
DRAM-Aware Prefetching and Cache Management

Chang Joo Lee

High Performance Systems Group
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas 78712-0240

TR-HPS-2010-004
December 2010

This page is intentionally left blank.

Copyright

by

Chang Joo Lee

2010

The Dissertation Committee for Chang Joo Lee
certifies that this is the approved version of the following dissertation:

DRAM-Aware Prefetching and Cache Management

Committee:

Yale N. Patt, Supervisor

Nur A. Touba

Derek Chiou

Hossein Namazi

Onur Mutlu

DRAM-Aware Prefetching and Cache Management

by

Chang Joo Lee, B.S.E.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2010

Dedicated to my family

Acknowledgments

Many people contributed both directly and indirectly to this dissertation.

First of all, I would like to thank the current and previous members of the HPS

research group. The HPS group was everything to me during my long graduate

student life.

I thank my advisor, Yale N. Patt for giving me the opportunityto work

with many people who are great human beings as well as smart and talented, for

helping me build a strong foundation in computer architecture, for motivating me

to perform serious research, and, most of all, for being patient with me in making

good progress on serious research topics.

Many thanks to Onur Mutlu for the mentorship he provided and the profes-

sionalism he demonstrated to me. He taught me how to write andpublish ideas. He

always encouraged me to continue working hard, and his technical feedback and

criticism on my work made this dissertation stronger. I alsothank him for always

being a friend and bearing with my complaints and unreasonable rants. My graduate

student life would have been miserable without both his technical and non-technical

support.

I thank Veynu Narasiman for working with me on all the topics presented in

this dissertation, for correcting both my spoken and written English, and for being a

good friend and listening to me whenever I was discouraged ordepressed. I cannot

forget the valuable discussions with him on both research and life.

I had a wonderful time working with Eiman Ebrahimi on the cache topics

proposed in this dissertation. He cared about me on both workand private issues,

helped me write and speak English better, and put up with my overreactions, harsh

jokes, and complaints. I could not have had any fun in the pastthree years without

him.

vii

I thank Jośe A. Joao for always being a friend and listening to me on both

technical and private issues. I enjoyed the time with him when we rebuilt and

enhanced our simulation infrastructure environment together.

I also had a great time with Aater M. Suleman, Rustam Miftakhutdinov, and

Khubaib during my graduate studies. They provided valuabletechnical feedback

and criticism, and tried to help me all the time. Their feedback on my research also

made this dissertation stronger and clearer. Especially, Ithank Rustam for always

being joyful and enjoying my jokes, and Khubaib for proofreading many chapters

of this dissertation.

I thank Hyesoon Kim for providing mentorship and encouraging me to per-

form meaningful work. I thank Moinuddin K. Qureshi, FrancisTseng, Daniel N.

Lynch, Santhosh Srinath, David Thompson, and other previous HPS members for

their mentorship and friendship. Many thanks to Leticia Lira for her long-standing

administrative support in the HPS group. I also thank recently joined members,

Milad Hashemi and Faruk Guvenilir for proofreading some chapters in this disser-

tation.

Besides the HPS members, I would like to express my gratitudeto other

people and organizations.

I thank Derek Chiou, Nur Touba, and Hossein Namazi for serving on my

dissertation committee and for giving me valuable commentson this dissertation.

I also thank Thomas Puzak, Philip Emma, Vijayalakshmi Srinivasan, and James

Holt for providing me with a chance to have a great experienceas an intern at IBM

and Freescale. I gratefully acknowledge the government of Korea and IBM for

providing me with fellowships during my graduate studies.

I appreciate the support and friendship of my friends, Dam Sunwoo and

Joonsoo Kim. We all had fun making our serious project successful in 382N. I will

never forget the great feeling we had at that time.

Special thanks to the “Lunch Bank” lady who delivered a lunchbox to me

on campus everyday during several semesters, which helped me manage time more

viii

efficiently.

Finally, I would like to thank my grandmother, Jung Hee Yong who passed

away during my studies, my parents, Jong Rak Lee and Jong Kyo Kwon, my

brother, Seung Hoon Lee, and my wife, Eunyoung Park for giving me their end-

less love and unconditional support. I dedicate this dissertation to them.

Chang Joo Lee

December 2010, Austin, TX

ix

DRAM-Aware Prefetching and Cache Management

Chang Joo Lee, Ph.D.

The University of Texas at Austin, 2010

Supervisor: Yale N. Patt

Main memory system performance is crucial for high performance microproces-

sors. Even though the peak bandwidth of main memory systems has increased

through improvements in the microarchitecture of Dynamic Random Access Mem-

ory (DRAM) chips, conventional on-chip memory systems of microprocessors do

not fully take advantage of it. This results in underutilization of the DRAM system,

in other words, many idle cycles on the DRAM data bus. The mainreason for this

is that conventional on-chip memory system designs do not fully take into account

important DRAM characteristics. Therefore, the high bandwidth of DRAM-based

main memory systems cannot be realized and exploited by the processor.

This dissertation identifies three major performance-related characteristics

that can significantly affect DRAM performance and makes a case for DRAM

characteristic-aware on-chip memory system design. We show that on-chip mem-

ory resource management policies (such as prefetching, buffer, and cache policies)

that are aware of these DRAM characteristics can significantly enhance entire sys-

tem performance. The key idea of the proposed mechanisms is to send out to the

DRAM system useful memory requests that can be serviced withlow latency or in

parallel with other requests rather than requests that are serviced with high latency

x

or serially. Our evaluations demonstrate that each of the proposed DRAM-aware

mechanisms significantly improves performance by increasing DRAM utilization

for useful data. We also show that when employed together, the performance ben-

efit of each mechanism is achieved additively: they work synergistically and sig-

nificantly improve the overall system performance of both single-core and Chip

MultiProcessor (CMP) systems.

xi

Table of Contents

Acknowledgments vii

Abstract x

List of Tables xviii

List of Figures xx

Chapter 1. Introduction 1
1.1 Problem . 1

1.2 Thesis Statement . 5

1.3 Contributions . 5

1.4 Dissertation Organization . 7

Chapter 2. Background: DRAM Performance-Related Characteristics 9
2.1 Row Buffer Locality . 9

2.2 Bank-Level Parallelism . 12

2.3 Write-Caused Interference . 12

2.3.1 Read-to-write and write-to-read latencies 14

2.3.2 Write-to-precharge latency 16

Chapter 3. Overview of the Solutions 19

Chapter 4. Related Work 22
4.1 Research in DRAM System Management 22

4.1.1 DRAM Access Scheduling 22

4.1.2 DRAM Write Buffer Management 24

4.2 Research in Improving Memory-Level Parallelism 25

4.3 Research in Prefetching and Prefetch Handling 26

4.3.1 Prefetching Algorithms . 26

4.3.2 Useless Prefetch Filtering 27

4.3.3 Adaptive Prefetching . 28

4.4 Research in Cache Management . 29

xii

4.4.1 Cache Management for Locality 29

4.4.2 Cost-Aware Cache Management 30

4.4.3 Writeback Management . 30

Chapter 5. Prefetch Management for Reducing DRAM Latency 32
5.1 Motivation . 32

5.2 Mechanism: Prefetch-Aware DRAM Controller (PADC) 37

5.2.1 Prefetch Accuracy Estimation 37

5.2.2 Adaptive Prefetch Scheduling 39

5.2.3 Adaptive Prefetch Dropping 41

5.3 Experimental Methodology . 44

5.3.1 Metrics . 44

5.3.2 System Model . 45

5.3.3 Workloads . 45

5.4 Implementation and Hardware Cost of PADC 47

5.5 Experimental Evaluation and Analysis on PADC 49

5.5.1 Single-Core Results . 50

5.5.1.1 Adaptive Behavior of PADC 53

5.5.1.2 Effect of PADC on Row Buffer Hit Rate 54

5.5.2 2-Core Results . 55

5.5.3 4-Core Results . 56

5.5.3.1 Case Study I: All Prefetch-Friendly Applications .. 56

5.5.3.2 Case Study II: All Prefetch-Unfriendly Applications 58

5.5.3.3 Case Study III: Mix of Prefetch-Friendly and Prefetch-
Unfriendly Applications 60

5.5.3.4 Effect of Prioritizing Urgent Requests 62

5.5.3.5 Effect on Identical-Application Workloads 63

5.5.3.6 Overall Performance 65

5.5.4 8-Core Results . 65

5.5.5 Optimizing PADC for Fairness Improvement in CMP Sys-
tems: Incorporating Request Ranking 66

5.5.6 Effect on Multiple DRAM Controllers 70

5.5.7 Effect with Different DRAM Row Buffer Sizes 72

5.5.8 Effect with a Closed-Row DRAM Row Buffer Policy 74

5.5.9 Effect with a Shared Last-Level Cache 76

5.5.10 Effect with Different Last-Level Cache Sizes 78

5.5.11 Effect on Other Prefetching Mechanisms80

xiii

5.5.12 Effect on a Runahead Execution Processor82

5.5.13 Comparison with Dynamic Data Prefetch Filtering andFeed-
back Directed Prefetching 84

5.5.14 Interaction with Permutation-Based Page Interleaving 87

5.6 Summary . 89

Chapter 6. Prefetch Management for Increasing DRAM Bank-Level Par-
allelism (BLP) 90

6.1 Prefetch Issue Policy to Increase BLP 90

6.1.1 Prefetching: Increasing Potential for DRAM BLP 90

6.1.2 What Can Limit Prefetching’s Benefits? 92

6.1.3 Mechanism: BLP-Aware Prefetch Issue 95

6.1.3.1 Hardware Support 95

6.1.3.2 BLP-Aware Prefetch Issue Policy 96

6.1.3.3 Adaptive Thresholding Based on Prefetch Accuracy 97

6.2 Preserving DRAM Bank-Level Parallelism in CMP systems 98

6.2.1 What Can Destroy BLP of Applications Running Together? . 99

6.2.2 Mechanism: BLP-Preserving Multi-core Issue 101

6.3 Experimental Methodology . 103

6.3.1 Metrics . 103

6.3.2 System Model . 104

6.3.3 Workloads . 104

6.4 Implementation and Hardware Cost of BLP-Aware Issue Policies . . 105

6.5 Experimental Evaluation and Analysis on BLP-Aware Issue Policies 107

6.5.1 Single-Core Results . 107

6.5.1.1 Analysis . 108

6.5.1.2 Adaptivity to Usefulness of Prefetches 110

6.5.1.3 Adaptivity to Phase Behavior 111

6.5.1.4 Sensitivity to MSHR Size 112

6.5.2 4-Core Results . 113

6.5.2.1 Case Study . 113

6.5.2.2 Overall Performance 116

6.5.3 8-Core Results . 116

6.5.4 Effect on Other Prefetching Mechanisms 117

6.5.5 Comparison with Parallelism-Aware Batch DRAM Scheduling117

6.6 Combination of Prefetch-Aware DRAM Controller and BLP-Aware
Issue Policies . 120

6.7 Summary . 121

xiv

Chapter 7. Last-Level Cache Management for Improving DRAM Char-
acteristics 122

7.1 Cache Replacement for Reducing Latency and Increasing BLP . . . 122

7.1.1 Why Should We Consider DRAM Characteristics in Cache
Management? . 123

7.1.2 Mechanism: Latency and Parallelism-Aware (LPA) Replace-
ment . 125

7.1.2.1 Low-Cost Estimation Using BLP Information 127

7.1.2.2 Low-Cost Estimation Using Row hit/conflict infor-
mation . 129

7.2 Cache Replacement for Reducing Write-Caused Interference 131

7.2.1 Why Should We Consider Write-Caused Interference in Cache
Management? . 131

7.2.2 Mechanism: Write-Caused Interference-Aware (WIA) Re-
placement . 133

7.3 Combining Latency and Parallelism-Aware and Write-Caused Interference-
Aware Policies . 135

7.4 Multi-Core System Considerations135

7.4.1 LPA Replacement in Multi-Core 136

7.4.2 WIA Replacement in Multi-Core 136

7.5 Comparison to Memory-Level Parallelism-Aware Replacement . . . 137

7.6 Experimental Methodology . 138

7.6.1 Metrics . 138

7.6.2 System Model . 138

7.6.3 Workloads . 139

7.7 Implementation and Hardware Cost of DRAM-Aware Replacement
Policies . 140

7.8 Experimental Evaluation and Analysis on DRAM-Aware Replace-
ment Policies . 141

7.8.1 Single-Core Results . 142

7.8.1.1 Why Does LPA Policy Perform Well? 144

7.8.1.2 Why Is Write-Caused Interference Awareness De-
sirable? . 145

7.8.1.3 Combining LPA and WIA 147

7.8.1.4 Effect on System with Prefetching 147

7.8.2 4-Core Results . 149

7.9 Summary . 150

xv

Chapter 8. Last-Level Cache Management for Reducing Write-Caused
Interference 151

8.1 Write-Caused Interference in the DRAM System 151

8.1.1 Performance Impact of Write-Caused Interference in Today’s
DRAM System . 153

8.1.2 Performance Impact of Write-Caused Interference in the Future155

8.2 Motivation . 157

8.2.1 Reducing Read-to-Write and Write-to-Read Penalties. . . . 157

8.2.2 Last-Level Cache Writeback: A Way to Further Reduce Write-
Caused Interference . 160

8.3 Mechanism: DRAM-Aware Writeback 163

8.3.1 Does Last-Level Cache Have Sufficient Bandwidth for DRAM-
Aware Writeback? . 166

8.3.2 Dynamic Optimization for Frequent Rewrites 166

8.4 Comparison to Eager Writeback . 168

8.5 Experimental Methodology . 169

8.5.1 Metrics . 169

8.5.2 System Model . 169

8.5.3 Workloads . 169

8.6 Implementation and Hardware Cost of DRAM-Aware Writeback . . 170

8.7 Experimental Evaluation . 171

8.7.1 Performance of Write Buffer Management Policies 171

8.7.2 Single-Core Results . 174

8.7.2.1 Why Does Eager Writeback Not Perform Well? . . . 177

8.7.2.2 Why Does DRAM-Aware Writeback Perform Better? 179

8.7.2.3 When is Dynamic DRAM-Aware Writeback Required?180

8.7.3 Multi-Core Results . 182

8.7.4 Effect on Systems with Prefetching 183

8.8 Summary . 185

Chapter 9. Combining All DRAM-Aware Mechanisms 186
9.1 DRAM-Aware Mechanisms Are Complementary 186

9.2 Methodology . 187

9.2.1 System Model . 187

9.2.2 Workloads . 187

9.3 Experimental Evaluation . 188

xvi

Chapter 10. Conclusion and Future Research Directions 192
10.1 Conclusion . 192

10.2 Future Research Directions . 194

Bibliography 196

Vita 207

xvii

List of Tables

5.1 Baseline configuration of each core for PADC 45

5.2 Baseline configuration of shared CMP resources for PADC 46

5.3 Characteristics of 18 SPEC benchmarks for PADC: IPC, MPKI
(last-level cache misses per 1K instructions), RBH (Row Buffer Hit
rate), ACC (prefetch accuracy), COV (prefetch coverage), class . . . 47

5.4 Hardware storage cost of PADC:Ncache: number of cache lines
per coreNcore: number of cores,Nreq: number of DRAM request
buffer entries) . 49

5.5 Dynamicdrop threshold values for Adaptive Prefetch Dropping
based on prefetch accuracy . 49

5.6 Row buffer hit rate of PADC for useful requests 55

5.7 Effect of prioritizing urgent requests in PADC 63

5.8 Effect of PADC on four identical prefetch-friendly applications . . . 64

5.9 Effect of PADC on four identical prefetch-unfriendly applications . 64

6.1 Baseline configuration of each core for BLP-aware issue policies . . 104

6.2 Baseline shared resource configuration for BLP-aware issue policies 104

6.3 DRAM timing specifications for BLP-aware issue policies. 105

6.4 Characteristics of 14 memory-intensive SPEC benchmarks for BLP-
aware issue: IPC, MPKI (last-level cache misses per 1K instruc-
tions), BLP, ACC (prefetch accuracy), COV (prefetch coverage) . . 106

6.5 Dynamicprefetch send threshold values for BAPI 106

6.6 Hardware storage cost of BAPI and BPMRI (Nline, Ncore, NMSHR,
Nbuffer, Nchannel, Nbank: number of last-level cache lines, cores,
MSHR entries, prefetch request buffer entries, DRAM channels,
DRAM banks per channel) . 107

6.7 Average IPC performance of BAPI with various MSHR sizes .. . 112

7.1 Baseline configuration for DRAM-aware replacement policies . . . 139

7.2 DDR3-1600 DRAM timing specifications for DRAM-aware replace-
ment policies . 140

7.3 Characteristics of 16 SPEC benchmarks for DRAM-aware replace-
ment: IPC, MPKI (last-level cache misses per 1K instructions),
WPKI (last-level cache Writebacks Per 1K Instructions), row hit
rate (RHR), BLP . 141

xviii

7.4 Hardware storage cost for DRAM-aware replacement policies (Ncore,
Nline, Nbank, Nbuffer: number of cores, last-level cache lines, DRAM
banks, cache fill buffer entries) . 142

8.1 Last-level cache bank idle cycles (%) on single core system 166

8.2 Average last-level cache bank idle cycles (%) on single,4, and 8-
core systems . 166

8.3 Baseline configuration for DRAM-aware writeback 170

8.4 Characteristics for 18 SPEC benchmarks for DRAM-aware write-
back: IPC, MPKI (last-level cache misses per 1K instructions),
WPKI (last-level cache Writebacks Per 1K Instructions), DRAM
row hit rate (RHR) . 171

8.5 Number of write buffer drains and number of writes per drain for
various policies . 180

8.6 Number of DRAM-aware writebacks generated, reread cache lines
and rewritten cache lines, and rewrite rate182

9.1 Baseline configuration for all combined DRAM-aware mechanisms 188

xix

List of Figures

1.1 Performance and DRAM bus utilization for a conventionalmemory
system with no prefetching and a stream prefetcher (with thepeak
DRAM bandwidth of 12.8, 25.6, 25.6GB/s for single, 4, and 8-core
systems respectively) . 4

2.1 Row conflict and row hit in modern DRAM system 11

2.2 DRAM bank-level parallelism . 13

2.3 Read-to-write and write-to-read latencies 15

2.4 Write-to-precharge (write recovery time) latency 17

3.1 Overview of proposed DRAM-aware mechanisms20

5.1 Example illustrating the performance impact of demand-first and
demand-prefetch-equal policies . 34

5.2 Performance of two rigid prefetch scheduling policies 36

5.3 Prefetch-Aware DRAM Controller 38

5.4 Example of behavior of prefetches formilc 43

5.5 DRAM request field for PADC . 48

5.6 Performance of PADC on single-core system: Normalized IPC for
15 benchmarks and average for all 55 (gmean55) 50

5.7 Stall time per load (SPL) of PADC on single-core system 52

5.8 Bus traffic of PADC on single-core system53

5.9 Fraction of execution time in different PADC schedulingmodes on
single-core system . 54

5.10 Performance of PADC on 2-core system 56

5.11 Performance of PADC for prefetch-friendly 4-core workload 57

5.12 SPL and bus traffic of PADC for prefetch-friendly 4-coreworkload . 57

5.13 Performance of PADC for prefetch-unfriendly 4-core workload . . . 59

5.14 SPL and bus traffic of PADC for prefetch-unfriendly 4-core workload 60

5.15 Performance of PADC for mixed 4-core workload 61

5.16 SPL and bus traffic of PADC for mixed 4-core workload 61

5.17 Performance of PADC on 4-core system 65

5.18 Performance of PADC on 8-core system 66

5.19 DRAM request fields for PADC with ranking 69

xx

5.20 Optimized PADC with ranking on 4-core system 70

5.21 Optimized PADC using ranking mechanism on 8-core system 71

5.22 Performance of PADC on 4-core system with two DRAM controllers 72

5.23 Performance of PADC on 8-core system with two DRAM controllers 72

5.24 Effect of PADC with various DRAM row buffer sizes on 4-core
system . 73

5.25 Effect of PADC on closed-row scheduling policy 75

5.26 Effect of PADC on shared last-level cache on 4-core system 77

5.27 Effect of PADC on shared last-level cache on 8-core system 77

5.28 Effect of PADC on various cache sizes on 4-core system 79

5.29 PADC on stride, C/DC, and Markov prefetchers 81

5.30 Effect of PADC on runahead execution83

5.31 Comparison of PADC with DDPF and FDP with demand-first . .. 86

5.32 Comparison of PADC to DDPF and FDP with demand-prefetch-equal 87

5.33 Effect of PADC on permutation-based page interleaving. 88

6.1 How prefetching can increase DRAM BLP (libquantum) 91

6.2 FIFO vs. DRAM BLP-aware prefetch issue policy 93

6.3 Hardware structures for BLP-Aware Prefetch Issue (BAPI) 96

6.4 Round-robin vs. BLP-preserving request issue policy 100

6.5 Performance, BLP, and SPL of BAPI on single-core system 109

6.6 Bus traffic of BAPI on single-core system110

6.7 Performance of BLP-aware issue policies for prefetch-friendly work-
load . 114

6.8 Performance of BLP-aware issue policies on 4-core system 116

6.9 Performance of BLP-aware issue policies on 8-core system 117

6.10 BLP-aware issue policies with stride and C/DC prefetchers 118

6.11 Comparison of BLP-aware issue policies with PAR-BS 120

6.12 Combination of PADC and BLP-Aware Issue Policies 121

7.1 DRAM and processor performance for two different mixtures of
outstanding misses . 124

7.2 Low-cost estimation for LPA . 126

7.3 Conventional vs. write-caused interference-aware replacement poli-
cies . 132

7.4 Dirty row-hit search for WIA . 134

7.5 Performance of DRAM-aware replacement policies on single-core
system . 143

xxi

7.6 DRAM read traffic and aggregate BLP of DRAM-aware replace-
ment policies . 144

7.7 DRAM write traffic and aggregate BLP of DRAM-aware replace-
ment policies . 146

7.8 Performance of DRAM-aware replacement policies on single-core
system with prefetching . 149

7.9 Performance of DRAM-aware replacement policies on 4-core system150

8.1 Potential (simulated) performance of intelligently handling write-
caused interference in the DRAM system 154

8.2 Performance potential by eliminating all writes as memory bus clock
frequency increases . 156

8.3 Serviceat no read vs. drainwhen full write buffer policies 158

8.4 Write-cause interference-aware replacement vs. DRAM-aware write-
back . 161

8.5 Writeback mechanism in last-level cache 164

8.6 Performance and DRAM bus utilization of various write buffer poli-
cies . 173

8.7 Performance and DRAM bus utilization of DRAM-aware write-
back on single-core system . 176

8.8 Row hit rate of DRAM writes and reads for DRAM-aware writeback 178

8.9 Number of DRAM requests for DRAM-aware writeback181

8.10 Performance of DRAM-aware writeback on 4-core system 183

8.11 Performance of DRAM-aware writeback on 8-core system 183

8.12 Performance of DRAM-aware writeback on 4-core system with prefetch-
ing . 184

9.1 Performance of individual DRAM-aware mechanisms on single, 4,
and 8-core systems . 189

9.2 Performance and DRAM bus utilization of combined DRAM-aware
mechanisms . 190

xxii

Chapter 1

Introduction

1.1 Problem

Memory system performance is crucial for high performance computing.

Dynamic Random Access Memory (DRAM) is the most commonly used technol-

ogy for building the main memory system in modern computer systems. There-

fore, computer architects need to understand the characteristics of DRAM in order

to build high performance memory systems. There are three main performance-

related characteristics associated with DRAM:bank-level parallelism, row buffer

locality, andwrite-caused interference.

• Bank-Level Parallelism: A modern DRAM chip consists of multiple banks

that can be accessed independently. Memory requests to different DRAM

banks can proceed concurrently. Therefore, the requests’ access latencies can

be overlapped, thereby increasing DRAM throughput. The notion of servic-

ing multiple requests in parallel in different DRAM banks iscalled DRAM

Bank-Level Parallelism (BLP).

• Row Buffer Locality: Each DRAM bank consists of rows and columns of

DRAM cells. A row contains a fixed-size block of data (usuallyseveral

Kbytes). Each bank has arow buffer(or sense amplifier), and a DRAM access

can be made only by reading (writing) data from (to) the row buffer using a

column address. To perform a complete access, 1) a row is loaded into the

row buffer and 2) the data in the row buffer is read (written to). The row

buffer keeps the most recently accessed row in the DRAM bank.A subse-

quent access to the last accessed row can be serviced significantly faster than

1

an access to a different row. This concept is referred to asrow buffer locality.

Prioritizing a request among multiple memory requests to the currently open

row results in higher DRAM throughput.

• Write-Caused Interference: Write requests interfere withread requests in the

DRAM system by causing idle cycles on the DRAM data bus. Once awrite

is serviced, subsequent reads and even some writes (e.g., writes to different

rows in the same bank) cannot be started for a certain amount of time even

after the write is fully serviced. This introduces idle cycles on the data bus and

in turn degrades DRAM throughput. We call thiswrite-caused interference

in the DRAM system.

We define a processor’son-chip memory systemas the collection of the fol-

lowing: 1) the memory controller, 2) the structures that generate main memory

requests (e.g., last-level cache and prefetcher structures), 3) the buffer structures

which memory requests go through until they are serviced by the DRAM system,

and 4) the corresponding management policies associated with 1), 2), and 3). If

the on-chip memory system takes into account bank-level parallelism, row buffer

locality, and write-caused interference, DRAM performance and in turn system per-

formance can be significantly improved. However, conventional on-chip memory

systems do not fully consider these DRAM system characteristics and therefore

often do not provide the best system performance. This problem becomes more

significant for Chip MultiProcessor (CMP) systems where theDRAM system is

shared by multiple cores on a chip. Figure 1.1 shows the average system perfor-

mance and DRAM data bus utilization for single, 4, and 8-coresystems. In this

experiment, we used a DDR3 DRAM system [49] and aggressive 4.8 GHz x86

microprocessors1 with and without an aggressive stream prefetcher [77, 73, 36].

We ran the 20 most memory-intensive SPEC CPU 2000/2006 benchmarks on the

1We deliberately chose an aggressive processor frequency toaccount for future technology ad-
vancements. The performance and DRAM bus utilization trends shown here do not change signifi-
cantly with less aggressive frequencies (e.g., 3.2GHz).

2

single-core system. We simulated 30 and 20 pseudo-randomlychosen multipro-

grammed workloads [39] on the 4-core and 8-core CMP systems respectively.2 We

make four observations from Figure 1.1.

First, with no prefetching, as the number of cores increasesDRAM bus

utilization increases. This is because multiple applications run together on different

cores on the chip and generate more memory requests to the DRAM system.

Second, the DRAM data bus is not fully utilized for any of the three sys-

tems even with prefetching. For the single and 4-core systems, when the stream

prefetcher is employed, bus utilization increases and performance improves (by

30.8% and 4.5%) compared to no prefetching. However, there are still a significant

number of idle data bus cycles. One of the main reasons is thatconventional on-chip

memory systems do not fully take advantage of the DRAM system. They some-

times limit the amount of row buffer locality and bank-levelparallelism exploited

by the DRAM controller or do not try to minimize write-causedinterference. Sys-

tem performance can be improved by exploiting or reducing those idle cycles for

useful requests.

Third, even though prefetching increases bus utilization in the 4 and 8-core

systems, the performance improvement is not very significant. In fact, the 8-core

system suffers performance degradation (by 1.3%) comparedto no prefetching even

though more DRAM bandwidth is consumed. This is because the increased mem-

ory request contention due to the increased number of cores is not managed effi-

ciently by conventional memory systems since they do not take into account the

DRAM system’s characteristics and applications’ behaviortogether. For example,

contention between memory requests from applications A andB running together

can cause application B to close a row buffer that was opened by application A.

This results in longer DRAM latency for application A’s later memory access to

the closed row since the closed row must be reopened. Also, memory requests to

different banks from application A that could potentially be serviced in parallel in

2Chapter 9 explains the system configurations and the workloads in detail.

3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
er

f n
or

m
al

iz
ed

 to
 n

o
pr

ef

no pref pref
0.0

0.2

0.4

0.6

0.8

1.0

D
R

A
M

 d
at

a
bu

s
ut

ili
za

tio
n

idle
pref-useless
pref-useful
demand

no pref pref

(a) Single-core processor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
er

f n
or

m
al

iz
ed

 to
 n

o
pr

ef

no pref pref
0.0

0.2

0.4

0.6

0.8

1.0

D
R

A
M

 d
at

a
bu

s
ut

ili
za

tio
n

idle
pref-useless
pref-useful
demand

no pref pref

(b) 4-core chip multiprocessor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
er

f n
or

m
al

iz
ed

 to
 n

o
pr

ef

no pref pref
0.0

0.2

0.4

0.6

0.8

1.0

D
R

A
M

 d
at

a
bu

s
ut

ili
za

tio
n

idle
pref-useless
pref-useful
demand

no pref pref

(c) 8-core chip multiprocessor

Figure 1.1: Performance and DRAM bus utilization for a conventional memory sys-
tem with no prefetching and a stream prefetcher (with the peak DRAM bandwidth
of 12.8, 25.6, 25.6GB/s for single, 4, and 8-core systems respectively)

4

multiple DRAM banks may end up being serviced serially due tointerference from

application B’s memory requests. Both examples can result in poor performance

even though data bus utilization has increased compared to no prefetching.

Finally, a significant number of cycles are spent for uselessprefetch re-

quests (brought from DRAM but not used). Useless prefetchesconsume DRAM

bandwidth without contributing to performance. Even worse, they sometimes even

hurt performance as shown in Figure 1.1(c). Removing useless prefetches results in

more efficient data bus utilization, allowing useful requests to be serviced faster.

We would like to develop a comprehensive on-chip memory system design

that can efficiently exploit or reduce the idle DRAM data bus cycles for high per-

formance. To this end, this dissertation proposes new low-cost on-chip memory

system (i.e., prefetcher, buffer, and cache structures) designs that take into account

DRAM characteristics. The proposed mechanisms significantly improve system

performance by reducing DRAM access latency and increasingDRAM access par-

allelism for useful memory requests for both single-core and chip multiprocessor

systems.

1.2 Thesis Statement

Performance of microprocessors can be improved significantly by taking

into account the main memory system’s characteristics in their on-chip memory

system designs.

1.3 Contributions

This dissertation makes the following contributions.

• This dissertation introduces the notion of main memory (DRAM)-aware de-

sign of a microprocessor’s on-chip memory system. It identifies three ma-

jor DRAM characteristics in state-of-the-art DRAM systemswhich signif-

icantly affect performance: row buffer locality, bank-level parallelism, and

5

write-caused interference. It shows that conventional on-chip memory sys-

tem designs that do not take into account these characteristics result in un-

derutilization of the DRAM system, thereby limiting overall system perfor-

mance. To overcome this problem, this dissertation proposes and evaluates

DRAM characteristic-aware prefetch scheduling/issuing and cache manage-

ment techniques.

• This dissertation identifies problems of the conventional DRAM controller

design in the presence of prefetching. It presents a prefetch-aware DRAM

controller design that aims to maximize row buffer localityonly for demand

and useful prefetch memory requests and to minimize the negative effect of

useless prefetch requests. The proposed technique significantly improves per-

formance by reducing the latency of useful requests and removing useless

prefetches.

• This dissertation shows that conventional request issue policies to resource-

limited on-chip buffers can limit the amount of Bank-Level Parallelism (BLP)

realized by the DRAM controller. This reduces the effectiveness of prefetch-

ing and out-of-order execution. This dissertation presents and analyzes on-

chip request issue policies that aim to maximize DRAM BLP. The evalua-

tions show that the proposed BLP-aware policies significantly increase BLP

and therefore improve system performance.

• This dissertation demonstrates that due to the DRAM characteristics, not all

misses and evictions of the last-level cache incur the same cost. It proposes a

DRAM-aware last-level cache replacement policy that favors the replacement

of low-cost cache lines that will likely take advantage of row buffer locality

and BLP and lines that can reduce write-caused interference. The evaluations

show that the DRAM-aware replacement policy can improve performance by

exploiting all DRAM characteristics.

• This dissertation identifies limitations of our DRAM-awarereplacement pol-

icy that aims to reduce write-caused interference in the DRAM system. It

6

proposes a more aggressive writeback technique for the last-level cache to

further reduce write-caused interference. The proposed writeback mecha-

nism proactively sends writebacks from dirty lines that canbe serviced fast

due to row buffer locality. The results presented in this dissertation show that

this mechanism allows the DRAM controller to service more writes quickly,

thereby resulting in less write-caused interference than our DRAM-aware re-

placement policy.

• This dissertation evaluates the performance and DRAM efficiency of all the

proposed DRAM-aware techniques when employed together. The results

show that the techniques work synergistically and increaseDRAM utilization

significantly. The proposed mechanisms significantly improve performance

on both single-core and chip multiprocessor systems.

1.4 Dissertation Organization

This dissertation is organized into ten chapters. Chapter 2provides back-

ground information on the three DRAM performance-related characteristics based

on the industry standards. Chapter 3 provides an overview offour proposed mecha-

nisms that aim to improve DRAM performance. Chapter 4 discusses related work.

In the following four chapters, we propose and evaluate fourmechanisms. Chap-

ter 5 presents and analyzes a prefetch-aware DRAM controller that tries to maxi-

mize row buffer locality for demand and useful prefetches and minimize the nega-

tive effect of useless prefetches. Chapter 6 proposes and discusses two Bank-Level

Parallelism (BLP)-aware memory request issue policies in order to improve BLP.

Chapter 7 presents and evaluates a DRAM-aware last-level cache replacement pol-

icy that aims to improve all three DRAM characteristics. Chapter 8 proposes and

analyzes a DRAM-aware last-level cache writeback mechanism that can signifi-

cantly reduce write-caused interference. Chapter 9 evaluates and discusses perfor-

mance and DRAM efficiency when all four proposed DRAM-aware mechanisms

are employed together on both single-core and multi-core systems. Chapter 10 con-

7

cludes this dissertation.

8

Chapter 2

Background: DRAM Performance-Related
Characteristics

In this chapter, we provide background on three DRAM characteristics based

on the Double Data Rate 3 (DDR3) SDRAM Joint Electron Device Engineering

Council (JEDEC) standard. We follow the abbreviations of the standard. We refer

readers to the DDR standard documentations and product datasheets [22, 49] for

further detailed information. We accurately model all these performance-related

timing constraints in our DRAM simulation model for our experimental evaluations

of the proposed mechanisms.

2.1 Row Buffer Locality

Each DRAM bank is arranged in rows and columns of DRAM cells. The

size of a row is several Kbytes (1 or 2 Kbytes in each bank per DRAM chip) in

modern DRAM systems. To perform a complete access to a data element, three

steps are required for the DRAM controller. First, aprechargecommand is sent

to precharge the bank’s bitlines. Second, anactivatecommand is sent to open

the source/destination row through the sense amplifier (which we call row buffer

throughout this dissertation) in the bank. Finally, areador write command is sched-

uled to access the appropriate columns from the row data in the row buffer. Every

access can be performed only by reading from or writing to therow buffer. There-

fore, if a subsequent access to the bank is mapped to a different row, these three

steps (i.e., precharge, activate, and read/write) must be performed again. We call

an access to a different row arow conflict. On the other hand, a subsequent access

which is mapped to the same row as the previous row can be performed simply by

9

accessing the appropriate column from the currently open row. We call this access a

row hit. Since a row hit requires only the third of the three steps, its DRAM service

time is much less than that of a row conflict.

Figure 2.1 illustrates exactly how the DRAM system works forthese ac-

cesses. Figure 2.1(a) shows that three reads (A, B, and C) arewaiting in the DRAM

read buffer for DRAM scheduling. Figure 2.1(b) shows the resulting DRAM timing

when these reads are serviced. The DDR3 DRAM’sprefetch bufferenables a burst

mode of up to eight (burst length,BL = 8) by bringing (eight) consecutive columns

from the row buffer to the prefetch buffer.1 Each command (e.g., read, write, or

precharge) takes a DRAM bus cycle and every data transfer is done in burst mode

at twice the rate of the clock (i.e., double data rate, 4 DRAM clock cycles for BL =

8). 2

In this example, all reads are mapped to the same row (Row 1) inBank 0.

