
Prefetch-Aware Shared-Resource Management for Multi-Core Systems

Eiman Ebrahimi† Chang Joo Lee† Onur Mutlu‡ Yale N. Patt†

†High Performance Systems Group
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas 78712-0240

‡Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, PA

TR-HPS-2010-005
December 2010

This page is intentionally left blank.

Prefetch-Aware Shared-Resource Management for Multi-Core Systems

Eiman Ebrahimi† Chang Joo Lee† Onur Mutlu‡ Yale N. Patt†

†Department of ECE
Univ. of Texas at Austin

{ebrahimi, cjlee, patt}@ece.utexas.edu

‡Department of ECE
Carnegie Mellon Univ.

onur@cmu.edu

Abstract
Chip multiprocessor (CMP) systems share a large portion of the memory subsystem among multiple cores. Recent proposals

have addressed high-performance and fair management of these shared resources; however, none of them take into account
prefetch requests. Without prefetching, significant performance is lost, which is why existing systems prefetch. By not taking into
account prefetch requests, all recent shared-resource management proposals often significantly degrade both performance and
fairness, rather than improve them in the presence of prefetching.

This paper is the first to propose mechanisms that both managethe shared resources of a multi-core chip to obtain high-
performance and fairness, and also exploit prefetching. Weapply our proposed mechanisms to two resource-based management
techniques for memory scheduling and one source-throttling-based management technique for the entire shared memory system.
We show that our mechanisms improve the performance of a 4-core system that uses network fair queuing, parallelism-aware
batch scheduling, and fairness via source throttling by 11.0%, 10.9%, and 11.3% respectively, while also significantlyimproving
fairness.

1.. Introduction

Chip multiprocessor (CMP) systems share a large portion of the memory subsystem among the multiple cores. This

shared memory system typically consists of a last-level shared cache, on-chip interconnect, shared memory controllers

and off-chip memory. When different applications concurrently execute on different cores of a CMP, they generate

memory requests that interfere with memory requests of other applications in the shared memory resources. As a

result of this inter-application interference, memory requests of different applications delay each another. This causes

each application to slow down compared to when it runs in isolation. Recent research (e.g., [20, 19, 3]) has proposed

different mechanisms to manage this interference in the shared resources in order to improve system performance

and/or system fairness.

On the other hand, memory latency tolerance mechanisms are critical to improving system performance as DRAM

speed continues to lag processor speed. Prefetching is one commonly-employed mechanism that predicts the memory

addresses a program will require, and issues memory requests to those addresses before the program needs the data.

Prefetching improves the standalone performance of many applications and is currently done in almost all commercial

processors [30, 6, 11, 22]. Recent research [2] proposes intelligent dynamic adaptation of prefetcher aggressiveness

to make prefetching effective and efficient in CMP systems.

Ideally we would like CMP systems to both obtain the performance benefits of prefetching when possible, and

also reap the performance and fairness benefits of shared resource management techniques. However, shared resource

management techniques that otherwise improve system performance and fairness significantly, can also significantly

1

degrade performance/fairness in the presence of prefetching. The reason: these techniques are designed for demand

requests and do not consider prefetching.

Figure 1 illustrates this problem on a system that uses a fair/quality of service (QoS)-capable memory sched-

uler, network fair queuing (NFQ) scheduler [20]. Results are averaged over 15 multiprogrammed SPEC CPU2006

workloads on a 4-core system1, and normalized to a system that uses a common first-ready first-come-first-serve

(FR-FCFS) memory scheduler [26]. Figure 1 (a) shows how NFQ affects average system performance and average

maximum slowdown (one metric of unfairness) in a system withno prefetching. Figure 1 (b) shows this in the pres-

ence of aggressive stream prefetching. This figure shows that, even though NFQ improves performance and reduces

maximum slowdown on a system that does not have a prefetcher,if aggressive prefetching is enabled, we see a very

different result. On a system with prefetching NFQ degradesperformance by 25% while significantly increasing max-

imum slowdown, because its underlying prioritization algorithm does not differentiate between prefetch and demand

requests. As a result, prefetches can be unduly prioritizedby the memory scheduler, causing system performance and

fairness degradation.

In this paper, we demonstrate that different shared resource management techniques suffer from this problem,

i.e., they can degrade performance significantly when employed with prefetching.Our goal is to devise general

mechanisms that intelligently take prefetches into account within shared resource management techniques to ensure

their effectiveness for both performance and fairness in the presence of prefetching.

We provide mechanisms for management of prefetch requests in

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Perf. Max
Slowdown

(a) No Prefetching

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

FR-FCFS
NFQ

Pref Max
Slowdown

(b) Stream Pref

Figure 1. Harmonic mean of speedups and maximum

slowdown on system using NFQ memory scheduler

(normalized to FR-FCFS)

three recently proposed shared resource management techniques.

Two of these techniques areresource-basedmemory scheduling

techniques: network fair queuing (NFQ) [20] and parallelism-aware

batch scheduling (PARBS) [19]. The third technique is asource

throttling-basedtechnique for coordinated management of multiple

shared resources (FST) [3].

Basic Ideas Our mechanisms build upon three fundamental ideas.

First, we use accuracy feedback from the prefetchers to decide how

prefetch requests should be handled in each of theresource-based

techniques. The key idea is tonot treat all prefetches the same. An application’s prefetchesshould be treated similar

to the demand requestsonly whenthey are useful.

Second, treating useful prefetches like demands can significantly delay demand requests of memory non-intensive

1Our system configuration, metrics, and workloads are discussed in Section 5. In Figure 1, the stream prefetcher of Table 1is used. Prefetch and demand
requests are treated alike with respect to NFQ’s virtual finish time calculations.

2

applications because such requests can get stuck behind accurate prefetches (and demands) of memory-intensive

applications. This degrades system performance and fairness. To solve this problem, we introduce the idea ofdemand

boosting: the key idea is to boost the priority of the demand requests of memory non-intensive applications over

requests of other applications.

Third, with source throttling-based resource management, we observe that uncoordinated core and prefetcher

throttling can cause performance/fairness degradation because throttling decisions for cores can contradict those for

prefetchers. To solve this problem, we propose mechanisms that coordinate core and prefetcher throttling based on

interference feedback that indicates which cores are beingunfairly slowed down.

Summary of Evaluation We evaluate our mechanisms on three different shared resource management techniques

on a 4-core CMP system. Compared to a system with state-of-the-art prefetcher aggressiveness control [2], we find

that our mechanisms improve the performance of an NFQ-based, PARBS-based, and FST-based system on average by

11.0%, 10.9%, and 11.3% while at the same time reducing maximum slowdown by 9.9%, 18.4%, and 14.5%.

Contributions This paper makes the following contributions:

1. It demonstrates a new problem in multi-core shared resource management: prefetching can significantly degrade

system performance and fairness of multiple state-of-the-art shared resource management techniques. This problem

still largely exists even if state-of-the-art prefetcher throttling techniques are used to dynamically adapt prefetcher

aggressiveness.

2. It shows that simply prioritizing accurate prefetches and deprioritizing inaccurate ones within shared resource

management techniques does not solve the problem; prioritized prefetches can significantly degrade the performance

of memory non-intensive applications. We introduce the idea of demand boosting to prevent this.

3. It introduces new general mechanisms to handle prefetches in shared resource management techniques to syner-

gistically obtain the benefits of both prefetching and shared resource management techniques in multi-core systems.

We apply our mechanisms to three state-of-the-art shared resource management techniques and demonstrate in detail

how these techniques should be made aware of prefetching. Comprehensive experimental evaluations show that our

proposal significantly improves fairness and performance of these techniques in the presence of prefetching.

2.. Background

In the sections that follow, we briefly describe the three different shared resource management techniques that

we discuss in this paper. We also give a brief introduction toa state-of-the-art prefetcher control technique [2] that

improves system performance and fairness in the presence ofprefetching in CMP systems. We first briefly describe

what we mean by system fairness.

