaraju, and M. Franklin. Balancing thrbpgt and fairness in SMT processorsI8PASS2001.

[17] Micron. Datasheet: 2Gb DDR3 SDRAM, MT41J512M4 - 64 Meg x 4 x 8 Dbanks,

http://download.micron.com/pdf/datasheets/dram/ddr3
[18] O. Mutlu and T. Moscibroda. Stall-time fair memory assescheduling for chip multiprocessors NWCRO-4Q 2007.

[19] O. Mutlu and T. Moscibroda. Paralleism-aware batchestiing: Enhancing both performance and fairness of shared

DRAM systems. INSCA-35 2008.

[20] K. J. Neshit et al. Fair queuing memory systemsMICRO-39 2006.

[21] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual priveéehes. INSCA-34 June 2007.

[22] J. Owen and M. Steinman. Northbridge architecture of BMGriffin microprocessor familMEEE Micro, 28(2), 2008.

[23] H. Patil et al. Pinpointing representative portionsasfje Intel Itanium programs with dynamic instrumentationMICRO-
37,2004.

[24] M. K. Qureshi and Y. N. Patt. Utility-based cache péotiing: A low-overhead, high-performance, runtime medbamto
partition shared caches. 2006.

[25] N. Rafique et al. Architectural support for operatingt®m-driven CMP cache managementPACT-15 2006.

[26] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and JORens. Memory access schedulingl®CA-27 2000.

[27] A. Snavely and D. M. Tullsen. Symbiotic job schedulilog & simultaneous multithreading processoABPLOS-1X2000.

[28] S. Srinath et al. Feedback directed prefetching: Imipigthe performance and bandwidth-efficiency of hardwaedgich-
ers. INnHPCA 2007.

[29] V. Srinivasan et al. A static filter for reducing prefbttraffic. Technical Report CSE-TR-400-99, University ofdiigan,
1999.

[30] J. Tendler et al. POWERA4 system microarchitectiB& Technical White PapeOct. 2001.

[31] X.Zhuang and H.-H. S. Lee. A hardware-based cache patidiltering mechanism for aggressive prefetcheddRP-32
2003.

24