Currently Row 5 is open in the row buffer of bank 0. Read A has togo through all

three steps since it is a row conflict. The total service time for Read A is the sum of

the latencies for the three steps (precharge period + Activate-to-read/write delay +

column address strobe latency,tRP + tRCD + CL) as shown in Figure 2.1(b). After

this latency, the data required by Read A is put onto the data bus. Since the burst

length is eight, eight bursts of data are sent to the data bus.The subsequent two

reads can simply access the row opened by Read A. Even though accessing a given

column within a row takes only column address strobe latency(CL), consecutive

row-hit reads are serviced even faster. This is because the DDR3 system allows

row-hit latencies (CLs) to overlap in order to support back-to-back data transfers

among row-hit reads (even among row-hit reads in different banks). Therefore the

effective latency of a row hit can be simply data burst latency from the processor’s

1This is called the8n-bit prefetch architecturein the DDR3 technology, where n is the number
of data pins in a DDR3 DRAM chip. The DRAM prefetch buffer is shared by all sense amplifiers
(i.e., row buffers, each of which is in a bank).

2Throughout this dissertation, we assume that the DRAM system has a DRAM Dual Inline Mem-
ory Module (DIMM) with a 64-bit wide data bus per DRAM channel. Therefore, the data transfer
for a 64-byte cache line can be completed with a burst length of eight.

10

Row
buffer

Bank 1Bank 0
Row 5 Row 3

DRAM

Read A (0, 1): mapped to row 1 in bank 0
Read B (0, 1): mapped to row 1 in bank 0
Read C (0, 1): mapped to row 1 in bank 0

Read A

DRAM read buffer

Read B
Read C

DRAM controller

(a) DRAM state

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

tBL
tBL

tBL

tRP: Precharge period
tRCD: Activate−to−read/write delay in the bank
CL: Read column address strobe (CAS) latency
tBL: Burst length time
tCCD: CAS−to−CAS delay

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���

���
���
���

���
���
���

���
���
���

Activate
(0, 1) (0, 1) (0, 1)

CLtRP tRCD

Command &
address bus

Data bus
Data A Data C

CL
tCCD CL

(0, 1)

tCCD

Precharge 0
Read A Read B Read C

Request service time
in bank 0

Read A: Row conflict Data B

Read B: Row hit
Read C: Row hit

(b) DRAM timing

Figure 2.1: Row conflict and row hit in modern DRAM system

11

point of view. This makes a row-hit request much faster than arow-conflict request

(up to 9 times faster in a DDR3-1600 chip [49]). Note that suchback-to-back data

transfers are supported among row-hit writes as well by overlapping write column

address strobe latencies (CWLs).

Since row hits can be serviced (effectively 3∼ 9 times) faster than row

conflicts, many DRAM controllers prioritize row hits over row conflicts in their

scheduling decisions [92, 66, 48].

2.2 Bank-Level Parallelism

A DRAM chip consists of multiple (4∼ 8) independent banks and accesses

to different banks can be serviced concurrently. Figure 2.2shows the DRAM be-

havior of two row conflict accesses to different banks. Read Ais mapped to Row

1 in Bank 0 and Read B is mapped to Row 1 in Bank 1 as shown in Figure 2.2(a).

Even though they are row conflicts (i.e., the current open rows are different from

the rows they access), their DRAM service times can be significantly overlapped as

shown in Figure 2.2(b). Therefore the effective stall time of the processor for these

two requests is much less than the sum of the two access latencies. Note that if

two row conflicts are mapped to different rows in the same bank, they are serviced

completely serially and the processor experiences the sum of two row-conflict ac-

cesses.3

2.3 Write-Caused Interference

Write-caused interference in DRAM comes from read-to-write, write-to-

read, and write-to-precharge latency penalties. Read-to-write and write-to-read la-

tencies dictate the minimum latencies between a read command and a write com-

mand regardless of what DRAM banks they belong to. In contrast, write-to-precharge

3To be precise, the total service time of two consecutive row conflicts in the same bank is more
than the sum of two row conflict latencies due to other DRAM timing constraints such as the activate-
to-activate command period (tRC) and the activate-to-precharge command period (tRAS).

12

Row
buffer

Bank 1Bank 0
Row 5 Row 3

DRAM

Read A

DRAM read buffer

Read B

Read B (1, 1): mapped to row 1 in bank 1
Read A (0, 1): mapped to row 1 in bank 0

(a) DRAM state

DRAM controller

tBL
tBL

Command &
address bus

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

tRP: Precharge period
tRCD: Activate−to−read/write delay
CL: Read column address strobe (CAS) latency
tBL: Burst length time
tRRD: Activate−to−activate period in different banks

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����������������������
����������������������
����������������������

����������������������
����������������������
����������������������

Precharge 0
Precharge 1

Activate
(0, 1)

Read A
Activate (1, 1)

(0, 1) (1, 1)

CLtRP tRCD

Read B

Data BData A
Data bus

Read A: Row conflict

Read B: Row conflictRequest service time
in bank 0

Request service time

in bank 1
Overlapped DRAM service time

CLtRRD tRCD

(b) DRAM timing

Figure 2.2: DRAM bank-level parallelism

13

specifies the minimum latency between a write burst and a subsequent precharge

command to the same bank. We first describe read-to-write andwrite-to-read laten-

cies.

2.3.1 Read-to-write and write-to-read latencies

Read-to-write latency is the minimum latency from a read data burst to a

write data burst. This latency is required to change the databus I/O pins’ state from

read state to write state. Therefore, during this latency the bus has to be idle. This

latency must be satisfied regardless of whether the read and the write access the

same bank or different banks. In DDR3 DRAM systems, read-to-write latency is

two DRAM clock cycles.

Write-to-read (tWTR) latency is the minimum latency from a write burst

to a subsequent read command. In addition to the time required for the I/O state

change from write to read, this latency also includes the time required to guarantee

that modified data (in the DRAM’s prefetch buffer) can be safely written to the

row buffer (i.e., sense amplifier). A common internal bidirectional bus connects

the prefetch buffer and the row buffers of all DRAM banks. Allread and write

transfers use this bidirectional bus. Therefore, a subsequent read cannot use the

common internal bus to bring data into the prefetch buffer until the current write’s

modified data is completely written back to the corresponding bank’s row buffer.

ThereforetWTR is much larger (e.g.,six DRAM clock cycles for DDR3-1600)

than read-to-write latency and introduces more idle DRAM data bus cycles. Also,

write-to-read latency must be satisfied regardless of whether the write and the read

are to the same bank or different banks.

We demonstrate these penalties using an example in Figure 2.3. Figure 2.3(a)

shows the initial state of the DRAM read/write buffer and therow buffer state of

two banks. Two reads (A and C) and one write (B) are in the read and write buffer

respectively. Read A and Write B are mapped to the currently open row in Bank

0 whereas Read C is mapped to the currently open row in Bank 1. Hence they are

14

Command &
address bus

tBL

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

tBL
tBL

CL + tBL + 2 − CWL

CL: Read column address strobe (CAS) latency
CWL: Write column address strobe (CAS) latency
tBL: Burst length time
tWTR: Write−to−read latency

Row
buffer

Bank 1
Row 5 Row 3
Bank 0

Read A (0, 5): mapped to row 5 in bank 0
Write B (0, 5): mapped to row 5 in bank 0
Read C (1, 3): mapped to row 3 in bank 1

DRAM write buffer

Write B
Read C
Read A

DRAM read buffer

DRAM

DRAM controller

Scheduling order: Read A, Write B, Read C

�
�
�
�

�
�
�
�

(0, 5) (0, 5) (1, 3)
Read A Write B Read C

CL

Data bus
Data C

CL
Read to write latency

tWTRCWL

Data BData A

Data bus idle cycles Data bus idle cycles

(a) DRAM state

(b) DRAM timing

Figure 2.3: Read-to-write and write-to-read latencies

15

all row hits. Let us assume that the underlying DRAM controller schedules these

requests in the order of Read A, Write B, and Read C. Figure 2.3(b) shows the

resulting DRAM timing diagram.

The command for Write B after Read A must be scheduled such that the

read-to-write latency between the corresponding data bursts is satisfied. In order

for the write burst to be on the bus two DRAM cycles after the read burst, the

command for Write B has to be scheduled by the DRAM controllerat leastCL +

tBL + 2− CWL DRAM clock cycles after the read command is scheduled [22].4

Also, Read C after Write B satisfiestWTR (i.e., write-to-read latency). Read C can

only be scheduledtWTR cycles after the data burst for Write B is completed. In

contrast to read-to-write latency, the data bus must be idlefor tWTR + CL cycles

since the subsequent read command cannot be scheduled fortWTR cycles.

Due to read-to-write and write-to-read penalties, switching service between

reads and writes frequently in the DRAM system results in many idle cycles. This

problem can be mitigated by a good write buffer policy as we will discuss in Chap-

ter 8. However a write buffer policy cannot solve the problemcompletely due to

write-to-precharge (or write recovery time,tWR) penalties as we show below.

2.3.2 Write-to-precharge latency

Write-to-precharge latency (write recovery time,tWR) comes into play

when a subsequent precharge command is scheduled to open a different row after

a write to a bank. Write-to-precharge latency specifies the minimum latency from

a write data burst to a precharge command in the same DRAM bank. This latency

is very large (12 DRAM clock cyclesfor DDR3-1600) because the written data in

the DRAM’s prefetch buffer must be written back to the corresponding DRAM row

through the row buffer before precharging the DRAM bank. This needs to be done

4We assume that the additive latency (AL) is zero in this dissertation. If a non-zero AL is consid-
ered, the subsequent write command can be scheduledCL+AL+tCCD +2−(CWL+AL) cycles
after the read command, wheretCCD is the minimum column strobe to column strobe latency). To
maximize bandwidth we set uptBL to eight, thereforetCCD is equal to (tBL) [22].

16

to avoid the loss of modified data.

�
�
�
�
��
��
��
��
�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�

tRCD: Activate−to−read/write latency

tRP: Precharge period

CL: Read column address strobe (CAS) latency
CWL: Write column address strobe (CAS) latency
tBL: Burst length time
tWR: Write Recovery time (write−to−precharge)

�
�
�

�
�
�

CWL BL
tWR

DRAM write buffer

Write A

DRAM read buffer

DRAM

Row
buffer

Bank 1
Row 2 Row 3
Bank 0

Read B (0, 3): mapped to row 3 in bank 0
Write A (0, 2): mapped to row 2 in bank 0

Scheduling order: Write A, Read B

(a) DRAM state

controller
DRAMRead B

Command &
address bus

Data bus
Data A

Data bus idle cycles
Data B

Precharge 0(0, 2) (0, 3)
Activate Read B

(0, 3)

tRP tRCD CL BL

(b) DRAM timing

Write A

Figure 2.4: Write-to-precharge (write recovery time) latency

Figure 2.4 illustrates write-to-precharge penalty in a DRAM bank. Write A

and Read B access different rows in the same bank (Bank 0). Therefore, after Write

A is serviced, a precharge command is required to open the rowfor Read B (i.e., row

conflict). Subsequent to the scheduling of Write A, the precharge command must

wait until write-to-precharge latency is satisfied before it can be scheduled. Note

that this penalty must be satisfied regardless of whether thesubsequent precharge

command is for a read or a write. The resulting data bus idle cycles istWR + tRP +

17

tRCD + CL DRAM clock cycles unless there are other requests that are being read

or written in different banks.

Since the write-to-precharge latency must be satisfied evenfor a precharge

for a subsequent write, row conflicts among writes degrade DRAM throughput for

writes. For example, a write to Row 1 after a write to Row 3 in the same bank must

still satisfy this write-to-precharge penalty before the precharge command for the

write to Row 3 can be scheduled. This problem cannot be solvedby the DRAM

write buffer and its policy. If writes in the write buffer access different rows (row-

conflict writes) in the same bank, the total amount of write-to-precharge penalty

becomes very large. This degrades DRAM throughput for writes and eventually

results in delaying the service of reads, thereby degradingapplication performance.

18

Chapter 3

Overview of the Solutions

The dissertation makes a case for DRAM-aware on-chip memorysystem

design. We propose DRAM characteristic-aware prefetchingand cache manage-

ment mechanisms that aim to maximize DRAM row buffer locality and bank-level

parallelism and to minimize write-caused interference. Wepropose four different

mechanisms, each of which works on a different on-chip memory resource struc-

ture to improve DRAM performance. Figure 3.1 illustrates where our mechanisms

(shown in highlighted areas) would be employed in a conventional microprocessor.

We briefly overview each of these mechanisms as follows.

The first mechanism is a prefetch-aware DRAM controller thattries to min-

imize DRAM access latencies for useful memory requests (demand and accurate

prefetches) by exploiting row buffer locality when prefetching. We make the DRAM

controller(s) prefetch-aware and take advantage of low latencies for row-hit prefetches

when the prefetches are estimated as useful. To minimize thenegative effect of use-

less prefetches, the DRAM controller delays and drops prefetches predicted to be

useless. Chapter 5 analyzes this mechanism.

The second mechanism is DRAM bank-level parallelism-awarememory re-

quest issue policies in on-chip buffer structures that aim to maximize BLP in the

presence of prefetching. They determine the order in which requests are sent from

one on-chip buffer to another buffer so that requests to different banks are eventu-

ally exposed together to the DRAM controller. We discuss a BLP-aware prefetch

issue policy from the prefetch request buffer to the Miss Status/Information Holding

Registers (MSHRs) in order to maximize the BLP of requests (demands and useful

prefetches) exposed to the DRAM controller. We also proposea BLP-preserving

19

Bank 0

DRAM channel M−1

Bank 0

DRAM channel 0

DRAM bus DRAM bus

DRAM system

Chip multi−processor

MSHRs

Prefetcher

Last−level cache

MSHRs

Prefetcher Core N−1Core 0

DRAM controller M−1

Bank K−1Bank K−1

Prefetch−Aware
DRAM Controllers
(Chapter 5)

BLP−Preserving Request
Issue Policy (Chapter 6)

DRAM controller 0

BLP−Aware Prefetch
Issue Policy (Chapter 6)

DRAM−Aware
Replacement (Chapter 7)
& Writeback (Chapter 8)
Policies

Figure 3.1: Overview of proposed DRAM-aware mechanisms

memory request issue policy from the last-level cache to theDRAM controller’s

buffers (DRAM request buffer). This policy tries to make sure that requests from

each core can be serviced together by the DRAM controller without destroying the

BLP of each core in CMP systems. Chapter 6 discusses and evaluates these BLP-

aware issue policies.

The third mechanism is a DRAM-aware last-level cache replacement policy

that tries to improve all three DRAM characteristics. It leverages the fact that a

last-level cache replacement policy can fundamentally change the mixture/property

of outstanding memory requests, which can affect DRAM performance due to the

DRAM characteristics. The DRAM-aware replacement policy favors the eviction of

cache lines that would be refetched in quickly due to row buffer locality or serviced

20

together with other misses in different DRAM banks, when they are refetched. It

also evicts dirty lines that can be written back to DRAM quickly by exploiting row

buffer locality, in order to reduce write-caused interference in the DRAM system.

Since row-hit writes are serviced quickly (back-to-back),the DRAM controller can

resume servicing reads sooner, which in turn improves DRAM performance. We

discuss and analyze the DRAM-aware replacement policy in Chapter 7.

The fourth mechanism is a DRAM-aware last-level cache writeback pol-

icy that aims to further reduce write-caused interference in the DRAM system. In

contrast to the DRAM-aware replacement, it proactively sends writebacks that are

expected to hit in the DRAM row buffers even before a replacement happens. This

significantly reduces write-caused interference because it allows more writes to be

written back faster than the DRAM-aware replacement would.Chapter 8 studies

and analyzes this DRAM-aware writeback policy.

Note that each of the four mechanisms manages a different on-chip mem-

ory system management policy to improve DRAM utilization. Therefore the four

mechanisms are complementary. We evaluate and analyze the combination of all

four mechanisms in Chapter 9.

21

Chapter 4

Related Work

How memory requests are managed in the on-chip memory system(DRAM

controller, buffers, caches, and prefetching) of a processor significantly affects main

memory (DRAM) performance. This chapter discusses studiesthat are relevant

to on-chip memory system designs with respect to DRAM system, memory-level

parallelism, prefetching, and last-level cache management.

4.1 Research in DRAM System Management

4.1.1 DRAM Access Scheduling

A number of DRAM scheduling policies have been proposed. McKee et al.

proposed DRAM scheduling policies that exploit row buffer locality and bank-level

parallelism for streaming applications in a page mode DRAM system [46, 45, 47].

Zuravleff and Robinson patented a DRAM scheduling policy similar to McKee et

al.’s [92]. Carter et al. proposed an off-chip memory controller that aims to reduces

wasteful memory bandwidth consumption by remapping physical addresses [3].

Their mechanism also prefetches data from DRAM into an SRAM buffer in the

memory controller to hide DRAM access latency. Rixner et al.proposed and evalu-

ated DRAM scheduling policies in a stream processor [66]. Zhang and McKee eval-

uated a stride (stream) prefetcher combined with a scheduling policy that reorders

memory requests such that multiple requests can be servicedtogether in different

banks in a Rambus DRAM system [86, 48]. Since then, many otherscheduling

policies have been proposed in single-threaded [18, 68] andmultithreaded [65, 89,

57, 85] systems. In addition, several recent studies [58, 53, 54, 20, 30, 31] proposed

techniques for fairness (quality of service) and/or high performance across different

22

applications sharing the DRAM system. These prior proposals have the following

limitations.

First, some DRAM scheduling policies [46, 45, 47, 92, 66, 57,18, 89,

58, 68, 53, 54, 20, 85, 30, 31] do not consider hardware prefetching. Hardware

prefetching is an important memory latency-tolerance technique already employed

in most commercial processors [77, 17, 80, 68, 34]. It is veryimportant to in-

telligently manage demand and prefetch requests to the DRAMsystem, since the

performance with a prefetcher can significantly differ depending on how the DRAM

controller handles prefetch requests compared to demand requests. In contrast to

these prior prefetch-unaware scheduling policies, the prefetch-aware DRAM con-

troller proposed in Chapter 5 adaptively prioritizes demand and prefetch requests

based on prefetch usefulness to maximize row buffer locality for useful requests

and minimize the negative effect of useless prefetches. Theconcept of adaptive

prefetch handling can be applied to the existing prefetch-unaware DRAM access

scheduling policies.

Second, the DRAM controller proposals that do consider hardware prefetch-

ing take two different approaches to handling prefetch requests. Some propos-

als [42, 18, 19, 73] always prioritize demand requests over prefetch requests. Other

proposals [86, 48, 65, 3] and some commercial processors [76, 28] treat prefetch

requests the same as demand requests. Neither of these approaches works best for

all types of applications. This is because they do not take into account both the

DRAM characteristics and prefetch usefulness for their scheduling decisions. The

prefetch-aware controller outperforms these two rigid prefetch handling policies in

DRAM scheduling, as we show in Chapter 5.

Third, the performance of the DRAM scheduling policies is limited by the

number and composition of requests in the DRAM controller’sbuffers, i.e., the

DRAM request buffers. If requests in the DRAM request buffers are not mapped to

different DRAM banks, bank-level parallelism will be low regardless of the DRAM

scheduling policy. Similarly, if multiple requests that are mapped to the same row

23

are not present in the DRAM request buffer, high row buffer locality cannot be ex-

ploited by a DRAM scheduling policy. The BLP-aware request issue (in Chapter 6),

DRAM-aware last-level cache replacement (in Chapter 7), and DRAM-aware last-

level cache writeback (in Chapter 8) mechanisms send out requests that can expose

more BLP and row buffer locality in the DRAM request buffers.This allows the

underlying DRAM scheduling policy to exploit higher BLP androw buffer locality.

4.1.2 DRAM Write Buffer Management

Some previous proposals [40, 57, 68] discuss DRAM write buffer man-

agement polices to reduce write-caused interference in themain memory system.

Writes in the write buffer are not considered for schedulinguntil the underlying

write buffer policy decides to do so. Lee et al. [40] employeda write buffer man-

agement policy that allows the Rambus DRAM controller to schedule a write when

the data bus is idle. Natarajan et al. [57] discussed different write buffer manage-

ment policies that also opportunistically allow writes to be scheduled in a DDR2

DRAM system when there are no pending reads or when the write buffer is almost

full (i.e., the number of writes is more than a threshold). Their policies also make

sure that a certain number of writes are serviced, even when anew read comes while

servicing the writes. Shao and Davis [68] proposed a DRAM scheduling policy in

a DDR2 system which services writes when there are no reads inthe DRAM read

buffer, when the write buffer is full, or when a write hits thecurrently open row. If

a new read comes into the DRAM request buffer, their mechanism allows the read

to preempt writes that are being serviced.

Even though there are small differences among these write buffer policies,

they are essentially based on the principle that schedulingwrites when the bus is idle

(no pending reads) can reduce the contention between reads and writes. However,

we show in Chapter 8 that this principle is not the best with today’s high-bandwidth

DDR (DDR3) DRAM systems because of their large write-causedlatency penal-

ties. We show that the policy which services all writes present in the write buffer

only when the write buffer becomes full (which we call thedrain whenfull policy)

24

outperforms prior policies. This is because it 1) reduces the frequency of read-to-

write/write-to-read switching, and 2) allows the DRAM controller to better exploit

row buffer locality and bank-level parallelism exposed by more writes. We use

this drainwhen full policy in our baseline memory system. Also, the aggressive

DRAM-aware writeback policy in Chapter 8 further reduces write-caused interfer-

ence by leveraging the benefits of this baseline drainwhen full policy.

4.2 Research in Improving Memory-Level Parallelism

Many memory latency-tolerant techniques exploit Memory-Level Parallelism

(MLP) by increasing the number of outstanding memory requests in the on-chip

memory system [15]. Out-of-order execution [78] and non-blocking caches [33] al-

low generating concurrent memory requests. Prefetching techniques [32, 50, 14, 27,

1, 26] also increase MLP by issuing concurrent memory requests that are predicted

to be used by the program.

Pai and Adve proposed a compiler optimization that generates concurrent

memory requests by reordering memory instructions [60]. Runahead execution [9,

55, 56] issues requests by executing future instructions that are independent of a

long latency load instruction during the stall time of that load instruction. Zhou

and Conte proposed a prefetching technique with the help of value prediction to

generate data dependent misses earlier [88]. Chou et al. analyzed the impact of

various microarchitecture parameters and structures on MLP [6]. Qureshi et al.

proposed a cache replacement policy that favors eviction ofcache lines that could

be serviced together with other misses when they are refetched later [63]. Eyerman

and Eeckhout proposed fetch policies for simultaneous multithreading that prefer

to fetch threads that generate many concurrent misses [12].

All of these studies define MLP as the average number of outstanding mem-

ory requests when there is at least one outstanding request to memory. They implic-

itly assume that the DRAM latency of outstanding requests tomemory will overlap.

However, simply having a large number of outstanding requests does not necessar-

25

ily mean that their DRAM latencies will overlap. Multiple outstanding last-level

cache misses that are all mapped to the same DRAM bank are serviced serially in

the DRAM system. Therefore it is very important to send out multiple requests

that are mapped to different DRAM banks to maximize the benefits of the MLP

enhancement techniques. This is especially important since the total number of out-

standing requests allowed in an on-chip memory system is limited. The Miss Sta-

tus/Information Holding Registers (MSHRs) that keep trackof all outstanding re-

quests are costly to increase in size [79]. Simply filling up resource-limited MSHRs

with many requests that are mapped to only a few DRAM banks canresult in low

BLP. In order to exploit true Memory-Level Parallelism (MLP), an on-chip mem-

ory resource management policy (e.g., buffer and cache policies) should be main

memory (DRAM)-aware so that memory requests to different memory banks can

be sent to the DRAM system at the same time. The BLP-aware request issue pol-

icy proposed in Chapter 6 and the DRAM-aware replacement policy presented in

Chapter 7 aim to achieve this goal.

4.3 Research in Prefetching and Prefetch Handling

4.3.1 Prefetching Algorithms

Prefetching predicts memory access patterns and brings data into a cache

or buffer before the data is needed by the processor. This technique also improves

MLP by increasing the number of memory requests in the on-chip memory system.

Software prefetching [2, 32, 50] tries to prefetch data by inserting prefetch instruc-

tions in the program. This technique is effective for regular memory access patterns.

However it requires compiler support and modification of existing binaries.

Various hardware prefetching techniques have been proposed to capture

runtime memory access pattern without requiring compiler support or modifica-

tion of binaries: e.g., next-line prefetching [14], streamprefetching [27], stride

prefetching [1], and correlation prefetching [5, 26]. A hardware prefetcher can

generate many useless prefetches depending on the running application and exe-

26

cution phases. Useless prefetches can hurt performance, since they also consume

memory system resources (DRAM bandwidth, buffers, and caches) and contend

with demand requests. Also, depending on how the on-chip memory system (e.g.,

buffers and DRAM controller) handles prefetches with respect to demands, system

performance with a prefetcher becomes dramatically different. Our mechanisms

discussed in Chapters 5 and 6 aim to maximize the benefits of useful prefetches and

minimize the negative effect of useless prefetches by taking DRAM characteristics

into account in prefetch handling.

4.3.2 Useless Prefetch Filtering

To reduce useless prefetches, several prefetch filtering mechanisms were

proposed [50, 4, 74, 90, 51].

Charney and Puzak proposed a useless prefetch filtering scheme for an L2

to L1 next sequential cache line prefetcher [4]. Using a confirmation bit per L2

cache line, their scheme does not service prefetch requeststhat have been proven

to be useless in the past. Although this may work for an L2 to L1prefetcher, this

mechanism has high hardware cost for prefetching from memory to the last-level

cache since every cache block in the entire physical memory needs to be tagged.

Mutlu et al. use the L1 cache as a prefetch filter for L2 cache pollution [51].

In their scheme, if a line that was prefetched into the L1 was never used, it would

not be inserted into the L2 cache when it is evicted from the L1. Both of the above

proposals unnecessarily consume memory bandwidth since useless prefetches are

filtered out only after they are serviced by the DRAM system. In contrast, the

prefetch-aware DRAM controller and BLP-aware prefetch issue policy in this dis-

sertation remove useless prefetches before they consume valuable DRAM band-

width.

Mowry et. al. proposed a prefetch dropping mechanism that cancels soft-

ware prefetches when the prefetch issue queue is full to avoid processor stalls [50].

As opposed to dealing with software prefetches, which usually have high accuracy,

27

the prefetch-aware DRAM controller (Chapter 5) and BLP-aware prefetch issue

policy (Chapter 6) deal with hardware prefetch requests based on runtime prefetcher

accuracy. The former cancels useless hardware prefetches at the DRAM controller,

and the latter limits the issue of useless prefetches to the on-chip memory system.

Zhuang and Lee proposed a mechanism that eliminates the prefetch re-

quest for an address if the prefetch request for the same address was useless in the

past [90]. We show in Chapter 5 that this technique removes many useful prefetches

as well as useless prefetches.

4.3.3 Adaptive Prefetching

In addition to the prefetch filtering mechanisms, adaptive prefetch manage-

ment techniques [19, 73, 11] have been proposed to increase the benefits and also

reduce the harm of prefetching. They adjust the aggressiveness of prefetching based

on the contention in the memory system and/or prefetch usefulness information

Hur and Lin designed a probabilistic prefetching techniquewhich adjusts

prefetcher aggressiveness [19]. They schedule prefetch requests to DRAM adap-

tively based on the frequency of DRAM bank conflicts caused byprefetch requests.

However, their scheme always prioritizes demand requests over prefetches.

Srinath et al. show how adjusting the aggressiveness of the prefetcher based

on accuracy, lateness, and cache pollution information canreduce bus traffic with-

out compromising the benefit of prefetching [73].

Ebrahimi et al. discuss how to manage multiple different prefetchers each

of which can prefetch different access patterns [11]. Theirmechanism adjusts the

aggressiveness of each prefetcher depending on its accuracy and timeliness.

These techniques have limitations. First, none of them consider DRAM

characteristics in order to achieve better performance benefits from prefetching. For

example, as we show in this dissertation, 1) useful row-hit prefetches can be ser-

viced significantly faster and 2) prioritizing the issue of prefetches that are mapped

to different DRAM banks can improve DRAM BLP. Second, none discuss how to

28

manage demand and prefetch requests in a CMP’s on-chip shared memory system

for high system performance when multiple applications runon different cores.

More recently, Ebrahimi et al. proposed an adaptive prefetching technique

to maximize system performance in CMP systems [10]. Their mechanism controls

the aggressiveness of the prefetcher on each core based on the prefetch accuracy

of each core and inter-core interference caused by each core’s prefetcher in the

memory system. Even though this mechanism’s decision is based on the contention

between requests from multiple cores in the DRAM system, it does not explicitly

target improving row buffer locality or bank-level parallelism of memory requests.

Therefore, the DRAM-aware mechanisms proposed in this dissertation are orthog-

onal to this proposal. In fact, Ebrahimi et al. show that the prefetch-aware DRAM

controller in Chapter 5 is orthogonal to their mechanism [10].

4.4 Research in Cache Management

4.4.1 Cache Management for Locality

Caches [81] tolerate long memory latency by using small and fast on-chip

storage. Kroft improved cache performance by allowing multiple outstanding cache

misses using Miss Status/Information Holding Registers (MSHRs) in the memory

system [33]. Also, many cache replacement/insertion policies have been proposed

to improve temporal locality in on-chip caches (e.g., [16, 62, 21]).

These cache techniques have limitations. First, the working set size of some

applications is too large to fit even in large on-chip caches.Second, some applica-

tions expose no temporal locality (e.g., streaming applications). Third, a last-level

cache miss still experiences long memory latency.

Furthermore, due to DRAM characteristics, not all last-level cache misses

incur the same memory latency from the processor’s point of view. Some misses

are serviced quickly by exploiting row buffer locality and other misses are serviced

in parallel with misses in different DRAM banks. Therefore,it is very important

29

for cache management techniques to take into account DRAM characteristics for

better performance as we show in this dissertation.

4.4.2 Cost-Aware Cache Management

Jeong and Dubois were the first to propose a replacement policy for a cache

that has two miss costs (local memory access and remote memory access) [23, 24].

Qureshi et. al. showed that an MLP-aware replacement policycan improve

performance by taking into account the level of concurrencyof misses in the on-

chip memory system [63].

Neither of these policies take DRAM characteristics into account in their re-

placement decisions. The MLP-aware policy assumes that misses to the same bank

will be serviced in parallel with other misses. Also, neither considers the cost of

writebacks. Instead, they consider only the future miss cost of a line when making

eviction decisions. This can increase write-caused interference in the DRAM sys-

tem by causing a large number of row-conflict writebacks. In Chapter 7, we show

that the MLP-aware policy does not perform as well as our DRAMcharacteristic-

aware replacement policy.

4.4.3 Writeback Management

Some prior studies propose aggressive early writeback policies which proac-

tively send writebacks of dirty cache lines before they are evicted by a replacement

policy. Some of these proactive policies [40, 75] aim to reduce write-caused in-

terference in the DRAM system. Eager writeback [40] sends a writeback for a

dirty LRU (Least Recently Used) line in a cache set whenever the cache set is ac-

cessed. However, this mechanism is not aware of DRAM characteristics. We show

in Chapter 8 that simply sending writebacks for dirty LRU (Least Recently Used)

cache lines does not reduce write-caused interference.

Virtual write queue [75] performs early writebacks for dirty LRU lines in a

DRAM-aware way similar to our DRAM-aware writeback mechanism. This mech-

30

anism sends writes that can be written back with other writestogether in different

DRAM banks as well as writes that can be written back quickly due to row buffer

locality. However, virtual write queue only considers writebacks for the two least

recently used positions in a cache set, which can limit the number of writes that can

be written quickly. Also, the mechanism is complex and requires communication

between the last-level cache and DRAM controllers. In contrast, the DRAM-aware

writeback mechanism we propose in Chapter 8 generates more writes that can be

written quickly since writebacks for any LRU position can besent out. Our mech-

anism can be implemented at a smaller cost, requiring no communication between

the cache and DRAM controllers.

Other early writeback mechanisms [41, 29, 84] periodicallysend early write-

backs to the next-level cache or DRAM to increase the reliability of on-chip caches

at low cost. Even though our motivation is not to improve reliability but to reduce

write-caused interference, our writeback mechanism can help reduce vulnerability

in the last-level cache since it aggressively sends writebacks just like these early

writeback policies do.

31

Chapter 5

Prefetch Management for Reducing DRAM Latency

In this chapter, we show how to manage demand and prefetch requests in

DRAM controllers in order to reduce DRAM latency by exploiting row buffer lo-

cality.

5.1 Motivation

None of the existing DRAM scheduling policies take into account both the

non-uniform nature of DRAM access latencies and the usefulness of prefetch re-

quests. Existing DRAM scheduling policies take largely twodifferent approaches

as to how to treat prefetch requests with respect to demand requests. Some poli-

cies [86, 48, 65, 76, 28] give prefetch requests the same priority as demand re-

quests. We call this policydemand-prefetch-equal. It is the same as the FR-FCFS

(First Ready-First Come First Serve) policy [66] that prioritizes requests as follows:

1) row-hit requests over all others, 2) older requests over younger requests. This can

significantly delay demand requests and cause performance degradation, especially

when prefetch requests are not accurate. Other policies [26, 42, 18, 72, 73] always

prioritize demand requests over prefetch requests so that data known-to-be-needed

by the program can be serviced earlier. We call this policydemand-first. One

might think that the demand-first policy provides the best performance by elimi-

nating the interference of prefetch requests with demand requests. However, such

a rigid policy does not consider the non-uniform access latency of the DRAM sys-

tem (row-hits vs. row-conflicts). A row-hit prefetch request can be serviced much

more quickly than a row-conflict demand request. Therefore,servicing the row-

hit prefetch request first provides higher DRAM throughput and can sometimes

32

provide better system performance than servicing the row-conflict demand request

first.

Figure 5.1 illustrates why a rigid, non-adaptive prefetch scheduling policy

degrades performance. Consider the example in Figure 5.1(a), which shows three

outstanding memory requests (to the same bank) in the DRAM request buffer. Row

A is currently open in the row buffer of the bank. Two requestsare prefetches (to

addresses X and Z) that access row A while one request is a demand request (to

address Y) that accesses row B.

For Figure 5.1(b), let us assume that the processor needs to load addresses

in the order of Y, X, and Z (i.e., both of the prefetch requestsare useful) and the

computation between each load instruction takes a fixed, small number of cycles

that is significantly smaller than the DRAM access latency. Figure 5.1(b) shows

the service timeline of the requests in DRAM and the resulting execution timeline

of the processor for two different memory scheduling policies,demand-firstand

demand-prefetch-equal. With demand-first (top), the row-conflict demand request

is satisfied first, which causes the prefetch of address X to incur a row-conflict as

well. The subsequent prefetch request to Z is a row-hit because the prefetch of

X opens row A. As a result, the processor first stalls for approximately two row-

conflict latencies (except for a small period of execution).The processor then stalls

for an additional row-hit latency since it requires the datafrom address Z. The total

execution time is the sum of two row-conflict latencies and one row-hit latency plus

a small period of processor execution.

With the demand-prefetch-equal policy (bottom), the row-hit prefetch re-

quests to X and Z are satisfied first followed by the row-conflict demand request

to Y. The processor must stall until the demand request to Y isserviced. However,

after that, the processor only needs to perform the computations between the load

instructions because loads to X and Z hit in the cache. The total execution time is

the sum of one row-conflict latency and two row-hit latencies(plus a small period of

processor execution), which is less than with the demand-first policy. Hence,treat-

33

DRAM
Bank row buffer

Row A opened

DEMAND
FIRST}
DEMAND
PREFETCH
EQUAL}

Miss Y

Processor stall

���
���
���

���
���
���Processor execution (25 cycles)

DEMAND
FIRST

DEMAND
PREFETCH
EQUAL

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

controllerDRAM

(a) DRAM and controller state

DRAM request buffer

Z: Pref row A

X: Pref row A
Y: Dem row B

Y Z

X Z Y

Miss Y

Miss Y Miss X Miss Z

X

Time

Processor

Processor

DRAM

Hit X Hit Z
Cycles saved

Y X Z

X Z Y

Miss Y

Cycles saved

Time

DRAM

Processor

DRAM

Processor

(b) Timeline when prefetches (X and Z) are useful

(c) Timeline when prefetches (X and Z) are useless

Row−hit (100 cycles)

Row−conflict (300 cycles)

DRAM

}

}

Figure 5.1: Example illustrating the performance impact ofdemand-first and
demand-prefetch-equal policies

34

ing prefetches and demands equally can significantly improve performance when

prefetch requests are useful.