3

2.1. Fairness in the Presence of Prefetching

We evaluate fairness of a multi-core system executing a multi-programmed workload using theMaxSlowdown

metric. This metric shows the maximum individual slowdown that any application in the workload experiences, as

an indicator of the minimum service that any application in the workload receives.Individual Slowdown (IS)of

each application is calculated asTshared/Talone, whereTshared is the number of cycles it takes an application to run

simultaneously with other applications, andTalone is the number of cycles it would have taken the application to

run alone on the same system. In all of our evaluations, we usean aggressive stream prefetcher when calculating

each benchmark’sTalone as our stream prefetcher significantly improves average performance and makes for a better

baseline system. In addition to theMaxSlowdown metric, we also show the commonly usedunfairnessmetric [9, 4,

18] calculated as:

Unfairness =
MAX{IS0, IS1, ..., ISN−1}

MIN{IS0, IS1, ..., ISN−1}

2.2. Network Fair Queuing Memory Scheduling

Nesbit et al. [20] propose network fair queuing (NFQ), a memory scheduling technique based on the concepts of

fair network scheduling algorithms. NFQ’s goal is to provide quality of service to different concurrently executing

applications based on each application’s assigned fraction of memory system bandwidth. NFQ’s QoS objective is that

“a threadi that is allocated a fractionF of the memory system bandwidth will run no slower than the same thread on

a private memory system running at that fractionF of the frequency of the shared physical memory system.” NFQ

determines avirtual finish timefor every request of each thread. A memory request’s virtualfinish time is the time

it would finish on the thread’s virtual private memory system(a memory system running at the fractionF of the

frequency of the shared memory system). To achieve this objective, memory requests are scheduledearliest virtual

finish time first. NFQ provides no specification of how prefetches should be treated.

2.3. Parallelism-Aware Batch Scheduling

Mutlu and Moscibroda [19] propose parallelism-aware batchscheduling (PARBS), a memory scheduling technique

aimed at improving throughput by preserving intra-thread bank parallelism while providing fairness by avoiding star-

vation of requests from different threads.2 There are two major steps to the PARBS algorithm: First, PARBS generates

batches from a number of outstanding memory requests, and ensures that all requests belonging to the current batch

are serviced before the formation of the next batch. This batching technique avoids starvation of different threads and

is aimed at improving system fairness. Second, PARBS preserves intra-thread bank-level-parallelism while servic-

ing requests from each application within a batch. This stepimproves system throughput by reducing each thread’s

2We assume each core of a CMP runs a separate application, and use the term thread and application interchangeably.

4

memory related stall time. PARBS does not specify how to handle prefetches in either of these two steps.

2.4. Hierarchical Prefetcher Aggressiveness Control

Ebrahimi et al. [2] propose hierarchical prefetcher aggressiveness control (HPAC) as a prefetcher throttling solution

to improve prefetching performance in CMPs. HPAC’s goal is to control/reduce inter-thread interference caused

by prefetchers. It does so by gathering global feedback information about the effect of each core’s prefetcher on

concurrently executing applications. Examples of global feedback are memory bandwidth consumption of each core,

how much each core is delayed waiting for other applicationsto be serviced by DRAM, and cache pollution caused

by each core’s prefetcher for other applications in the shared cache. Using this feedback, HPAC throttles each core’s

prefetcher. By doing so, Ebrahimi et al. [2] show that HPAC can enable system performance improvements using

prefetching that are not possible without it. In our paper, we use HPAC in our baseline system since it significantly

improves the performance of prefetching in multi-core systems and therefore constitutes a stronger baseline.

2.5. Fairness via Source Throttling

Ebrahimi et. al. [3] propose fairness via source throttling(FST) as an approach to providing fairness in the entire

shared memory system. FST dynamically estimates how much each applicationi is slowed down due to inter-core

interference that results from sharing the memory system with other applications. Using these estimated slowdowns,

FST calculates an estimate for system unfairness. In addition, FST also determines the core experiencing the largest

slowdown in the system, referred to asApp-slowest, and the core creating the most interference forApp-slowest,

referred to asApp-interfering. If the estimated unfairness is greater than a threshold specified by system software,

FST throttles downApp-interfering(i.e., it reduces how aggressively that application accesses the shared memory

resources), and throttles upApp-slowest. In order to throttle down the interfering thread, FST limits the number of

requests that the thread can simultaneously send to the shared resources and also the frequency at which it does so.

In order to estimate each application’s slowdown, FST tracks inter-thread interference in the memory system. FST

estimatesbothhow much each applicationi is actually being slowed down due to inter-core interference andalsohow

much each other corej (j 6= i) contributes to the interference experienced by corei. Unfortunately, FST assumes all

requests are demand requests and does not consider prefetching.

3.. Motivation

In this section, we motivate why special treatment of prefetch requests is required in shared resource management

techniques to both 1) achieve benefits from prefetching and,2) maintain the corresponding techniques’ performance

benefits and/or fairness/QoS capabilities.

Every shared resource management technique has a prioritization algorithm that determines the order in which

5

Initial State Policy (a)

Bank 1 Bank 2 Bank 1 Bank 2 Bank 1 Bank 2Bank 1 Bank 2

P1: Useless prefetches from Core 1

S
er

vi
ce

 O
rd

er

D1
D2

P1

D2
D2
P2
P1
P1

P2

A
rr

iv
al

 O
rd

er

D2

D1

D2

D2
P1
P2

P1
P2

P1
D1

P2

P1

D2
D2
P2

D2
P1

D1
D2

P2

D2
D2
P1
P1

P1

P2 P2 : Useful prefetches from Core 2
D1, D2: Demands from Cores 1 and 2 respectively

Batch
P1

Policy (c)

when any demands are present
Do not include any prefetches

Policy (b)
Include all prefetches in batch Include prefetches in batches

based on prefetch accuracy

Figure 2. Example 1: Different policies for treatment of pre fetches in PARBS batch formation

requests are serviced. For example, NFQ prioritizes service to requests that have earliervirtual finish times. PARBS

prioritizes requests included in the formed batch by scheduling them all before a new batch is formed. In resource-

based management techniques, the first key idea of our proposal is that usefulness of prefetch requests should be

considered within each management technique’s prioritization policy. As such, not all prefetches should be treated

the same as demand requests, and not all prefetches should bedeprioritized compared to demand requests. However,

this is not enough; in fact, prioritizing accurate prefetches causes starvation to demands of non-intensive applications.

To solve this problem, the second key idea of our proposal is to boost the priority of demand requests of such non-

intensive applications so that they are not starved.

We motivate these two key ideas with two examples.

Example 1: Figure 2 shows the effect of prefetching on PARBS. The figure shows a snapshot of the memory

request buffers in the memory controller for banks 1 and 2. The initial state of these queues right before a new batch

is formed can be seen on the left. Based on PARBS’s batching algorithm, a maximum number of requests from any

given thread to any given bank are marked to form a batch. Let us assume PARBS marks three requests per-thread

per-bank when forming a batch. Additionally, let us assume that application 1’s prefetches are useless or inaccurate

while application 2’s prefetches are useful or accurate. Figure 2 shows two simplistic policies, (a) and (b), and our

proposed approach, policy (c), for handling prefetches in PARBS’s batching phase. Figure 3 shows the respective

memory service timelines.

Policy (a): mark prefetches and demands from each thread alike when creating a batch.Figure 2 shows that all the

requests in the memory request queues of the two banks are included in the batch with this policy. Within each batch,

PARBS prioritizes threads that that are “shorter jobs” in terms of memory request queue length. Since thread 1 has

a shorter queue length (maximum 2 requests in any bank) than thread 2 (maximum 3 requests in any bank), thread 1

is prioritized over thread 2. As a result, as Figure 3 (a) shows, thread 1’s inaccurate prefetches to addresses Y, X and

Z are prioritized over thread 2’s demands and useful prefetches. This leads to unwarranted degradation of thread 2’s

performance without any benefit to thread 1 (as its prefetches are useless).

Policy (b): never mark prefetches.This policy provides a naive solution to policy (a)’s problems by not marking any

6

prefetches. This is helpful in prioritizing the demands of thread 2 over the useless prefetches of thread 1. However, by

not marking any prefetches, this policy also does not include the useful prefetches of thread 2 in the generated batch.

Figure 3 (b) shows that thread 2’s useful prefetches to addresses L and M are now delayed since all prefetches are

deprioritized. Hence thread 2 issues demands for addressesL and M before the prefetches are serviced, and so the

benefit of those accurate prefetches significantly decreases. This causes a loss of potential performance.

Our Approach: A key principle in this paper is to

Core 1 Compute
stall

P1:Useless prefetches
P2:Useful prefetches

{P/D, Core #} − address

(b) Do not include any prefetches
 when any demands are present

(c) Include prefetches in batches
 based on prefetch accuracy

DRAM
Bank 1

Bank 2

P1 − Y

P1 − X

D1 − A

P1 − Z

D2 − E P2 − L

D2 − GD2 − F P2 − M

Hit Pref − L

Hit Pref − M

Core 2 Compute Compute

Compute

stall

Core 1 Compute
stall

Bank 1

Bank 2

P2 − L

DRAM

P1 − ZP1 − XD2 − GD2 − F

D1 − A D2 − E P1 − Y

Miss − MMiss − L

Core 2 Compute Compute

Compute
stall

Bank 1

Bank 2

DRAM
D1 − A D2 − E P2 − L P1 − Y

D2 − G P2 − M P1 − X P1 − Z

Core 1 Compute
stall

Core 1’s saved stall cycles compared to (a)

Hit Pref − L

Hit Pref − M

Core 2 Compute Compute
stall

Core 2’s saved stall cycles compared to (a)
Compute

P2 − M

D2 − F

(a) Include all prefetches in batches

Figure 3. Memory service timeline for requests of Figure 2

treat only accurate prefetches as demands in shared re-

source management. Figure 2 (c) concisely shows how

this is done for PARBS. Using feedback from different

threads’ prefetchers, PARBS can make a more intelli-

gent decision about whether or not to include prefetches

when forming batches. Since thread 2’s prefetches are

useful, we include them in the batch, while thread 1’s

useless prefetches are excluded. As a result, benefits

from prefetching for thread 2 is maintained, as shown in

Figure 3 (c). Excluding thread 1’s useless prefetches

from the batch improves system fairness as these re-

quests do not unduly delay thread 2’s demands and use-

ful prefetches, and thread 2’s slowdown is reduced with-

out increasing thread 1’s slowdown. Figure 3 (c) shows

that this policy improves both applications’ performance

compared to policies that treat all prefetches equally, motivating the need for distinguishing between accurate and in-

accurate prefetches in shared resource management.

No Demand Boosting

S
er

vi
ce

 O
rd

er

Bank 2Bank 1

P2−C P2−D

P2−O D2−P

P2−M P2−N

{P/D, Core #} − address
P2 : Useful prefetches from Core 2

Batch

Bank 2

P2−C P2−D

Bank 2Bank 1

P2−O D2−P

P2−M P2−N

P2−I P2−J

D2−G P2−H

P2−E D2−F

Bank 2Bank 1

P2−O D2−P

P2−M P2−N

P2−I P2−J

P2−HD2−G

P2−E D2−F

(b) T = t2 (c) T = t3
With Demand Boosting

(d) T = t3

Boosted Demands
Bank 1

P2−I P2−J

D2−G P2−H

P2−E D2−F

(a) T = t1

D1−A D1−B

D1−K D1−L

D1−LD1−K P2−I P2−J

D2−G P2−H

P2−E D2−F

D1−K D1−L

Figure 4. Example 2: No demand boosting vs. Demand boosting

7

Example 2: Figure 4 shows the problem with just prioritizing accurate prefetches, and concisely shows our

solution for a system using PARBS. When including accurate prefetches into the batches formed by PARBS, in the

presence of prefetch-friendly applications (like application 2 in Figure 4), the size of the batches can increase. Since

memory non-intensive applications (like application 1 in Figure 4) generate memory requests at a slow pace, every

time a batch is formed (Timet1 shown in Figure 4(a)), memory non-intensive applications will have a small number

of their requests included. At timet2, more requests from the memory non-intensive application arrive. Without our

proposed mechanism, since the current batch is still being serviced, these requests have to wait until the current batch

is finished (Figure 4 (c)), which could take a long time since useful prefetch requests that were entered into the batch

made the batch size larger. In this paper, we propose demand boosting, which prioritizes thesmall numberof the

non-intensive application’s requests over others. In Figure 4 (d), at timet3, the two demand requests from application

1 to addresses K and L are boostedinto the current batch and prioritized over the existing requests from application

2 within the batch. This allows application 1 to go back to itscompute phase quickly. Doing so does not degrade

application 2’s performance significantly as the non-intensive application 2 inherently has very few requests.

4.. High Performance and Fair Shared Resource Management in the Presence of Prefetching

In this section, we describe in detail our proposal for handling prefetches in the two types of resource management

techniques:resource-basedandsource-based. We also introducedemand boosting, which is orthogonal to the em-

ployed resource management technique. Since demand boosting is common to both resource-based and source-based

techniques, we describe it first in Section 4.1. Then, we describe in detail how to apply our insights (described in

Sections 1 and 3) to each resource management technique in turn (Sections 4.2 and 4.3).

4.1. Demand Boosting

Problem and Main Idea: As described in Section 3, the first component of our proposalis to treat useful prefetches

to be as important as the demands. Memory-intensive and prefetch-friendly applications can generate many such re-

quests, which can cause long delays for the demands of concurrently executing non-intensive threads. As a result,

system performance and fairness can degrade because of large performance degradations to memory non-intensive

applications. To mitigate this problem, we proposedemand boostingfor such non-intensive applications. The key

idea is to prioritize the non-intensive application’ssmall number of demand requestsover others, allowing that appli-

cation to go back to its compute phase quickly. It must be noted that doing so does not significantly degrade other

applications’ performance because the non-intensive application inherently has very few requests.

Why the Problem Exists: The potential forshort-termstarvation of a non-intensive application’s demands in-

creases in each of the techniques we consider for different reasons. In NFQ and FST, potential for starvation is created

8

by the prioritization of DRAM row buffer hits in the memory scheduler, coupled with high row buffer locality of accu-

rate prefetches that are considered as important as demands. PARBS uses the batching concept to mitigate this inherent

issue due to prioritizing row-buffer hit requests. However, in Section 3 we proposed including accurate prefetches into

PARBS’s batches. The slow rate at which non-intensive threads generate their requests, together with the large batches

generated using requests from prefetch-friendly applications, causes potential for starvation in PARBS.

To summarize, elevating the priority of accurate prefetch requests from memory intensive applications causes the

small memory related stall times of non-intensive applications to increase. This significantly hurts the non-intensive

applications’ performance (as also observed by prior work [12]). In addition, when such memory non-intensive

applications are cache friendly, as they stall waiting for their small number of memory requests to be serviced, their

useful requests in the shared cache move up the LRU stack and can get evicted more quickly by intensive applications’

requests. This, in turn, causes larger performance penalties for such memory non-intensive applications.

Demand Boosting Mechanism: Demand boosting is a general mechanism orthogonal to the type of resource

management technique. It increases the performance of memory non-intensive applications that do not take advantage

of accurate prefetches by dynamically prioritizinga small numberof such applications’ demands. With demand

boosting, the demands of an application that does not have accurate prefetchesand has a at most athreshold number

of outstanding requests, will be boosted and prioritized overall otherrequests. For example, in a system using PARBS,

when an application’s demands are boosted, they no longer wait for a current batch to finish before they are considered

for scheduling. A boosted request X has higher priority thanany other request Y regardless of whether or not request

Y is in the current batch.3

Delaying a memory-intensive application in lieu of a memorynon-intensive application with inherently small mem-

ory stall times can improve both system performance and fairness [19, 13, 3, 10]. In many cases, demand-boosting

enables performance benefits from prefetching that are not possible without it, as we show in Section 6.

4.2. Prefetch-Aware Resource-Based Management Techniques

We identify prefetcher accuracy as the critical prefetchercharacteristic to determine how a prefetcher’s requests

should be treated in shared resource management techniques. Prefetcher accuracy is defined as the ratio of useful

prefetches generated by a prefetcher to the total number of prefetches it generates. We also investigated using other

prefetcher feedback such as a prefetcher’sdegree of timeliness4, but found that accuracy has more of a first order

3Note that in the context of demand boosting for PARBS, demandboosting is significantly different from the “intra-batch”ranking proposed by the original
PARBS mechanism (which we use in all our PARBS related mechanisms). PARBS’s ranking prioritizes requests chosen from requests already containedwithin
the current batchusing its ranking algorithm. In contrast, with demand boosting, demand requests from a boosted thread are prioritized over all other requests.

4A prefetcher’s degree of timeliness is defined as the ratio ofthe number of useful prefetches that fill the last level cachebefore the corresponding demand
request is issued, to the total number of useful prefetches.

9

effect.

In all of the mechanisms we propose, we measure prefetch accuracy on an interval by interval basis. An interval

ends whenT = 8192 cache lines are evicted from the last level cache, whereT is empirically determined. Every

interval, feedback information on the number of useful prefetches and total sent prefetches of each prefetcher is

gathered. Using this feedback information, the accuracy ofthe prefetcher in that interval is calculated and used as an

estimate of the prefetcher accuracy in the following interval. In the following subsections, we discuss how to redesign

underlying prioritization principles of the different techniques.