However, prefetch requests might not always be useful. Let us assume that

the processor needs to load only address Y but still generates useless prefetches

to addresses X and Z in Figure 5.1(a). Figure 5.1(c) shows theresulting timeline.

With demand-first, the processor stalls for only a single row-conflict latency which

is required to service the demand request to Y. On the other hand, with demand-

prefetch-equal, the processor stalls additional cycles since X and Z are serviced

(even though they are not needed) before Y in the DRAM bank thereby delaying

the useful request to Y. Hence,treating prefetches and demands equally can signif-

icantly degrade performance when prefetch requests are useless.

Figure 5.2 provides supporting data for our observation. This figure shows

the performance impact of an aggressive stream prefetcher [77, 73] when used with

the two different memory scheduling policies for 10 SPEC 2000/2006 benchmarks.

The vertical axis is retired instructions per cycle (IPC) normalized to the IPC on

a processor with no prefetching. The results show thatneither of the two policies

provides the best performance for all applications. For the leftmost five applica-

tions, prioritizing demands over prefetches results in better performance than treat-

ing prefetches and demands equally. In these applications,a large fraction (70% for

demand-prefetch-equal, and 59% for demand-first) of the generated stream prefetch

requests are useless. Therefore, it is important to prioritize demand requests over

prefetches. In fact, forart andmilc, servicing the demand requests with higher

priority is critical to make prefetching effective. Prefetching improves the perfor-

mance of these two applications by 2% and 10% respectively with thedemand-

first scheduling policy, whereas it reduces performance by 14% and 36% with the

demand-prefetch-equalpolicy.

On the other hand, for the rightmost five applications, we observe the exact

opposite behavior. Equally treating demand and prefetch requests provides signifi-

cantly higher performance than prioritizing demands over prefetches. In particular,

35

0.0

0.5

1.0

1.5

2.0

2.5

3.0

IP
C

 n
or

m
al

iz
ed

 to
 n

o
pr

ef
et

ch
in

g

demand-first
demand-prefetch-equal

ga
lge

l

am
m

p

xa
lan

cb
m

k

ar
t

m
ilc

sw
im

lib
qu

an
tu

m

bw
av

es

les
lie

3d

lbm

Figure 5.2: Performance of two rigid prefetch scheduling policies

for libquantum, thedemand-prefetch-equalpolicy allows the prefetcher to provide

169% performance improvement, in contrast to the 60% performance improvement

it provides with thedemand-firstscheduling policy. This is because prefetch re-

quests inlibquantumare very accurate (almost 100% of them are useful). Maxi-

mizing DRAM throughput by preferring row buffer hits in the DRAM system re-

gardless of whether a memory request is a demand or a prefetchrequest allows for

more efficient bandwidth utilization and improves the timeliness (and the cover-

age) of prefetches, thereby improving system performance.These results show that

DRAM scheduling policies with rigid prioritization rules among prefetch and de-

mand requests cannot provide the best performance and may even cause prefetching

to degrade performance.

Note that even though the DRAM scheduling policy has a significant impact

on the performance provided by prefetching, prefetching sometimes degrades per-

formance regardless of the DRAM scheduling policy. For example,galgel, ammp,

andxalancbmksuffer significant performance loss with prefetching because a large

fraction (69%, 94%, and 91%) of the prefetches are not neededby the program. The

negative performance impact of these useless prefetch requests cannot be mitigated

solely by ademand-firstscheduling policy because useless prefetches 1) occupy

36

memory request buffer entries in the memory controller until they are serviced,

2) occupy DRAM bandwidth while they are being serviced, and 3) cause cache

pollution by evicting possibly useful data from the processor caches after they are

serviced. As a result, useless prefetches could delay the servicing of demand re-

quests and could result in additional demand requests. In essence,useless prefetch

requests can deny service to demand requests because the DRAM controller is not

aware of the usefulness of prefetch requests in its DRAM request buffer. To prevent

this, the memory controller should intelligently manage the DRAM request buffer

between prefetch and demand requests.

5.2 Mechanism: Prefetch-Aware DRAM Controller (PADC)

We propose Prefetch-Aware DRAM Controller (PADC) which adaptively

controls the interference between prefetch and demand requests to improve system

performance [37, 36]. PADC aims to maximize the benefits of useful prefetches

and minimize the harm of useless prefetches by taking into account a DRAM char-

acteristic: row buffer locality. PADC consists of two partsas shown in Figure 5.3:

an Adaptive Prefetch Scheduling (APS) unit and an Adaptive Prefetch Dropping

(APD) unit. APS adaptively schedules prefetch and demand requests to increase

DRAM throughput for useful requests. APD cancels useless prefetch requests while

preserving the benefits of useful prefetches. Both APS and APD are driven by the

measurement of the prefetch accuracy of each processing core in a multi-core sys-

tem. Therefore we first explain how prefetch accuracy is measured for each core.

5.2.1 Prefetch Accuracy Estimation

We measure the prefetch accuracy for an application runningon a particular

core over a certain time interval. The accuracy is reset oncethe interval has elapsed

so that the mechanism can adapt to the phase behavior of prefetching. To measure

the prefetch accuracy of each core, the following hardware support is required:

1. Prefetch (P) bit per last-level cache line and memory request buffer entry:

37

Prefetch−Aware
DRAM Controller

Adaptive Prefetch

Adaptive Prefetch

To DRAM

Update

Drop

information

Request

Request

priority Scheduling (APS)

Dropping (APD)

DRAM command & address

Prefetch accuracy from each core

Buffer
DRAM Request

Figure 5.3: Prefetch-Aware DRAM Controller

For memory request buffer entries, this bit indicates whether or not the request was

generated by the prefetcher. It is set when a new memory request is generated by

the prefetcher, and reset when the processor issues a demandrequest to the same

cache line while the prefetch request is still in the memory request buffer. For cache

lines, this bit indicates whether or not a cache line was brought into the cache by

a prefetch request. It is set when the line is filled (only if the prefetch bit of the

request is set) and is reset when a cache hit to the same line occurs.

2. Prefetch Sent Counter (PSC) per core: This counter keeps track of the

total number of prefetch requests sent by a core. It is incremented whenever a

prefetch request is sent to the memory request buffer by the core.

3. Prefetch Used Counter (PUC) per core: This counter keeps track of the

number of prefetches that are useful. It is incremented whena prefetched cache line

is used (cache hit) by a demand request and also when a demand request matches a

prefetch request already in the memory request buffer.

4. Prefetch Accuracy Register (PAR) per core: This registerstores the

prefetch accuracy measured every time interval. PAR is computed by dividing PUC

by PSC.

38

At the end of every time interval, PAR is updated with the prefetch accu-

racy calculated during that interval and PSC and PUC are reset to 0 to calculate

the accuracy for the next interval. The PAR values for each core are fed into the

Prefetch-Aware DRAM Controller which then uses the values to guide its schedul-

ing and memory request buffer management policies.

5.2.2 Adaptive Prefetch Scheduling

Adaptive Prefetch Scheduling (APS) determines the priority of demand/

prefetch requests from a processing core based on the prefetch accuracy estimated

for that core. The basic idea is to 1) treat useful prefetch requests the same as

demand requests so that useful prefetches can be serviced faster by maximizing

DRAM throughput, and 2) give demand requests and useful prefetch requests a

higher priority than useless prefetch requests so that useless prefetch requests do

not interfere with useful requests.

If the prefetch accuracy of a core is greater than or equal to acertain thresh-

old, promotion threshold, all of the prefetch requests from that core are treated

the same as demand requests. We call such prefetch requests and all demand

requestscritical requests. Otherwise, if the prefetch accuracy of a core is less

thanpromotion threshold, then demand requests of that core are prioritized over

prefetch requests. We call such prefetch requestsnon-critical requests.

The essence of our proposal is to prioritize critical requests over non-critical

ones in the memory controller, while preserving DRAM throughput. To accomplish

this, our mechanism prioritizes memory requests in the order shown in Rule 1. Each

prioritization decision in this set of rules is described infurther detail below.

First, critical requests (useful prefetches and demand requests) are priori-

tized over others. This delays the scheduling of non-critical requests, most of which

are likely to be useless prefetches. As a result, useless prefetches are prevented from

interfering with demands and useful prefetches.

Second, row-hit requests are prioritized over others. Thisincreases the

39

Rule 1Adaptive Prefetch Scheduling (APS)
1. Critical request (C): Demand and useful prefetches are prioritized over all
other requests.
2. Row-hit request (RH): Row-hit requests are prioritized over row-conflict
requests.
3. Urgent request (U): Demand requests generated by cores with low prefetch
accuracy are prioritized over other requests.
4. Oldest request (FCFS): Older requests are prioritized over newer ones.

row-buffer locality for demand and useful prefetch requests and maximizes DRAM

throughput as much as possible.

Third, demand requests from cores whose prefetch accuracy is less than

promotion threshold are prioritized. We call these requestsurgent requests. In-

tuitively, this rule tries to boost the demand requests of a core with low prefetch

accuracy over the critical requests of cores with high prefetch accuracy. We do this

for two reasons. First, if a core has high prefetch accuracy,its prefetch requests

will be treated the same as the demand requests of another core with low prefetch

accuracy (due to the critical request prioritization rule). Doing so risks starving

the demand requests of the core with low prefetch accuracy, resulting in a perfor-

mance degradation since a large number of critical requests(demandandprefetch

requests) from the core with high prefetch accuracy can contend with the critical re-

quests (demand requestsonly) from the core with low prefetch accuracy. To avoid

this, we boost the demand requests of the core with low prefetch accuracy. Second,

the performance of a core with low prefetch accuracy is already affected negatively

by useless prefetches. By prioritizing the demand requestsof such cores, we aim

to help the performance of cores that are already losing performance due to poor

prefetcher behavior. We further discuss the effect of prioritizing urgent requests in

Section 5.5.3.4.

Finally, if all else is equal, older requests have priority over younger re-

quests.

40

5.2.3 Adaptive Prefetch Dropping

APS naturally delays (just like the demand-first policy) theDRAM service

of prefetch requests from applications with low prefetch accuracy by making the

prefetch requests non-critical as described in Section 5.2.2. Even though this re-

duces the interference of useless requests with useful requests, it cannot get rid

of all of the negative effects of useless prefetch requests (bandwidth consumption,

cache pollution) because such requests will eventually be serviced. As such, APS

by itself cannot eliminate all of the negative aspects of useless prefetches. Our sec-

ond scheme, Adaptive Prefetch Dropping (APD), aims to overcome this limitation

by proactively removing old prefetch requests from the DRAMrequest buffer if

they have been outstanding for a long period of time. The key insight is that if a

prefetch request is old (i.e., has been outstanding for a long time), it is likely to

be useless and dropping it from the memory request buffer eliminates the negative

effects the useless request might cause in the future. We first describe why old

prefetch requests are likely to be useless based on empirical measurements.

Why are old prefetch requests likely to be useless?Figure 5.4(a) shows

the memory service time (from entry into the DRAM request buffer to entry into

the last-level cache fill buffer) of both useful and useless prefetches formilc using

the demand-first scheduling policy. Note that we show detailed data for onlymilc

but found similar behavior in other applications. The graphis a histogram with nine

latency intervals measured in processor cycles. Each bar indicates the number of

useful/useless prefetch requests whose memory service time was within that inter-

val. 56% of all prefetches have a service time greater than 1600 processor cycles,

and 86% of these prefetches are useless. Useful prefetches tend to have a shorter

service time than useless prefetches (1486 cycles comparedto 2238 cycles on aver-

age formilc). This is because a prefetch request that is waiting in the request buffer

becomes a demand request if the processor sends a demand request for that same

address while the prefetch request is still in the buffer.1 Such useful prefetches that

1A prefetch request that is hit by a demand request in the DRAM request buffer becomes a real
demand request. However, we count it as a useful prefetch throughout this dissertation since it was

41

are hit by demand requests will be serviced earlier by the demand-first prioritiza-

tion policy. Therefore, useful prefetches on average experience a shorter service

time than useless prefetches. This is also true when we applyAPS since it priori-

tizes critical requests over non-critical requests.

Mechanism: The observation that old prefetch requests are likely to be

useless motivates us to remove a prefetch request from the request buffer if the

prefetch is old enough. Our proposal, APD, monitors prefetch requests for each

core and invalidates any prefetch request that has been outstanding in the DRAM

request buffer for longer thandrop threshold cycles. We adjustdrop threshold

based on the prefetch accuracy for each core measured in the previous time interval.

If the prefetch accuracy in the interval is low, our mechanism uses a relatively low

value fordrop threshold so that it can quickly remove useless prefetches from the

request buffer. If the prefetch accuracy is high in the interval, our mechanism uses a

relatively high value fordrop threshold so that it does not prematurely remove use-

ful prefetches from the request buffer. By removing uselessprefetches, APD saves

resources such as request buffer entries, DRAM bandwidth, and cache space, which

can instead be used for critical requests (i.e., demand and useful prefetch requests)

rather than being wasted on useless prefetch requests. Notethat APD interacts pos-

itively with APS since APS naturally delays the service of useless (non-critical)

requests so that the APD unit can completely remove them fromthe memory sys-

tem thereby freeing up request buffer entries and avoiding unnecessary bandwidth

consumption.

Determining drop threshold: Figure 5.4(b) shows the runtime behavior

of the stream prefetcher accuracy formilc, an application that suffers from many

useless prefetches. Prefetch accuracy was measured as described in Section 5.2.1

using an interval of 100K cycles. The figure clearly shows that prefetch accuracy

can have very strong phase behavior. From 150 million to 275 million cycles, the

prefetch accuracy is very low (close to 0%) implying many useless prefetch requests

first requested by the prefetcher rather than the processingcore.

42

0

1

2

3

4

5

M
ill

io
ns

 o
f p

re
fe

tc
he

s

pref-useless
pref-useful

0
- 200

201
- 400

401
- 600

601
- 800

801
- 1000

1001
- 1200

1201
- 1400

1401
- 1600

1601 -

Memory service time (Processor cycles)

(a) Prefetch service time with demand-first policy

0 50 100 150 200 250 300 350 400
Million processor cycles

0
10
20
30
40
50
60
70
80
90

100

P
re

fe
tc

h
ac

cu
ra

cy
 (

%
)

(b) Prefetch accuracy every 100K cycles

Figure 5.4: Example of behavior of prefetches formilc

were generated during this time. Since almost all prefetches are useless during this

period, we would like to be able to quickly drop them. Our mechanism accom-

plishes this using a low value fordrop threshold. On the other hand, we would

wantdrop threshold to be much higher during periods of high prefetch accuracy.

Our evaluation shows that a simple 4-leveldrop threshold adjusted dynamically

can effectively eliminate useless prefetch requests from the memory system while

keeping useful prefetch requests in the DRAM request buffer.

43

5.3 Experimental Methodology

5.3.1 Metrics

We define the metrics used for experimental evaluation in this section.Bus

traffic is the number of cache lines transferred over the bus during the execution of

a workload. It comprises the cache lines brought in from demand, useful prefetch,

and useless prefetch requests. We definePrefetch accuracy (ACC)andcoverage

(COV)as follows:

ACC =
Number of useful prefetches

Number of prefetches sent

COV =
Number of useful prefetches

Number of demand requests + Number of useful prefetches

To evaluate the effect of DRAM throughput improvement on theprocessing

core, we defineinstruction window Stall cycles Per Load instruction (SPL)which

indicates on average how much time the processor spends idlywaiting for DRAM

service.

SPL =
Total number of window stall cycles

Total number of load instructions

To measure CMP system performance, we useIndividual Speedup (IS),

Weighted Speedup (WS)[71], and Harmonic mean of Speedups (HS)[43]. As

shown by Eyerman and Eeckhout [13], WS corresponds to systemthroughput and

HS corresponds to the inverse of job turnaround time. In the equations that fol-

low, N is the number of cores in the CMP system.IPCalone is the IPC measured

when an application runs alone on one core in the CMP system (other cores are

idle) andIPCtogether is the IPC measured when an application runs on one core

while other applications are running on the other cores of the CMP. Unless other-

wise mentioned, we use the demand-first policy to measureIPCalone for all of our

experiments to show the effectiveness of our mechanism on CMP systems.

44

ISi =
IPC

together
i

IPCalone
i

, WS =
N∑

i

IPC
together
i

IPCalone
i

, HS =
N

N∑

i

IPCalone
i

IPC
together
i

5.3.2 System Model

We use an in-house cycle accurate x86 CMP simulator for our evaluation.

Our processor faithfully models port contention, queuing effects, bank conflicts,

and other DDR3 DRAM system constraints. The baseline configuration of each

processing core is shown in Table 5.1. The shared resource configuration for single,

2, 4, and 8-core CMPs is shown in Table 5.2. Note that we evaluate our mechanism

on CMP systems with private on-chip last-level caches (512KB for each core) rather

than a shared cache to easily show and analyze the effect of PADC in the shared

DRAM system by isolating the effect of contention in the DRAMsystem from the

effect of interference in shared caches. We evaluate our mechanism for a shared

last-level cache in Section 5.5.9 as well.

Out of order; 15 stages; decode/retire up to 4 instructions,
Execution core issue/execute up to 8 microinstructions

256-entry reorder buffer; 32-entry load-store queue
Fetch up to 2 branches; 4K-entry BTB; 64K-entry gshare[44],

Front end
64K-entry PAs [83], 64K-entry selector hybrid branch predictor [25]
L1 I and D caches: 32KB, 4-way, 2-cycle, 1 read and 1 write ports;

On-chip caches Unified last-level cache: 512KB (1MB for 1-core), 8-way, 8-bank,
15-cycle, 1 read/write port; 64B line size for all caches
Stream prefetcher with 32 streams, prefetch degree of 4,

Prefetcher
cache line prefetch distance (lookahead) of 64 [77, 73]

Table 5.1: Baseline configuration of each core for PADC

5.3.3 Workloads

We use the SPEC 2000/2006 benchmarks for experimental evaluation. Each

single-threaded benchmark was compiled using ICC (Intel C Compiler) or IFORT

45

On-chip, demand-first FR-FCFS scheduling policy;
1 controller for 1, 2, 4, 8-core CMP (also 2 for 4, 8-core)

DRAM controller
64, 64, 128, 256-entry last-level cache MSHR/DRAM request buffer
for 1, 2, 4, 8-core
DDR3 1333MHz [49], 16B-wide data bus per controller

DRAM and bus Latency: 15-15-15ns (tRP ,tRCD, CL), BL = 4;
8 DRAM banks, 4KB row buffer per bank

Table 5.2: Baseline configuration of shared CMP resources for PADC

(Intel Fortran Compiler) with the -O3 option. We ran each benchmark with the

reference input set for 200 million x86 instructions selected by Pinpoints [61] as a

representative portion of each benchmark.

We classify the benchmarks into three categories: prefetch-insensitive, prefetch-

friendly, and prefetch-unfriendly (class 0, 1, and 2 respectively) based on the perfor-

mance impact the stream prefetcher described in Table 5.1 has on the application. If

MPKI (last-level cache Misses Per 1K Instructions) increases when the prefetcher

is enabled, the benchmark is classified as 2. If MPKI without prefetching is greater

than 10 (indicating memory intensive) and bus traffic increases by more than 75%

when prefetching is enabled the benchmark is also classifiedas 2. Otherwise, if

IPC increases by 5%, the benchmark is classified as 1. Otherwise, it is classified

as 0. Note that memory intensive applications that experience increased IPC and

reduced MPKI (such asmilc) may still be classified as prefetch-unfriendly if bus

traffic increases significantly. The reason for this is that although an increase in bus

traffic may not have much of a performance impact on single core systems, in CMP

systems with shared resources, the additional bus traffic can degrade performance

substantially. The characteristics for a subset of benchmarks with and without a

stream prefetcher are shown in Table 5.3. We evaluate the entire set of 55 SPEC

CPU 2000/2006 benchmarks for single core experiments for our results. To evalu-

ate our mechanism on CMP systems, we formed combinations of multiprogrammed

workloads from the 55 SPEC 2000/2006 benchmarks. We ran 54, 32, and 21 ran-

domly chosen workload combinations (from the 55 SPEC benchmarks) for our 2,

46

4, and 8-core CMP configurations respectively.

No prefetcher Prefetcher with demand-first policy

Benchmark IPC MPKI IPC MPKI RBH(%) ACC(%) COV(%) Class
eon00 2.08 0.01 2.08 0.00 84.93 37.37 52.64 0

swim 00 0.35 27.57 0.62 8.66 42.83 99.95 68.58 1
galgel00 1.42 4.26 1.10 7.56 65.50 30.96 23.94 2

art 00 0.18 89.39 0.18 65.52 91.46 35.88 34.00 2
ammp00 1.70 0.80 1.47 1.70 56.20 5.96 8.03 2

gcc 06 0.55 6.28 0.81 2.23 81.57 32.62 65.37 1
mcf 06 0.13 33.73 0.15 29.70 25.63 31.43 14.75 1
sjeng06 1.57 0.38 1.57 0.38 25.13 1.67 1.11 0

omnetpp06 0.41 10.16 0.44 9.57 61.86 10.50 18.33 2
libquantum06 0.41 13.51 0.65 2.75 81.39 99.98 79.63 1
xalancbmk06 0.80 1.70 0.71 2.12 49.35 8.96 13.26 2

bwaves06 0.59 18.71 1.23 0.37 83.99 99.97 98.00 1
milc 06 0.41 29.33 0.46 20.88 81.13 19.45 28.81 2

cactusADM06 0.71 4.54 0.84 2.21 33.56 45.12 51.47 1
leslie3d06 0.53 20.89 0.86 2.41 77.32 89.72 88.66 1
soplex06 0.35 21.25 0.72 3.61 78.81 80.12 83.08 1

GemsFDTD06 0.44 15.61 0.80 2.02 55.82 90.71 87.12 1
lbm 06 0.46 20.16 0.70 2.93 58.24 94.27 85.45 1

Table 5.3: Characteristics of 18 SPEC benchmarks for PADC: IPC, MPKI (last-
level cache misses per 1K instructions), RBH (Row Buffer Hitrate), ACC (prefetch
accuracy), COV (prefetch coverage), class

5.4 Implementation and Hardware Cost of PADC

An implementation of PADC requires storing additional information in each

DRAM request buffer entry to support the priority and aging information needed

by APS and APD. The required additional information (in terms of the fields added

to each request buffer entry) is shown in Figure 5.5.

The C (as prefetch bit), RH, and FCFS fields are already used inthe baseline

demand-first FR-FCFS policy to indicate prefetch status (i.e., demand or prefetch),

row-hit status, and arrival time of the request. Therefore the only additional fields

are U, P, ID, and AGE, which indicate the urgency, prefetch status, core ID, and age

of the request. Each DRAM cycle, the priority encoder logic of APS chooses the

highest priority request using the priority fields (C, RH, U,and FCFS) in the order

47

shown in Figure 5.5.

The APD unit removes a prefetch request from the DRAM requestbuffer if

the request is older than thedrop threshold of the core that generated the request.

It does not remove a prefetch request (which is not scheduledfor DRAM service)

until it ensures that the prefetch cannot be matched by a demand request. This is

accomplished by invalidating the MSHR entry of the prefetchrequest before actu-

ally dropping it. The APD unit knows if a request is a prefetchand also which core

it belongs to from the P and ID fields. The AGE field of each request entry keeps

track of the age of the request. APD compares the AGE of the request to the corre-

sponding core’sdrop threshold and removes the request accordingly. Note that the

estimation of the age of a request does not need to be highly accurate. For example,

the AGE field is incremented every 100 processor cycles for our evaluation.

The hardware storage cost required for our implementation of the PADC is

shown in Table 5.4. Note that the storage cost for PADC linearly increases with the

number of cores, request buffer entries, and cache lines. The storage cost for our 4-

core CMP system described in Section 5.3.2 is only 34,720 bits (∼4.25KB) which

is equivalent to only 0.2% of the last-level cache data storage in our baseline 4-core

CMP. Note that the Prefetch bit (P) per cache line accounts for over 4KB of storage

by itself (∼95% of the total required storage). Many previous proposals[14, 69, 90,

91, 73] already use a prefetch bit for each cache line. If a processor already employs

prefetch bits in its cache, the total additional storage cost of our prefetch-aware

DRAM controller is only 1,824 bits (∼228B). Note that the overhead of prefetch

UC RH

*Critical (1 bit)

*Row−hit (1 bit)

Urgent (1 bit)

FCFS

*FCFS

P

Prefetch (1 bit)

Core ID (log (N) bits)2

AGEID

AGE (10 bits)

N: Number of cores
*Already used in demand−first

Priority for APS Information for APD

Figure 5.5: DRAM request field for PADC

48

bits can also be reduced by using set sampling [63], i.e. associating prefetch bits

with only a selected number of sets.

Bit field Cost equation (bits) Cost (bits)

P (1 bit) Ncache ×Ncore + Nreq 32,896
Prefetch PSC (16 bits) Ncore × 16 64
accuracy PUC (16 bits) Ncore × 16 64

PAR (8 bits) Ncore × 8 32
APS U (1 bit) Nreq 128

ID (log2Ncore bits) Nreq × log2Ncore 256
APD AGE (10 bits) Nreq × 10 1,280

Total storage cost for the 4-core system in Section 5.3.2 34,720
Total storage cost as a fraction of the last-level cache capacity 0.2%

Table 5.4: Hardware storage cost of PADC:Ncache: number of cache lines per core
Ncore: number of cores,Nreq: number of DRAM request buffer entries)

For the evaluation of our PADC, we use a prefetch accuracy value of 85%

for promotion threshold (for APS) and a dynamic threshold shown in Table 5.5

for drop threshold (for APD). The accuracy is calculated every 100K cycles.

Prefetch accuracy (%) 0 - 10 10 - 30 30 - 70 70 - 100
drop threshold (processor cycles) 100 1,500 50,000 100,000

Table 5.5: Dynamicdrop threshold values for Adaptive Prefetch Dropping based
on prefetch accuracy

5.5 Experimental Evaluation and Analysis on PADC

We first evaluate PADC on single, 2, 4, and 8-core systems. Section 5.5.5

analyzes PADC’s fairness and discusses additional techniques to improve CMP sys-

tem fairness. Sections 5.5.6 through 5.5.14 analyze the effect of PADC on sys-

tems with different configurations and characteristics such as multiple DRAM con-

trollers, different row buffer policies, different types of prefetchers, prefetch filter-

ing, and runahead execution. This analysis shows that PADC is a general mecha-

nism that is effective for a variety of systems and that it is orthogonal to previously

49

proposed prefetching and prefetch filtering techniques.

5.5.1 Single-Core Results

Figure 5.6 shows the performance of PADC on a single-core system. IPC is

normalized to the baseline which employs the demand-first scheduling policy. We

show the performance of only 15 individual benchmarks. The rightmost bars show

the average performance of all 55 SPEC CPU 2000/2006 benchmarks (gmean55).

As discussed earlier, neither of the rigid scheduling policies (demand-first, demand-

prefetch-equal) provides the best performance across all applications. Demand-first

performs better for most prefetch-unfriendly benchmarks (class 2) such asgalgel,

art andammpwhile demand-prefetch-equal does better for most prefetch-friendly

ones (class 1) such asswim, libquantumand lbm. Averaged over all 55 SPEC

benchmarks, the demand-prefetch-equal policy outperforms demand-first by 0.5%

since there are more benchmarks (29 out of 55) that belong to class 1.

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 IP
C

no-pref
demand-first
demand-pref-equal
aps-only
apd-only
aps-apd (PADC)

sw
im

ga
lge

l
ar

t
am

m
p

gc
c

m
cf

lib
qu

an
tu

m

om
ne

tp
p

xa
lan

cb
m

k

bw
av

es

m
ilc

ca
ctu

sA
DM

les
lie

3d

so
ple

x
lbm

gm
ea

n5
5

Figure 5.6: Performance of PADC on single-core system: Normalized IPC for 15
benchmarks and average for all 55 (gmean55)

Adaptive Prefetch Scheduling (APS), shown in the fourth barfrom the left,

effectively adapts to the behavior of the prefetcher. In most benchmarks, APS pro-

vides at least as good performance as the best rigid prefetchscheduling policy. As

a result, APS improves performance by 3.6% over all 55 benchmarks compared

to the baseline. APS (and demand-prefetch-equal) improvesperformance over

50

demand-first for many prefetch friendly applications such as libquantum, bwaves,

and leslie3d. This is due to two reasons. First, APS increases DRAM throughput

in these applications because it treats demands and prefetches equally most of the

time. Doing so improves the timeliness of the prefetcher because prefetch requests

do not get delayed behind demand requests. Second, improvedDRAM throughput

reduces the probability of the DRAM request buffer being full. As a result, more

prefetches are able to enter the request buffer. This improves the coverage of the

prefetcher as more useful prefetch requests get a chance to be issued. For example,

APS improves the prefetch coverage from 80%, 98%, and 89% to 100%, 100%, and

92% for libquantum, bwaves, andleslie3drespectively (as shown in Figure 5.8).

On the other hand, even though APS is able to provide the performance of

the best rigid prefetch scheduling policy for each application, it is unable to over-

come the performance loss due to prefetching in some prefetch-unfriendly appli-

cations such asgalgel, ammpandxalancbmk. The prefetcher generates many use-

less prefetches in these benchmarks that a simple DRAM scheduling policy cannot

eliminate.

When adaptive prefetch dropping (APD) is employed with demand-first

(APD-only), it improves performance for prefetch-unfriendly applications by elim-

inating many useless prefetches. This is also true when APD is employed with APS

(i.e., PADC). Using APD recovers part of the performance loss due to prefetching

in galgel, ammp, andxalancbmkbecause it eliminates 54%, 76%, and 54% of the

useless prefetch requests respectively as shown in Figure 5.8. As a result, using both

of our proposed mechanisms (APD in conjunction with APS) provides 4.3% per-

formance improvement over the baseline for all 55 SPEC 2000/2006 benchmarks.

Note that for 17 most memory intensive SPEC benchmarks, PADCimproves per-

formance by 11.8% (not shown in the figure).

Figure 5.7 provides insight into the performance improvement of the pro-

posed mechanisms by showing the effect of each mechanism on the stall time ex-

perienced per load instruction (SPL). Our PADC reduces SPL by 5.0% compared

51

to the baseline. By providing better DRAM scheduling and eliminating useless

prefetches, PADC reduces the amount of time the processor stalls for each load

instruction and allows the processor to make faster progress. As a result, PADC

significantly improves performance.

0

2

4

6

8

10

12

14

16

18

20

22

S
P

L
(C

yc
le

s/
lo

ad
)

no-pref
demand-first
demand-pref-equal
aps-only
apd-only
aps-apd (PADC)

sw
im

ga
lge

l
ar

t
am

m
p

gc
c

m
cf

lib
qu

an
tu

m

om
ne

tp
p

xa
lan

cb
m

k

bw
av

es

m
ilc

ca
ctu

sA
DM

les
lie

3d

so
ple

x
lbm

am
ea

n5
5

Figure 5.7: Stall time per load (SPL) of PADC on single-core system

Figure 5.8 breaks down the bus traffic into three categories:useful prefetches,

useless prefetches, and demand requests. PADC reduces bus traffic by 10.4% across

all benchmarks (amean55) as shown. Reduction in bus traffic is mainly due to APD

which significantly reduces the number of useless prefetches. For many bench-

marks, APS by itself provides the same bandwidth consumption provided by the

best rigid policy for each benchmark. We conclude that our prefetch-aware DRAM

controller is very effective at improving both performanceand bandwidth-efficiency

in the single-core system.

Note that simply turning off prefetching for prefetch-unfriendly applications

may lose opportunity to improve performance. This is true for prefetch-unfriendly

applications that have 1) significant phase changes, 2) someaccurate prefetches in-

terleaved with inaccurate prefetches. For such benchmarks, prefetching hurts per-

formance in some phases but increases performance significantly in others. If the

prefetcher is turned off, the performance benefits of usefulprefetch phases and use-

ful prefetch requests will be lost. In fact, due to this phasebehavior,art andmilc

do not benefit much from prefetching unless adaptive prefetch management is used.

52

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

B
us

 tr
af

fic
 (

M
ill

io
n

ca
ch

e
lin

es
)

pref-useless
pref-useful
demand

 a
rt

m
cf_

06

m
ilc

0

1

2

3

4

5

6

7

pref-useless
pref-useful
demand

no-pref
demand-first

demand-pref-equal
aps-only

apd-only
aps-apd (PADC)

sw
im

ga
lge

l

am
m

p

gc
c_

06

lib
qu

an
tu

m

om
ne

tp
p

xa
lan

cb
m

k

bw
av

es

ca
ctu

sA
DM

les
lie

3d

so
ple

x
lbm

am
ea

n5
5

Figure 5.8: Bus traffic of PADC on single-core system

Figure 5.6 shows that PADC improves performance significantly for art andmilc

(compared to no prefetching) since it is able to adapt to different phases and elimi-

nate useless prefetches while keeping useful prefetches.

5.5.1.1 Adaptive Behavior of PADC

We analyze the adaptive runtime behavior of PADC in this section. APS

prioritizes demands over prefetches (i.e., demand-first) when the estimated prefetch

accuracy is less thanpromotion threshold. It treats demands and prefetches equally

(i.e., demand-prefetch-equal) when prefetch accuracy is greater than or equal to

promotion threshold. PADC continuously changes the DRAM scheduling mode

(between demand-first and demand-prefetch-equal) for the application based on the

prefetch accuracy estimated every interval.

Figure 5.9 shows the fraction of time APS and PADC spend in each of the

two scheduling modes for the single-core system. APS and PADC spend a majority

of their execution time in demand-prefetch-equal mode for prefetch-friendly appli-

cations but spend most of their execution time in demand-first mode for prefetch-

unfriendly applications. Therefore, APS and PADC provide at least as good perfor-

mance as the best rigid prefetch scheduling policy in most applications, as shown

in Figure 5.6.

53

0

10

20

30

40

50

60

70

80

90

100

F
ra

ct
io

n
of

 e
xe

cu
tio

n
tim

e
(%

)

demand-pref-equal-mode
demand-first-mode

sw
im

ga
lge

l
ar

t
am

m
p

gc
c_

06

m
cf_

06

lib
qu

an
tu

m

om
ne

tp
p

xa
lan

cb
m

k

bw
av

es

m
ilc

ca
ctu

sA
DM

les
lie

3d

so
ple

x
lbm

aps-only aps-apd (PADC)

Figure 5.9: Fraction of execution time in different PADC scheduling modes on
single-core system

5.5.1.2 Effect of PADC on Row Buffer Hit Rate

Recall that the demand-prefetch-equal policy prioritizesrow-hit requests re-

gardless of whether a request is a prefetch or demand. If we consider all demand and

prefetch requests (regardless of whether or not a prefetch is useful) for the entire

run of an application, the demand-prefetch-equal policy will result in the highest

row buffer hit rate (RBH) and therefore the lowest average DRAM access latency

among all considered policies. However, this does not mean that this policy per-

forms best since prefetches are NOT always useful as discussed in Section 5.5.1.

When prefetching is enabled, we need a better metric to show how a mechanism

reduces effective memory latency. Hereby, we define row buffer hit rate for useful

(demand and useful prefetch) requests (RBHU) as follows:

RBHU =
Number of row-hit demands + Number of useful row-hit prefetches

Number of demands + Number of useful prefetches

The demand-prefetch-equal policy will still show the highest RBHU since

RBHU is also maximized by prioritizing row-hit requests. However, a good DRAM

scheduling mechanism should keep its RBHU close to demand-prefetch-equal’s

RBHU because it should aim to maximize DRAM bandwidth for useful requests.

54

Table 5.6 shows RBHU values for 13 benchmarks on the single-core processor with

no prefetching, demand-first, demand-prefetch-equal, APS, and PADC. The RBHU

of APS is very close to that of demand-prefetch-equal and significantly better than

the RBHU of demand-first since APS successfully exploits rowbuffer locality for

useful requests.

Employing APD with APS (i.e., PADC) slightly reduces RBHU for some

applications such asgalgel, ammp, mcf, omnetpp, xalancbmk, andsoplex. This is

because adaptive prefetch dropping cancels some useful prefetches as shown in Fig-

ure 5.8, thereby reducing the fraction of useful row buffer hits. Nonetheless, APD

improves overall performance for these applications sinceit reduces the contention

between demands and prefetches by eliminating a significantnumber of useless

prefetches as discussed in Section 5.5.1.