4.2.1. Parallelism-Aware Batch Scheduling PARBS usesbatchingto provide a minimum amount of DRAM ser-

vice to each application by limiting the maximum number of requests considered for scheduling from any one appli-

cation. Inaccurate prefetches of an application A can have negative impact on system performance and fairness in two

ways. First, they get included in batches and get prioritized over other applications’ demands and useful prefetches

that were not included. As a result, they cause large performance degradation for those other applications without

improving application A’s performance. Second, they reduce the fairness provided by PARBS to application A by

occupying a number of slots of each batch that would otherwise be used to give application A’s demands a minimum

amount of useful DRAM service.

We propose the following new batch scheduling algorithm to enable potential performance improvements from

prefetching, while maintaining the benefits of PARBS. The key to Algorithm 1 is that it restricts the process of marking

requests to demands and accurate prefetches. As a result, a prefetch-friendly application will be able to benefit from

prefetching within its share of memory service. On the otherhand, inaccurate requests are not marked and are hence

deprioritized by PARBS.

Algorithm 1 Parallelism-Aware Batch Scheduler’s Batch Formation (Prefetch-AwarePARBS, P-PARBS)
Forming a new batch: A new batch is formed when there are no marked requests left inthe memory request buffer, i.e., when
all requests from the previous batch have been completely serviced.
Marking: When forming a new batch, the scheduler marks up toMarking-Capoutstanding demandand also accurate prefetch
requests for each application; these requests form the new batch.

4.2.2. Network Fair Queuing NFQ usesearliest virtual finish time firstmemory scheduling to provide quality of

service to concurrently executing applications. Inaccurate prefetches of some application A can have negative impact

on system performance and fairness in two ways: First, if application A’s inaccurate prefetches get prioritized over

demands or accurate prefetches of some other application B due to the former’s earlier virtual finish time, system

performance will degrade. Application B’s service is delayed while application A does not gain any performance.

Second, since NFQ provides service to application A’s inaccurate prefetches, the virtual finish times of application

10

A’s demands grows larger than when there was no prefetching.This means that application A’s demand requests will

get serviced later compared to when there is no prefetching.Since application A’s prefetches are not improving its

performance, this ultimately results in application A’s performance loss due to unwarranted waste of its share of main

memory bandwidth.

We propose the following prioritization policy for the NFQ bank scheduler. When this scheduler prioritizes requests

based on earliest virtual finish time, this prioritization is performed only for demand accesses andaccurateprefetches.

Doing so prevents the two problems described in the previousparagraph. Algorithm 2 summarizes the proposed NFQ

policy.

Algorithm 2 Network Fair Queuing’s Bank Scheduler Priority Policy (Prefetch-Aware NFQ, P-NFQ)
Prioritize ready commands (highest)
Prioritize CAS commands
Prioritize commands for demandsand also accurate prefetch requests with earliest virtual finish-time
Prioritize commands based on arrival time (lowest)

4.3. Prefetch-Aware Source-Based Management Techniques

We propose prefetch handling mechanisms for a recentsource-basedshared resource management approach,

FST [3]. We briefly described FST’s operation in Section 2.5.FST does not take into accountinterference gener-

ated for prefetchesandinterference generated by the prefetchesof each application.

We incorporate prefetch awareness into FST in two major waysby: a) determining how prefetches and demands

should be considered in estimating slowdown values, and b) coordinating core and prefetcher throttling using FST’s

monitoring mechanisms.

4.3.1. Determining Application Slowdown in the Presence of Prefetching FST tracks interference in the shared

memory system to dynamically estimate the slowdown experienced by each application. Yet, it cannot compute

accurate slowdown values if prefetching is employed because FST is unaware of prefetches. We describe a new

mechanism to compute slowdown when prefetching is employed.

When requests A and B from two applications interfere with each other in a shared resource, one request receives

service first and the other isinterfered-with. Let us assume that request A was theinterfering and request B was

the interfered-with. The typeof memory request A classifies the interference asprefetch-causedor demand-caused

interference. The type of memory request B classifies the interference asprefetch-delayingor demand-delayinginter-

ference.

FST defines individual slowdown,IS, asTshared/Talone to estimate system unfairness. In order to estimateTalone

when running in shared mode, FST makes an estimation of “the number ofextra cyclesit takes an application to

11

execute due to inter-core interference in the shared memoryresources.” This is known asTexcess (Texcess = Tshared−

Talone).

When estimatingTexcess in the presence of prefetching, we find that it is important touse the following two

principles. First, bothprefetch-causedanddemand-causedinterference should be considered. Second, onlydemand-

delayinginterference should be used to calculate slowdown values atruntime. This means that when calculating core

i’s Texcess, interference caused for its demands byeither demands or prefetches of other coresj (j 6= i) should be

accounted for. This is because ultimately both prefetch anddemand requests from an interfering core can cause an

interfered-withcore to stall. On the other hand, even thoughprefetch-delayinginterference reduces the timeliness

of interfered-with prefetches, it does not significantly slow down the corresponding core. If an accurate prefetch is

delayed until the corresponding demand is issued, that prefetch will be promoted to a demand. Further delaying of that

request will contribute to the slowdown estimated for the respective core because any interference with that request

will be considereddemand-delayingfrom that point on.

Algorithm 3 summarizes how our proposal handles prefetchesto make FST prefetch-aware.5 FST uses a bit per

core to keep track of when each core was interfered with. We refer to this bit-vector as theInterferencebit-vector in

the algorithm. Also, anExcessCycles counter is simply used to trackTexcess for each core.

Algorithm 3 Prefetch-aware FST (P-FST) estimation ofTexcess for corei
Every cycle
if inter-core interference created by any corej’s prefetch requests or demand requests for corei’s demand requests then

set corei’s bit in theInterference bit-vector
end if
if Corei’s bit is set in theInterference bit-vectorthen

IncrementExcessCycles counter for corei
end if

4.3.2. Coordinated Core and Prefetcher Throttling FST throttles cores to improve fairness and system perfor-

mance. On the other hand, HPAC is an independent technique that throttles prefetchers to improve system perfor-

mance by controlling prefetcher-caused inter-core interference. Unfortunately, combining them without coordination

causes contradictory decisions. For example, the most slowed down core’s prefetcher can be throttled down (by the

prefetch throttling engine, i.e., HPAC’s global control) while the core is being throttled up (by the core throttling

engine, i.e. FST). As a result, fairness and performance degrade and potential performance benefits from prefetching

can be lost. Therefore, we would like to coordinates the decisions of core and prefetcher throttling. The key insight

is to inform/coordinate HPAC’s throttling decisions with FST’s decisions using the interference information collected

by FST. We achieve this in two ways.

5We present our changes to the originalTexcess estimation algorithm [3]. For other details onTexcess estimation we refer to [3].

12

The first key idea is to use the slowdown information that FST gathers for core throttling to make better prefetcher

throttling decisions. To do this, we only apply HPAC’s global prefetcher throttle down decisions to a core if FST has

detected the corresponding core to beAppinterfering. 6 As such, wefilter some of the throttle-down decisions made by

HPAC. This is because HPAC can be very strict at prefetcher throttling due to its coarse classification of the severity

of prefetcher-caused interference. As a result, it throttles some prefetchers downconservativelyeven though they are

not affecting system performance/fairness adversely. We avoid this by using the information FST gathers about which

cores are actually being treated unfairly as a result of inter-core interference.

The second key idea is to use FST’s ability in tracking inter-core cache pollution to improve how well HPAC detects

accurate prefetchers. This is useful because HPAC can underestimate a prefetcher’s accuracy due to its interference-

unaware tracking of useful prefetches. HPAC does not count accurate prefetches for corei that were evicted by some

other core’s requests before being used. This can cause HPACto incorrectly throttle down corei’s accurate prefetcher

and degrade its performance. To avoid this, we use FST’s pollution filter to detect when an accurate prefetch for core

i was evicted due to another corej’s request. For this purpose, we extend FST’s pollution filter entries to also include

a prefetch bit. Using this, we account for useful prefetchesevicted by another core’s requests in HPAC’s estimation

of each prefetcher’s accuracy.

Algorithms 4 and 5 summarize the above mechanisms that coordinate core and prefetcher throttling.

Algorithm 4 Prefetch-Aware FST (P-FST) Core and Prefetcher Throttling
if Estimated Unfairness > Unfairness Threshold then

Throttle downAppinterfering

Throttle down prefetcher of Appinterfering if HPAC indicates global throttle down for this prefetcher
Throttle upAppslowest

end if
Allow HPAC to throttle up prefetchers as it requires
Apply HPAC’s local throttle down decisions

Algorithm 5 Enhancing prefetcher accuracy information using FST’s pollution filters
if Last-level cache hit on prefetched cache linethen

increment useful prefetch count
end if
if Last-level cache miss due to inter-core interference as detected by FSTand evicted line was prefetch requestthen

increment useful prefetch count
end if
Prefetch accuracy = useful prefetch count / total prefetch count

5. Methodology

Processor Model: We use an in-house cycle-accurate x86 CMP simulator for our evaluation. We faithfully model

6If HPAC’s local throttling component fore corei detects that the core’s prefetcher is not performing well, that prefetcher is still throttled down regardless of
FST’s decision. This helps both corei’s and other cores’ performance.