Benchmark swim galgel art ammp mcf 06 libquantum omnetpp

no-pref 0.18 0.51 0.94 0.40 0.12 0.86 0.47
demand-first 0.44 0.58 0.94 0.48 0.19 0.86 0.56

demand-pref-equal 0.50 0.58 0.96 0.50 0.23 0.98 0.59
aps 0.50 0.58 0.94 0.48 0.19 0.98 0.56

aps-apd (PADC) 0.50 0.56 0.94 0.44 0.18 0.98 0.54

Benchmark xalancbmk bwaves milc leslie3d soplex lbm amean55

no-pref 0.23 0.76 0.85 0.71 0.81 0.53 0.55
demand-first 0.27 0.87 0.88 0.81 0.87 0.64 0.63

demand-pref-equal 0.28 0.89 0.90 0.91 0.93 0.92 0.68
aps 0.27 0.89 0.88 0.90 0.91 0.90 0.66

aps-apd (PADC) 0.25 0.89 0.88 0.90 0.90 0.90 0.65

Table 5.6: Row buffer hit rate of PADC for useful requests

5.5.2 2-Core Results

We briefly discuss only the average performance and bus traffic for the 54

workloads on the 2-core system. Figure 5.10 shows that PADC improves both per-

formance metrics (weighted speedup and harmonic mean of speedups) by 8.4%,

and 6.4% respectively compared to the demand-first policy and also reduces mem-

ory bus traffic by 10.0%. Thus, the proposed mechanism is effective for dual-core

55

systems. We do not discuss these results further since dual-core processors are no

longer the state-of-the-art in multi-core systems. We extensively analyze PADC on

4-core systems in the next sections.

0.0

0.5

1.0

1.5

2.0

V
al

ue
 o

f m
et

ric

WS HS
(a) System performance

0

1

2

3

4

5

6

7

8

9

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

no-pref
demand-first
demand-pref-equal
aps-only
aps-apd (PADC)

(b) Average traffic

Figure 5.10: Performance of PADC on 2-core system

5.5.3 4-Core Results

We ran 32 different workloads to evaluate the effectivenessof PADC on the

4-core system. In the following sections, we discuss three case studies in detail to

provide insights into the behavior of the Prefetch-Aware DRAM Controller on a

CMP system.

5.5.3.1 Case Study I: All Prefetch-Friendly Applications

Our first case study examines the behavior of our proposed mechanisms

when four prefetch-friendly applications (swim, bwaves, leslie3d, andsoplex) run

together on the 4-core system. Figure 5.11(a) shows the speedup of each application

and Figure 5.11(b) shows system performance.

In addition, Figure 5.12 provides insight into the performance changes by

showing how each mechanism affects stall-time per load as well as memory bus

traffic. Several observations are in order:

First, since all four applications show very high prefetch accuracy/coverage

56

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
pe

ed
up

 o
ve

r
si

ng
le

 r
un no-pref

demand-first
demand-pref-equal
aps-only
aps-apd (PADC)

swim bwaves leslie3d soplex

(a) Individual speedup

0.0

0.5

1.0

1.5

2.0

V
al

ue
 o

f m
et

ric

WS HS

(b) System performance

Figure 5.11: Performance of PADC for prefetch-friendly 4-core workload

0

5

10

15

20

S
P

L
(C

yc
le

s/
lo

ad
)

no-pref
demand-first
demand-pref-equal
aps-only
aps-apd (PADC)

swim bwaves leslie3d soplex

(a) SPL

0

1

2

3

4

5

6

7

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

pref-useless
pref-useful
demand

swim bwaves leslie3d soplex

no-pref
demand-first

demand-pref-equal
aps-onlyaps-apd (PADC)

(b) Bus traffic breakdown

0

2

4

6

8

10

12

14

16

18

20

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

(c) Total traffic

Figure 5.12: SPL and bus traffic of PADC for prefetch-friendly 4-core workload

57

(i.e., prefetch-friendly) as shown in Figure 5.12(b), prefetching provides significant

performance improvement in all applications regardless ofthe DRAM scheduling

policy. In addition, the demand-prefetch-equal policy significantly outperforms the

demand-first policy (by 28% in terms of weighted speedup) because prefetches are

very accurate in all four applications. The demand-prefetch-equal policy reduces

stall-time per load as shown in Figure 5.12(a) because it improves DRAM through-

put.

Second, PADC outperforms both of the rigid prefetch scheduling policies

improving weighted speedup by 31.3% over the baseline demand-first policy. This

is because it 1) successfully prioritizes critical (useful) requests over others thereby

reducing SPL, and 2) drops useless prefetches inleslie3dandsoplexthereby re-

ducing their negative effects on all applications. Consequently, PADC also im-

proves prefetch coverage from 56% to 73% as shown in Figure 5.12(c). This is

because it improves DRAM throughput and reduces contentionfor memory system

resources by dropping useless prefetches fromleslie3dandsoplexallowing more

useful prefetches to enter the memory system.

Finally, the bandwidth savings provided by PADC is relatively small (0.9%

compared to the baseline demand-first) because these applications do not generate

a large number of useless prefetch requests. However, thereis still a non-negligible

reduction in bus traffic due to the effective dropping of useless prefetches inleslie3d

andsoplex. We conclude that the Prefetch-Aware DRAM Controller can provide

system performance (WS and HS) and bandwidth-efficiency improvements even

when all applications benefit significantly from prefetching.

5.5.3.2 Case Study II: All Prefetch-Unfriendly Applications

The second case study examines the behavior of our proposed mechanisms

when four prefetch-unfriendly applications (art, galgel, ammp, andmilc) run to-

gether on the 4-core system. Since the prefetcher is very inaccurate for all ap-

plications, prefetching degrades performance regardlessof the scheduling policy.

58

However, as shown in Figure 5.13, the demand-first policy andAPS provide bet-

ter performance than the demand-prefetch-equal policy by prioritizing demand re-

quests over prefetch requests which are more than likely to be useless. Employ-

ing adaptive prefetch dropping drastically reduces the useless prefetches in all four

applications as shown in Figure 5.14(b) and therefore freesup memory system re-

sources to be used by demands and useful prefetch requests. The effect of this can

be seen by the reduced SPL as shown in Figure 5.14(a) for all applications. As a

result, our PADC performs better than either rigid prefetchscheduling policy forall

considered applications.

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ed
up

 o
ve

r
si

ng
le

 r
un no-pref

demand-first
demand-pref-equal
aps-only
aps-apd (PADC)

art galgel ammp milc

(a) Individual speedup

0.0

0.5

1.0

1.5

2.0

2.5

V
al

ue
 o

f m
et

ric

WS HS

(b) System performance

Figure 5.13: Performance of PADC for prefetch-unfriendly 4-core workload

PADC improves system performance by 17.7% (weighted speedup) and

21.5% (harmonic mean of speedups), while reducing bandwidth consumption by

9.1% over the baseline demand-first scheduler as shown in Figure 5.14(c). By

largely reducing the negative effects of useless prefetches both in scheduling and

memory system buffers/resources, PADC almost eliminates the system performance

loss observed in this prefetch-unfriendly mix of applications. Weighted speedup is

within 2% and harmonic mean of speedups is within 1% of those obtained with

no prefetching. We conclude that the Prefetch-Aware DRAM Controller can ef-

fectively eliminate the negative performance impact caused by inaccurate prefetch-

ing by intelligently managing the scheduling and buffer management of prefetch

requests even in workload mixes where prefetching performsinefficiently for all

applications.

59

0

5

10

15

20

25

30

35

40

45

S
P

L
(C

yc
le

s/
lo

ad
)

no-pref
demand-first
demand-pref-equal
aps-only
aps-apd (PADC)

art galgel ammp milc

(a) SPL

0

5

10

15

20

25

30

35

40

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

art milc

no-pref

demand-first

demand-pref-equal

aps-only

aps-apd
(PADC)

0

1

2

3

4

5

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s) pref-useless
pref-useful
demand

galgel ammp

(b) Bus traffic breakdown

0

5

10

15

20

25

30

35

40

45

50

55

60

65

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

(c) Total traffic

Figure 5.14: SPL and bus traffic of PADC for prefetch-unfriendly 4-core workload

5.5.3.3 Case Study III: Mix of Prefetch-Friendly and Prefetch-Unfriendly
Applications

Our final case study examines the behavior of PADC when two prefetch-

friendly (libquantumandGemsFDTD) and two prefetch-unfriendly (omnetppand

galgel) applications are run together on the 4-core system. Figures 5.15 and 5.16

show performance, SPL, and bus traffic.

The prefetches forlibquantumandGemsFDTDare very beneficial. There-

fore demand-prefetch-equal significantly improves weighted speedup. However,

the prefetcher generates many useless prefetches foromnetppandgalgelas shown

in Figure 5.16(b). These useless prefetches temporarily deny service to critical re-

quests (demands and useful prefetches) from the two other cores. Because APD

eliminates a large portion (67% and 57%) of all useless prefetches inomnetppand

galgel, it frees up both request buffer entries and bandwidth in thememory sys-

tem. These freed up resources are utilized efficiently by thecritical requests of

60

0.0

0.2

0.4

0.6

0.8

1.0

S
pe

ed
up

 o
ve

r
si

ng
le

 r
un no-pref

demand-first
demand-pref-equal
aps-only
aps-apd (PADC)

omnetpp libquantum galgel GemsFDTD

(a) Individual speedup

0.0

0.5

1.0

1.5

2.0

2.5

V
al

ue
 o

f m
et

ric

WS HS

(b) System performance

Figure 5.15: Performance of PADC for mixed 4-core workload

0

5

10

15

20

25

30

35

40

S
P

L
(C

yc
le

s/
lo

ad
) no-pref

demand-first
demand-pref-equal
aps-only
aps-apd (PADC)

omnetpp libquantum galgel GemsFDTD

(a) SPL

0

1

2

3

4

5

6

7

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

pref-useless
pref-useful
demand

omnetpp libquantum galgel GemsFDTD

no-pref

demand-first

demand-pref-equal

aps-only
aps-apd (PADC)

(b) Bus traffic breakdown

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

(c) Total traffic

Figure 5.16: SPL and bus traffic of PADC for mixed 4-core workload

61

libquantumandGemsFDTDthereby significantly improving their individual perfor-

mance while slightly reducingomnetppandgalgel’s individual performance. Since

it eliminates a large number of useless prefetches, PADC reduces total bandwidth

consumption by 14.5% over the baseline demand-first policy.We conclude that

PADC can effectively prevent the denial of service caused bythe useless prefetches

of prefetch-unfriendly applications on the useful requests of other applications.

5.5.3.4 Effect of Prioritizing Urgent Requests

In this section, we discuss the effectiveness of prioritizing urgent requests

using the application mix in case study III. We say that a multi-core system isfair

if each application experiences the same individual speedup when multiple appli-

cations run together on the system. To indicate the degree ofunfairness, we define

Unfairness (UF)[13] as follows:

UF =
MAX(IS0, IS1, ... , ISn−1)

MIN(IS0, IS1, ... , ISn−1)
, N : Number of Cores

Table 5.7 shows individual speedup, unfairness, weighted speedup, and har-

monic mean of speedups for the workload from case study III for five policies:

demand-first, versions of APS and PADC that do not use the concept of “urgent

requests,” and regular APS and PADC (with “urgent requests”). If the concept of

“urgent requests” is not used, demand requests from the prefetch-unfriendly ap-

plications (omnetppand galgel) unfairly starve because a large number of criti-

cal requests from the prefetch-friendly applications (libquantumandGemsFDTD)

are given the same priority as those demand requests. This starvation, combined

with the negative effects of useless prefetches, leads to unacceptably low individual

speedups for these applications resulting in high unfairness. When urgency is used

to prioritize requests, this unfairness is significantly mitigated as shown in Table 5.7.

In addition, harmonic mean of speedups (i.e., average job turnaround time) signifi-

cantly improves at the cost of very little weighted speedup (i.e., system throughput)

62

degradation. However, we found that for most workloads (30 out of the 32), prior-

itizing urgent requests improves weighted speedup as well.This trend holds true

for most workload mixes that consist of prefetch-friendly and prefetch-unfriendly

applications. On average (not shown in the table), prioritizing urgent requests im-

proves UF, HS, and WS by 13.7%, 8.8%, and 3.8% respectively compared to PADC

with no concept of urgency for the 32 4-core workloads. We conclude that incor-

porating the concept of urgency into PADC significantly improves system fairness

while keeping system performance high.

Individual speedup
omnetpp libquantum galgel GemsFDTD

UF WS HS

demand-first 0.40 0.42 0.68 0.41 1.69 1.92 0.46
aps-no-urgent 0.26 0.68 0.47 0.61 2.57 2.02 0.44

aps 0.43 0.41 0.72 0.46 1.73 2.02 0.48
aps-apd-no-urgent 0.21 0.94 0.42 0.70 4.55 2.26 0.41
aps-apd (PADC) 0.35 0.65 0.64 0.59 1.84 2.23 0.52

Table 5.7: Effect of prioritizing urgent requests in PADC

5.5.3.5 Effect on Identical-Application Workloads

It is common that commercial servers frequently run multiple instances of

identical applications. In this section, we evaluate the effectiveness of PADC when

the 4-core system runs four identical applications together. Since APS prioritizes

memory requests and APD drops useless prefetches (both based on the estimated

prefetch accuracy), PADC should evenly improve individualspeedup of each in-

stance of the identical applications running together. In other words, all instances

of the application are likely to show the same behavior and the same adaptive deci-

sion should be made for every interval.

Table 5.8 shows the system performance of PADC when four instances

of libquantumrun together on the 4-core system. Becauselibquantum is very

prefetch-friendly and most prefetches are row-hits, the demand-prefetch-equal pol-

icy performs very well by achieving almost the same speedup for all four instances.

APS and PADC perform similarly to demand-prefetch-equal (improving weighted

63

speedup by 18.2% compared to demand-first) since they successfully treat demands

and prefetches equally for all four instances.

Individual speedup
libquantum libquantum libquantum libquantum

WS HS UF

no-pref 0.60 0.60 0.60 0.59 2.40 0.60 1.01
demand-first 0.69 0.67 0.65 0.64 2.66 0.66 1.08

demand-pref-equal 0.80 0.79 0.78 0.77 3.14 0.78 1.05
aps 0.80 0.79 0.78 0.77 3.14 0.79 1.04

aps-apd (PADC) 0.80 0.79 0.78 0.77 3.14 0.79 1.04

Table 5.8: Effect of PADC on four identical prefetch-friendly applications

Table 5.9 shows the system performance of PADC when four instances of a

prefetch-unfriendly application,milc, run together on the 4-core system. Because

the prefetches generated for each instance are useless for most of the execution time

of milc, demand-first and APS outperform demand-pref-equal for each instance.

Incorporating APD into APS (i.e., PADC) further improves individual speedup of

all instances equally by reducing useless prefetches from each instance. As a result,

PADC significantly improves all system performance metrics. In fact, using PADC

allows the system to gain significant performance improvement from prefetching

whereas using a rigid prefetch scheduling policy results ina large performance

loss due to prefetching. To conclude, PADC is also very effective when multiple

identical applications run together on a CMP system.

Individual speedup
milc milc milc milc

WS HS UF

no-pref 0.53 0.53 0.53 0.53 2.11 0.53 1.00
demand-first 0.52 0.51 0.50 0.46 1.99 0.50 1.13

demand-pref-equal 0.36 0.36 0.36 0.36 1.45 0.36 1.01
aps 0.52 0.51 0.50 0.46 1.99 0.50 1.14

aps-apd (PADC) 0.59 0.58 0.58 0.58 2.33 0.58 1.02

Table 5.9: Effect of PADC on four identical prefetch-unfriendly applications

64

5.5.3.6 Overall Performance

Figure 5.17 shows the average system performance and bus traffic for the

32 workloads run on the 4-core system. PADC provides the bestperformance and

lowest bandwidth consumption compared to all previous prefetch handling policies.

It improves weighted speedup and harmonic mean of speedups by 8.2% and 4.1%

respectively compared to the demand-first policy and reduces bus traffic by 10.1%

over demand-first (the best-performing rigid policy).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

V
al

ue
 o

f m
et

ric

WS HS
(a) System performance

0

1

2

3

4

5

6

7

8

9

10

11

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

no-pref
demand-first
demand-pref-equal
aps-only
aps-apd (PADC)

(b) Average traffic

Figure 5.17: Performance of PADC on 4-core system

We found that PADC outperforms both the demand-first and demand-prefetch-

equal policies for all but one workload we examined. The worst performing work-

load is the combination ofvpr, gamess, dealII, andcalculix. PADC’s WS degrada-

tion is only 1.2% compared to the demand-first policy. These applications are either

insensitive to prefetching (class 0) or not memory intensive (vpr).

5.5.4 8-Core Results

Figure 5.18 shows average performance and bus traffic over the 21 work-

loads we simulated on the 8-core system. Note that the rigid prefetch scheduling

policies actually cause stream prefetching to degrade performance in the 8-core

system. The demand-first policy reduces performance by 1.2%and the demand-

prefetch-equal policy by 3.0% compared to no prefetching. DRAM bandwidth be-

comes a lot more valuable with the increased number of cores because the cores put

65

more pressure on the memory system. At any given time there isa much larger num-

ber of demand and useful/useless prefetch requests in the DRAM request buffer. As

a result, it becomes more likely that 1) a useless prefetch delays a demand or use-

ful prefetch (if demand-prefetch-equal policy is used), and 2) DRAM throughput

degrades if a demand request causes significant reduction inthe row-buffer locality

of prefetch requests (if demand-first policy is used). Hence, performance degrades

with a rigid scheduling policy.

0.0

1.0

2.0

3.0

4.0

5.0

V
al

ue
 o

f m
et

ric

WS HS
(a) System performance

0

2

4

6

8

10

12

14

16

18

20

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

no-pref
demand-first
demand-pref-equal
aps-only
aps-apd (PADC)

(b) Average traffic

Figure 5.18: Performance of PADC on 8-core system

For the very same reasons, PADC becomes more effective when the number

of cores increases. As resource contention becomes higher,the performance bene-

fit of intelligent prioritization and dropping of useless prefetch requests increases.

Our PADC improves overall system performance (WS) by 9.9% and also reduces

memory bandwidth consumption by 9.4% compared to demand-first on the 8-core

system. We conclude that the benefits of PADC will continue toincrease as off-chip

memory bandwidth becomes a larger performance bottleneck in future systems with

many cores.

5.5.5 Optimizing PADC for Fairness Improvement in CMP Systems: Incor-
porating Request Ranking

PADC can be better tuned and optimized for the requirements of CMP sys-

tems. One major issue in designing memory controllers for CMP systems is the

66

need to ensure fair access to memory by different cores [58, 53, 54]. So far we have

considered PADC only as a way to improve overall system performance. However,

to be more effective in CMP systems, PADC can be augmented with a mechanism

that provides fairness to different cores’ requests. To achieve this purpose, this

section describes a new scheduling algorithm that incorporates a request ranking

scheme into our Adaptive Prefetch Scheduling (APS) mechanism.

Recall that APS prioritizes urgent requests (demand requests from cores

whose prefetch accuracy is low) over others to mitigate performance degradation

and unfairness for prefetch-unfriendly applications. However, APS follows the

FCFS policy if all other priorities (i.e., criticality, row-hit, urgency) are the same.

This FCFS rule can degrade fairness and system performance by prioritizing re-

quests of memory intensive applications over those of memory non-intensive appli-

cations as was shown in previous work [58, 53, 54]. This happens because delay-

ing the requests of memory non-intensive applications results in a lower individual

speedup (or a higher slowdown) for those applications than it would for memory

intensive applications which already suffer from long DRAMservice time. There-

fore, PADC (and APS) itself cannot completely solve the unfairness problem. This

is especially true in cases where all of the applications behave the same in terms of

prefetch friendliness (either all are prefetch-friendly or all are prefetch-unfriendly).

In such cases, PADC will likely degenerate into the FCFS policy frequently (since

the criticality, row-hit, and urgency priorities would be equal) resulting in high un-

fairness and performance degradation. For example, in casestudy II discussed in

Section 5.5.3.2, all the applications are prefetch-unfriendly. Therefore, PADC pri-

oritizes demands over prefetches most of the time. PADC mitigates performance

degradation by prioritizing demand requests and dropping useless prefetches. How-

ever,art is very memory intensive and continuously generates many demand re-

quests. These demand requests significantly interfere withother applications’ de-

mand requests resulting in high slowdowns for the other applications. However,art

experiences the least slowdown thereby creating unfairness in the system as shown

in Figure 5.13.

67

To take into account fairness in PADC, we incorporate the concept of rank-

ing, as employed by Mutlu and Moscibroda [54]. Our ranking scheme is based on

theshortest job firstprinciple [70] which can better mitigate the unfairness problem

and performance degradation caused by the FCFS rule. For each application, the

DRAM controller keeps track of the total number of critical (demand and useful

prefetch) requests in the DRAM request buffer. Applications with fewer outstand-

ing critical requests are given a higher rank. The insight isthat if an application that

has fewer critical requests is delayed, the impact of that delay on that application’s

slowdown is much higher than the impact of delaying an application with a large

number of critical requests. In other words, it is more unfair to delay an application

that has a small number of useful requests (i.e., a “shorter”application/job) than

delaying an application that has a large number of useful requests (i.e., a “longer”

application/job). To achieve this while still being prefetch-aware, the DRAM con-

troller schedules memory requests based on the modified ruleshown in Rule 2. A

highly-ranked request is scheduled by the DRAM controller when all requests in the

DRAM request buffer have the same priority for criticality,row-hit, and urgency.

Rule 2Adaptive prefetch scheduling with ranking
1. Critical request (C): Critical requests are prioritized over all other requests.
2. Row-hit request (RH): Row-hit requests are prioritized over row-conflict
requests.
3. Urgent request (U): Demand requests generated by cores with low prefetch
accuracy are prioritized over other requests.
4. Highest rank request (RANK): Critical requests from a higher-ranked core
are prioritized over critical requests from a lower-rankedcore. Critical requests
from cores that have fewer outstanding critical requests are ranked higher.
5. Oldest request (FCFS): Older requests are prioritized over younger requests.

To implement ranking the priority field for each memory request is aug-

mented as shown in Figure 5.19. A counter per core is requiredto keep track of the

total number of critical requests in the DRAM request buffer. When the estimated

prefetch accuracy of a core is greater thanpromotion threshold, the total num-

ber of outstanding demand and prefetch requests (critical requests) for that core is

counted. When the accuracy is less than the threshold, the counter stores only the

68

number of outstanding demand requests. Cores are ranked according to the total

number of critical requests they have in the DRAM request buffer: a core that has a

larger number of critical requests is ranked lower. The RANKfield of a request is

the same as the rank value of the core determined in this manner. As such, the crit-

ical requests of a core with a lower value in its counter are prioritized. This process

is done every DRAM bus cycle in our implementation. Alternatively, determination

of the ranking can be done periodically since it does not needto be highly accurate

and is not on the critical path.

UC RH RANK FCFS

Priority for APS

IDP

Information for APD

AGE

Rank (log (N) bits)2 N: Number of cores

Figure 5.19: DRAM request fields for PADC with ranking

Note that in this study we do not rank non-critical requests (i.e., prefetch

requests from cores whose prefetch accuracy is low). The RANK field of these

requests is automatically set to 0 (the lowest rank value). We evaluated a mechanism

that also ranks non-critical requests based on estimated prefetch accuracy and found

that this mechanism does not perform better than the mechanism that ranks only

critical requests.

Figure 5.20 shows the average system performance, bus traffic, and unfair-

ness when we incorporate the ranking mechanism into PADC forthe 32 4-core

workloads. On average, the ranking mechanism slightly degrades weighted speedup

(by 0.4%) and slightly improves harmonic mean of speedups (by 0.9%) and keeps

bandwidth consumption about the same compared to the original PADC. Unfair-

ness is improved from 1.63 to 1.53. The performance improvement is not signif-

icant because the contention in the memory system is not veryhigh in the 4-core

system. Nonetheless, the ranking scheme improves all the system performance and

unfairness metrics for most workloads with memory intensive benchmarks. For the

69

workload in case study II, the ranking scheme improves WS, HS, and UF by 7.5%,

10.3%, and 15.1% compared to PADC without ranking.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

V
al

ue
 o

f m
et

ric

WS HS
(a) Performance

0

1

2

3

4

5

6

7

8

9

10

11

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

no-pref
demand-first
PADC
PADC-rank

(b) Average traffic

0.0

0.5

1.0

1.5

2.0

U
nf

ai
rn

es
s

demand-first
PADC
PADC-rank

(c) Unfairness

Figure 5.20: Optimized PADC with ranking on 4-core system

We also evaluate the optimized PADC scheme with ranking on the 8-core

system which places significantly more pressure on the DRAM system. As shown

in Figure 5.21, the ranking mechanism improves WS and HS by 2.0% and 5.4%

respectively and reduces unfairness by 10.4% compared to PADC without ranking.

The effectiveness of the ranking scheme is much higher in the8-core system than

the 4-core system since it is more critical to schedule memory requests fairly in

many-core bandwidth-limited systems. Improving fairnessreduces starvation of

some cores resulting in improved utilization of the cores inthe system, which in

turn results in improved system performance. Since starvation is more likely when

the memory system is shared between eight cores rather than four, the performance

improvement obtained with the ranking scheme is higher in the 8-core system.

We conclude that augmenting PADC with an intelligent fairness mechanism

improves both unfairness and system performance.

5.5.6 Effect on Multiple DRAM Controllers

We also evaluate the performance impact of PADC when two DRAMcon-

trollers are employed in the 4 and 8-core systems. Each memory controller works

70

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

V
al

ue
 o

f m
et

ric

WS HS
(a) Performance

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

no-pref
demand-first
PADC
PADC-rank

(b) Average traffic

0.0

0.5

1.0

1.5

2.0

2.5

3.0

U
nf

ai
rn

es
s

demand-first
PADC
PADC-rank

(c) Unfairness

Figure 5.21: Optimized PADC using ranking mechanism on 8-core system

independently through a dedicated channel (address, control, and data buses) dou-

bling the peak memory bandwidth. Because there is more bandwidth available

in the system, contention between prefetch and demand requests is significantly

reduced. Therefore, the baseline system performance is significantly improved

compared to the single controller. Adding one more DRAM controller improves

weighted speedup by 16.9% and 30.9% compared to the single controller for 4 and

8-core systems respectively.

Figures 5.22 and 5.23 show the average performance and bus traffic for 4

and 8-core systems with two memory controllers. Note that for the 8-core system,

unlike the single memory controller configuration shown in Figure 5.18(a) where

adding a prefetcher actually degrades performance, performance increases when

adding a prefetcher even for the rigid scheduling policies because of the increased

memory bandwidth.

PADC is still very effective with two memory controllers andimproves

weighted speedup by 5.9% and 5.5% and also reduces bandwidthconsumption

by 12.9% and 13.2% compared to the demand-first policy for 4 and 8-core sys-

tems respectively. Therefore, we conclude that PADC still performs effectively on

a multi-core processor with very high DRAM bandwidth.

71

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

V
al

ue
 o

f m
et

ric
WS HS

(a) System performance

0

1

2

3

4

5

6

7

8

9

10

11

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

no-pref
demand-first
demand-pref-equal
aps-only
aps-apd (PADC)

(b) Average traffic

Figure 5.22: Performance of PADC on 4-core system with two DRAM controllers

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

V
al

ue
 o

f m
et

ric

WS HS
(a) System performance

0

2

4

6

8

10

12

14

16

18

20

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

no-pref
demand-first
demand-pref-equal
aps-only
aps-apd (PADC)

(b) Average traffic

Figure 5.23: Performance of PADC on 8-core system with two DRAM controllers

5.5.7 Effect with Different DRAM Row Buffer Sizes

As motivated in Section 5.1, PADC takes advantage of and relies on the row

buffer locality of demand and prefetch requests generated at runtime. To determine

the sensitivity of PADC to row buffer size, we varied the sizeof the row buffer from

2KB to 128KB for the 32 workloads run on the 4-core system. Figure 5.24 shows

the WS improvements of PADC and APS compared to no prefetching, demand-first,

and demand-prefetch-equal.

PADC consistently outperforms no prefetching, demand-first, and demand-

prefetch-equal with various row buffer sizes. Note that thedemand-first policy starts

degrading performance compared to no prefetching as the rowbuffer becomes very

72

2.0

3.0

4.0

W
ei

gh
te

d
sp

ee
du

p
(W

S
)

no-pref
demand-first
demand-pref-equal
aps
aps-apd (PADC)

2KB 4KB 8KB 16KB 32KB 64KB 128KB

Figure 5.24: Effect of PADC with various DRAM row buffer sizes on 4-core system

large (64KB and 128KB). This is because preserving row buffer locality for use-

ful requests is more critical when the row buffer size is large (especially when the

stream prefetcher is enabled). No prefetching with larger row buffer sizes exploits

row buffer locality more (higher row-hit rate) than smallerrow buffer sizes. How-

ever, with demand-first, the negative performance impact offrequent re-activations

of DRAM rows for demand and prefetch requests becomes significantly worse at

larger row buffer sizes. Therefore, the demand-first policyexperiences a higher

memory service time on average than no prefetching with large row buffer sizes.

Similarly, the demand-prefetch-equal policy does not improve performance

compared to no prefetching for 64KB and 128KB row buffer sizes since it does

not take into account the usefulness of prefetches. With a large row buffer, useless

prefetches have higher row buffer locality because many of them hit in the row

buffer due to the streaming nature of the prefetcher. As a result, demand-prefetch-

equal significantly delays the service of demand requests atlarge row buffer sizes

by servicing more useless row-hit prefetches first.

In contrast to these two rigid scheduling policies, PADC tries to service only

useful row-hit memory requests first, thereby significantlyimproving performance

even for large row buffer sizes (8.8% and 7.3% compared to no prefetching for

64KB and 128KB row buffers). Therefore, PADC can make a prefetcher viable and

effective even when a large row buffer size is used because ittakes advantage of the

increased row buffer locality opportunity provided by a larger row bufferonly for

73

useful requests instead of wasting the increased amount of bandwidth enabled by a

larger row buffer on useless prefetch requests.

5.5.8 Effect with a Closed-Row DRAM Row Buffer Policy

So far we have assumed that the DRAM controller employs the open-row

policy (i.e., it keeps the accessed row open in the row bufferafter the access even

if there are no more outstanding requests requiring the row). In this section, we

evaluate the effectiveness of PADC with a closed-row policy. The closed-row pol-

icy closes (by issuing a precharge command) the currently-opened row when all

row-hit requests in the DRAM request buffer have been serviced by the DRAM

controller. This policy can hide effective precharge time by 1) overlapping the

precharge latency with the row-access latency [22, 49] and 2) issuing the precharge

command (closing a row buffer) earlier than the open-row policy. Therefore, if

no more requests to the same row arrive at the DRAM request buffer after a row

buffer is closed by a precharge command, the closed-row policy can outperform the

open-row policy. This is because with the closed-row policy, the later requests do

not need a precharge before activating the different row. However, if a request to

the same row arrives at the DRAM request buffer soon after therow is closed, this

policy has to pay a penalty (the sum of the non-overlapped precharge latency and

the activation latency) which would not have been required for the open-row policy.

Consequently, for applications that have high row buffer locality (i.e., applications

that generate bursty row-hit requests) such as streaming/striding applications, the

open-row policy outperforms the closed-row policy by reducing re-activations of

the same rows that will be needed again in the near future.

Since the closed-row policy still services row-hit requests first until no more

requests to the same row remain in the DRAM request buffer, itcan increase DRAM

throughput within the scope of the requests that are outstanding in the DRAM re-

quest buffer. Therefore, when a prefetcher is enabled with the closed-row policy, the

same problem exists as for the open-row policy: none of the rigid prefetch schedul-

ing policies can achieve the best performance for all applications since they are not

74

aware of prefetch usefulness. Therefore PADC can still workeffectively with the

closed-row policy.

Figure 5.25 shows the performance and bus traffic when PADC isused

with the closed-row policy for the 32 4-core workloads. The closed-row policy

with demand-first scheduling slightly degrades performance by 0.5% compared

to the open-row policy with demand-first scheduling. This isbecause there is a

large number of streaming/striding (and prefetch-friendly) applications in the SPEC

2000/2006 benchmarks whose performance can be significantly improved with the

open-row policy. The performance improvement of the open-row policy is not very

significant because there is also a large number of applications that work well with

the closed-row policy as they do not have high row buffer locality.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
ei

gh
te

d
sp

ee
du

p
(W

S
)

(a) System performance

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

demand-first
demand-first-closed-row
demand-pref-equal-closed-row
aps-closed-row
PADC-closed-row
PADC

(b) Average traffic

Figure 5.25: Effect of PADC on closed-row scheduling policy

The results show that PADC is still effective with the closed-row policy

since it still effectively exploits row buffer locality (within the scope of the requests

outstanding in the DRAM request buffer) and reduces the negative effects of use-

less prefetch requests. PADC improves weighted speedup by 7.6% and reduces

bandwidth consumption by 10.9% compared to demand-first scheduling with the

closed-row policy. Note that PADC with the open-row policy slightly outperforms

PADC with the closed-row by 1.1% for weighted speedup. Overall, we conclude

that PADC is suitable for different row buffer management policies but it is more

75

effective with the open-row policy due to the existence of a larger number of bench-

marks with high row buffer locality.

5.5.9 Effect with a Shared Last-Level Cache

Throughout this chapter, we evaluate our mechanism on CMP systems with

private on-chip last-level caches rather than a shared cache where all cores share

a large on-chip last-level cache. This allowed us to easily show and analyze the

effect of PADC in the shared DRAM system by isolating the effect of contention

in the DRAM system from the effect of interference in shared caches. However,

many commercial processors already employ shared last-level caches in their CMP

designs [77, 80]. In this section, we evaluate the performance of PADC in on-chip

shared last-level caches on the 4 and 8-core systems to show the effectiveness of

PADC in systems with a shared last-level cache.

For this experiment, we use a shared last-level cache whose size is equiva-

lent to the sum of all the private last-level cache sizes in our baseline system. We

scaled the associativity of the shared cache with the numberof cores on the chip

since as the number of cores increases, the contention for a cache set increases.

Therefore the 4-core system employs a 2MB, 16 way set-associative cache and the

8-core system has a 4MB, 32 way set-associative cache. We selected 32 way set-

associativity for the 8-core system in order to show how the mechanism works with

a very aggressive last-level cache. If the associativity isless, our mechanism per-

forms even better. We also assume that each core employs its own independent

stream prefetcher that monitors the core’s demand accessesand sends prefetched

data into the shared last-level cache. Note that our mechanism can also work for

a single prefetcher which monitors all cores’ accesses and generates prefetches for

all cores [77, 80] by simply associating core ID bits with each prefetch request,

signifying which core generated the prefetch request. Thisway, PADC can update

the appropriate per-core counters to estimate prefetch accuracy of each core.

Figures 5.26 and 5.27 show weighted speedup and average bus traffic on the

76

4 and 8-core systems with shared last-level caches. PADC outperforms demand-

first by 8.0% and 7.6% on the 4 and 8-core systems respectively. We conclude that

PADC works efficiently for shared last-level caches as well.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

W
ei

gh
te

d
sp

ee
du

p
(W

S
)

(a) System performance

0

1

2

3

4

5

6

7

8

9

10

11

12

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

no-pref
demand-first
demand-pref-equal
aps-only
aps-apd (PADC)

(b) Average traffic

Figure 5.26: Effect of PADC on shared last-level cache on 4-core system

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

W
ei

gh
te

d
sp

ee
du

p
(W

S
)

(a) System performance

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

no-pref
demand-first
demand-pref-equal
aps-only
aps-apd (PADC)

(b) Average traffic

Figure 5.27: Effect of PADC on shared last-level cache on 8-core system

Note that the demand-prefetch-equal policy does not work well on either of

the shared cache systems (degrading WS by 2.4% and 10.4% compared to demand-

first for 4 and 8-core systems). This is because the contention in the shared cache

among the requests from different cores significantly increases compared to that

of a private cache system. With private caches, useless prefetches from one core

can only replace useful lines of that same core. However, with a shared cache,

useless prefetches from one core can also replace the usefullines of all the other

77

cores. These replaced lines must be brought back into the cache again from DRAM

when they are needed. Therefore, the total bandwidth consumption significantly in-

creases. This cache contention among cores becomes especially worse with demand-

prefetch-equal for prefetch-unfriendly applications. This is because the demand-

prefetch-equal policy results in high cache pollution since it blindly prefers to in-

crease DRAM throughput without considering the usefulnessof prefetches. The

demand-prefetch-equal policy increases bus traffic by 22.3% and 46.3% compared

to demand-first for the 4 and 8-core systems as shown in Figures 5.26(b) and 5.27(b).