13

all port contention, queuing effects, bank conflicts, and other major DDR3 DRAM system constraints in the memory

system. Table 1 shows the baseline configuration of each coreand the shared resource configuration for the 4-core

CMP system we use.

15 stage out of order processor, decode/retire up to 4 instructions
Execution core Issue/execute up to 8 micro instructions; 128-entry reorder buffer

Front end Fetch up to 2 branches; 4K-entry BTB; 64K-entry Hybrid branch predictor
L1 I-cache: 32KB, 4-way, 2-cycle, 64B line ; L1 D-cache: 32KB, 4-way, 2-cycle, 64B line

On-chip caches Shared unified L2: 2MB , 16-way, 16-bank, 20-cycle, 1 port, 64B line size
Prefetcher Stream prefetcher with 32 streams, prefetch degree of 4, andprefetch distance of 64 cache lines [30, 28]

On-chip, Open-row PARBS [19]/NFQ [20]/FR-FCFS [26] scheduling policies
DRAM controller 128-entry MSHR and memory request queue

667MHz bus cycle, DDR3 1333MHz [17]
8B-wide data bus, 8 DRAM banks, 16KB row buffer per bank

DRAM and bus Latency: 15-15-15ns (tRP -tRCD-CL), corresponds to 100-100-100 processor cycles
Round-trip L2 miss latency: Row-buffer hit: 36ns, conflict:66ns

Table 1. Baseline system configuration

Benchmarks: We use the SPEC CPU 2000/2006 benchmarks for our evaluation.Each benchmark was compiled

using ICC (Intel C Compiler) or IFORT (Intel Fortran Compiler) with the -O3 option. Each benchmark runs the

reference input set for 50 million x86 instructions selected by Pinpoints [23].

We classify a benchmark asmemory-intensiveif its L2 Cache Misses per 1K Instructions (MPKI) is greater than

three and otherwise we refer to it asmemory non-intensive.We say a benchmark hascache localityif the number of L2

cache hits per 1K instructions for the benchmark is greater than five. An application is classified asprefetch-friendlyif

its IPC improvement due to prefetching when run in isolationis more than 10%. If its IPC degrades, it is classified as

prefetch-unfriendlyand otherwise asprefetch-insensitive. These classifications are based on measurements made when

each benchmark was run alone on the 4-core system. Table 2 shows the characteristics of 18 of the 29 benchmarks

(due to space limitations) that appear in the evaluated workloads when run on the 4-core system.

Workload Selection We used 15 four-application workloads for our evaluations.The workloads were chosen such

that each workload consists of at least twomemory-intensiveapplications (MPKI greater than three) and an application

with cache locality. All but one workload has at least oneprefetch-friendlyapplication since the goal of the paper is

to demonstrate how to improve system performance due to prefetching in systems that employ the different shared

resource management mechanisms. The one workload with no prefetch-friendly applications consists of memory-

intensive and prefetch-unfriendly applications.

Parameters used in evaluation: In all our mechanisms, the threshold to determine whether anapplication’s

prefetcher is accurate is 80%. In P-NFQ and P-FST, an application must havefewer thanten memory requests in

the memory request queue of the memory controller to be considered fordemand boosting, and fewer than 14 requests

in P-PARBS (Section 6.5 shows that the reported results are not very sensitive to the value chosen for this threshold).

14

No prefetching Prefetching No prefetching Prefetching

Benchmark Type IPC MPKI IPC MPKI HPKI Acc(%) Cov(%) Benchmark Type IPC MPKI IPC MPKI HPKI Acc(%) Cov(%)

art FP00 0.23 25.7 0.25 13.73 105 61 55 sphinx3 FP06 0.26 12.82 0.51 2.71 14.5 58 79
gromacs FP06 1.17 0.22 1.2 0.07 11 66 70 leslie3d FP06 0.29 21.37 0.55 4.73 22.3 94 78

lbm FP06 0.33 19.3 0.36 3.43 27.4 94 82 bwaves FP06 0.26 22.43 0.33 2.3 11.3 100 90
GemsFDTD FP06 0.38 12.67 0.67 0.07 17.6 93 99 astar INT06 0.17 23.04 0.17 21.4 10.4 25 8

omnetpp INT06 0.34 8.79 0.34 8.72 5 11 19 vortex INT00 0.97 1.21 0.93 1.15 7 27 14
zeusmp FP06 0.66 3.97 0.75 1.92 17 67 52 swim FP00 0.39 16.85 0.48 0.57 20 100 97
bzip2 INT06 1.57 0.96 1.65 0.64 7.8 95 35 h264ref INT06 1.89 0.77 1.86 0.43 2 56 55

perlbmk INT00 1.8 0.04 1.8 0.03 5.4 16 35 crafty INT00 1.56 0.26 1.61 0.19 8 34 29
xalancbmk INT06 1.07 0.83 0.93 0.99 18.8 11 18 libquantumINT06 0.26 11.84 0.29 2.21 0.52 100 81

Table 2. Characteristics of 18 SPEC 2000/2006 benchmarks: I PC and MPKI (L2 cache Misses Per 1K Instructions) with and wit hout

prefetching, HPKI (L2 cache Hits Per 1K Instructions) with p refetching, and prefetcher accuracy and coverage

The parameter setup for each of the FST and HPAC techniques isthe same as those reported in [3] and [2] respec-

tively. For PARBS [19], we use the sameMarking Capthreshold as used in the original paper, five memory requests

per thread per bank.

Metrics: To measure CMP system performance, we useHarmonic mean of speedups (Hspeedup)[16], and

Weighted speedup (Wspeedup)[27]. To demonstrate fairness improvements, we reportMaxSlowdown, and alsoUn-

fairnessas defined in [4, 18] (see Section 2.1). SinceHspeedupprovides a balanced measure between fairness and

system throughput [16], we use it as our primary evaluation metric. In the metric definitions below:N is the number

of cores in the CMP system,IPCalone is the IPC measured when an application runs alone on one corein the CMP

system (other cores are idle), andIPCshared is the IPC measured when an application runs on one core whileother

applications are running on the other cores.

Hspeedup =
N

N−1
X

i=0

IPCalone

i

IPCshared

i

, Wspeedup =

N−1
X

i=0

IPCshared

i

IPCalone

i

6.. Experimental Evaluation

We evaluate the mechanisms described in the previous sections on a 4-core CMP system employing NFQ, PARBS,

and FST in the following three subsections respectively. Note that our prefetch-aware NFQ, PARBS, and FST tech-

niques (P-NFQ, P-PARBS, and P-FST) are evaluated on a systemwith state-of-the-art prefetcher throttling [2].

6.1. NFQ Results

Figures 5 (a)-(d) show average system performance and unfairness of a system using an NFQ memory scheduler in

different configurations: with no prefetching, prefetching with and without prefetcher control, and with our proposed

prefetch-aware NFQ. In the policies referred to asdemand-pref-equal, demands and prefetches are treated equally

in terms of prioritization based on earliest virtual finish time. In thedemand-prioritizedpolicy, demands are always

prioritized over prefetches, and are scheduled earliest virtual finish time first. Figure 6 shows system performance for

each of the 15 evaluated workloads for the nine configurations of NFQ that we evaluated. P-NFQ provides the highest

15

system performance and least unfairness among all the examined techniques. P-NFQ outperforms the best performing

previous technique (NFQ + HPAC demand-prioritized) by 11%/8.6% (HS/WS) while reducing maximum slowdown

by 9.9%. Several key observations are in order:

1. Figure 5 shows that in all cases (with or without prefetcher throttling), demand-prioritizedhas higher perfor-

mance and lower maximum slowdown thandemand-pref-equal. We conclude that as we explained in Section 4.2, if

all prefetch requests are treated alike demand requests, wasted service given to useless prefetches leads to a worse-

performing and less fair system than always prioritizing demands.

2. The last two bars in each of the subfigures of Figure 5 demonstratea key insight: without intelligent prioritiza-

tion of demand requests of memory non-intensive applications, system performance and fairness do not significantly

improvesimply byprioritizing accurate prefetches. Adding the demand boosting optimization to P-NFQ (with no

boosting) improves performance by 10%/3.8% (HS/WS) and reduces maximum slowdown by 13.2% compared to

just prioritizing accurate prefetches within NFQ’s algorithm.

0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
du

p

(a) Hspeedup

1.0

1.2

1.4

1.6

1.8

2.0

2.2

W
sp

ee
du

p

(b) Wspeedup

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

U
nf

ai
rn

es
s

(c) Unfairness

0

1

2

3

4

5

6

7

M
ax

 S
lo

w
do

w
n

NFQ + No Pref
NFQ + Str. Pref (demand-pref-equal)
NFQ + Str. Pref (demand-prioritized)
NFQ + Str. Pref (demand-prioritized) + Boost
NFQ + HPAC (demand-pref-equal)
NFQ + HPAC (demand-prioritized)
NFQ + HPAC (demand-prioritized) + Boost
P-NFQ (No Boost)
P-NFQ

(d) Max Slowdown

Figure 5. Average system performance and unfairness on 4-co re system with NFQ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

H
sp

ee
du

p

swim
perlbmk
sphinx3
vortex
(WL1)

bwaves
crafty
bzip2
swim
(WL2)

swim
perlbmk

applu
wrf

(WL3)

libq
swim
Gems
bzip2
(WL4)

lbm
omnet
apsi

vortex
(WL5)

applu
gobmk
leslie
lbm

(WL6)

lbm
parser
crafty
leslie

(WL7)

lbm
twolf

equake
mesa

(WL8)

lbm
Gems
astar
mesa

(WL9)

leslie
sphinx3
zeusmp
crafty

(WL10)

art
astar
leslie
crafty

(WL11)

gromacs
art

astar
h264

(WL12)

art
gamess
Gems
h264

(WL13)

art
leslie

gamess
gromacs
(WL14)

lucas
ammp
xalanc

gromacs
(WL15)

Figure 6. System performance (Hspeedup) for each of the 15 wo rkloads (legend same as Figure 5)

3. Figures 5 (a)-(d) show that demand boosting improves system performance independent of the setup it is used

with. Demand boosting alone improves the performance of demand-prioritized and prefetching with no throttling

by 7.3%/6.7% (HS/WS). When used with demand-prioritized andHPAC, it improves performance by 3.3%/3.6%

(HS/WS). However, demand boosting provides the best system performance and fairness when usedtogetherwith

our proposed P-NFQ which prioritizes requests based on virtual finish time first using prefetch accuracy feedback.

16

Note that demand boosting and considering prefetch accuracy information in prioritization decisions are synergistic

techniques. Together they perform better than each one alone. We conclude that demand boosting is a general mecha-

nism but is most effective when used together with resource management policies which take prefetcher accuracy into

account in their prioritization rules.

6.2. PARBS Results

Figures 7 (a)-(d) show average system performance and unfairness of different prefetch-demand batching policies

with and without prefetcher control. Indemand-pref-batching, demands and prefetches are treated equally in PARBS’s

batch-forming (within the batches, demands are prioritized over prefetches because we find this to be better performing

on average). Indemand-only-batching, only demands are included in the batches. Figure 8 shows system performance

for each of the 15 evaluated workloads for the nine configurations of PARBS that we evaluated. P-PARBS provides the

highest system performance and the smallest unfairness among all of the techniques, improving system performance

on average by 10.9%/4.4% (HS/WS) while reducing maximum slowdown by 18.4% compared to the combination of

PARBS and HPAC with demand-only-batching.

0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
du

p

(a) Hspeedup

1.0

1.2

1.4

1.6

1.8

2.0

2.2

W
sp

ee
du

p

(b) Wspeedup

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

U
nf

ai
rn

es
s

(c) Unfairness

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

M
ax

 S
lo

w
do

w
n PARBS + No Pref

PARBS + Str. Pref (demand-pref-batching)
PARBS + Str. Pref (demand-only-batching)
PARBS + Str. Pref (demand-only-batching) + Boost
PARBS + HPAC (demand-pref-batching)
PARBS + HPAC (demand-only-batching)
PARBS + HPAC (demand-only-batching) + Boost
P-PARBS (No Boost)
P-PARBS

(d) Max Slowdown

Figure 7. Average system performance and unfairness on 4-co re system with PARBS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
sp

ee
du

p

swim
perlbmk
sphinx3
vortex
(WL1)

bwaves
crafty
bzip2
swim
(WL2)

swim
perlbmk

applu
wrf

(WL3)

libq
swim
Gems
bzip2
(WL4)

lbm
omnet
apsi

vortex
(WL5)

applu
gobmk
leslie
lbm

(WL6)

lbm
parser
crafty
leslie

(WL7)

lbm
twolf

equake
mesa

(WL8)

lbm
Gems
astar
mesa

(WL9)

leslie
sphinx3
zeusmp
crafty

(WL10)

art
astar
leslie
crafty

(WL11)

gromacs
art

astar
h264

(WL12)

art
gamess
Gems
h264

(WL13)

art
leslie

gamess
gromacs
(WL14)

lucas
ammp
xalanc

gromacs
(WL15)

Figure 8. System performance (Hspeedup) for each of the 15 wo rkloads (legend same as Figure 7)

6.2.1. Case Study The goal of this case study is to provide insight into how the mechanisms that we propose improve

performance. It also shows in detail whysimply prioritizing accurate prefetches in shared resource management

techniques does not necessarily improvesystem performance and fairness. We examine a scenario where two memory

17

intensive and prefetch-friendly applications (swim and sphinx3) concurrently execute with two memory non-intensive

applications (perlbmk and vortex). Figures 9 (a) and (c)-(f) show individual application performance and overall

system behavior of this workload. Figure 9 (b) shows the dynamics of the mechanisms proposed for prefetch-aware

PARBS. In Figure 9 (b), each application is represented withtwo bars. The left bar in each pair shows the percentage

of time thatbothdemands and prefetches from the corresponding applicationwere included in P-PARBS’s batches vs.

the percentage of time thatonly demands were included. The right bar shows the percentage ofall demand requests

that were boosted into the batches by the demand-boosting mechanism vs. all other batched requests.

P-PARBS both performs significantly better and is much more fair than all the other evaluated techniques. This is

due to the following two reasons:

1. Including useful prefetches ofswimandsphinx3alongside demand requests in P-PARBS’s batches allows these

applications to make good use of their accurate prefetches and significantly improves their performance. Figure 9 (b)

shows thatswim’s andsphinx3’s prefetches are included in the batches for 100% and 60% of their execution times

respectively. During these periods,swimandsphinx3also achieve better row buffer locality: their row buffer hits are

increased by 90% and 27% respectively compared to the technique with the best system performance among the other

techniques (HPAC demand-only-batching). In addition,swimandsphinx3’s prefetches become 8% and 11% more

timely (not shown in the figure).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Sp
ee

du
p

ov
er

 A
lo

ne
 R

un swim
perlbmk
sphinx3
vortex

No Pref. Str. Pref.
Dem-Pr-Eq

Str Pref.
Dem-First

HPAC
Dem-Pr-Eq

HPAC
Dem-First

P-PARBS
(No Boost)

P-PARBS

(a) PARBS case study: individual application behavior

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

swim perlbmk sphinx3 vortex

Demand-pref-batching

Demand-only-batching

Demand-boosted

Batched

(b) Left bars: dem-pref-batching vs dem-only-batching time,
right bars: requests boosted vs batched normally

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
sp

ee
du

p

(c) Hspeedup

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

W
sp

ee
du

p

(d) Wspeedup

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

U
nf

ai
rn

es
s

(e) Unfairness

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

M
ax

 S
lo

w
do

w
n

PARBS + No Pref
PARBS + Str. Pref (demand-pref-batching)
PARBS + Str. Pref (demand-only-batching)
PARBS + HPAC (demand-pref-batching)
PARBS + HPAC (demand-only-batching)
P-PARBS (No Boost)
P-PARBS

(f) Max Slowdown

Figure 9. PARBS case study

2. Boosting the demands of the prefetch insensitive and memory non-intensive application,vortex, allows it to get

quick memory service and prevents it being delayed by the many requests batched forswimandsphinx3. Because

18

vortex’s requests are serviced quickly, its performance increases. Also, sincevortex is memory non-intensive, this

boosting does not degrade other applications’ performancesignificantly.

The last two sets of bars in Figure 9 (a) show the importance ofthe demand boosting optimization. Whenswim’s

andsphinx3’s prefetches are included in the batches,vortex’s performance degrades ifdemand boostingis not used.