In contrast, PADC delays the service of useless prefetches and also drops them

thereby mitigating contention in both the shared cache and the shared DRAM sys-

tem.

5.5.10 Effect with Different Last-Level Cache Sizes

PADC aims to maximize DRAM throughput for useful memory (demand

and useful prefetch) requests and to delay and drop useless memory requests. One

might think that a prefetch/demand management technique such as PADC would

not be needed for larger last-level caches since a larger cache can reduce cache

misses (i.e., memory requests). However, a prefetcher can still generate a significant

number of useful prefetch requests for some applications orprogram phases by

correctly predicting demand access patterns which cannot be stored even in large

caches due to the large working set size or streaming nature of the program. In

addition, the prefetcher can issue a significant number of useless prefetches for

other applications or program phases. For these reasons, the interference between

demands and prefetches still exists in systems with large caches. Therefore, we

hypothesize PADC is likely to be effective in systems with large last-level caches.

To test this hypothesis, we evaluate the effectiveness of PADC for various

last-level cache sizes. We vary the private last-level cache size from 512KB to 8MB

per core and the shared cache size from 2MB to 32MB (other cache parameters are

as described in Section 5.5.9) on our 4-core CMP system. Figure 5.28 shows the

system performance (weighted speedup) for the 32 4-core workloads.

78

As expected, baseline system performance improves with larger cache sizes.

However, the stream prefetcher still effectively improvesperformance compared to

no prefetching with either the demand-first or the demand-prefetch-equal policy. In

addition, PADC consistently and significantly improves performance compared to

both demand-first and demand-prefetch-equal policies for both private and shared

caches, regardless of cache size. This is mainly because even with large caches

there is still a significant number of both useful and uselessprefetches generated.

Therefore, the interference between prefetch and demand requests still needs to be

intelligently controlled.

2.0

3.0

4.0

W
ei

gh
te

d
sp

ee
du

p
(W

S
)

no-pref
demand-first
demand-pref-equal
aps
aps-apd (PADC)

512KB 1MB 2MB 4MB 8MB
(a) Private last-level caches per core

2.0

3.0

4.0

W
ei

gh
te

d
sp

ee
du

p
(W

S
) no-pref

demand-first
demand-pref-equal
aps
aps-apd (PADC)

2MB 4MB 8MB 16MB 32MB
(b) Shared last-level cache

Figure 5.28: Effect of PADC on various cache sizes on 4-core system

There are two other notable observations from Figure 5.28: 1) the demand-

pref-equal policy starts outperforming the demand-first policy for private caches

greater than 1MB (8MB for the shared cache), and 2) the performance of APS

79

(without APD) becomes closer to that of PADC (APS and APD together) as the

cache size becomes larger. These trends hold for both private and shared last-level

caches.

Both observations can be explained by two reasons. First, a larger cache

reduces irregular (or hard-to-prefetch) conflict cache misses due to the increased

cache capacity. This makes the prefetcher more accurate because it reduces the

allocations of stream entries for hard-to-prefetch accesspatterns (note that only a

demand cache miss allocates a stream prefetch entry). Second, a larger cache can

tolerate some degree of cache pollution. Due to the increased cache capacity, the

probability of replacing a demand or useful prefetch line with a useless prefetch in

the cache is reduced.

For these reasons, the effect of deprioritizing or droppinglikely-useless

prefetches becomes less significant with a larger cache. As aresult, as cache size in-

creases, techniques that prioritize demands (e.g., demand-first) and drop prefetches

(APD) start becoming less effective. However, the interference between prefetch

and demand requests is not completely eliminated since someapplications still suf-

fer from useless prefetches. PADC (and APS) is effective in reducing this interfer-

ence in systems with large caches and therefore still performs significantly better

than the rigid scheduling policies.

Note that PADC is cost-effective for both private and sharedlast-level caches.

For instance, PADC with a 512KB private last-level cache percore performs almost

the same as demand-first with a 2MB private last-level cache per core as shown in

Figure 5.28(a). Thus, PADC (which requires only 4.25KB storage) achieves the

equivalent performance improvement that an additional 6MB(1.5MB× 4 cores) of

cache storage would provide in the 4-core system.

5.5.11 Effect on Other Prefetching Mechanisms

To show that the benefits of PADC are orthogonal to the prefetching algo-

rithm employed, we briefly evaluate the effect of our PADC on different types of

80

prefetchers: PC-based stride [1], CZone Delta Correlation(C/DC) [59], and the

Markov prefetcher [26]. Figure 5.29 shows the performance and bus traffic results

averaged over all 32 workloads run on the 4-core system with the three different

prefetchers. PADC consistently improves performance and reduces bandwidth con-

sumption compared to the demand-first or demand-prefetch-equal policies with all

three prefetchers.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
ei

gh
te

d
sp

ee
du

p
(W

S
)

Stride

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
C/DC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

no-pref
demand-first
demand-pref-equal
PADC

Markov

(a) Performance

0

1

2

3

4

5

6

7

8

9

10

11

12

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

Stride

0

1

2

3

4

5

6

7

8

9

10

11

12
C/DC

0

1

2

3

4

5

6

7

8

9

10

11

12

no-pref
demand-first
demand-pref-equal
PADC

Markov

(b) Traffic

Figure 5.29: PADC on stride, C/DC, and Markov prefetchers

The PC-based stride and C/DC prefetchers successfully capture a significant

number of memory access patterns as the stream prefetcher does thereby increasing

the potential for exploiting row buffer locality. In addition, these prefetchers also

generate many useless prefetches for certain applications. Therefore, PADC signif-

icantly improves performance and bandwidth efficiency withthese prefetchers by

increasing DRAM throughput for useful requests and reducing the negative impact

81

of useless prefetches.

The performance improvement of PADC on the Markov prefetcher is the

least. This is because the Markov prefetcher, which exploits temporal as opposed

to spatial correlation, does not work as well as the other prefetchers for the SPEC

benchmarks. It generates many useless prefetches which lead to significant waste

and interference in DRAM bandwidth, cache space, and memorybuffer resources.

Furthermore, it does not generate many useful prefetches for the SPEC benchmarks

and therefore its maximum potential for performance improvement is low. As such,

the Markov prefetcher significantly increases bandwidth consumption and results

in little performance improvement compared to no prefetching as shown in Fig-

ure 5.29. PADC improves the performance of the Markov prefetcher (mainly due

to APD) by removing a large number of useless prefetches while keeping the small

number of useful prefetches. PADC improves WS by 2.2% and reduces bandwidth

consumption by 10.3% (mainly due to APD) compared to the demand-first policy.

We conclude that PADC is effective with a wide variety of prefetching mechanisms.

5.5.12 Effect on a Runahead Execution Processor

Runahead execution [8, 55] is a promising technique that prefetches use-

ful data by executing future instructions that are independent of a long latency

(runahead-causing) load instruction during the stall timeof the load instruction.

Because it is based on the execution of actual instructions,runahead execution can

prefetch irregular data access patterns as well as regular ones. Usually, runahead

execution complements hardware prefetching and results inhigh performance. In

this section, we analyze the effect of PADC on a runahead processor. We imple-

mented runahead capability in our baseline system by augmenting invalid bits in

the register files for each core. Since memory requests during runahead modes are

very accurate most of the time [55], we treat runahead requests the same as demand

requests in DRAM scheduling.

Figure 5.30 shows the effect of PADC on a runahead processor for the 32

82

workloads on the 4-core CMP system. Each runahead processorhas exactly the

same parameters as our baseline processor, but it also uses a512-byte runahead

cache to support store-load forwarding during runahead execution. Adding runa-

head execution on top of the baseline demand-first policy improves system perfor-

mance by 3.7% and also reduces bandwidth consumption by 5.0%. This is because

we use a prefetcher update policy that trains existing stream prefetch entries but

does not allocate a new stream prefetch entry on a cache miss during runahead

execution (only-train). Previous research [52] shows that this policy is best per-

forming and most efficient. Runahead execution with the only-train policy can

make prefetching more accurate and efficient by capturing irregular cache misses

during runahead execution. These irregular misses train existing stream prefetch

entries but new, more speculative, stream prefetch entrieswill not be created dur-

ing runahead mode. This not only prevents the prefetcher from generating useless

prefetches due to falsely created streams but also improvesthe accuracy and time-

liness of the stream prefetcher since existing streams continue to be trained during

runahead mode.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
ei

gh
te

d
sp

ee
du

p
(W

S
)

(a) Performance

0

1

2

3

4

5

6

7

8

9

10

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

no-pref
no-pref-ra
demand-first
demand-first-ra
aps-only
aps-only-ra
PADC
PADC-ra

(b) Average traffic

Figure 5.30: Effect of PADC on runahead execution

Figure 5.30 shows that PADC still effectively improves performance by

6.7% and reduces bandwidth consumption by 10.2% compared toa runahead CMP

processor with the stream prefetcher and the demand-first policy. We conclude

that PADC is effective at improving performance and bandwidth-efficiency for an

83

aggressive runahead CMP by successfully reducing the interference between de-

mand/runahead and prefetch requests in the DRAM controller.

5.5.13 Comparison with Dynamic Data Prefetch Filtering andFeedback Di-
rected Prefetching

Dynamic Data Prefetch Filtering (DDPF) [91] tries to eliminate useless

prefetches based on whether or not the prefetches were useful in the past. It records

either the past usefulness of the prefetched address (or thePC of the instruction

which triggered the prefetch) in a table similar to how a two-level branch predictor

stores history information [82]. When a prefetch request iscreated, the history table

is consulted and the previous usefulness information is used to determine whether

or not to send out the prefetch request. Feedback Directed Prefetching (FDP) [73]

adaptively adjusts the aggressiveness of the prefetcher inorder to reduce its negative

effects.

Recall that PADC has two components: APS (Adaptive PrefetchSchedul-

ing) and APD (Adaptive Prefetch Dropping). Both DDPF and FDPare orthogonal

to APS because they do not deal with the scheduling of prefetches with respect

to demands. As such, they can be employed together with APS tomaximize the

benefits of prefetching. On the other hand, the benefits of DDPF, FDP, and APD

overlap. DDPF filters out useless prefetches before they aresent to the memory

system. FDP eliminates useless prefetches by reducing the aggressiveness of the

prefetcher thereby reducing the likelihood that useless prefetch requests are gener-

ated. In contrast, APD eliminates useless prefetches by dropping themafter they

are generated. As a result, we find (based on our experimentalanalyses) that APD

has the following advantages over DDPF and FDP:

1. Both DDPF and FDP eliminate not only useless prefetches but also a

significant fraction of useful prefetches. DDPF removes many useful prefetches by

falsely predicting many useful prefetches to be useless. This is due to the aliasing

problem caused by sharing the limited size of the history table among many ad-

dresses. FDP can eliminate useful prefetches when it reduces the aggressiveness of

84

the prefetcher. In addition, we found that FDP can be very slow in increasing the

aggressiveness of the prefetcher when a new phase starts execution. In such cases,

FDP cannot issue useful prefetches whereas APD would have issued them because

it always keeps the prefetcher aggressive.

2. The hardware cost of DDPF for an last-level cache is expensive since

each cache line and MSHR must carry several bits for indexingthe prefetch history

table (PHT) to update the table appropriately. For example,for a PC-based gshare

DDPF with a 4K-entry PHT, 24 bits (12-bit branch history and 12-bit load PC bits)

per cache line are needed in addition to the prefetch bit per cache line. For the

4-core system we use, this index information alone accountsfor 96KB of storage.

In contrast, APD does not require significant hardware cost as we have shown in

Section 5.4.

3. FDP requires the tuning of multiple threshold values to throttle the ag-

gressiveness of the prefetcher which is a non-trivial optimization problem. APD

allows the baseline prefetcher toalwaysbe very aggressive because it can eliminate

useless prefetches after they are generated. As such, thereis no need to tune multi-

ple different threshold values in APD because the aggressiveness of the prefetcher

never changes.

To evaluate the performance of these mechanisms, we implemented DDPF

(PC-based gshare DDPF for last-level cache prefetch filtering [91]) and FDP in our

CMP system. All the relevant parameters (FDP: prefetch accuracy of 90%, 40%,

lateness of 1%, and pollution of 0.5% thresholds and pollution filter size of 4Kbits;

DDPF: filtering threshold of 3, table size of 4K entry 2-bit counters) for DDPF

and FDP were tuned for the best performance with the stream prefetcher in our

CMP system. Figure 5.31 shows the performance and bus trafficof different com-

binations of DDPF, FDP, and PADC averaged across the 32 workloads run on the

4-core system. From left to right, the seven bars show: 1) baseline stream prefetch-

ing with the rigid demand-first policy, 2) DDPF with demand-first policy, 3) FDP

with demand-first policy, 4) APD with demand-first policy, 5)DDPF combined with

85

APS, 6) FDP combined with APS, and 7) APD combined with APS (i.e., PADC).

When used with the demand-first policy, DDPF and FDP improve performance by

1.5% and 1.7% respectively while reducing bus traffic by 22.8% and 12.6%. In

contrast, APD improves performance by 2.6% while reducing bus traffic by 10.4%.

DDPF and FDP eliminate more useless prefetches than APD resulting in less bus

traffic. However, DDPF and FDP eliminate many useful prefetches as well. There-

fore, their performance improvement is not as high as APD.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
W

ei
gh

te
d

sp
ee

du
p

(W
S

)

(a) System performance

0

1

2

3

4

5

6

7

8

9

10

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

demand-first
demand-first-ddpf
demand-first-fdp
demand-first-apd
aps-ddpf
aps-fdp
aps-apd (PADC)

(b) Average traffic

Figure 5.31: Comparison of PADC with DDPF and FDP with demand-first

Our adaptive scheduling policy and DDPF/FDP are complementary and im-

prove performance significantly when combined together. When used together with

Adaptive Prefetch Scheduling, DDPF and FDP improve performance by 6.3% and

7.4% respectively. Finally, the results show that PADC outperforms the combi-

nation of DDPF/FDP and APS which illustrates that Adaptive Prefetch Dropping

is better suited to eliminate the negative performance effects of prefetching than

DDPF and FDP. We conclude that 1) our adaptive scheduling technique comple-

ments DDPF and FDP whereas our APD technique outperforms DDPF and FDP,

and 2) DDPF and FDP reduce bandwidth consumption more than APD but they do

so at the expense of performance.

If a prefetch filtering mechanism is able to eliminate all useless prefetches

while keeping all useful prefetches, the demand-prefetch-equal policy would be

best performing. That is to say, we do not need an adaptive memory scheduling

86

policy since all prefetches sent to the memory system would be useful. However,

it is not trivial to design such a perfect prefetch filtering mechanism. As discussed

above, DDPF and FDP filter out not only useless prefetches butalso a lot of use-

ful prefetches. Therefore, combining those schemes with demand-prefetch-equal

does not necessarily significantly improve performance since the benefits of useful

prefetches are reduced.

Figure 5.32 shows performance and average traffic when DDPF and FDP are

combined with demand-prefetch-equal. Since DDPF and FDP remove a significant

number of useful prefetches, performance improvement is not very significant (only

by 2.3% and 2.7% compared to demand-first). On the other hand,PADC signifi-

cantly improves performance (by 8.2%) by keeping the benefits of useful prefetches

as much as possible.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
ei

gh
te

d
sp

ee
du

p
(W

S
)

(a) System performance

0

1

2

3

4

5

6

7

8

9

10

11

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)

demand-first
demand-pref-equal
demand-pref-equal-ddpf
demand-pref-equal-fdp
aps
aps-apd (PADC)

(b) Average traffic

Figure 5.32: Comparison of PADC to DDPF and FDP with demand-prefetch-equal

5.5.14 Interaction with Permutation-Based Page Interleaving

Permutation-based page interleaving [87] aims to reduce row conflicts by

randomly mapping the DRAM bank indexes of addresses so that they are more

spread out across the multiple banks in the memory system. This technique signif-

icantly improves DRAM throughput by increasing utilization of multiple DRAM

banks (exploiting bank-level parallelism). The increasedutilization of the banks

has the potential to reduce the interference between memoryrequests. However,

87

this technique cannot completely eliminate the interference between demand and

prefetch requests in the presence of prefetching. Any rigidprefetch scheduling pol-

icy in conjunction with this technique will still have the same problem we describe

in Section 5.1: none of the rigid prefetch scheduling policies can achieve the best

performance for all applications since they are not aware ofprefetch usefulness.

Therefore, PADC is complementary to permutation-based page interleaving.

Figure 5.33 shows the performance impact of PADC for the 32 4-core work-

loads when a permutation-based interleaving scheme is applied. The permutation-

based scheme improves system performance by 3.8% over our baseline with the

demand-first policy. This is because the permutation schemereduces row-conflicts

by spreading out requests across multiple banks.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

W
ei

gh
te

d
sp

ee
du

p
(W

S
)

(a) Performance

0

1

2

3

4

5

6

7

8

9

10

B
us

 tr
af

fic
 (

M
 c

ac
he

 li
ne

s)
no-pref
no-pref-perm
demand-first
demand-first-perm
aps-only
aps-only-perm
PADC
PADC-perm

(b) Average traffic

Figure 5.33: Effect of PADC on permutation-based page interleaving

APS and PADC consistently work effectively combined with the permutation-

based interleaving scheme by efficiently managing the interference between de-

mands and prefetches based on usefulness of prefetches. APSand PADC improve

system performance by 2.9% and 5.4% respectively compared to the demand-first

policy with the permutation-based interleaving scheme. Also, PADC reduces band-

width consumption by 11.3% due to adaptive prefetch dropping.

88

5.6 Summary

This chapter shows that existing DRAM controllers that employ rigid, non-

adaptive prefetch scheduling and buffer management policies can limit performance

since they do not take into account the usefulness of prefetch requests. To overcome

this limitation, we propose a low hardware cost Prefetch-Aware DRAM Controller

(PADC), which aims to 1) maximize the benefit of useful prefetches by adaptively

prioritizing them, and 2) minimize the harm caused by useless prefetches by adap-

tively deprioritizing them and dropping them from the memory request buffers. To

this end, PADC dynamically adapts its memory scheduling andbuffer management

policies based on prefetcher accuracy. We show that it is a general mechanism that

is effective for a variety of systems and that it is orthogonal to previously proposed

prefetching and prefetch filtering techniques.

89

Chapter 6

Prefetch Management for Increasing DRAM
Bank-Level Parallelism (BLP)

This chapter studies how to manage prefetch and demand requests in on-

chip request buffers to improve DRAM bank-level parallelism (BLP) in the pres-

ence of prefetching. We propose two techniques [39]. One is aprefetch issue policy

that aims to maximize BLP for memory requests of the running application on each

core. The other is a request issue policy which tries to minimize the destructive

interference in the BLP of each application when multiple applications run together

on a CMP system.

6.1 Prefetch Issue Policy to Increase BLP

6.1.1 Prefetching: Increasing Potential for DRAM BLP

Hardware prefetchers can increase the potential for DRAM BLP because

they generate multiple memory requests within a short period of time. With prefetch-

ing enabled, demand requests and potential future requests(useful prefetches) are

both in the memory system at the same time. This increase in concurrent requests

provides more potential to exploit DRAM BLP as shown in the following example.

Figure 6.1(a) shows a code example fromlibquantumwhere a significant

number of useful prefetches are generated by the stream prefetcher we used in

Chapter 5. With no prefetching, the demand accesses would bein the sequence:

cache line addresses A, A+1, A+2, and A+3 (for reg->node[].state). When prefetch-

ing is employed, cache lines to A+1, A+2, and A+3 would be prefetched. We as-

sume that the first two accesses (to cache line addresses A, and A+1) are mapped to

the same DRAM bank and that the two subsequent accesses (to A+2, and A+3) are

90

mapped to a different bank.

Dem A

Dem A

{
for(i=0; i<reg−>size; i++)

 reg−>node[i].state ^=
 ((MAX_UNSIGNED) 1 << target);

}
(a) Code example

Pref A+1

Pref A+2 Pref A+3

Time

Saved cycles

Bank 0

Bank 1

Overlapped service time

Bank 0 Dem A+1

Dem A+2 Dem A+3

Time

Bank 1

Overlapped service time

}

} With

Without
prefetching

prefetching

(b) DRAM service time without prefetcher

(c) DRAM service time with prefetcher

Dem x: Demand to address x
Pref x: Prefetch to address x

For reg−>node[].state

Figure 6.1: How prefetching can increase DRAM BLP (libquantum)

Figure 6.1(b) shows the DRAM service time when the code is executed

without prefetching. Due to the lookahead provided by the processor’s instruction

window, accesses to A+1 and A+2 are slightly overlapped. On the other hand,

with the prefetcher enabled, if the prefetches reach the memory system (DRAM

request buffers) quickly such that the DRAM controller can see all these requests,

the DRAM service time of the prefetches significantly overlap as shown in Fig-

ure 6.1(c). Therefore, overall DRAM service time is significantly improved com-

pared to no prefetching (shown as “Saved cycles” in the figure).

91

As shown in the example, a hardware prefetcher can increase the potential

for improving DRAM bank-level parallelism. However, normally, this potential is

NOT always fully exposed to the DRAM system.

6.1.2 What Can Limit Prefetching’s Benefits?

If an on-chip memory system design does not take DRAM BLP intoac-

count, it may limit the benefits of prefetching when the totalnumber of outstanding

requests allowed in the on-chip memory system is limited. This is true for Miss

Status/Information Holding Registers (MSHRs) that keeps track of all outstand-

ing cache misses in the system. All memory requests must firstbe allocated an

MSHR entry before entering the DRAM request buffers where they are considered

for DRAM scheduling. The request remains in the MSHR until serviced by DRAM.

The MSHR structure is complex and therefore costly to increase in size [79] since

it requires content-associative search. Therefore, the choice of which requests are

placed into the resource-limited MSHRs and finally into DRAMrequest buffers

significantly affects the amount of BLP exploited by the DRAMcontroller.

For example, the FIFO buffer (which we call the prefetch request buffer)

in the Intel Core design [7] buffers prefetch requests untilthey can be sent to the

memory system. This FIFO structure will always send the oldest prefetch request

to the memory system provided that the memory system has roomfor an additional

request. This design choice can limit the amount of DRAM BLP exploited when

servicing the prefetch requests since the oldest prefetches in the buffer is always sent

first regardless of whether or not it can be serviced in parallel with other requests. A

more intelligent policy would consider DRAM BLP when sending prefetch requests

to the memory system.

Figure 6.2 illustrates this problem. Figure 6.2(a) shows the initial state of the

prefetch request buffer, MSHRs (three entries), and DRAM request buffers (three

entries per DRAM bank). There is only one outstanding demandrequest (Request

1 in the figure). This request is mapped to Bank 0 and just aboutto be scheduled

92

Prefetch request bufferMSHRs

1.Dem B0
6.Pref B1
5.Pref B1
4.Pref B1
3.Pref B0
2.Pref B0

Older
Dem Bx: Demand to DRAM bank x
Pref Bx: Prefetch to DRAM bank x

DRAM
request
buffers

1

DRAM controller

Bank 0 Bank 1

(a) Initial state of memory buffers

Time

2.Pref B0 3.Pref B0

4.Pref B1 5.Pref B1

1.Dem B0

6.Pref B1

Overlapped service time

Bank 1

Bank 0 }
Prefetch issue order to MSHRs: 2, 3, 4, 5, 6

FIFO

(b) DRAM service time for FIFO prefetch issue

Time

1. DemB0 2. PrefB0 3. PrefB0

5.Pref B1 6.Pref B14.Pref B1

Prefetch issue order to MSHRs: 4, 2, 5, 3, 6

Overlapped service time

Bank 1

Bank 0 } BLP−
aware

Saved cycles

(c) DRAM service time for DRAM BLP−aware prefetch issue

Figure 6.2: FIFO vs. DRAM BLP-aware prefetch issue policy

93

to access DRAM. There are five prefetches in the prefetch request buffer. The first

two prefetches will access DRAM Bank 0 and the three subsequent prefetches will

access DRAM Bank 1. For this example we assume that all the prefetches are useful

and therefore will be required by the program soon.

Figure 6.2(b) shows the DRAM service timeline when prefetches are is-

sued into MSHRs in a FIFO fashion. In this case, the demand request and the two

prefetch requests to Bank 0 fill up the MSHRs and therefore thefirst prefetch to

Bank 1 will not be issued until the demand request gets serviced by DRAM and its

MSHR entry is freed. As a result, BLP is low.

A DRAM BLP-aware issue policy would send a prefetch to Bank 1 first, fol-

lowed by a prefetch to Bank 0. In other words, we can alternately issue prefetches to

Bank 1 and Bank 0. Using this issue policy, the service of prefetches to Bank 1 can

start earlier and overlap with accesses to Bank 0 as shown in Figure 6.2(c). There-

fore, BLP increases and overall DRAM service time improves (shown as “Saved

cycles” in the figure).

This example provides two insights. First,simply increasing the number of

outstanding requests in the memory system does not necessarily mean that their la-

tencies will overlap. A BLP-unaware prefetch issue policy (to MSHRs) can severely

limit the BLP exploited by the DRAM controller. Second, a simple prefetch is-

sue policy that is aware of which bank a memory request will access can improve

DRAM service time by prioritizing prefetches to different banks over prefetches to

the same bank.

So far we assumed that all prefetches are useful. However, ifprefetches are

useless, the BLP-aware prefetch issue policy will not be helpful. It may increase

DRAM throughput but only for useless requests. Useless prefetches should be not

issued to the memory system regardless of whether it increases BLP or not.

94

6.1.3 Mechanism: BLP-Aware Prefetch Issue

We propose BLP-Aware Prefetch Issue (BAPI) to maximize BLP of useful

memory requests exposed to the DRAM controller. BAPI tries to send prefetches

from the prefetch request buffer to the MSHRs such that the number of different

DRAM banks the requests access is maximized rather than sending the prefetches

based on FIFO order. To achieve this, the following hardwaresupport is required.

6.1.3.1 Hardware Support

The FIFO prefetch request buffer is modified into the structures shown in

Figure 6.3. Instead of having one unified FIFO buffer for buffering new prefetch

requests before they enter MSHRs, BAPI contains multiple FIFOs (one per DRAM

bank) that buffer new prefetch requests. However, to keep the number of supported

new prefetch requests the same as the baseline and also to minimize the total storage

cost dedicated to prefetch requests, we use multipleindex buffers(one per DRAM

bank) and a single, unifiedprefetch request storagestructure. An index buffer stores

indexes (i.e., pointers) into the prefetch request storagestructure. The prefetch

request storage structure is a regular memory array that stores prefetch addresses

generated by the prefetcher. Last, there is afree list that keeps track of free indexes

in the prefetch request storage structure. The index buffers and free list are all FIFO

buffers and all of the buffers have the same number of entriesas the baseline unified

FIFO.

When the prefetcher generates a request, the free list is consulted. If a free

index exists, the request address is inserted into the prefetch request storage struc-

ture at the index allocated to it. At the same time, that indexis also inserted into the

appropriate index buffer corresponding to the bank the prefetch is mapped to. BAPI

selects one index among the oldest indexes from each index buffer every processor

cycle. Then, the corresponding prefetch request (i.e., prefetch address) is obtained

from the prefetch request storage and sent to the MSHR allocator. If the MSHR

allocator successfully allocates an entry for the prefetchrequest, the selected index

95

Index

Index

Index

Index

Index

Index

Prefetch selected

MSHR allocator

Pref addr

Pref addr

storage
Prefetch request

generated
Pref addr

From prefetcher

Free list

Free index

Index buffer

BLP−aware prefetch issuer

Index buffer

MSHR bank
occupancy

Prefetch
accuracy

for bank N−1for bank 0

Index selected

Figure 6.3: Hardware structures for BLP-Aware Prefetch Issue (BAPI)

is inserted into the free list and also removed from the indexbuffer.

6.1.3.2 BLP-Aware Prefetch Issue Policy

BAPI, shown in Figure 6.3, decides which prefetch to send to the MSHR

allocator among the prefetch indexes from each index buffer. It makes its decision

based on the DRAM BLP currently exposed in the memory system.To monitor the

DRAM BLP of requests, the processor keeps track of the numberof outstanding

requests (both demands and prefetches) in the MSHRs separately for each DRAM

bank. To accomplish this, we use a counter for each DRAM bank,calledMSHR

bank occupancy counter, which keeps track of how many requests to that bank

are currently present in the MSHRs. When a demand/prefetch request is allocated

an MSHR entry, its corresponding bank occupancy counter is incremented. When

a request is serviced and its MSHR is freed, the corresponding bank occupancy

counter is decremented.

The key idea of BAPI is to select the next prefetch to place into the MSHRs

by examining MSHR bank occupancy counters such that the selected request im-

proves the potential DRAM BLP. To do so, one would choose a prefetch request to

the bank whose MSHR bank occupancy counter is the smallest. However, we found

96

that this policy alone is not enough to expose more BLP to the DRAM controller

for all applications. There are a large number of applications for which a prefetcher

generates many prefetches to just a single bank but almost noprefetches to the other

banks during a phase of execution (especially for streamingapplications). For such

applications, the issue policy based on MSHR occupancy alone still ends up filling

the MSHRs with requests to only one bank. This results in two problems. First, it

results in no BLP improvement because the prefetches/demands to other banks that

are soon generated cannot be sent to the memory system because the MSHRs are

already full. Second, the MSHRs can be filled up with prefetches and thus demands

that need MSHR entries can be delayed.

To prevent this problem, BAPI uses a threshold,prefetch send threshold

to limit the maximum number of requests to a single bank that can be outstanding

in the MSHRs. This policy reserves room in the MSHRs for requests to other

banks when most requests being generated are biased to just afew banks. Because

many applications exploit row buffer locality in DRAM banks(since the access

latency to the same row accessed last time is relatively low), having too low a

threshold can hurt performance by preventing many of the useful prefetches to the

same row from being row hits (because the row may be closed before the remaining

prefetch requests arrive). On the other hand, having too high a threshold will result

in no BLP improvement as the MSHRs may get filled with accessesto only few

banks. Therefore, balancing the threshold is important forhigh performance. We

empirically found that a value of 27 (when the total number ofMSHR entries is 32)

for prefetch send threshold provides a good trade-off for SPEC benchmarks by

exploiting BLP without constraining the row-buffer locality of requests.

Rule 3 summarizes our prefetch issue policy to MSHRs.

6.1.3.3 Adaptive Thresholding Based on Prefetch Accuracy

Prefetching does not work well for all applications or all phases of a sin-

gle application. In such cases, performance improvement islow (or may even

97

Rule 3 BLP-Aware Prefetch Issue policy (BAPI)
for each issue cycledo

1. Make the oldest prefetch to each bankvalid only if the cor-
responding MSHR bank occupancy counter value is less than
prefetch send threshold.
2. Among those valid prefetches, select the request to the bank whose
MSHR bank occupancy counter value is least.

end for

degrade) since useless prefetches will eventually be serviced, resulting in artifi-

cially high BLP and wasted DRAM bandwidth. To mitigate this problem, our BLP-

aware adaptive prefetch issue policy limits the number of prefetches allowed in the

MSHRs by dynamically adjustingprefetch send threshold based on the run-time

prefetch accuracy estimation described in Section 5.2.1. This naturally limits the

number of prefetches sent to memory when prefetch accuracy is low. This im-

proves performance for two main reasons: 1) it reserves moreroom in the MSHRs

for demands, thereby reducing contention between demand requests and useless

prefetches and 2) it effectively stalls the prefetcher fromgenerating more useless

prefetches since the prefetch request buffer will quickly become full.

BAPI dynamically adjustsprefetchsendthresholdfor each core based on

the estimated prefetch accuracy in the previous interval. If the estimated accuracy

is very low, a lowprefetchsendthresholdvalue is used, which severely limits the

number of useless prefetches sent to each bank. We empirically found that three

levels ofprefetchsendthresholdwork well for SPEC workloads.

6.2 Preserving DRAM Bank-Level Parallelism in CMP systems

BLP-Aware Prefetch Issue (BAPI) increases the potential ofDRAM BLP

for individual applications on each core. In order for the DRAM controller to ex-

ploit this potential, the increased BLP should be exposed tothe DRAM request

buffers. However, in CMP systems, multiple cores share parts of the on-chip mem-

ory system. In our CMP system described in 6.3.2, the DRAM controller (s) is

98

(are) shared by all cores. Therefore, requests from different cores contend for the

shared DRAM request buffers in the DRAM controller. Due to this contention, a

BLP-unaware Last-Level Cache-to-DRAM Controller (LLC-to-DC) request issue

policy can destroy the BLP of an individual application.

6.2.1 What Can Destroy BLP of Applications Running Together?

Figure 6.4 describes this problem. Figure 6.4(a) shows the initial state of the

last-level cache (LLC) miss buffers of two cores (A and B) andthe DRAM request

buffers for two DRAM banks. Each core has potential to benefitfrom BLP in that

one request of each core goes to Bank 0 and the other goes to Bank 1. The LLC-to-

DC request issuer chooses a single request from the LLC miss buffers to be placed

in the corresponding DRAM request buffer every cycle.

When a round-robin policy is employed in the LLC-to-DC request issuer,

for each cycle, a request from a different core is issued intoDRAM request buffers

and the cores are prioritized in a round-robin order. If sucha policy is used as

shown in Figure 6.4(b), Core A’s request to Bank 0 is sent to the DRAM request

buffers the first cycle and Core B’s request to Bank 1 is sent the next cycle. The

DRAM controller based FR-FCFS [66, 76] would service these requests (A0 and

B1) from different cores concurrently because they are the oldest in each DRAM

bank request buffer. This results in the destruction of the BLP potential of each

core because requests from the same core are serviced serially instead of in parallel.

Hence, the full latency of each request is exposed to each core and therefore each

core stalls for approximately two DRAM bank access latencies.

On the other hand, a BLP-preserving LLC-to-DC request issuepolicy would

send all the requests from one core first as shown in Figure 6.4(c). Therefore, the

DRAM controller will service Core A’s requests (A0 and A1) concurrently since

they are the oldest in each bank. The requests from Core B willalso be serviced in

parallel, after Core A’s requests are complete. In this case, the BLP potential of each

core is realized by the DRAM controller. The service of Core A’s requests finishes

99

Bank 0

Older

Bank 1

Req A1

LLC−to−DRAM controller

Req A0

request issuer

DRAM request
buffers

DRAM controller

OlderReq B0

Req B1

Core A Core B
(a) Initial state

LLC miss buffers

Req B0

Bank 0

Older

DRAM request buffers

Req A0

Bank 1

Req B1

Req A1

(b) Final state of DRAM request buffers & resulting scheduling for round−robin issue

Stall

Stall

TimeCore B
Core A

Bank 0

Bank 1 Req A1Req B1

Core B overlap

Req B0Req A0 }Round−
robin

Older

Req A0

Req B0

Bank 0

DRAM request buffers

Req A1

Req B1

Bank 1

(c) Final state of DRAM request buffers & resulting scheduling for BLP−preserving issue

Core A overlap

Req A0 Req B0

Req A1 Req B1

Bank 0

Core B
Core A

Bank 1

Stall

Stall

Core A saved cycles

Core B overlap Core B increased
cycles

Time}preserving
BLP−

Figure 6.4: Round-robin vs. BLP-preserving request issue policy

100

much earlier compared to the round-robin policy because Core A’s requests are

overlapped. Core A stalls for approximately a single DRAM bank access latency

instead of two and core B’s stall time does not change much. Therefore, overall

system performance improves because Core A can make faster progress instead of

stalling.

This example shows that a round-robin-based LLC-to-DC request issue pol-

icy can destroy the BLP within an application by consecutively placing requests

from different cores into the DRAM request buffers. As such,the DRAM con-

troller may not be able to exploit the BLP potential of each application, which ulti-

mately results in performance degradation. To ensure that each application makes

fast progress with its DRAM requests serviced in parallel instead of serially, the

LLC-to-DC request issuer should preserve the BLP of requests from each core.