This happens because of inter-core cache pollution caused by swimandsphinx3. Hence, even thoughswim’s and

sphinx3’s performance improves significantly without boosting, overall system performance does not improve over

the HPAC demand-only-batching (Figures 9 (c)-(d)). In contrast, withdemand boosting, vortex’s performance also

improves which enables P-PARBS to perform 13.3%/7.6% (HS/WS) better than the best previous approach while also

reducing maximum slowdown by 17.8%.

6.3. FST Results

Figures 10 (a)-(d) show average system performance and unfairness of FST in the following configurations: with-

out prefetching, with aggressive stream prefetching, withHPAC, and our proposed coordinated core and prefetcher

throttling, i.e., P-FST (with and without demand boosting). Figure 11 shows system performance for each of the 15

evaluated workloads for the five configurations of FST that weevaluated. P-FST provides the highest performance

and best fairness among the five techniques. Several observations are in order:

1. When prefetching with no throttling is used, in five of the workloads prefetcher-caused interference is noticeable

and is left uncontrolled by FST. This results in large degradations in system performance of 5% or more (WL5,

WL11, WL12, WL14, and WL15). In these workloads, FST does notdetect the applications causing prefetcher

interference to beApp-interfering. Because of these workloads, prefetching with no throttling does not improve

average system performance significantly compared to no prefetching as shown in Figure 10. This shows the need for

explicit prefetcher throttling when prefetching is used with FST.

0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
du

p

(a) Hspeedup

1.0

1.2

1.4

1.6

1.8

2.0

2.2

W
sp

ee
du

p

(b) Wspeedup

0.0

0.5

1.0

1.5

2.0

2.5

3.0

U
nf

ai
rn

es
s

(c) Unfairness

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

M
ax

 S
lo

w
do

w
n

FST + No Pref
FST + Str. Pref
FST + HPAC (uncoordinated)
P-FST (No Boost)
P-FST

(d) Max Slowdown

Figure 10. Average system performance and unfairness on 4-c ore system with FST

2. When HPAC [2] and FST [3] are naively combined with no coordination, four of the 15 workloads lose significant

prefetching performance (workloads WL1, WL3, WL4, and WL8). In such cases, HPAC throttles down some useful

prefetchers unnecessarily. This happens due to: a) excessive throttling caused by HPAC’s coarse classification of

19

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
sp

ee
du

p

FST + No Pref
FST + Str. Pref (demand-prioritized)
FST + HPAC (uncoordinated)
P-FST (No Boost)
P-FST

swim
perlbmk
sphinx3
vortex
(WL1)

bwaves
crafty
bzip2
swim
(WL2)

swim
perlbmk

applu
wrf

(WL3)

libq
swim
Gems
bzip2
(WL4)

lbm
omnet
apsi

vortex
(WL5)

applu
gobmk
leslie
lbm

(WL6)

lbm
parser
crafty
leslie

(WL7)

lbm
twolf

equake
mesa

(WL8)

lbm
Gems
astar
mesa

(WL9)

leslie
sphinx3
zeusmp
crafty

(WL10)

art
astar
leslie
crafty

(WL11)

gromacs
art

astar
h264

(WL12)

art
gamess
Gems
h264

(WL13)

art
leslie

gamess
gromacs
(WL14)

lucas
ammp
xalanc

gromacs
(WL15)

Figure 11. System performance (Hspeedup) for each of the 15 w orkloads

interference, and b) underestimation of prefetcher accuracy due to interference-unaware tracking of useful prefetches

(described in Section 4.3.2). Unnecessary throttling makes the system more unfair compared to no prefetcher throt-

tling. This happens when a prefetch-friendly application with the largest slowdown in the absence of prefetching is

unnecessarily throttled. With no prefetcher throttling, such an application gains significant performance, which in turn

reduces system unfairness. When HPAC throttles down the prefetchers of such applications too much, this fairness

improvement is lost. We conclude that even though a naive combination of HPAC and FST improves average system

throughput, this comes at the cost of increasing system unfairness significantly compared to no throttling.

3. Our P-FST technique (with demand-boosting) addresses the problems described above by coordinating

prefetcher and core throttling, and improves performance by 11.3%/5.6% (HS/WS) while reducing maximum slow-

down by 14.5% compared to the best performing of the other techniques (i.e. the uncoordinated FST and HPAC

combination). Compared to the configuration with the least max slowdown, i.e. the combination of prefetching

with no throttling and FST, P-FST with boosting performs 11.2%/10.3% (HS/WS) better while reducing maximum

slowdown by 10.3%.

6.4. Effect on Homogeneous Workloads

Multi-core systems are sometimes used to run multiple copies of the same application in server environments. Ta-

ble 3 shows system performance and fairness deltas of P-NFQ compared to NFQ + HPAC (demand-prioritized) for

a prefetch friendly (four copies of sphinx3) and a prefetch unfriendly (four copies of astar) workload. Our proposal

improves system performance and reduces max slowdown for the prefetch friendly workload, while it does not signif-

icantly affect the prefetch unfriendly one. In the prefetchfriendly workload, prioritizing accurate prefetches improves

each benchmark’s performance by making timely use of those accurate prefetches. This is not possible if all prefetches

are treated alike.

20

Four copies of sphinx3 (prefetch friendly) Four copies of astar (prefetch unfriendly)
∆ HS ∆ WS ∆ Max Slowdown ∆ HS ∆ WS ∆ Max Slowdown
7.9% 7.9% -8.1% -1% -1% 0.5%

Table 3. Effect of our proposal on homogeneous workloads in s ystem using NFQ memory scheduling

6.5. Sensitivity to System and Algorithm Parameters

Table 4 shows how P-NFQ performs compared to NFQ + HPAC (demandprioritized) on systems with two/four

memory channels or 8MB/16MB shared last level caches. Even though using multiple memory channels reduces

contention to DRAM, and using larger caches reduces cache contention, P-NFQ still performs significantly better

while reducing maximum slowdown. We conclude that our mechanism provides performance benefits even on more

costly systems with higher memory bandwidth or larger shared caches.

Single Channel Dual Channel Four Channel
∆ HS ∆ WS ∆ Max Slowdown ∆ HS ∆ WS ∆ Max Slowdown ∆ HS ∆ WS ∆ Max Slowdown
11% 8.6% -9.9% 5% 5.7% -3.7% 4% 6.3% 0.7%

2MB Shared Cache 8MB Shared Cache 16MB Shared Cache
∆ HS ∆ WS ∆ Max Slowdown ∆ HS ∆ WS ∆ Max Slowdown ∆ HS ∆ WS ∆ Max Slowdown
11% 8.6% -9.9% 6.3% 5.3% -9.1% 4.9% 3.9% -6.6%

Table 4. Effect of our proposal on system using NFQ memory sch eduling with different microarchitectural parameters

4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0

A
vg

 %
 (

H
S)

 I
m

pr
ov

em
en

t

P-NFQ
P-PARBS
P-FST

4 6 8 10 12 14 16 18 20 22 24 26

Figure 12. Sensitivity to boosting threshold

Figure 12 shows how sensitive the performance benefits of thetech-

niques we propose (compared to the best previous technique in each

case) are to the boosting threshold. For all shown thresholds, P-NFQ

and P-FST show performance within 1% of that of the chosen thresh-

old. For P-PARBS, this is the case for all values between 14 and 26.

In P-PARBS, with thresholds less than 14, not enough requests from

prefetch-unfriendly benchmarks get boosted. We conclude that the

benefits of our mechanisms are not highly sensitive to the chosen threshold value.

6.6. Hardware Cost

Table 5 shows the required storage of our mechanisms on top ofeach of the shared resource management tech-

niques. Our mechanisms do not require any structures that are on the critical path of execution. Additionally, none

of the structures we add/modify require large energy to access and none are accessed very often. As such, significant

overhead is not introduced in terms of power.
7. Related Work

To our knowledge, this paper is the first to provide mechanisms that aim to improve both performance and fairness

of fair shared resource management techniques in the presence of prefetching. The major contributions of this work

are general mechanisms for how prefetches should be considered in the prioritization decisions of resource-based and

source-based shared resource management. We have already provided extensive quantitative and qualitative com-

21

P-NFQ Closed form for N cores (bits) N=4(bits)
Boosting bits in memory request queue entries 32 x N 128

Counters for number of requests per core in memory request queue 8 x N 32
Total storage required for P-NFQ 40 x N 160

P-PARBS
Counters for number of requests per core in memory request queue 8 x N 32

Total storage required for P-PARBS 8 x N 32

P-FST
Boosting bits in memory request queue entries 32 x N 128

Counters for number of requests per core in memory request queue 8 x N 32
Prefetch bits in pollution filter used for coordinated core and prefetcher throttling Pol. Filter Entries (2048) x N 8192

Total storage required for P-FST 2088 x N 8352
Table 5. Hardware cost of our proposed enhancements

parison to the three techniques that we apply our mechanismsto (NFQ [20], PARBS [19], and FST [3]) in previous

sections. Here, we briefly discuss other related work in prefetch-aware DRAM controllers, shared resource manage-

ment, and prefetch filtering.

7.1. Prefetch-Aware DRAM Controllers

Lee et. al. [12] propose using prefetch accuracy information to determine whether to prioritize demands over

prefetches or to treat them equally in terms of memory scheduling. To our knowledge, this is the only prior work that

deals with how prefetches should be dealt with in a shared resource. However, this work targets handling prefetches

in a DRAM-throughput-oriented FR-FCFS scheduler that is not designed to provide fairness/QoS. Our paper makes

two major contributions beyond this work. First, it is the first to address how prefetches should be considered in

fair/QoS-capable memory scheduling techniques that are shown to provide significantly higher performance than

throughput-oriented DRAM schedulers. Second, it providesgeneralized prefetch handling techniques not only for

memory scheduling but also for a more general source throttling-based management technique that aims to manage

multiple shared resources.

Lee et. al. [12] also observe the need for prioritizing demand requests ofapplications which do not have accurate

prefetchers. They prioritize the demands of such applications over memory requests of prefetch friendly applications

which are not row buffer hits. They place no condition on the memory intensity of the applications that are prioritized

this way. Our demand boosting mechanism employs a more aggressive prioritization for a more limited class of re-

quests. We prioritize demand requests of applications which areboth not prefetch-friendlyand memory non-intensive

overall other memory requests. We find this to be more effective than their prioritization mechanism because it does

not cause starvation or slowdown as it never boosts intensive applications’ requests. In fact, in Figure 5, the P-NFQ

(No boost) experiment includes the prioritization proposed by this prior work, on top of which, our P-NFQ improves

performance by 10%. Note that the critical element that allows this aggressive boosting is that it is only performed for

non-intensive phases of an application where it has a limited number of requests requiring service.

22

7.2. Other Shared Resource Management Techniques

Many previous papers deal with management of other shared resources such as caches [9, 24, 25, 7, 8, 21] or on-

chip interconnect [14, 1, 5] to improve system performance and/or fairness. However, none deal with how prefetches

should be intelligently dealt with in the mechanisms they propose. As such, this paper is orthogonal to prior work in

shared resource management, and we believe the ideas we present in this paper can be used to enhance other shared

resource management techniques in the presence of prefetching.

7.3. Prefetch Filtering

Prior papers on prefetch filtering propose techniques to detect and eliminate prefetches that are found to be useless

in the past [29, 31, 15]. However, conservative prefetch filtering techniques cannot filter out all useless prefetches, yet

aggressive ones can remove many useful prefetches [12]. We find that our proposals are complementary to prefetch

filtering. For example, P-NFQ increases system performanceby 11.1%/8.2% (HS/WS) while reducing max slowdown

by 10.9% on a baseline where a state-of-the-art hardware filtering mechanism [31] is used with NFQ + HPAC.

8.. Conclusion

This paper demonstrates a new problem in CMP designs: state-of-the-art fair shared resource management tech-

niques, which significantly enhance performance/fairnessin the absence of prefetching, can largely degrade perfor-

mance/fairness in the presence of prefetching. To solve this problem, we introduce general mechanisms to effectively

handle prefetches in multiple types of resource managementtechniques.

We develop three major new ideas to enable prefetch-aware shared resource management. We introduce the idea

of demand boosting, a mechanism that eliminates starvation of applications that are not prefetch-friendly yet memory

non-intensive, thereby boosting performance and fairnessof any type of shared resource management. We describe

how to intelligently prioritize demands and prefetches within the underlying fair management techniques. We develop

new mechanisms to coordinate the actions of prefetcher and core throttling mechanisms to make synergistic decisions.

To our knowledge, this is the first paper that deals with prefetches in shared multi-core resource management, and

enables such techniques to be effective and synergistic with prefetching.

We apply these new ideas to three state-of-the-art multi-core shared resource management techniques. Our exten-

sive evaluations show that our proposal significantly improves system performance and fairness of two fair memory

scheduling techniques and one source-throttling-based shared memory system management technique (by more than

10% in 4-core systems), and makes these techniques effective with prefetching. We conclude that our proposal can be

a low-cost and effective solution that enables the employment of both prefetching and shared resource management

together in future multi-core systems, thereby ensuring future systems can reap the performance and fairness benefits

23

of both ideas together.

References
[1] R. Das et al. Application-aware prioritization mechanisms for on-chip networks. InMICRO, 2009.
[2] E. Ebrahimi et al. Coordinated control of multiple prefetchers in multi-core systems. InMICRO, 2009.
[3] E. Ebrahimi et al. Fairness via source throttling: A configrable and high-performance fairness substrate for multi-core

memory systems. InASPLOS, 2010.
[4] R. Gabor, S. Weiss, and A. Mendelson. Fairness and throughput in switch on event multithreading. InMICRO-39, 2006.
[5] B. Grot et al. Preemptive virtual clock: A flexible, efficient, and cost-effective QoS scheme for networks-on-a-chip. In

MICRO, 2009.
[6] G. Hinton et al. The microarchitecture of the Pentium 4 processor.Intel Technology Journal, Feb. 2001. Q1 2001 Issue.
[7] L. R. Hsu et al. Communist, utilitarian, and capitalist cache policies on CMPs: caches as a shared resource. InPACT-15,

2006.
[8] R. Iyer et al. QoS policies and architecture for cache/memory in CMP platforms. InSIGMETRICS’07, June 2007.
[9] S. Kim et al. Fair cache sharing and partitioning in a chipmultiprocessor architecture. InPACT, 2004.

[10] Y. Kim et al. ATLAS: A scalable and high-performance scheduling algorithm for multiple memory controllers. InHPCA-16,
2010.

[11] H. Q. Le et al. IBM POWER6 microarchitecture.IBM Journal of Research and Development, 51:639–662, 2007.
[12] C. J. Lee et al. Prefetch-aware DRAM controllers. InMICRO-41, 2008.
[13] C. J. Lee et al. Improving memory bank-level parallelism in the presence of prefetching. InMICRO-42, 2009.
[14] J. W. Lee et al. Globally-synchronized frames for guaranteed quality-of-service in on-chip networks. InISCA-35, 2008.
[15] W.-F. Lin, S. K. Reinhardt, D. Burger, and T. R. Puzak. Filtering superfluous prefetches using density vectors. InICCD,

2001.
[16] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput and fairness in SMT processors. InISPASS, 2001.
[17] Micron. Datasheet: 2Gb DDR3 SDRAM, MT41J512M4 - 64 Meg x 4 x 8 banks,

http://download.micron.com/pdf/datasheets/dram/ddr3.
[18] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling for chip multiprocessors. InMICRO-40, 2007.
[19] O. Mutlu and T. Moscibroda. Paralleism-aware batch scheduling: Enhancing both performance and fairness of shared

DRAM systems. InISCA-35, 2008.
[20] K. J. Nesbit et al. Fair queuing memory systems. InMICRO-39, 2006.
[21] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual privatecaches. InISCA-34, June 2007.
[22] J. Owen and M. Steinman. Northbridge architecture of AMD’s Griffin microprocessor family.IEEE Micro, 28(2), 2008.
[23] H. Patil et al. Pinpointing representative portions oflarge Intel Itanium programs with dynamic instrumentation. In MICRO-

37, 2004.
[24] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-overhead, high-performance, runtime mechanism to

partition shared caches. 2006.
[25] N. Rafique et al. Architectural support for operating system-driven CMP cache management. InPACT-15, 2006.
[26] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.Owens. Memory access scheduling. InISCA-27, 2000.
[27] A. Snavely and D. M. Tullsen. Symbiotic job scheduling for a simultaneous multithreading processor. InASPLOS-IX, 2000.
[28] S. Srinath et al. Feedback directed prefetching: Improving the performance and bandwidth-efficiency of hardware prefetch-

ers. InHPCA, 2007.
[29] V. Srinivasan et al. A static filter for reducing prefetch traffic. Technical Report CSE-TR-400-99, University of Michigan,

1999.
[30] J. Tendler et al. POWER4 system microarchitecture.IBM Technical White Paper, Oct. 2001.
[31] X. Zhuang and H.-H. S. Lee. A hardware-based cache pollution filtering mechanism for aggressive prefetches. InICPP-32,

2003.

24