6.2.2 Mechanism: BLP-Preserving Multi-core Issue

BLP Preserving Multi-core Request Issue (BPMRI) tries to minimize the

destructive interference in the BLP of each application on aCMP system. The basic

idea is to consecutively send many memory requests from one core to the DRAM

request buffers so that the BLP of that core (or application)can be preserved in

the DRAM request buffers for DRAM scheduling. If requests from a single core

arrive consecutively (back-to-back) into the DRAM requestbuffers, they will be

serviced concurrently as long as the requests span multipleDRAM banks, thereby

preserving the BLP within the individual application. Notethat our first technique,

BAPI, already increases the likelihood that outstanding memory requests of a core

are to different banks; hence, BAPI and BPMRI are synergistic.

BPMRI continues issuing memory requests from a single core into DRAM

request buffers until the number of consecutive requests sent reaches a threshold,

request send threshold, or there are no more requests in that core’s LLC miss

buffer. When this termination condition is met, BPMRI chooses another core and

repeats the process. BPMRI selects the next core based on howmemory intensive

101

each application is. It prioritizes the core (application)that is the least memory

intensive. To do this, BPMRI monitors the number of requeststhat come into the

LLC miss buffer during predetermined intervals using a counter,LLC miss counter,

for each core. At the start of an interval, BPMRI ranks each core based on the ac-

cumulated LLC miss counters (computed during the previous interval) and records

the rank in a register,rank register, for each core. The core with the lowest value

in its LLC miss counter is ranked the highest. The rank determined for each core is

used to select the next core (upon meeting a termination condition) during that in-

terval. The LLC miss counters are reset each interval to adapt to the phase behavior

of applications. Rule 4 summarizes the BPMRI policy.

Rule 4BLP-Preserving Multi-core Request Issue policy (BPMRI)
A valid requestis a request in a core’s LLC miss buffer that has a free entry in
the corresponding bank’s DRAM request buffer.

for each issue cycledo
next core← previous core
cond1← no valid requests innext core’sLLC miss buffer
cond2← consecutive requests fromnext core>= threshold
if cond1 ORcond2 then

next core← highest ranked core with valid request
end if
issue oldest valid request fromnext core

end for

We choose to limit the maximum number of consecutive requests sent and

also choose to prioritize memory non-intensive applications since an uncontrolled

“one core-first policy” can lead to the starvation of memory non-intensive appli-

cations. If a memory intensive application continuously generates many requests,

once those requests start to be issued into the DRAM request buffers, requests from

other applications may not get a chance to enter the DRAM request buffers. Lim-

iting the maximum number of requests consecutively sent from a single core al-

leviates this problem. In addition, the performance impactof delaying requests

from a memory non-intensive application is more significantthan delaying requests

from a memory intensive application. Therefore, prioritizing requests from mem-

102

ory non-intensive applications (ranking) leads to better overall system performance.

Note that this approach is similar to the shortest-job-firstpolicy in that it prioritizes

shorter jobs (memory non-intensive cores that spend less time in the memory sys-

tem) from the point of view of the memory system. The shortest-job-first policy

was shown to lead to optimal system throughput [70].

6.3 Experimental Methodology

6.3.1 Metrics

To measure CMP system performance, we use Individual Speedup (IS),

Weighted Speedup (WS), and Harmonic mean of Speedups (HS), which are de-

fined in Section 5.3.1. We also use prefetch accuracy (ACC), prefetch coverage

(COV), bus traffic, and instruction window Stall cycles Per Load instruction (SPL)

as defined in Section 5.3.1 to analyze the performance of the mechanisms .

To measure the degree of BLP exploited by the DRAM controllerquantita-

tively, we define a BLP metric. We define DRAM BLP as the averagenumber of

DRAM banks which are busy (servicing a request) when at leastone bank is busy.

More formally,BLPi is defined as the number of DRAM banks that are servicing

a request in Cyclei. 1 BUSYi is set to one when at least one bank is servicing

a request in Cyclei and reset when no bank is servicing any requests. We define

Aggregate BLPof an application’s total execution as follows:

Aggregate BLP =

∑
i BLPi∑

i BUSYi

1More precisely, a DRAM bank can service multiple row hits at the same time to support back-
to-back data transfers as discussed in Section 2.1. However, we assume that only the last request is
being serviced in this case to simplify the metric.

103

6.3.2 System Model

We use a slightly different configuration of the x86 system model from the

one in Section 5.3.2 for the experimental evaluation of BLP-aware request issue

policies. The baseline configuration of each core is shown inTable 6.1 and the

shared resource configuration for single, 4, and 8-core systems is shown in Ta-

ble 6.2. Our simulator also models a DDR3-1600 DRAM system indetail and

Table 6.3 shows the DDR3 DRAM timing specifications used for our evaluations.

Out of order; decode/retire up to 4 instructions,
Execution core issue/execute up to 8 microinstructions; 15 stages

256-entry reorder buffer; 32-entry MSHRs
Fetch up to 2 branches; 4K-entry BTB;

Front end
64K-entry gshare/PAs hybrid branch predictor
L1 I and D: 32KB, 4-way, 2-cycle, 1 read/write ports;

On-chip caches Unified last-level: 512KB (1MB for 1-core), 8-way, 8-bank,
15-cycle, 1 read/write port; 64B line size for all caches
Stream prefetcher: 32 stream entries,

Prefetcher prefetch degree of 4, prefetch distance of 64 [77, 73],
128-entry prefetch request buffer

Table 6.1: Baseline configuration of each core for BLP-awareissue policies

800MHz DRAM bus cycle, DDR3 1600MHz [49],
8 to 1 core to DRAM bus frequency ratio;

DRAM and bus
8B-wide data bus per channel, BL = 8; 1 rank,
8 banks per channel, 8KB row buffer per bank;
On-chip, open-row, demand-first [36] FR-FCFS [66]

DRAM controllers
1, 2, 4 channels for 1, 4, 8-core CMPs;
64-entry (8× 8 banks) for single-core processor

DRAM request
256 and 512-entry (16× 8 banks per channel)

buffers
for 4 and 8-core CMPs

Table 6.2: Baseline shared resource configuration for BLP-aware issue policies

6.3.3 Workloads

We use the same methodology for compiling and running the SPEC work-

loads as in Section 5.3.3. The characteristics of the 14 mostmemory intensive SPEC

104

Latency Symbol DRAM cycles

Precharge tRP 11
Activate to read/write tRCD 11

Read column address strobe (CAS) CL 11
Write column address strobe (CAS)CWL 8

Additive AL 0
Activate to activate tRC 39

Activate to precharge tRAS 28
Read to precharge tRTP 4

Burst length tBL 4
CAS to CAS tCCD 4

Activate to activate (different bank) tRRD 4
Four activate windows tFAW 24

Write to read tWTR 4
Write recovery tWR 12

Table 6.3: DRAM timing specifications for BLP-aware issue policies

benchmarks with and without the stream prefetcher on the baseline single-core sys-

tem model (in Section 6.3.2) are shown in Table 6.4. To evaluate our mechanism on

CMP systems, we formed combinations of multiprogrammed workloads from all

the 55 SPEC 2000/2006 benchmarks. We ran 30 and 15 pseudo-randomly chosen

workload combinations for our 4 and 8-core CMP configurations respectively. We

imposed the requirement that each of the multiprogrammed workloads have at least

one memory intensive application since these applicationsare most relevant to our

study. We consider an application to be memory intensive if its last-level cache

Misses Per 1K Instructions (MPKI) is greater than 5.

6.4 Implementation and Hardware Cost of BLP-Aware Issue
Policies

For evaluations of BAPI, we useprefetch send threshold values based on

the run-time prefetcher accuracy as shown in Table 6.5. We use a value of 10 for

request send threshold for BPMRI. The estimation of prefetch accuracy and rank

recording is performed every 100K processor cycles. These values were empirically

105

No prefetcher Prefetcher

Benchmark Type IPC MPKI BLP IPC MPKI BLP ACC(%) COV(%)
171.swim FP00 0.29 27.58 2.60 0.61 10.81 3.58 99.95 60.79
178.galgel FP00 1.05 12.62 3.78 0.93 11.53 3.35 23.98 12.50

179.art FP00 0.14 130.80 1.25 0.13 106.74 1.60 46.76 18.40
183.equake FP00 0.48 19.89 1.29 1.08 0.78 1.89 94.76 96.06
189.lucas FP00 0.48 10.61 1.60 0.62 3.01 1.60 72.81 71.62
429.mcf INT06 0.12 39.08 1.86 0.13 36.03 1.98 23.00 11.13

410.bwaves FP06 0.58 18.71 1.56 1.25 0.08 1.69 99.96 99.57
433.milc FP06 0.40 29.33 1.40 0.35 21.13 1.94 20.24 27.96

437.leslie3d FP06 0.46 21.14 1.64 0.76 2.06 2.20 88.25 90.39
450.soplex FP06 0.36 21.52 1.37 0.64 3.58 1.84 81.83 83.40

459.GemsFDTD FP06 0.42 16.29 2.27 0.81 1.95 2.80 90.36 88.04
462.libquantum INT06 0.45 13.51 1.01 1.03 0.00 1.19 99.98 99.99

470.lbm FP06 0.36 20.16 2.12 0.40 7.46 1.91 92.37 63.01
471.omnetpp INT06 0.39 11.47 1.46 0.39 9.89 1.77 11.40 19.84

Table 6.4: Characteristics of 14 memory-intensive SPEC benchmarks for BLP-
aware issue: IPC, MPKI (last-level cache misses per 1K instructions), BLP, ACC
(prefetch accuracy), COV (prefetch coverage)

determined by simulations.

Prefetch accuracy (%) 0 - 40 40 - 85 85 - 100
prefetch send threshold 1 7 27

Table 6.5: Dynamicprefetch send threshold values for BAPI

Table 6.6 shows the storage cost for our implementation of BAPI and BPMRI.

The total storage cost for the 4-core system described in Tables 6.1 and 6.2 is 94,440

bits (∼11.5KB), which is equivalent to only 0.6% of the last-level cache data stor-

age. Note that the additional FIFOs (for index buffers and free lists) and prefetch

bits account for 99% of the total storage. FIFOs are made of regular memory ar-

rays and index registers (pointers to the head/tail) and therefore the actual design

cost/effort is not expensive.

None of the issuing logic for BAPI or BPMRI is on the critical path of

execution. Therefore, we believe that our mechanism is easyto implement with

low design cost/effort.

106

Cost for
Structure Cost equation (bits) 4-core

Ncore ×Nchannel ×NbankIndex buffer
×Nbuffer × log2Nbuffer

57,344

Free list Ncore ×Nbuffer × log2Nbuffer 3,584
MSHR bank Ncore ×Nchannel ×Nbank

occupancy counter ×(log2NMSHR + 1)
384

BAPI Prefetch bit Ncore × (Nline + NMSHR) 32,896
Prefetch sent counter Ncore × 16 64
Prefetch used counter Ncore × 16 64

Prefetch accuracy
register Ncore × 8 32

LLC miss counter Ncore × 16 64
BPMRI Rank register Ncore × log2Ncore 8

Total storage cost for the 4-core system in Table 6.1 and 6.2 94,440
Total storage cost as a fraction of the last-level cache capacity 0.6%

Table 6.6: Hardware storage cost of BAPI and BPMRI (Nline, Ncore, NMSHR,
Nbuffer, Nchannel, Nbank: number of last-level cache lines, cores, MSHR entries,
prefetch request buffer entries, DRAM channels, DRAM banksper channel)

6.5 Experimental Evaluation and Analysis on BLP-Aware Issue
Policies

We evaluate the performance of BLP-Aware Prefetch Issue (BAPI) and

BLP-Preserving Multi-core Request Issue (BPMRI) in this section. We first an-

alyze only BAPI on the single-core system in Section 6.5.1 since BPMRI works

only for in multi-core systems. We study both BAPI and BPMRI on multi-core

systems in the following sections.

6.5.1 Single-Core Results

We evaluate BLP-Aware Prefetch Issue (BAPI) in this section. Recall that

BAPI aims to increase the BLP potential of a single application whether the ap-

plication is running alone on a single core machine or running together with other

applications on a CMP system. To eliminate the effects of inter-application inter-

ference, we first evaluate BAPI on our single core system.

107

Figures 6.5 and 6.6 show IPC, DRAM BLP, stall cycles per load instruction

(SPL), and bus traffic for the 14 most memory intensive benchmarks when we use

1) no prefetching, 2) the baseline with stream prefetching (using the FIFO prefetch

issue policy), 3) BAPI with a static threshold (BAPI-static), and 4) BAPI (with

adaptive thresholding; BAPI-dynamic or simply BAPI). BAPI-static uses a single

constant value forprefetchsendthresholdwhich is set to 27 empirically, whereas

BAPI-dynamic varies this threshold based on the accuracy ofthe prefetcher (as

shown in Table 6.5). IPC is normalized to prefetching with the baseline issue poli-

cies.

On average, BAPI-dynamic improves performance over the baseline by

8.5%. This improvement is due to two major factors: 1) increased DRAM BLP

of prefetches in phases where the prefetcher works well, and2) limiting the issue

of prefetches for applications or phases where the prefetcher is inaccurate. These

two factors are analyzed in detail below.

6.5.1.1 Analysis

Both BAPI-static and dynamic improve performance for the nine leftmost

benchmarks shown in Figure 6.5(a). These benchmarks are allprefetch friendly as

can be seen in Figure 6.6: most of the prefetches are useful (high prefetch accuracy)

and these useful prefetches cover a majority of the total bustraffic (high prefetch

coverage).

BAPI increases performance over baseline prefetching by exposing more

DRAM BLP of prefetches to the DRAM controller. As shown in Figure 6.5(b),

BAPI increases BLP for these nine applications and therefore improves DRAM

throughput. This leads to significant reductions in stall cycles per load (SPL) as

shown in Figure 6.5(c). DRAM throughput improvement also leads to high prefetch

coverage. Since MSHR entries are freed sooner due to better DRAM throughput,

more prefetches are able to enter the memory system which improves prefetcher

coverage. This is best illustrated by the increase in usefulprefetches with BAPI for

108

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

IP
C

 n
or

m
al

iz
ed

 to
 p

re
fe

tc
hi

ng

sw
im

eq
ua

ke

luc
as

bw
av

es

les
lie

3d

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm ga
lge

l
ar

t
m

cf
m

ilc

om
ne

tp
p

gm
ea

n

(a) Performance

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
um

be
r

of
 b

an
ks

sw
im

eq
ua

ke

luc
as

bw
av

es

les
lie

3d

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm ga
lge

l
ar

t
m

cf
m

ilc

om
ne

tp
p

am
ea

n

(b) Aggregate DRAM BLP

0

2

4

6

8

10

12

14

16

18

20

22

24

26

C
yc

le
s

pe
r

lo
ad

 in
st

ru
ct

io
n

no-pref
pref (base)
bapi-static
bapi

sw
im

eq
ua

ke

luc
as

bw
av

es

les
lie

3d

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm ga
lge

l
ar

t
m

cf
m

ilc

om
ne

tp
p

am
ea

n

(c) Stall cycles per load instruction

Figure 6.5: Performance, BLP, and SPL of BAPI on single-coresystem

109

swimandlbm as shown in Figure 6.6.

Note that forlbm, baseline prefetching with FIFO issue degrades DRAM

BLP while improving performance by 10.9% compared to no prefetching. Lbm

consists of multiple sequential memory access streams in a loop and therefore it ex-

ploits DRAM BLP even without prefetching. The stream prefetcher is beneficial by

bringing in many cache lines earlier than needed; hence, it improves performance.

However, this is done in a BLP inefficient way due to the FIFO prefetch issue pol-

icy as described in Section 6.1.2. In other words, the FIFO prefetch issue policy

significantly limits the DRAM BLP potential forlbmby filling up the MSHRs with

prefetch requests that span just a few banks even though there are many younger

prefetches to other free DRAM banks waiting in the prefetch request buffer. As

a result, the prefetcher’s performance improvement is relatively small compared to

the other prefetch friendly benchmarks. BAPI mitigates this problem by prioritizing

prefetches to different banks, thereby improving DRAM BLP by 15.1% and overall

performance by 27.9% compared to the FIFO issue policy.

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

M
ill

io
n

ca
ch

e
lin

es

ar
t

m
cf

m
ilc

0

1

2

3

4

5

6

7

8

pref-useless
pref-useful
demand no-pref

pref (base)

bapi-static

bapi

sw
im

eq
ua

ke

luc
as

bw
av

es

les
lie

3d

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm ga
lge

l

om
ne

tp
p

am
ea

n

Figure 6.6: Bus traffic of BAPI on single-core system

6.5.1.2 Adaptivity to Usefulness of Prefetches

On the other hand, for the five rightmost benchmarks, BAPI-static does

not improve performance over the baseline. As shown in Figure 6.6, the stream

110

prefetcher does not work well for these benchmarks: it generates a large number

of useless prefetches which unnecessarily consume on-chipbuffer/cache resources

and DRAM bandwidth. As shown in Figure 6.5(a), prefetching degrades perfor-

mance forgalgel, art, andmilc compared to no prefetching. BAPI-static does not

help these benchmarks either since the useless prefetches are still serviced. In fact,

for galgel, art, andmilc, BAPI-static increases the number of useless prefetches due

to increased DRAM throughput as shown in Figure 6.6. Thus, BLP-aware prefetch

issue alone does not help performance when prefetch accuracy is low.

BAPI-dynamic alleviates the problem of useless prefetchesby limiting the

number of prefetches issued into the MSHRs when the prefetcher generates a large

number of useless prefetches. As a result, MSHR entries do not quickly fill up

with useless prefetches and thus can be used by demand requests. This mechanism

causes the prefetch request buffer to fill up, thereby stalling the prefetcher. As

shown in Figure 6.6, BAPI-dynamic eliminates a large numberof useless prefetches

and reduces total bus traffic by 5.2% on average. BAPI-dynamic almost recovers

the performance loss due to useless prefetches forgalgel andart, and improves

performance for bothmilc andomnetppby 6.6%.

6.5.1.3 Adaptivity to Phase Behavior

BAPI (or BAPI-dynamic) adapts to the phase behavior oflucas, leslie3d,

soplex, GemsFDTD, and lbm. While most of the time the prefetcher generates

useful requests, in certain phases of these applications itgenerates many useless

prefetches. BAPI-dynamic improves performance for these benchmarks by adap-

tively adjustingprefetch send threshold which removes many useless prefetches

while keeping the useful ones as shown in Figure 6.6.

We conclude that BAPI significantly improves performance (by 8.5%) by

increasing DRAM BLP (by 11.7%) while also reducing memory bus traffic (by

5.2%) in the single-core system.

111

6.5.1.4 Sensitivity to MSHR Size

Thus far we have assumed that each core has a limited number ofMSHR

entries (32) because MSHRs are costly to scale since they require complex associa-

tive search [79]. In this section, we study the effect of our techniques with various

MSHR sizes. We varied the total number of MSHR entries from 8 to 256 and mea-

sured the average IPC (gmean) for the 14 most memory-intensive benchmarks as

shown in Table 6.7. To isolate the effect of limited MSHRs, weassume that there

is an unlimited number of DRAM request buffer entries for this experiment (this is

why the IPC improvement of BAPI with a 32-entry MSHR is different from that

shown in Section 6.5.1). The values ofprefetch send threshold are empirically

determined for both BAPI-static and BAPI separately for each MSHR size to pro-

vide the best performance.

MSHR entries 8 16 32 64 128 256
Storage cost 0.6KB 1.3KB 2.5KB 5.1KB 10.1KB 20.3KB

no-pref IPC 0.36 0.38 0.38 0.38 0.38 0.38
pref (base) IPC 0.43 0.50 0.53 0.56 0.59 0.58
bapi-static IPC 0.47 0.54 0.57 0.59 0.59 0.58

bapi IPC 0.48 0.55 0.59 0.60 0.61 0.61

bapi-static’s IPC∆ 8.5% 9.1% 7.8% 4.0% 0.0% -0.1%
bapi’s IPC∆ 10.5% 10.3% 10.0% 6.4% 3.0% 4.3%

Table 6.7: Average IPC performance of BAPI with various MSHRsizes

We make three major observations. First, as the number of MSHR entries

increases, the performance of baseline prefetching increases since more BLP is ex-

posed in DRAM request buffers. The performance improvementsaturates at 128

entries because the DRAM system itself becomes the performance bottleneck when

a high level of BLP is exposed. In fact, increasing the MSHR size from 128 to 256

entries slightly degrades performance because more useless prefetches of some ap-

plications (especially,art andmilc) enter the memory system (due to the large num-

ber of MSHR entries) causing interference with demand requests both in DRAM

and in caches.

112

Second, both BAPI-static and BAPI (with dynamic thresholding) continue

to improve performance up to 64-entry MSHRs since they expose more BLP of

prefetches to DRAM request buffers. Even though BAPI-static’s performance sat-

urates at 64 MSHR entries, BAPI improves performance with 128 and 256-entry

MSHRs because it continues to expose higher levels ofusefulBLP without filling

the memory system with useless prefetches. Its ability to adaptively expose useful

BLP to the memory system and thereby more efficiently utilizethe MSHR entries

makes BAPI best-performing regardless of MSHR size.

Finally, BAPI with a smaller MSHR achieves the benefits of a significantly

larger MSHR without the associated cost of building one: BAPI with 32-entry

MSHRs performs as well as the baseline with 128-entry MSHRs.Similarly, BAPI

with 16-entry MSHRs performs within 1% of the baseline with 64-entry MSHRs.

Note that BAPI requires very simple extra logic and FIFO structures (∼2KB storage

cost for the single-core system) whereas increasing the number of MSHR entries is

more costly in terms of both latency and area due to two reasons [79]: 1) MSHRs

require associative search, 2) MSHRs require the storage ofcache line data. We

conclude that BAPI is a cost-effective mechanism that efficiently uses MSHRs and

therefore provides higher levels of BLP without the cost of large MSHRs.

6.5.2 4-Core Results

In this section, we evaluate BLP-Aware Prefetch Issue (BAPI) and BLP-

Preserving Multi-core Request Issue (BPMRI) when employedtogether in the 4-

core CMP system. To provide insight into how our mechanisms work, we begin

with a case study.

6.5.2.1 Case Study

We evaluate a workload consisting of four prefetch-friendly (high prefetch

accuracy and coverage) applications to show how our mechanisms further improve

the benefits of prefetching and thus system performance by improving and preserv-

113

ing DRAM BLP. Figure 6.7 shows performance metrics whenlibquantum, lucas,

soplex,andGemsFDTDrun together on the 4-core system.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
pe

ed
up

 o
ve

r
si

ng
le

 r
un

libquantum lucas soplex GemsFDTD

(a) Individual speedup

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

V
al

ue
 o

f m
et

ric

(b) WS

0.0

0.1

0.2

0.3

0.4

0.5

(c) HS

0
1
2
3
4
5
6
7
8
9

10
11
12

C
yc

le
s

pe
r

lo
ad

 in
st

ru
ct

io
n

no-pref
pref (base)
bapi
bpmri
bapi-bpmri

libquantum lucas soplex GemsFDTD

(d) Stall cycles per load instruction

Figure 6.7: Performance of BLP-aware issue policies for prefetch-friendly work-
load

As shown in Figure 6.7(b), prefetching with the baseline issue policies

(FIFO prefetch issue and round-robin LLC-to-DC request issue) improves WS by

23.5% compared to no prefetching. This increase is due to theperformance im-

provement oflibquantum, soplex, andGemsFDTD. The performance oflucasac-

tually degrades even though baseline prefetching improvesperformance forlucas

on the single-core system (as shown in Section 6.5.1). Thereare two reasons for

this. First, the baseline round-robin LLC-to-DC issue policy destroys the BLP of

requests forlucas the most among the four applications. Sincelucas is the least

114

memory intensive (as shown in Table 6.4) of the four applications, the issue oflu-

cas’s requests to DRAM request buffers is relatively infrequent compared to the

others. As a result, 1)lucas’s requests starve behind more intensive applications’

requests in the LLC miss buffer and 2)lucas’s BLP is more easily destroyed because

requests from other applications intervene betweenlucas’s requests when a round-

robin issue policy is used. Second, although amenable to prefetching in general, the

prefetch accuracy oflucas is not as good compared to the other applications, and

thereforelucassuffers the most from useless prefetches (as shown in Section 6.5.1).

BPMRI alleviates the first problem as shown in Figures 6.7(a)and (d).

BPMRI rankslucas’s requests highest becauselucasis the least memory intensive

application among the four. Whenever BPMRI needs to choose the next core to

issue requests from,lucasgets prioritized and its requests are issued consecutively

into the DRAM request buffers. Therefore,lucas’s starvation is mitigated and its

BLP is preserved. BPMRI regains the performance lost due to baseline prefetch-

ing as shown in Figure 6.7(a). BPMRI also significantly improves the performance

of the other three benchmarks by preserving the BLP of each application, thereby

improving WS and HS by 12.0% and 11.3% respectively comparedto the baseline.

BAPI mitigates the second problem oflucas. As discussed in Section 6.5.1,

BAPI adapts to the phase behavior oflucas: when the prefetcher generates many

useless prefetches, BAPI limits the issue of prefetches thereby reducing many of

the negative effects of prefetching. On the other hand, BAPIexposes more BLP of

prefetches to the memory system when the prefetcher is accurate. Therefore, BAPI

increases performance forlucasas well as the other three applications, improving

WS and HS by 9.4% and 7.9% compared to baseline prefetching.

When BPMRI and BAPI are combined, the performance of each application

further improves as each application’s SPL is reduced as shown in Figure 6.7(d).

BAPI increases each application’s BLP potential and BPMRI preserves this BLP

thereby allowing the DRAM controller to exploit it. As a result, WS and HS im-

prove by 19.4% and 17.4% respectively compared to the baseline prefetching with

BLP-unaware request issue policies.

115

6.5.2.2 Overall Performance

Figure 6.8 shows the average system performance and bus traffic for all 30

4-core workloads. When employed alone, BAPI improves average performance

(WS) by 9.1%, BPMRI by 4.6% compared to the baseline. Combined together,

BAPI and BPMRI improve WS and HS by 11.7% and 13.8% respectively, showing

that the two techniques are complementary. Bus traffic is also reduced by 5.3%. The

performance gain of the two mechanisms are due to 1) increased DRAM BLP pro-

vided by intelligent memory issue policies, 2) reduced waste in DRAM bandwidth

and on-chip cache space due to limiting the number of uselessprefetches.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

V
al

ue
 o

f m
et

ric

(a) WS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(b) HS

0
2
4
6
8

10
12
14
16
18
20
22

M
ill

io
n

ca
ch

e
lin

es

no-pref
pref (base)
bapi
bpmri
bapi-bpmri

(c) Bus traffic

Figure 6.8: Performance of BLP-aware issue policies on 4-core system

6.5.3 8-Core Results

Figure 6.9 shows the average system performance and bus traffic for the

15 workloads we examined on the 8-core system. BAPI and BPMRIare still very

effective and significantly improve system performance. Combined together, they

improve WS and HS by 10.9% and 13.6%, while reducing bus traffic by 2.9%.

In contrast to the 4-core system where BAPI alone provided higher performance

than BPMRI alone, BPMRI alone improves performance more than BAPI alone.

This is because as the number of cores increases, destructive interference in each

application’s BLP also increases, and reducing this interference becomes a lot more

116

important.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

V
al

ue
 o

f m
et

ric

(a) WS

0.0

0.1

0.2

0.3

0.4

0.5

(b) HS

0
2
4
6
8

10
12
14
16
18
20
22
24
26

M
ill

io
n

ca
ch

e
lin

es

no-pref
pref (base)
bapi
bpmri
bapi-bpmri

(c) Bus traffic

Figure 6.9: Performance of BLP-aware issue policies on 8-core system

We conclude that the proposed techniques are effective in terms of both per-

formance and bandwidth-efficiency for a wide variety of multiprogrammed work-

loads on both 4-core and 8-core systems.

6.5.4 Effect on Other Prefetching Mechanisms

We evaluate our mechanisms on two different types of prefetchers: GHB

(Global History Buffer)-based CZone Delta Correlation (C/DC) [59] and PC-based

stride [1]. Both the C/DC and stride prefetchers accuratelycapture a substantial

number of memory accesses that are mapped to different DRAM banks, just as the

stream prefetcher does. Therefore, BAPI and BPMRI improve system performance

compared to the baseline (WS: 10.9% and 5.4%, for C/DC and stride respectively)

as shown in Figure 6.10. Our techniques also reduce bus traffic by 4.7% and 2.9%

for C/DC and stride respectively. To conclude, our proposalis effective for a variety

of state-of-the-art prefetching algorithms.

6.5.5 Comparison with Parallelism-Aware Batch DRAM Scheduling

Parallelism-Aware Batch Scheduling (PAR-BS) [54] aims to improve per-

formance and fairness in DRAM request scheduling. It tries to service memory

117

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

V
al

ue
 o

f m
et

ric
C/DC

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2 Stride

(a) WS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

V
al

ue
 o

f m
et

ric

C/DC

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Stride

(b) HS

0
2
4
6
8

10
12
14
16
18
20
22

M
ill

io
n

ca
ch

e
lin

es

C/DC

0
2
4
6
8

10
12
14
16
18
20
22

no-pref
pref
bapi
bpmri
bapi-bpmri

Stride

(c) Bus traffic

Figure 6.10: BLP-aware issue policies with stride and C/DC prefetchers

118

requestsin the DRAM request buffersfrom the same core concurrently so that the

DRAM BLP of each application is preserved in DRAM scheduling. Therefore, just

like other scheduling mechanisms, the amount of BLP exploited by PAR-BS is also

limited by the number of requests to different banks in DRAM request buffers.

BAPI complements PAR-BS: it increases the number of prefetches to dif-

ferent banks and PAR-BS can exploit this increased level of BLP to improve perfor-

mance further. BPMRI also complements PAR-BS even though their benefits par-

tially overlap. If an application’s requests to different banks are not all in the DRAM

request buffers, PAR-BS cannot exploit the full BLP of each application. BPMRI,

by consecutively issuing an application’s requests from the LLC miss buffer to the

DRAM request buffers, increases the probability that each application’s requests to

different banks are all in the DRAM request buffers. Hence, BPMRI increases the

potential of each application’s BLP that can be exploited byPAR-BS.

In addition, by consecutively issuing requests from a core back-to-back

into the DRAM request buffers, BPMRI enablesany DRAM controller to service

those requests in parallel. Hence, a first-come-first-servebased DRAM controller

combined with BPMRI can preserve each application’s BLP without requiring the

DRAM controller to be BLP-aware.

To verify this, we implemented PAR-BS tuned for best performance for our

4-core workloads. Figure 6.11 shows the performance of 1) baseline prefetching

with our baseline FR-FCFS DRAM scheduling policy which exploits row-buffer

locality [66], 2) PAR-BS, 3) BPMRI, 4) PAR-BS with BPMRI, 5) PAR-BS with

BAPI, 6) PAR-BS with BAPI and BPMRI, and 7) BAPI and BPMRI.

BPMRI’s performance gain is equivalent to that of PAR-BS (with the round-

robin LLC-to-DC issue policy) since it successfully preserves the BLP of each ap-

plication and makes the simple FR-FCFS DRAM scheduling policy behave simi-

larly to PAR-BS. When combined with PAR-BS, BPMRI improves WS and HS by

an additional 1.9% and 1.4% by better preserving the BLP of requests from each

application. BAPI along with PAR-BS significantly improvesthe performance of

119

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

V
al

ue
 o

f m
et

ric
(a) WS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pref (base)
parbs
bpmri
parbs-bpmri
parbs-bapi
parbs-bapi-bpmri
bapi-bpmri

(b) HS

Figure 6.11: Comparison of BLP-aware issue policies with PAR-BS

PAR-BS (WS and HS improve by 7.1% and 7.3% respectively) because BAPI ex-

poses more BLP potential of each application in the DRAM requests buffers for

PAR-BS to exploit. To conclude, our mechanisms 1) complement PAR-BS, and 2)

enable parallelism-unaware DRAM controllers to achieve similar performance as

PAR-BS.

6.6 Combination of Prefetch-Aware DRAM Controller and BLP-
Aware Issue Policies

Recall that we proposed Prefetch-Aware DRAM Controllers (PADC) to

maximize DRAM row buffer hits for useful requests (demands and useful prefetches)

in Chapter 5. PADC aims to minimize DRAM latency of useful requests by prior-

itizing useful row-hit requests over others to the same bank. In other words, the

main goal of PADC is to exploit row buffer locality in each bank in a useful man-

ner. The goal of BLP-aware issue policies is orthogonal: BAPI and BPMRI aim to

maximize DRAM bank-level parallelism so that more requestsfrom an application

can be serviced in different DRAM banks in parallel.

Figure 6.12 shows the performance of PADC alone and PADC combined

with our mechanisms for the 4-core workloads. PADC significantly improves WS

and HS by 14.1% and 16.3% respectively compared to the baseline. When com-

120

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

V
al

ue
 o

f m
et

ric
(a) WS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pref (base)
padc
padc-bapi
padc-bpmri
padc-bapi-bpmri

(b) HS

Figure 6.12: Combination of PADC and BLP-Aware Issue Policies

bined with PADC, BAPI and BPMRI improve WS and HS by 20.6% and 22.5%.

We conclude that our DRAM-aware prefetch management mechanisms comple-

ment each other and significantly improve system performance.

6.7 Summary

In this chapter, we show that conventional uncontrolled memory request is-

sue policies to resource-limited on-chip buffers limit thelevel of DRAM bank-level

parallelism (BLP) that can be exploited by the DRAM controller, thereby limiting

system performance. To overcome this limitation, we propose new cost-effective

on-chip memory request issue mechanisms to improve and preserve BLP of the

running applications. Our evaluations show that the mechanisms 1) work synergisti-

cally and significantly improve both system performance andbandwidth-efficiency,

2) work well with various types of prefetchers, and 3) complement various DRAM

scheduling policies.

121

Chapter 7

Last-Level Cache Management for Improving DRAM
Characteristics

In this chapter, we make a case for DRAM-aware last-level cache design:

we show that designing the last-level cache replacement policies to be aware of

major DRAM characteristics/state can significantly enhance entire system perfor-

mance. Due to DRAM characteristics, not all misses and evictions of the last-level

cache incur the same cost. Bank-level parallelism and row buffer locality allow

different outstanding cache misses to be serviced at different latency costs to the

processor: fast or slow, parallel or serial. On the other hand, write-caused interfer-

ence can cause writebacks of dirty cache lines that delay theservice of reads and

even other writes. This makes cache line evictions incur different cost.

To leverage this, we propose two DRAM-aware last-level cache replacement

policies that work together synergistically. The first is a replacement policy that

favors the eviction of cache lines that can be refetched quickly due to row buffer

locality or serviced together with other misses in different DRAM banks when they

are refetched later. The second is a policy that evicts dirtylines that can be written

back to DRAM quickly by exploiting row buffer locality, in order to reduce write-

caused interference in the DRAM system.

7.1 Cache Replacement for Reducing Latency and Increasing
BLP

Due to row buffer locality and bank-level parallelism, not all misses incur

the same cost from the processor’s point of view. Row-hit misses are serviced very

quickly, so the processor does not stall very long even though many such misses

122

occur in the last-level cache. Row conflicts that are serviced in parallel in different

banks can also reduce the processor’s stall time even thougheach individual row

conflict incurs a long latency. Taking into account these DRAM characteristics in

the last-level cache replacement policy has advantages over previous work.

7.1.1 Why Should We Consider DRAM Characteristics in Cache Manage-
ment?

Previously proposed Memory-Level Parallelism (MLP)-aware cache replace-

ment [63] assumes that clustered cache misses incur lower cost than isolated misses.

MLP-aware cache replacement makes the implicit assumptionthat the service times

of all clustered cache misses are overlapped with each other. Therefore, such poli-

cies prefer to evict cache lines that are serviced concurrently with other misses.

However, in many cases, concurrent outstanding misses are not necessarily serviced

in parallel in the DRAM system. When multiple row-conflict misses are outstand-

ing in the memory system, they are serviced in parallelonly if they are mapped to

different DRAM banks.

Figure 7.1 describes how the mix of outstanding last-level cache misses

can affect DRAM performance and processor stall time. Thereare four outstand-

ing misses present in the Miss Status/Information Holding Registers (MSHRs) as

shown in Figure 7.1(a). Row 1 and Row 2 are open in the row buffer of Bank 0 and

Bank 1 respectively. The four misses are waiting in the DRAM read buffer to be

serviced by DRAM.

Figure 7.1(b) shows the DRAM service time and processor status when two

reads (Reads A and D from Misses A and D) are row conflicts in Bank 0 and two

other reads (Reads B and C) are row hits in Bank 1. Since the accesses to Bank 1

are row hits (and therefore low latency), their latencies are overlapped with Read

A in Bank 0 (a row conflict). However, Read D is completely serviced alone. The

processor must experience the sum of the two row-conflict latencies serially.

On the other hand, Figure 7.1(c) shows the DRAM service time and pro-

123

Read A
Read B
Read C
Read D

Miss A	
Miss B
Miss C
Miss D

��
��
��

��
��
��

������
������
������

������
������
������

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

������
������
������

������
������
������

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

DRAM controller

Row
buffer

Bank 1Bank 0
Row 1 Row 2

DRAM

DRAM read buffer

Last−level cache

(a) DRAM and MSHR state
MSHRs

Read A: mapped to row 1 in bank 0
Read B: mapped to row 2 in bank 1
Read C: mapped to row 2 in bank 1

mapped to row 3 in bank 0 for (b)
mapped to row 4 in bank 1 for (c)

Read D:

Stall Stall

Read B: Row hit Read C: Row hit

Compute

Stall

Compute Compute

Bank 0

Bank 1

Processor

Read A: Row conflict Read D: Row conflict

(b) DRAM service time when read D is mapped to row3 in bank 0

Read A: Row conflict

Stall Stall

Read C: Row hit

Compute

Stall

Compute Compute

Bank 0

Bank 1

Processor

Read B: Row hit Read D: Row conflict

(c) DRAM service time when read D is mapped to row 4 in bank 1

Figure 7.1: DRAM and processor performance for two different mixtures of out-
standing misses

124

cessor status when Read D is mapped to Bank 1 instead of Bank 0 and is still a

row conflict (other requests are the same as Figure 7.1(b)). Read D still takes a

long time since it is a row conflict. However, a significant portion of its latency is

overlapped with the row-conflict latency of Read A. Therefore this composition of

requests results in a significant reduction of processor stall time compared to the

previous case.

In contrast to what the MLP-aware mechanism assumes, simplyhaving

many misses outstanding in the MSHRs does not necessarily mean that those misses

are serviced in parallel. Even though Read D is outstanding with three other misses

in both Figures 7.1(b) and (c), its latency is not at all overlapped in the former case

yet mostly overlapped in the latter case. As such, dependingon the mix of clustered

misses, their memory service time (or cost) varies significantly.

Not only isolated misses but also clustered misses to different rows in the

same bank incur very high cost. Also row hit misses can alwaysbe considered

low cost due to their low latencies regardless of BLP (recallthat multiple row hits’

data is transferred back-to-back in the DRAM system as discussed in Section 2.1).

Rather than simply clustering memory requests, an intelligent cache control mech-

anism should take advantage of low latency and high parallelism conditions in the

DRAM system.

To minimize miss cost, a DRAM-aware cache replacement policy can con-

trol the mixture of requests such that 1) row-hit misses rather than row-conflict

misses occur more frequently and 2) row conflict misses that can be serviced in

parallel rather than serially in the DRAM system happen morefrequently. Our

replacement policy does exactly this by measuring these characteristics.

7.1.2 Mechanism: Latency and Parallelism-Aware (LPA) Replacement

We propose Latency and Parallelism-Aware (LPA) last-levelcache replace-

ment. The basic idea is to favor the eviction of cache lines that could be refetched

quickly due to row buffer locality or serviced together withother misses in different

125

DRAM banks, when they are refetched later.

The LPA replacement policy leverages the observation that if memory re-

quests of an application show high BLP or row buffer localityin a certain execu-

tion phase, similar BLP or row buffer behavior will likely occur in the future. For

example, current high BLP requests show high BLP when they are refetched later.

Previous research [63] also shows that the memory behavior of applications repeats.

Therefore, LPA assumes that cache lines arelow-costif they show high BLP or row

buffer locality when they are serviced in the DRAM system. Figure 7.2 illustrates

the logic that performs this function.

�
�
�
�

�
�
�
�

DRAM controller

DRAM

Low cost
estimation
Row−hit

Low−cost bit inserted
Line PC

All requestsRow conflicts

estimation
BLP

MSHRs

Last−level cache

Low−cost

logic
estimation

Figure 7.2: Low-cost estimation for LPA

LPA evicts cache lines that are predicted as low-cost. Low-cost cache lines

are identified by a one-bitlow-cost fieldin each line. LPA always prioritizes low-

cost lines over less recently used lines in the set for eviction. If multiple low-cost

lines exist, the least recently used (LRU) line among those is selected as the victim.

If there is no low-cost line, the LRU line is evicted.

126

To take into account temporal locality in reused cache lines, the low-cost bit

of a cache line that is reused in the cache is deasserted. Doing so enables LPA to

outperform LRU replacement for SPEC benchmarks that perform well with LRU

replacement. Lines whose low-cost bit are deasserted are retained in the cache by

LPA. Additionally, the effective memory latency of misses to low-cost lines that did

not exhibit reuse is significantly reduced by taking advantage of row buffer locality

and BLP using LPA.

7.1.2.1 Low-Cost Estimation Using BLP Information

To estimate the BLP of a request (or cache line), we need BLP information

at runtime. This information is measured by the DRAM controller and sent to the

estimation logic.

To measure the degree of BLP quantitatively, we define BLP metrics. BLPi

is defined as the number of DRAM banks that are servicing a request in Cyclei.

BUSYi is set to one when at least one bank is servicing a request or set to zero

when no bank is servicing any requests in Cyclei. We defineAggregate BLPof an

application’s total execution (the same as in Section 6.3.1) andindividual BLPof a

request that is serviced from CycleN to CycleM as follows:

Aggregate BLP =

∑
i BLPi∑

i BUSYi

Individual BLP =

∑M
i=N BLPi

M −N + 1

Aggregate BLP indicates how many banks were busy servicing requests on

average when at least one bank was busy, while an applicationwas running. Its

value is bound by one and the total number of DRAM banks. Individual BLP

of a request indicates how many banks were busy servicing requests in parallel

(including its bank) while the request was being serviced. Note that these metrics

127

can be measured in the DRAM controller at runtime since the DRAM controller

already keeps track of which requests are being serviced in which bank.

For a multi-core system, these metrics can be easily gathered on a per-core

basis. BLPi of a core is obtained by considering only the banks that are serving

that core’s requests.BUSYi of a core is one when at least one request of that core

is being serviced in a bank. Aggregate BLP of a core and individual BLP of a core’s

requests are calculated using these modifications.

To estimate the BLP of a request (or cache line), we need two pieces of

BLP information at runtime: the aggregate BLP during a predetermined execution

interval of the application and the request’s individual BLP. The DRAM controller

measures this information and sends it to the estimation logic. Rule 5 shows how

the low-cost estimation works. The estimation logic works only when the aggre-

gate BLP is greater thanaggregate BLP threshold. During a high BLP period,

the estimation logic marks as low-cost those requests that had much higher indi-

vidual BLP (aggregate BLP offset greater) than the aggregate BLP during that

interval.

Rule 5Low-cost estimation using BLP information
for eachrow-conflict request whose service is completeddo

if aggregate BLP> aggregate BLP threshold then
if individual BLP of the request > (aggregate BLP +
aggregate BLP offset) then

mark the request as low-cost
end if

end if
end for

Starting estimation only when aggregate BLP is high prevents requests from

being marked as low-cost during low BLP phases where there isno large perfor-

mance benefit from BLP. Marking only those requests that showvery high indi-

vidual BLP compared to the aggregate BLP allows the logic to select only those

lines for eviction that are likely to exploit high BLP (i.e.,it allows the logic to dis-

tinguish very low-cost lines from others). We empirically determined the values

128

for aggregate BLP threshold andaggregate BLP offset (2.5 and 0.3 respec-

tively in our evaluation).

7.1.2.2 Low-Cost Estimation Using Row hit/conflict information

For the low-cost estimation due to row hits, we measure aggregate row hit

rate for all requests of an application periodically (as we measure aggregate BLP).

Row hit/conflict information of each request is also conveyed (using one bit) from

the DRAM controller to the last-level cache.

To estimate whether a cache line is likely to be a row hit, we collect the

average row hit rate of the load instruction that caused the miss. The insight behind

this is that the majority of row-hit misses occur from a few static load instructions.

An example is a load instruction that accesses array data elements in a loop.

The low-cost estimation for frequent row hits is described in Rule 6. We

measure the average row hit rate of a load using a small table (a cache structure,

16-entry 4-way associative) each entry of which is associated with a load PC. Each

entry keeps track of the total number of requests serviced and the total number of

row hits for the load. Whenever a request is serviced, the table is looked up with the

load’s PC. If a match is found, its counters are updated as follows: 1) the counter for

the total number of requests is incremented, and 2) if it was arow hit, the counter

for the number of row hits is incremented. If no match is found, the LRU entry is

replaced with a new entry and its counters are initialized.

Predicting whether a miss is low-cost or not is made using theinformation

looked up from the load PC table before updating the table. Ifno match is found,

the new cache line is estimated as high-cost (i.e., the low-cost bit is not set). If a

match is found, the average row hit rate for the load is calculated by dividing the

number of row hits by the number of serviced requests. Prediction is made based

on this calculated average row hit rate and the aggregate rowhit rate for all requests

serviced during an interval.

A fetched line is only considered for low-cost estimation when the row hit

129

Rule 6Low-cost estimation using row hit/conflict information
for each request whose service is completeddo

match found← look up load PC table (request’s PC)
if match foundthen

(total number of row hits, total number of requests)← load PC table (re-
quest’s PC)
load PC table (request’s PC)← (total number of row hits + (request row hit
? 1 : 0), total number of requests + 1)
adjusted aggregate row hit rate← MAX(aggregate row hit rate,
aggregate row hit rate min)
if total number of requests> request threshold and row hit rate> ad-
justed aggregate row hit ratethen

Mark the request as low-cost
end if

else
get entry from load PC table (request’s PC)
load PC table (request’s PC)← ((request row hit ? 1 : 0), 1)

end if
end for

rate information is collected for long enough (more thanrequest threshold) to

indicate the load will likely generate many row hits. Not marking lines whose load

had only few requests serviced prevents making a wrong decision about whether

the load would generate many row hits or not.

The logic marks the line as low-cost only if the row hit rate ofthe load that

caused the line’s fetch is greater than the aggregate row hitrate (using adjusted

aggregate row hit rate) for all fetched lines. We also imposea minimum value

of aggregate row hit rate (aggregate row hit rate min) to avoid falsely marking

lines as low-cost simply because their row hit rate, although quite low, is larger

than a very low aggregate row hit rate. We empirically found aset of the parameter

values (request threshold of 30 andaggregate row hit rate min of 0.6) for our

evaluation.

130

7.2 Cache Replacement for Reducing Write-Caused Interfer-
ence

Not all dirty line evictions for the last-level cache incur the same cost.

This is because row-conflict writes are much more expensive than row-hit writes

as shown in Section 2.3. Long delays caused by row-conflict write accesses can

delay the service of writes in the write buffer and eventually result in delaying the

service of reads. In contrast, row-hit writes can be serviced back-to-back just like

row-hit reads. Therefore, increasing row-hit writes that are concurrently outstand-

ing is desirable. Note that the source of DRAM writes is the last-level cache’s

writebacks, i.e., dirty line evictions. A write-caused interference-aware replace-

ment policy would find and evict dirty cache lines that cause row-hit write accesses

to DRAM. The resulting row-hit writes can significantly improve the service time

of the writes. The following example shows the implication on DRAM system

performance for last-level cache replacement policies.

7.2.1 Why Should We Consider Write-Caused Interference in Cache Man-
agement?

Figure 7.3 shows how a write-caused interference-aware replacement pol-

icy can improve DRAM performance. Figure 7.3(a) shows the initial state of the

DRAM read/write buffers and a set of the last-level cache. A row-hit read (Read

A) and a row-hit write (Write B) are waiting to be scheduled toDRAM. Two dirty

lines (Dirties C and D) are at the least recently used (LRU) positions of the shown

last-level cache set. Dirty C is mapped to a different row from the currently open

row in Bank 0 whereas Dirty D is mapped to the same row as Write B.

Figure 7.3(b) shows the resulting cache state and the DRAM timing when

a conventional LRU policy is used in the cache. The LRU line (Dirty C) is evicted

by the fetched line for Read A after Read A is serviced by DRAM.Therefore a

write (Write C) is generated for Row 1 and is inserted into thewrite buffer. Writes

are serviced in the order of Writes B and C. Because Write C accesses a different

row from Write B (row conflict), precharging is required to open Row 1. Since a

131

Write B (0, 0): mapped to row 0 in bank 0
Read A (0, 0): mapped to row 0 in bank 0

Dirty C (0, 1): mapped to row 1 in bank 0
Dirty D (0, 0): mapped to row 0 in bank 0

��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�

��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

CL tBL
CWL tBL

tWR tRCD CWL

Command
& address bus

Data bus

Read A
(0, 0) evicted

Dirty C
Write buffer full

Write B
(0, 0) Precharge 0 (0, 1)

Activate Write C
(0, 1)

tRP

Data A Data B Data C

Less recently used

Last−level cache

Dirty DCleanCleanClean A

��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�Command

& address bus
CWL

(0, 0)
Read A

evicted
Dirty D

Write buffer full
Write B
(0, 0)

Write D
(0, 0)

Saved cyclesData bus

tCCD CWL tBL

tBLCL

Data A Data B Data D

Less recently used

CleanCleanClean A Dirty C

Last−level cache

(a) Cache/DRAM buffer initial state

Clean Dirty CClean Dirty D

Less recently used

Last−level cache

Set

DRAM write buffer

Write BRead A

DRAM read buffer

Bank 1
Row 0 Row 3
Bank 0

controller
DRAM

DRAM

Row
buffer

(b) Cache state and DRAM timing for conventional replacement (Dirty C is evicted)

(c) Cache and DRAM timing for interference−aware replacement (Dirty D is evicted)

Figure 7.3: Conventional vs. write-caused interference-aware replacement policies

132

write was serviced before, write-to-precharge penalty must be satisfied before the

precharge command for Write C is scheduled. This increases the idle cycles on the

DRAM data bus since the write data for Write C must wait fortWR + tRP + tRCD +

CWL cycles after the write burst for Write B.

On the other hand, as shown in Figure 7.3(c), if Dirty D is evicted instead

of Dirty C, the two writes (Writes B and C) are serviced back-to-back, thereby

resulting in significant reduction of DRAM service time. This example illustrates

that a simple cache replacement policy which evicts row-hitwriteback requests

can improve service time for writes. Our Write-caused Interference-Aware (WIA)

replacement policy is designed to achieve this.

7.2.2 Mechanism: Write-Caused Interference-Aware (WIA) Replacement

WIA evicts row-hit dirty lines when a replacement happens inthe last-level

cache. Ideally, row-hit dirty lines can be found by comparing the row address of

each dirty line in the set (that is considered for replacement) with the address of

every write in the DRAM write buffer. However, the hardware/design cost of this

is not acceptable since it requires an associative search ofthe write buffer with the

address of each dirty line in the cache set. To simplify implementation and hardware

cost, we use a row address register for each DRAM bank to keep track of the address

of the last evicted dirty line mapped to that bank. In our address mapping, the last-

level set index field includes the DRAM bank index field1. Therefore all lines in a

set belong to one DRAM bank. This requires one associative search: the stored row

address in a register is compared to the address of each dirtyline in the cache set.

This can be performed by the tag comparison logic in the cache. The tag comparison

structure should be modified to support comparing the storedrow address with the

1This mapping can increase DRAM bank conflicts (among reads and writes with different row
addresses) that causes many row conflicts. However, a write buffer policy that drains writes only
when it is full can mitigate this problem significantly. We use this write buffer policy as presented
in Section 7.6.2. Also, we found that keeping track of only the last evicted dirty line’s row address
globally regardless of the banks also works well. This option can be used for systems with different
address mapping.

133

row addresses of all lines in the set. Figure 7.4 illustrateshow WIA searches for

row-hit dirty lines.

Row address

Row address

Set
Last−level cache

address
Writeback

data
Writeback Read

address

Replacement
logic

data
Read

Dirty row hit

Row address

for DRAM bank N−1

for DRAM bank 1

for DRAM bank 0

Dirty row hit search logic
Cache access address

Figure 7.4: Dirty row-hit search for WIA

Whenever a dirty line is evicted (i.e., a writeback is generated), its DRAM

bank’s row address register is updated with the dirty line’srow address. When a

replacement happens in a cache set, WIA looks for a dirty linethat is mapped to the

same row as the last evicted dirty line for the correspondingDRAM bank using tag

comparison logic in the cache. We found that keeping track ofthe last evicted row

address is enough to gain most of the benefits of searching therow addresses of all

writes in the entire write buffer.

WIA prioritizes row-hit dirty lines (if found) over the LRU line for eviction.

If multiple row-hit dirty lines are found, the LRU among themis evicted. If none are

found, the LRU line is evicted. We found that prioritizing row-hit dirty lines over

LRU lines for eviction does not hurt performance due to loss of temporal locality.

This is because 1) if the evicted dirty line is required, the write buffer forwards it to

the cache unless it is already written back, 2) very few evicted dirty lines by WIA

134

are reused, and 3) performance benefits of evicting row-hit dirty lines outweighs

the cost of re-fetching (a small number of) these lines from DRAM.

7.3 Combining Latency and Parallelism-Aware and Write-Caused
Interference-Aware Policies

LPA and WIA can be combined to reduce both miss and dirty line eviction

penalties. We found that prioritizing row-hit dirty lines (detected by WIA) over low-

cost lines (predicted by LPA) for victim decision performs very well. The reasons

are as follows.

First, LPA alone is unaware of the dirty line eviction cost. LPA can increase

write-caused interference if it evicts costly dirty lines (i.e., row conflicts to the same

bank) since it only predicts whether or not lines would be low-cost when they are

fetched again later.

Second, WIA’s detection of row-hit dirty lines is more accurate than LPA’s

prediction of low-cost read misses. This is because WIA looks for dirty lines that

can be serviced very soon with other currently outstanding writes, whereas LPA

predicts low-cost read misses that are required in the future.

Finally, WIA’s penalty of wrong decisions, i.e., an evicteddirty line is

reused, is mitigated by possible forwarding of such cache lines from the write

buffer. In contrast, LPA’s wrong decision, evicting a useful and costly cache line,

can negatively affect performance more: the processor muststall for a long time as

the cache line needs to be fetched from main memory.

7.4 Multi-Core System Considerations

In many chip-multiprocessors (CMP), multiple cores share the last-level

cache and main memory resources. When multiple applications run on different

cores, their requests compete with each other for the sharedresources. Usingglobal

BLP and row hit rate (as opposed to per-application information) for the purposes

135

of our LPA replacement policy can cause unwanted cache replacement decisions.

For example, cache lines of an application that generates many low-cost requests

(high row-hit rate and high BLP) can be evicted too frequently. Similarly, cache

lines of another application with many high-cost (low row-hit rate and low BLP)

misses could be evicted very rarely. This can hurt system performance.

7.4.1 LPA Replacement in Multi-Core

We modify the LPA replacement policy to be core-aware to avoid this prob-

lem. To make LPA effective in CMPs, we estimate low-cost lines on a per-core

basis. We measure aggregate BLP/row hit rate and individualBLP/row-hit for each

core independently. As discussed in Section 7.1.2.1, the aggregate BLP for Core A

and individual BLP for the requests of Core A are calculated by considering only

Core A’s requests that are serviced in different banks. Low-cost estimation for Core

A’s lines is performed using these aggregate BLP and individual BLP values. Row

hit rate of Core A is measured by dividing the number of Core A’s row-hit requests

by the total number of Core A’s requests serviced in the time interval. Finally,

one load PC table is required for each core for low-cost estimation using row-hit

information.

When a cache line is inserted into a cache set, LPA determineseach core’s

victim by considering only its lines based on LPA policy discussed in Section 7.1.2.

Among each of the cores victims, LPA chooses to evict the victim of the core to

which the LRU line in the entire cache set belongs.

7.4.2 WIA Replacement in Multi-Core

On the other hand, WIA does not need to be core-aware. This is because

writes are not critical to an application’s progress. Writes become critical only

when the DRAM controller cannot service reads due to write-caused interference.

Therefore, servicing many writes (from any core) very quickly so that reads (from

any core) can be serviced soon and without delay leads to highperformance. As

136

such, the WIA policy in multi-core systems stays the same as we described for the

single-core system.

We evaluate our mechanism using these techniques on a 4-coreCMP system

in Section 7.8.2.

7.5 Comparison to Memory-Level Parallelism-Aware Replace-
ment

Qureshi et al. [63] proposed a MLP-aware cache replacement policy that

prioritizes the eviction of a cache line that is likely to be serviced together with

other misses when it is fetched next. Any misses that are outstanding concurrently

in the miss buffers are assumed (and hoped) to be actually serviced in parallel in

the main memory system. This policy does not take into account the state and

characteristics of DRAM in its decision making. As such, it has multiple important

limitations compared to our DRAM-aware policies.

First, the MLP-aware policy is not DRAM bank-aware. As we discussed

in Section 7.1.1, clustered misses to different rows in the same bank incur very

high cost. Since the MLP-aware policy estimates the “MLP cost” of a cache line

using the absolute number of outstanding misses (in the MSHRs), it assumes that

misses to the same bank will be serviced in parallel with other misses, which is not

correct. As such, the MLP-aware policy is prone to mispredicting the cost of misses

significantly.

Second, the MLP-aware policy does not consider the cost of writebacks.

Instead, it considers only the future miss cost of a line whenmaking eviction deci-

sions. This can hurt performance because it can increase write-caused interference

in the DRAM system by causing a large number of row-conflict writebacks. As we

showed in Sections 7.2.1 and 7.8.1.2, row-conflict writebacks can degrade system

performance significantly.

Third, the MLP-aware policy is unaware of the cause of low-latency misses.

The MLP-aware policy implicitly identifies low-latency misses by estimating the

137

MLP cost for each miss. However, it does not know whether the low cost was

due to high BLP or row buffer locality. This distinction is important since a row-hit

request that is serviced slowly the first time (due to many outstanding requests) may

be serviced quickly (and therefore low-cost) when refetched.

Finally, the hardware/design cost of the MLP-aware policy is more than our

proposal. Since MLP cost is stored in each cache line, multiple bits are required

in each line (e.g, 3 bits per cache line). In contrast, our LPArequires only one bit

(indicating low-cost) per line.

We quantitatively compare the performance of the MLP-awarereplacement

policy to our mechanisms in Section 7.8.

7.6 Experimental Methodology

7.6.1 Metrics

To measure multi-core system performance, we use Individual Speedup

(IS), Weighted Speedup (WS), and Harmonic mean of Speedups (HS), which are

defined in Section 5.3.1.

7.6.2 System Model

The baseline configuration of processing cores and the memory system for

single and 4-core CMP systems is shown in Table 7.1. Our simulator also models

DDR3 DRAM performance-related timing constraints in detail as shown in Ta-

ble 7.2. Note that our baseline employs adrain whenfull DRAM write buffer

policy for the evaluation of the proposed replacement policies. This write buffer

policy tolerates read-to-write switching penalties best with today’s high-bandwidth

DDR DRAM systems with their large write-caused interference. We discuss and

compare this policy to other existing write buffer policiesextensively in Chapter 8.

138

Out of order, decode/retire up to 4 instructions,
Execution Core issue/execute up to 8 microinstructions; 15 stages

256-entry reorder buffer;
Fetch up to 2 branches; 4K-entry BTB;

Front End 64-entry return address stack;
64K-entry gshare/PAs hybrid branch predictor
L1 I/D-cache: 32KB, 4-way, 2-cycle, 64B line size;
Shared last-level cache: 16-way, 8-bank, 15-cycle,

Caches and 1 read/write port per bank, LRU replacement
on-chip buffers writeback, 64B line size, 1, 2MB for 1, 4-core systems;

32, 128 MSHRs for 1, 4-core systems
32, 128-entry LLC access/miss/fill buffers for 1, 4-core systems
1, 2 channels (DRAM controllers) for 1, 4-core systems;
800MHz DRAM bus cycle,

DRAM and bus Double Data Rate (DDR3 1600MHz) [49];
8B-wide data bus per channel, BL = 8;
1 rank, 8 banks per channel, 8KB row buffer per bank;
On-chip, open-row, FR-FCFS scheduling policy [66];

DRAM
64-entry (8× 8 banks) DRAM read/write buffers per channel

controllers
drain when full write buffer policy

Table 7.1: Baseline configuration for DRAM-aware replacement policies

7.6.3 Workloads

We use the same methodology for compiling and running the SPEC work-

loads using ICC/IFORT and Pinpoints as discussed in Section5.3.3.

Even though we evaluated all the 55 SPEC benchmarks, we report 16 mem-

ory intensive benchmarks on which the performance impact ofour mechanisms is

significant; the effect of our mechanisms on the remaining applications is negli-

gible. Characteristics of the 16 SPEC benchmarks are shown in Table 7.3. We

consider memory read (cache miss) and write (writeback) characteristics indepen-

dently since LPA is designed for DRAM read efficiency and WIA targets DRAM

write efficiency. Last-level cache Writebacks Per 1K Instructions (WPKI) indicates

how intensively a benchmark generates write requests to theDRAM system.

To evaluate our mechanism on CMP systems, we formed combinations of

multiprogrammed workloads from all the 55 SPEC 2000/2006 benchmarks. We ran

139

Latency Symbol DRAM cycles

Precharge tRP 11
Activate to read/write tRCD 11

Read column address strobe (CAS) CL 11
Write column address strobe (CAS)CWL 8

Additive AL 0
Activate to activate tRC 39

Activate to precharge tRAS 28
Read to precharge tRTP 6

Burst length tBL 4
CAS to CAS tCCD 4

Activate to activate (different bank) tRRD 6
Four activate windows tFAW 24

Write to read tWTR 6
Write recovery tWR 12

Table 7.2: DDR3-1600 DRAM timing specifications for DRAM-aware replacement
policies

17 randomly chosen workload combinations for our 4-core CMPconfiguration.

7.7 Implementation and Hardware Cost of DRAM-Aware Re-
placement Policies

For evaluations, we periodically measure the aggregate rowhit rate and

BLP every 100K processor cycles for low-cost estimation. Weempirically set

aggregate BLP threshold andaggregate BLP offset to 2.5 and 0.3 respec-

tively for high BLP estimation. We use a 16-entry 4-way set associative structure

for the load PC table and setrequest threshold andaggregate row hit rate min

to 30 and 0.6 for row-hit estimation. BLP and row-hit information required for LPA

is collected only from reads (not writes).

Table 7.4 shows hardware storage cost for our mechanisms on the single and

4-core systems in Table 7.1. The BLP information (aggregateand individual BLP)

is not sent from the DRAM controller to the last-level cache to avoid additional

storage and long wires. The BLP estimation is performed in the DRAM controller,

140

Reads Writes

Benchmark Type IPC MPKI RHR(%) BLP WPKI RHR(%) BLP

179.art FP00 0.26 90.92 95.43 1.78 9.79 86.75 1.49
482.sphinx3 FP06 0.39 12.94 83.01 1.17 0.63 58.18 1.79

181.mcf INT00 0.06 107.74 70.08 1.32 11.50 15.03 2.89
171.swim FP00 0.35 23.10 36.95 2.31 8.24 78.33 2.55
173.applu FP00 0.93 11.40 90.34 1.56 1.78 81.34 1.74

462.libquantum INT06 0.67 13.51 94.96 1.01 5.87 89.13 1.06
437.leslie3d FP06 0.54 20.88 70.50 1.95 2.72 73.80 2.05

481.wrf FP06 0.72 8.11 72.95 1.47 2.52 76.17 1.70
459.GemsFDTD FP06 0.49 15.63 45.81 2.21 6.91 50.60 2.70

189.lucas FP00 0.61 10.61 61.00 1.36 2.38 34.19 1.08
450.soplex FP06 0.40 21.24 81.64 1.30 3.75 42.48 1.60

436.cactusADM FP06 0.63 4.51 7.42 1.36 1.22 33.31 1.54
471.omnetpp INT06 0.49 10.11 63.45 1.27 4.17 6.88 2.46

176.gcc INT00 0.93 3.24 90.62 1.07 0.54 39.53 1.56
178.galgel FP00 1.42 4.84 54.45 2.99 1.16 11.51 3.03

464.h264ref INT06 1.48 1.28 89.56 1.07 0.28 63.55 1.90

Table 7.3: Characteristics of 16 SPEC benchmarks for DRAM-aware replacement:
IPC, MPKI (last-level cache misses per 1K instructions), WPKI (last-level cache
Writebacks Per 1K Instructions), row hit rate (RHR), BLP

and a one-bit field (high/low BLP bit in Table 7.4) is carried by each read request.

Similarly, one bit row hit/conflict field is also carried by each request for row-hit

estimation before being inserted into the cache.

LPA and WIA require only 0.2% of the total last-level cache space on both

systems. We assume that the core ID field is already availablein each cache line on

the 4-core system. If the core ID field (2 bits) is also considered, our mechanisms

require 12.7KB (0.6% of last-level cache), which is still insignificant. Note that

none of the logic or structures required for the mechanisms is on the critical path.

7.8 Experimental Evaluation and Analysis on DRAM-Aware Re-
placement Policies

We present experimental results for our mechanisms on the single-core and

4-core systems. We first analyze the DRAM-aware replacementpolicies intensively

on the single-core system.

141

Cost for
Structure Cost equation (bits)

4-core

Aggregate BLP & busy counters
and BLP register

16× 3×Ncore 192

Individual BLP & busy counters 16× 2×Nbank 512
High/low BLP bit 1×Nbuffer 128

Aggregate row-hit & request counters
and row hit rate register

16× 3×Ncore 192
LPA

Load PC table’s tag store (16-entry 4-way) 27× 16×Ncore 1,728
Load PC table’s data store
(row-hit/request counters)

2× 16× 16×Ncore 2,048

Row hit/conflict bit 1×Nbuffer 128
Low-cost bit 1×Nline 32,768

WIA Row address registers 32×Nbank 512

Total storage cost for the 4-core systems in Table 7.1 38,208
Total storage cost as a fraction of the last-level cache capacity 0.2%

Table 7.4: Hardware storage cost for DRAM-aware replacement policies (Ncore,
Nline, Nbank, Nbuffer: number of cores, last-level cache lines, DRAM banks, cache
fill buffer entries)

7.8.1 Single-Core Results

Figure 7.5 shows IPC normalized to the baseline for the baseline LRU,

MLP-aware, Latency and Parallelism-Aware (LPA), Write-caused Interference-Aware

(WIA), and combined LPA-WIA replacement polices. The MLP-aware policy is

implemented with a set-sampling mechanism that selects between (MLP-aware)

linear and LRU policies as proposed by Qureshi et. al [63].

Overall, the best performing policy is the combination of LPA and WIA,

which improves performance by 11.4% (6.9% excludingart) on average. In con-

trast, the MLP-aware policy improves performance by 4.6% (0.6% excludingart).

LPA and WIA complement each other and act synergistically. We make the follow-

ing major observations:

First, both LPA and MLP-aware policies improve performancefor art, sphinx3,

mcf, gcc, galgelandh264ref. However, LPA outperforms the MLP-aware policy

for most benchmarks. Especially, forswim, LPA improves performance by 2.3%

142

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

IP
C

 n
or

m
al

iz
ed

 to
 b

as
el

in
e

base
MLP
LPA
WIA
LPA-WIA

1.9 1.3
2.3 1.4

2.1 1.5

ar
t

sp
hin

x3

m
cf

sw
im

ap
plu

lib
qu

an
tu

m

les
lie

3d

wrf

Gem
sF

DTD

luc
as

so
ple

x

ca
ctu

sA
DM

om
ne

tp
p

gc
c

ga
lge

l

h2
64

re
f

gm
ea

n

Figure 7.5: Performance of DRAM-aware replacement policies on single-core sys-
tem

while the MLP-aware policy degrades performance by 3.8%. The reason why LPA

outperforms the MLP-aware policy overall is that LPA is better at identifying and

evicting low-cost lines that are serviced faster or in parallel in the DRAM system.

Second, both the LPA and MLP-aware policies degrade performance for

applu, libquantum, leslie3d, wrf, andGemsFDTD. This is because neither of the

two mechanisms are aware of write-caused interference whenthey evict dirty cache

lines. This signifies the importance of write-caused interference when replacement

decisions are made.

Third, the performance degradations due to LPA are recovered by employ-

ing WIA together with LPA. Additionally, WIA alone improvesperformance for

GemsFDTD, lucas, soplex, cactusADM, andomnetppmainly due to its ability to

reduce write-caused interference in the DRAM system. As a result, using LPA and

WIA (LPA-WIA) together provides the best performance amongall policies.

In the following subsections, we provide further insight using supporting

data about DRAM characteristics.

143

7.8.1.1 Why Does LPA Policy Perform Well?

Figure 7.6 shows the total read bus traffic (from DRAM to the processor)

and aggregate DRAM BLP. Read traffic is essentially miss traffic and is divided

into row hits and row conflicts. A good cache replacement policy would lead to less

read traffic (i.e., fewer misses or higher cache locality), fewer row conflicts, and

higher BLP.

0

2

4

6

8

10

12

14

16

18

20

22

M
ill

io
n

D
R

A
M

 r
ea

ds

row hits
row conflicts

ar
t
sp

hin
x3

m
cf

sw
im

ap
plu

lib
qu

an
tu

m

les
lie

3d

wrf

Gem
sF

DTD

luc
as

so
ple

x

ca
ctu

sA
DM

om
ne

tp
p

Base
MLP

LPA
WIA

LPA-WIA

0.0

0.2

0.4

0.6

0.8

1.0

M
ill

io
n

D
R

A
M

 r
ea

ds

gc
c
ga

lge
l

h2
64

re
f

(a) Traffic

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
gg

re
ga

te
 B

LP

base
MLP
LPA
WIA
LPA-WIA

ar
t
sp

hin
x3

m
cf

sw
im

ap
plu

lib
qu

an
tu

m

les
lie

3d

wrf

Gem
sF

DTD

luc
as

so
ple

x

ca
ctu

sA
DM

om
ne

tp
p

gc
c
ga

lge
l

h2
64

re
f

(b) Aggregate BLP

Figure 7.6: DRAM read traffic and aggregate BLP of DRAM-awarereplacement
policies

LPA reduces row-conflict read traffic significantly forart, sphinx3, andmcf

144

(by 73.3%, 68.5%, and 14.2% compared to the baseline) in addition to reducing the

overall read traffic as shown in Figure 7.6(a). This improvesperformance signifi-

cantly for these applications. The MLP-aware policy also reduces read traffic, but

much less so than LPA does.

LPA also increases BLP formcfandswimby 12.3% and 10.0% compared to

the baseline as shown in Figure 7.6(b). The increased BLP andreduced read traffic

cause LPA to outperform the MLP-aware policy. The improved BLP due to LPA

translates to performance improvement forswimeven though LPA increases cache

misses (total read traffic) by 8.5%. In contrast, the MLP-aware policy degrades

performance ofswimbecause many of the concurrent misses it estimates to be low-

cost actually end up being high-cost row conflicts because they map to the same

DRAM bank.

LPA significantly outperforms the MLP-aware policy in four applications:

art, sphinx3, mcf, andswim. This is because the MLP-aware policy is not aware of

DRAM banks and row buffer locality in the DRAM system. It relies on only the

information about how many misses are outstanding at the same time, as discussed

in Section 7.5. In contrast, our mechanism explicitly measures and estimates the

BLP and row hit rate in the DRAM system to determine whether a line is likely to

be low-cost when refetched later.

7.8.1.2 Why Is Write-Caused Interference Awareness Desirable?

Both the MLP-aware and LPA policies degrade performance forapplu,

libquantum, leslie3d, wrf, andGemsFDTD, even though the read traffic (i.e., misses

or row hits/row conflicts) or BLP does not change compared to the baseline, as

shown in Figures 7.6(a) and (b). The reason for the degradation can be found by

analyzing write traffic in Figure 7.7(a). Even though the total write traffic does not

increase, LPA and MLP-aware increase the number of row-conflict writes compared

to the baseline. This indicates that these policies increase write-caused interference,

causing DRAM performance to degrade due to a large number of idle cycles on the

145

DRAM data bus. In fact, MLP-aware and LPA policies degradelibquantum’s per-

formance by 27.0% and 22.0%.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
ill

io
n

D
R

A
M

 w
rit

es
row hits
row conflicts

Base
MLP

LPA
WIA

LPA-WIA

ar
t
sp

hin
x3

m
cf

sw
im

ap
plu

lib
qu

an
tu

m

les
lie

3d

wrf

Gem
sF

DTD

luc
as

so
ple

x

ca
ctu

sA
DM

om
ne

tp
p

0.00

0.05

0.10

0.15

0.20

0.25

M
ill

io
n

D
R

A
M

 r
ea

ds

gc
c
ga

lge
l

h2
64

re
f

(a) Traffic

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
gg

re
ga

te
 B

LP

base
MLP
LPA
WIA
LPA-WIA

ar
t
sp

hin
x3

m
cf

sw
im

ap
plu

lib
qu

an
tu

m

Gem
sF

DTD

les
lie

3d

wrf
luc

as

ca
ctu

sA
DM

so
ple

x

om
ne

tp
p

gc
c
ga

lge
l

h2
64

re
f

(b) Aggregate BLP

Figure 7.7: DRAM write traffic and aggregate BLP of DRAM-aware replacement
policies

When employed with LPA, WIA reduces the number of row conflicts to as

many as the baseline LRU forapplu, libquantum, leslie3d, andwrf as shown in

Figure 7.7(a). It also leads to fewer row conflicts than the baseline forGemsFDTD.

Hence, by reducing write-caused interference when employed with LPA, WIA re-

covers the performance degradation due to LPA, and sometimes even improves per-

146

formance compared to the baseline (forGemsFDTDby 3.3%) as shown in Fig-

ure 7.5.

Additionally, WIA alone (without LPA) improves performance for lucas,

cactusADM, soplex,and omnetppby increasing row-hit writes (rather than row-

conflict writes) compared to the baseline, thereby reducingwrite-caused interfer-

ence in the DRAM system. Note that forlucas, cactusADMandomnetpp, WIA

also increases aggregate BLP for writes, reducing their average latency cost.

On the other hand, the MLP-aware policy suffers performancedegradation

or cannot improve performance for these applications due toits unawareness of

write-caused interference in the DRAM system.

7.8.1.3 Combining LPA and WIA

We find that LPA and WIA are orthogonal to each other. When combined

together in the way described in Section 7.3, the performance benefit of each mech-

anism is obtained additively. This can be justified by observing that improved

DRAM characteristics for reads and writes of each individual mechanism in Fig-

ures 7.6 and 7.7 do not significantly change for LPA-WIA. We conclude that our

DRAM-aware replacement policies largely reduce costly cache misses and evic-

tions, thereby improving performance significantly on a single-core system.

7.8.1.4 Effect on System with Prefetching

In this section, we discuss the DRAM-aware replacement policy in a sys-

tem with prefetching. When the DRAM-aware policy is naivelyemployed with

prefetching, there are two issues that can affect its effectiveness. First, useful

prefetches that are marked as low-cost by LPA can be evicted (just because they

are marked as low-cost) from the last-level cache before it is used. This reduces the

effectiveness of prefetching and therefore can hurt performance compared to the

baseline LRU policy without LPA. Second, useless prefetches that are not marked

(i.e., high cost prefetches) can stay in the cache for a long time consuming cache

147

space. This can reduce cache efficiency by evicting useful cache lines.

To overcome these problems, we take prefetch usefulness into account in

LPA replacement decisions. The basic idea is 1) to ignore thelow-cost bit of

prefetches that are estimated as useful so that LPA does not evict low-cost use-

ful prefetches that are not used yet and 2) to evict prefetches that are likely-useless

earlier so that cache space can be used for demand and useful prefetches.

To implement this, we measure prefetch accuracy on an interval-basis as

prefetch-aware DRAM controller and BLP-aware issue policies do as presented in

Chapters 5 and 6. When the estimated prefetch accuracy from the previous interval

is greater than a threshold,usefulprefetchthreshold, the low-cost bits of prefetched

lines are disregarded by LPA in the current interval. Similarly, when the prefetch

accuracy is less than another threshold,uselessprefetchthreshold, prefetched lines

are prioritized over any other cache lines in the set considered for replacement. Note

that prefetched lines are identified by examining the prefetch bit in each cache line,

which is already used by the prefetch estimation (as explained in Section 5.2.1).

On the other hand, WIA is not required to be prefetch-aware. This is be-

cause writes are not immediately critical to an application’s progress as we already

discussed in Section 7.4.2. Writes become critical only when the DRAM controller

cannot service demands and useful prefetches (i.e., reads)due to write-caused in-

terference. Servicing many writes quickly so that reads canbe serviced without

interruption of writes for a long time leads to high performance.

Figure 7.8 shows the average performance of the baseline with no prefetch-

ing, the baseline prefetching, MLP-aware, and DRAM-aware replacement (LPA

and WIA together) with these optimizations. We ran the 16 benchmarks on the

single-core system with the stream prefetcher (used in Chapters 5 and 6). We

empirically determined the two thresholds:usefulprefetchthresholdof 50% and

uselessprefetchthresholdof 20%. The prefetch accuracy is measured every 100K

processor cycles.

The DRAM-aware replacement policy improves performance by8.2% com-

148

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

IP
C

 n
or

m
al

iz
ed

 to
 b

as
el

in
e

base
pref
MLP
LPA-WIA

Figure 7.8: Performance of DRAM-aware replacement policies on single-core sys-
tem with prefetching

pared to prefetching whereas the MLP-aware policy improvesperformance only by

4.4%. This is mainly because the MLP-aware policy is not aware of DRAM char-

acteristics or prefetch usefulness. We conclude that DRAM-aware replacement is

also effective in a system that employs prefetching.

7.8.2 4-Core Results

We evaluate our mechanisms on a 4-core system with a shared last-level

cache in this section. Figure 7.9 shows average weighted speedup (WS) and har-

monic mean of speedups (HS) for the baseline LRU, MLP-aware,LPA, WIA, and

LPA-WIA replacement policies.

LPA alone improves both WS and HS by 4.6% and 8.4% compared to the

baseline LRU by evicting low-cost lines while keeping high-cost lines for the ap-

plication running on each core. WIA alone also significantlyimproves system per-

formance (WS and HS by 4.7% and 4.6%) by servicing writes fast, and thereby re-

ducing write-caused interference to more critical reads. When combined together,

LPA and WIA improve WS and HS by 9.5% and 12.3%. On the other hand, the

MLP-aware policy marginally improves only HS by 3.4%. Its performance ben-

efit is insignificant mainly due to its unawareness of DRAM characteristics. We

conclude that our DRAM-aware mechanisms are also very effective and improve

149

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

V
al

ue
 o

f m
et

ric

(a) WS

0.0

0.1

0.2

0.3

0.4

0.5

V
al

ue
 o

f m
et

ric

base
MLP
LPA
WIA
LPA-WIA

(b) HS

Figure 7.9: Performance of DRAM-aware replacement policies on 4-core system

system performance significantly on multi-core systems.

7.9 Summary

This chapter makes a case for designing the last-level cachereplacement

policies in a manner that is aware of DRAM state and characteristics. Previous

cache replacement policies overwhelmingly optimize for minimizing cache misses

and ignore DRAM performance characteristics that affect the cost of each miss:

row buffer locality, bank-level parallelism, and write-caused interference. We show

that taking these DRAM performance characteristics into account in last-level cache

replacement policies can significantly improve entire system performance. Our pro-

posed policies estimate the performance cost of a cache miss/eviction in the DRAM

system, and favor the eviction of the cache line that is estimated to have the least

system performance impact. Our evaluations show that our proposed DRAM-aware

cache replacement policies significantly improve performance on both single-core

and multi-core systems.

150

Chapter 8

Last-Level Cache Management for Reducing
Write-Caused Interference

In Chapter 7, we have proposed and discussed a cache replacement policy,

Write-caused Interference-Aware (WIA) Replacement policy, which aims to reduce

write-caused interference in the DRAM system. Recall that WIA evicts row-hit

dirty lines that can be written back quickly to DRAM due to rowbuffer localityonly

when a replacement happens in the last-level cache. In this chapter, we propose a

more aggressive writeback policy that proactively sends writebacks from the last-

level cache evenbeforea replacement happens, in order to further reduce write-

caused interference in the DRAM system [38].

We first motivate the problem of write-caused interference in today and fu-

ture DRAM systems in more detail, and then we discuss our baseline DRAM write

buffer management policy that performs best among the existing write buffer poli-

cies by reducing read-to-write and write-to-read penalties. After that, we propose

and evaluate our aggressive cache writeback mechanism which can further improve

performance on top of the baseline write buffer policy.

8.1 Write-Caused Interference in the DRAM System

Read and write requests from the processor contend for DRAM data bus. In

general, read requests (i.e., miss requests from the last-level cache) are critical for

system performance since they are required for an application’s progress whereas

writes (i.e., writeback requests from the last-level cache) do not need to be per-

formed immediately. In modern DDR (Double Data Rate)-basedmemory systems,

write requests can interfere significantly with the servicing of read requests, degrad-

151

ing overall system performance by delaying the more critical read requests. There

are two major sources of performance penalty when a write request is serviced in-

stead of a read request. First, the critical read request is delayed for the duration

of the service latency of the write request. Second, even after the write is serviced

fully, the read cannot be started because the DDR DRAM protocol requires addi-

tional timing constraints to be satisfied which causes idle cycles on the DRAM data

bus in which no data transfer can be done.

As discussed in Section 2.3, the two most important of these timing con-

straints are write-to-read (tWTR) and write-to-precharge (write recovery,tWR) la-

tencies as specified in the current JEDEC DDR DRAM standard [22]. These tim-

ing constraints in addition to other DRAM latencies such as precharge, activate and

column address strobe latencies (tRP , tRCD, andCL/CWL) dictate the number of

cycles in which the DRAM data bus must remain idle after a write, before a read

can be performed. Both latencies increase in terms of numberof DRAM clock cy-

cles as the bus clock frequency of the DRAM chip increases [67, 22] as do other

DRAM latencies. The end result is that high penalties causedby write requests will

become even larger in terms of number of cycles because the bus clock frequency

of future DRAM chips will continue to increase to maintain high peak bandwidth.

An on-chip write buffer can mitigate this problem. A write buffer holds

write requests on the chip until they are sent to DRAM according to the write buffer

management policy. While write requests are held by the write buffer, read re-

quests from the processor can be serviced by DRAM without interference from

write requests. As a result, memory service time for reads that are required by the

application can be reduced. As the write buffer size increases, write-caused inter-

ference in the memory system decreases. For example, an infinite write buffer can

keep all write requests on-chip, thereby completely removing write-caused inter-

ference. However, a very large write buffer is not attractive since it requires high

hardware cost and design complexity (especially to enable forwarding of data to

matching read requests) and leads to inefficient utilization of on-chip hardware and

power. In fact, a write buffer essentially acts as another level of cache (holding

152

only written-back cache lines) between the last-level cache and the main memory

system.

8.1.1 Performance Impact of Write-Caused Interference in Today’s DRAM
System

To motivate the performance impact of write-caused interference, Figure 8.1

shows the simulated performance of a single-core system (with no prefetching)

that employs a state-of-the-art DDR3-1600 DRAM system (12.8 GB/s peak band-

width) [49] and a First Ready-First Come First Served (FR-FCFS) DRAM con-

troller [66]. We evaluate four write request management policies: 1) a 64-entry

write buffer with a management policy similar to previous proposals [40, 57, 68]

which exposes writes (i.e., makes them visible) to the DRAM controller only when

there is no pending read request or when the write buffer is full, and stops exposing

writes when a read request arrives or when the write buffer isnot full anymore (ser-

vice at no read), 2) a 64-entry write buffer with a policy that exposes all writes only

when the write buffer is full and continues to expose all writes until the write buffer

becomes empty (drain whenfull), 3) Write-caused Interference-Aware (WIA) re-

placement policy withdrain whenfull (proposed in Chapter 7) and 4) ideally elim-

inating all writes assuming that there is no correctness issue (nowrite). Ideally

eliminating all writes removes all write-caused interference and therefore shows

the upper bound on performance that can be obtained by handling write-caused in-

terference intelligently. We chose 16 benchmarks among allSPEC2000/2006 CPU

benchmarks that have at least 10% IPC (retired instruction per cycle) performance

improvement compared todrain whenfull when all writes are ideally removed.

The performance numbers are normalized todrain whenfull. The configuration of

the system is identical to the baseline system presented in Section 7.6.

We make two main observations. First, the performance ofserviceat no read

is worse thandrain whenfull. This is because when a read arrives at the DRAM

controller very soon after a write is serviced, a significantamount of write-caused

penalty delays that read. This happens to all the benchmarksexcept forlucaswhere

153

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

IP
C

 n
or

m
al

iz
ed

 to
 b

as
el

in
e

service_at_no_read
drain_when_full (base)
WIA
no_write

sw
im

ap
plu

ga
lge

l
ar

t
luc

as

fm
a3

d
m

cf
m

ilc

ca
ctu

sA
DM

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm
om

ne
tp

p

as
ta

r
wrf

gm
ea

n

Figure 8.1: Potential (simulated) performance of intelligently handling write-
caused interference in the DRAM system

there are long enough periods to satisfy the large write-caused penalties during

which reads are not generated. Servicing writes opportunistically when there are

no reads degrades performance due to two reasons: 1) it incurs the costly write-

to-read and read-to-write switching penalties, thereby wasting DRAM bandwidth

(i.e., incurring many idle cycles), 2) it does not exploit row buffer locality when

servicing write requests since writes that go to the same roware serviced far apart

from each other in time. In contrast,drain whenfull improves performance by

9.8% compared toserviceat no read on average because it 1) delays service of

writes as much as possible, 2) services all writes once it starts servicing one write,

thereby amortizing write-to-read switching penalties across multiple writes by in-

curring them only once for an entire write-buffer worth of writes, and 3) increases

the possibility of having more writes to the same DRAM row address or higherrow

buffer localityin the write buffer that is exploited by the DRAM controller for better

DRAM throughput.

Second, even thoughdrain whenfull improves performance compared to

serviceat no readand WIA outperformsdrain whenfull, there is still large poten-

tial performance improvement (20.2% and 17.1% compared todrain whenfull and

WIA respectively) that can be achieved by further reducing write-caused interfer-

154

ence, as shown by the rightmost set of bars.

As shown above, the impact of write-caused interference on an application’s

performance is significant even with good write buffer/cache replacement policies

with a decently-sized (i.e., 64-entry) write buffer. This is because a size-limited

write buffer or a write buffer management policy cannot completely remove write-

caused interference since 1) writes eventually have to be written back to DRAM

whenever the write buffer is full and 2) servicing all writesin the write buffer still

consumes a significant amount of time mainly due to the write-to-precharge penal-

ties imposed to row-conflict writes to the same bank as discussed in 7.2.1. Note that

the write-caused interference-aware replacement policy cannot remove all interfer-

ence as well.

8.1.2 Performance Impact of Write-Caused Interference in the Future

We expect that write-caused interference will continuallyincrease in terms

of number of clock cycles as the bus clock frequency of the DRAM chip increases

to maintain higher peak bandwidth. The write-to-read penalty which guarantees

that modified data is written to the row buffer correctly (sense amplifier) will not be

easily reduced in absolute time similar to other access latencies such as precharge

period (tRP) and column address strobe latency (CL/CWL). This is especially true

for the write-to-precharge latency which guarantees modified data will be com-

pletely written back to the memory rows before a new precharge. This latency

cannot easily be reduced because reducing access latency tothe memory cell core

is very difficult [67, 22]. We believe that this trend will continue to hold for any

future memory technology (not limited to DRAM technology) that supports high

peak bandwidth. This means that write-caused interferencewill continue to be a

performance bottleneck in the future.

Figure 8.2 shows the performance improvement of the ideal writeback pol-

icy (i.e., all writes are removed) across future high bandwidth memory systems.

We assume that the DRAM bus clock frequency continue to increase in the fu-

155

ture. Since the future memory specifications are unknown, wespeculatively scaled

the number of clock cycles for all DDR3-1600 performance-related latencies that

cannot be easily reduced (e.g.,tWTR, tWR, tRP , tRCD, CL, etc) in absolute time.

For example, x2 of DDR3-1600 indicates a DDR system that maintains twice the

DDR3-1600 peak bandwidth (25.6GB/s = 2× 12.8GB/s). We also assume that the

DRAM bus clock frequency increases as fast as the processor clock frequency. We

show two cases: when no prefetching is employed and when the stream prefetcher

(used in Chapters 5 and 6) is used in the processor.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

IP
C

 n
or

m
al

iz
ed

 to
 b

as
el

in
e

DDR3-
16

00

x2 x4

(a) No prefetching

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

IP
C

 n
or

m
al

iz
ed

 to
 b

as
el

in
e

DDR3-
16

00

x2 x4

(b) Prefetching

Figure 8.2: Performance potential by eliminating all writes as memory bus clock
frequency increases

We make two observations from Figure 8.2. First, the higher the peak band-

width, the larger the performance impact of write-caused interference. Second,

removing write-caused interference is more critical for systems with prefetching.

The performance impact of writes for the systems with prefetching is much higher

due to larger contention between reads and writes (prefetchrequests are all reads).

156

8.2 Motivation

8.2.1 Reducing Read-to-Write and Write-to-Read Penalties

As discussed in Section 2.3, read-to-write/write-to-readswitching penalty

is dictated by the read-to-write latency (latency from a read data burst to a write

data burst, 2 DRAM clock cycles) and write-to-read latency (tWTR, 6 DRAM clock

cycles for DDR3-1600).

We demonstrate how these penalties can be mitigated by thedrain whenfull

policy with an example in Figure 8.3. Figure 8.3(a) shows thestate of the DRAM

read and write buffers. For brevity, we assume that each buffer has only two entries

in this example. All the read requests in the DRAM read bufferare always exposed

(or considered for scheduling) to the DRAM controller, whereas the writes are ex-

posed based on the write buffer management policy. There is one read (Read A, a

read request to Row A) and one write (Write B, a write to Row B) in the read and

write buffers respectively. At timet1, another read (Read C) and a write (Write D)

come from the last-level cache. We assume that each request goes to a different

bank and that all requests hit the current open row in their corresponding DRAM

banks (i.e., all requests are row hits).

Figure 8.3(b) shows the DRAM timing diagram for the policy which ex-

poses writes to the DRAM controller only when there is no pending read request or

when the write buffer is full and stops exposing writes when aread request comes in

or when the write buffer is not full anymore (serviceat no read in Section 8.1.1).

Since no read is pending in the DRAM read buffer after Read A isscheduled, this

policy schedules Write B from the write buffer. Subsequently Read C and Write D

are scheduled.

Two observations are made. First, the command for Write B after Read A

must satisfy read-to-write latency; it has to be scheduled by the DRAM controller

at leastCL + tBL + 2 − CWL DRAM clock cycles [22] after the read command

is scheduled such that the write burst can be on the bus two DRAM cycles after the

read burst (as discussed in Section 2.3). Second, Read C after Write B must satisfy

157

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Read A
Command

Data bus

CL

Data A

t1

Saved cyclesCWL
CL

CWL

Read to write latency

Data C Data B Data D

Write B Write DRead C

tCCD

} Drain
when full

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

CL
CWL

Read A

Read to write latency

CL

Read C Write D

Data A

Command

Data bus

Read to write latency

CWL
Data D

Data C
tBL

Write B

t1

} Service
at no readtWTR

Data B

CL + tBL + 2 − CWL

Read A

DRAM read buffer

Read C at t1

Rows A, B, C, and D are initially open
Read/write x : Read/write a column in row x

(a) DRAM buffer state

DRAM write buffer

Write B

To DRAM

Write D at t1

(c) DRAM timing for the policy that exposes writes when write buffer is full

(b) DRAM timing for the policy that exposes writes when no read is waiting

Figure 8.3: Serviceat no read vs. drainwhen full write buffer policies

158

tWTR. The command for Read C can only be scheduledtWTR cycles after the data

burst for Write B is completed. In contrast to read-to-writelatency, the data bus

must be idle fortWTR + CL cycles since the subsequent read command cannot be

scheduled fortWTR cycles. The last write is scheduled after read-to-write latency

is satisfied as shown.

This policy results in many idle cycles (i.e., poor DRAM utilization) on the

data bus. This is because it sends writes as soon as there are no pending reads

which is problematic when a subsequent read arrives immediately after the write

is scheduled to DRAM. The penalties introduced by the write cause a significant

amount of interference and therefore increase both the read’s and write’s service

time. This is the main reason why this policy does not performwell as shown in

Figure 8.1.

On the other hand, if the write buffer policy that exposes allwrites only

when the write buffer is full and continues to expose all writes until the write buffer

becomes empty (drain whenfull) is used, Reads A and C are serviced first (Write

B is not serviced immediately after Read A since the write buffer is not full) and

then Writes B and D are serviced. Figure 8.3(c) shows the DRAMtiming diagram

for this policy. Read C can be scheduled once the DRAM controller sees it since

there is no unsatisfied timing constraint for Read C. Then Write B can be scheduled

CL + tBL + 2 − CWL cycles after the command for Read A is scheduled. Note

that the command for Write D can be scheduled very soon (more precisely,tCCD

cycles after the command for Write B) since DDR DRAM chips support back-to-

back data bursts for writes by overlapping column address strobe latencies (CWL)

as we discussed in Chapter 2.

This policy results in better DRAM service time for the four requests com-

pared to the policy shown in Figure 8.3(b). Since buffering writes in the DRAM

write buffer and servicing all of them together when the buffer becomes full re-

duces the large read-to-write and write-to-read latency penalties, DRAM through-

put increases. Also note that by delaying writes as much as possible, reads that are

159

more critical to an application’s progress can be serviced quickly thereby improving

performance. This is the main reason this policy outperforms thedrain whenfull

policy as shown in Figure 8.1. We found that this policy is thebest among the pre-

viously proposed write buffer policies we evaluated (as shown Section 8.7.1). We

use this policy as our baseline write buffer policy.

8.2.2 Last-Level Cache Writeback: A Way to Further Reduce Write-Caused
Interference

As discussed in Section 2.3.2, write-to-precharge penaltycannot be reduced

by write buffer policies (such as drain when full). Servicing row-conflict writes in

the same bank takes a significant number of cycles. This delays service of writes

in the write buffer and eventually results in delaying service of reads. Service of

writes can be done faster if the write buffer has many row-hitwrites. The source of

DRAM writes is the last-level cache’s writebacks which are dirty line evictions in a

writeback cache. To leverage this fact, we have already proposed the Write-caused

Interference-Aware (WIA) replacement policy in Chapter 7.The WIA policy evicts

row-hit dirty lines that can be written back fast to DRAM due to row buffer locality

when a replacement happens in the last-level cache. Since this policy generates row-

hit writes only when a replacement happens in a cache set, it looses opportunities

that more row-hit dirty lines in other cache sets can be written back fast. Therefore

overall reduction in write-caused interference can be small.

The last-level cache can more aggressively and proactivelysend out write-

backs that can be written fast evenbeforea line is evicted to improve service time

of writes.

Figure 8.4 compares an aggressive writeback policy of the last-level cache

to the WIA replacement policy. Figure 8.4(a) shows the initial state of the DRAM

read/write buffers and three sets of the last-level cache. Two reads (Reads A1 and

A2, both to Row 0) and a write (Write B0 to Row 1) are waiting to be scheduled in

the DRAM read and write buffers (two entries for each) respectively. In each of the

three cache sets shown, there is a dirty line that is mapped tothe same row (Row 1)

160

Writes and dirties B0, B1, B2, B3 are mapped to row 1 in bank 0
Reads A1, A2, A3, A4 are mapped to row 0 in bank 0

Data for read A1 is stored in set 1
Data for read A2 is stored in set 2
Data for read A3 is stored in set 3

Rows 1 in bank 0 is initially open

Read A3 at t1

DRAM write buffer

To DRAM

DRAM read buffer

Read A1
Read A2

Write B0

Read A4 at t1

Clean Clean CleanDirty B1

Clean Clean Dirty B2
Clean CleanDirty B3

Clean
Clean

Set 1

Set 2
Set 3

Last−level cache

Less recently used

Read A1 (row hit), Write B0 (row conflict), Write B1 (row hit), Write B2 (row hit),
Scheduling order

Write B3 (row hit), Read A2 (row conflict), Read A3 (row hit), Read A4 (row hit)

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

Data bus
A1

tRP + tRCD + CWL tWR + tRP + tRCD + CL
Saved cycles

t1 t2
B0

B1
B2

B3
A2

A3
A4

Wites B1, B2, B3 sent proactively

(c) DRAM timing for DRAM−aware writeback: writebacks B1, B2, B3 are sent proactively

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

Data bus
B1

tWR + tRP + tRCD + CLtRP + tRCD + CWL

t2t1
Dirty B1 evicted (write buffer full)

(write buffer full)
Dirty B3 evicted

Dirty B2 evicted
tWR + tRP + tRCD + CL tRP + tRCD + CWL

A1 B0 A2 A3 B2 B3 A4

Scheduling order

Read A3 (row hit), Write B2 (row conflict), Write B3 (row hit), Read A4 (row conflict)
Read A1 (row hit), Write B0 (row conflict), Write B1 (row hit), Read A2 (row conflict),

(b) DRAM timing for write−caused interference−aware replacement

(a) Cache/DRAM buffer initial state

Figure 8.4: Write-cause interference-aware replacement vs. DRAM-aware write-
back

161

as Write B. At timet1, a new read to Row 0 (Read A3) comes from the last-level

cache. At timet2, another read to Row 0 (Read A4) comes as well. We assume that

Reads A1, A2, and A3 are inserted to Sets 1, 2, and 3 in the cacherespectively when

serviced by DRAM. We also assume that all (read and write) requests are mapped

to the same bank (Bank 0) for simplicity. Both policies employ thedrain when full

write buffer policy.

Figure 8.4(b) shows the resulting DRAM timing when the WIA replacement

policy is used. Read A1 is serviced by DRAM first since the write buffer is not full.

When Read A1 is serviced and inserted to Set 1, WIA evicts Dirty B1 since it is

mapped to the same row as Write B0 in the write buffer (i.e., row hit). Therefore

the DRAM write buffer becomes full, and Writes B0 and B1 are serviced back-to-

back next after the row-conflict latency (tRP + tRCD + CWL). After this, Reads

A2 and Read A3 are serviced. Read A2 must wait for a longer row-conflict latency

(tWR + tRP + tRCD + CL) since its precharge command must wait until write-to-

precharge latency (tWR) is satisfied after the write burst of Write B1. Read A3 is

serviced right after Read A2 since it is a row hit read. The evicted dirty lines (Writes

B2 and B3) due to Data A2 and A3’s insertion are written back after the row-conflict

latency (tRP + tRCD + CWL). Finally, Read A4 is serviced after another longer

row-conflict latency. This policy results in idle cycles of two smaller row-conflict

(row conflict after a read) latencies and two larger row-conflict (row conflict after a

write) latencies.

On the other hand, as shown in Figure 8.4(c), if the writebackfor Dirties B1,

B2, and B3 in the cache can be sent out before Read A is completely serviced by

DRAM, all writes are serviced back-to-backtRP +tRCD+CWL DRAM cycles after

Read A1’s data burst. Reads A2, A3, and A4 are serviced back-to-backtWR+tRP +

tRCD + CL after the write burst of Write B3. This policy results in idlecycles of

one smaller row conflict and one larger row conflict. Since more writes are serviced

back-to-back, the aggressive writeback policy can resultsin fewer idle DRAM bus

cycles than the WIA policy. Servicing more writes quickly also results in higher

162

performance since subsequent reads can be serviced withoutbeing interfered by

writes for a long time.

8.3 Mechanism: DRAM-Aware Writeback

Our mechanism, DRAM-aware writeback, aims to maximize the DRAM

throughput for write requests in order to minimize write-caused interference. It

monitors dirty cache lines (writebacks) that are evicted from the last-level cache

and tries to find other dirty cache lines that are mapped to thesame row as the

evicted line. When found, the mechanism aggressively sendswritebacks for those

dirty cache lines to DRAM. Thedrain whenfull write buffer policy allows writes

to be seen by the DRAM controller when the write buffer is fullthereby allow-

ing the DRAM controller to exploit row buffer locality of writes. The writeback

mechanism only cleans (does not evict) cache lines by sending writebacks.

The mechanism consists of a global writeback monitor unit and a state ma-

chine in each last-level cache bank as shown in Figure 8.5. The writeback monitor

unit watches evicted cache lines until it sees a dirty cache line being evicted. When

it finds one, it records the row address of the cache line in each cache bank’s state

machine. Once a write’s row address is recorded, the state machines start sending

out writebacks for dirty lines whose row address is the same as the recorded row

address (row-hit dirty lines). To find row-hit dirty cache lines, each state machine

searches its cache bank. Each state machine shares the port of its cache bank with

the demand cache accesses from the lower-level cache. Sincethe demand accesses

are more critical to performance, they are prioritized overthe state machine’s ac-

cesses. Once a row-hit dirty line is found, the line’s writeback is sent out through

the conventional writeback ports regardless of the LRU position of the cache line.

Because the cache lines which are written back in this mannermay be reused later,

the cache lines stay in the cache and only have their dirty bitreset (they become non-

dirty or clean). The state machine in each core continues sending row-hit writebacks

until all possible sets that may include cache lines whose row address is the same as

163

Last−level cache
Bank 0

Last−level cache

Writeback monitor

Data

Data

Writeback to DRAM

Last−level cache

Bank N−1

Address
Data Address

Row address

Writeback state machine

Last−level cache bank
Set

Data

writeback monitor
from
Row address

Writeback address
(To write buffer)

Writeback data

Cache access
address

DataCache access
address

Cache access
address

Figure 8.5: Writeback mechanism in last-level cache

164

the recorded row address have been checked. When all state machines in the banks

finish searching, the writeback monitor unit starts observing the writebacks coming

out of the cache to start another set of DRAM-aware writebacks.

The DRAM-aware writeback technique leverages the benefits of the write

buffer and the baseline write buffer management policy (drain whenfull). It can

send more row-hit writebacks than the number of write bufferentries within a very

short time. In fact, a single dirty line eviction can triggerour mechanism to send

up to rowsize / cacheline size writebacks. Once the write buffer becomes full, all

state machines stall and delay the current searching. At thesame time, the underly-

ing drain whenfull write buffer management policy starts exposing the writes since

the write buffer is full. As the DRAM controller services writes, free write buffer

entries become available for new writebacks. The state machine resumes searching

and sending row-hit writes to the write buffer. Because thedrain whenfull pol-

icy keeps exposing writes until the write buffer becomes empty, all possible row-hit

writebacks for a row can be serviced quickly by the DRAM controller since they are

all row-hits. In this way, our mechanism can effectively enable more writes to be

serviced quickly, which in turn reduces the number of write buffer drains over the

entire run of an application. This results in fewer write-to-read switching penalties

which improves DRAM throughput and performance.

Note that two conditions should be true for the DRAM-aware writeback

to be effective. First, the last-level cache banks should have enough idle cycles

for the state machine to look for row-hit writes. If this is true, the mechanism

would not significantly contend with demand accesses from the lower-level caches

for the cache bank and will be able to generate many row-hit writebacks. Second,

rewrites to cache lines which our mechanism proactively writes back to DRAM

should not occur too frequently. If rewrites happen too frequently, the mechanism

significantly increases the number of writes to DRAM. Even though row-hit writes

can be serviced quickly, the increased writes might increase time spent in servicing

writes. We discuss these two issues in the following sections.

165

8.3.1 Does Last-Level Cache Have Sufficient Bandwidth for DRAM-Aware
Writeback?

Table 8.1 shows the percent of last-level cache bank idle cycles (averaged

over all banks) over the entire run for each of the 16 SPEC2000/20006 benchmarks

in a single core system described in Section 8.5. For all benchmarks, exceptart,

cache bank idle time is more than 95%.

Benchmark swim applu galgel art lucas fma3d mcf milc cactusADM
Idle cycles (%) 0.96 0.97 0.92 0.91 0.98 0.97 0.97 0.97 0.99

Benchmark soplex GemsFDTD libquantum lbm omnetpp astar wrf
Idle cycles (%) 0.98 0.97 0.97 0.95 0.98 0.98 0.98

Table 8.1: Last-level cache bank idle cycles (%) on single core system

Table 8.2 shows the average idle bank cycles of the last-level cache (shared

cache for multi-core systems) of the single, 4, and 8-core systems described in

Section 8.5. Even in multi-core systems, the shared last-level cache has many

idle cycles. This is because last-level cache accesses are not too frequent com-

pared to lower-level caches, since the lower-level caches and Miss Status Hold-

ing/Information Registers (MSHRs) filter out many accessesfrom the last-level

cache. Therefore, we expect contention between demands andour DRAM-aware

writeback accesses to be insignificant. We find that prioritizing demands over the

accesses for DRAM-aware writeback is enough to reduce the impact of using the

cache banks for our mechanism.

1-core 4-core 8-core
Idle cycles (%) 0.97 0.91 0.89

Table 8.2: Average last-level cache bank idle cycles (%) on single, 4, and 8-core
systems

8.3.2 Dynamic Optimization for Frequent Rewrites

For applications that exploit temporal locality of the last-level caches, the

cache lines which are written back by our aggressive writeback policy may be

166

rewritten by subsequent dirty line evictions of the lower-level cache. Theseredirtied

cache lines may come to be written back to DRAM again by the last-level cache’s

replacement policy or the DRAM-aware writeback policy. This will increase the

number of writebacks (i.e., writes to DRAM) which may hurt performance by de-

laying service of reads due to frequent services for writes.

We mitigate this problem using a simple optimization. We periodically es-

timate the rewrite rate of cache lines whose writebacks are sent out by the DRAM-

aware writeback mechanism. Based on this estimation, our mechanism dynamically

adjusts its aggressiveness. For instance, when the rewriterate is high, the mecha-

nism sends out only row-hit writebacks close to the LRU position. When the rewrite

rate is low, the mechanism can send out even row-hit writebacks close to the MRU

position. Since the estimation of rewrite rate is periodically done, the DRAM-

aware writeback mechanism can adapt to the phase behavior ofan application as

well. When employing this optimization in the shared cache of a multi-core system,

we adapt the mechanism to estimate the rewrite rate for each core (or application).

To implement this, each cache line keeps track of which core it belongs to

using core ID bits and also tracks whether the cache line becomes clean (or non-

dirty) due to the DRAM-aware writeback mechanism using an additional bit for

each line. A counter for each core periodically tracks the total number of the core’s

writebacks sent out by the DRAM-aware writeback mechanism.Another counter

counts the number of the core’s rewrites to the clean cache lines whose writebacks

were sent early by our mechanism. The rewrite rate for each core for an interval is

calculated by dividing the number of rewrites by the total number of writebacks sent

out in that interval. The estimated rewrite rate is stored ina register for each core

and used to determine how aggressively the mechanism sends writebacks (from

LRU or from other positions close to MRU) for the next interval.

We found that our mechanism without this optimization slightly degrades

performance for only two applications (vpr and twolf, both of which are memory

non-intensive) out of all 55 SPEC2000/2006 benchmarks by increasing the num-

ber of writebacks. Therefore the gain from this optimization is small compared to

167

design effort and hardware cost. We analyze this optimization with experimental

results in detail in the results section (Section 8.7.2).

8.4 Comparison to Eager Writeback

Eager writeback [40] was proposed to make efficient use of idle bus cycle for

writes in a Rambus DRAM system in order to minimize read and write contention.

It sends writebacks for dirty LRU lines in a cache set to the write buffer when the

set is accessed by a demand request. Writes in the write buffer are scheduled when

the bus is idle. There are important key differences betweeneager writeback and

our DRAM-aware writeback technique which we discuss below.

First, eager writeback is not aware of DRAM characteristics. We find that

simply sending writebacks for dirty LRU cache lines does notwork with today’s

high-frequency DDR DRAM systems because servicing those writes in DRAM

is not necessarily completed quickly. For instance, servicing row-conflict writes

causes large penalties (write-to-precharge latencies) asshown in Section 7.2.1. This

eventually significantly delays the service of subsequent reads.

Second, the write-caused penalties of state-of-the-art DDR DRAM systems

are too large to send a write only because the data bus is idle or there are no pending

reads. To tolerate the large write-caused penalties, theremust be no read request

arriving at the DRAM system for a long time such that all write-caused timing

constraints are satisfied before the subsequent read. However, for memory intensive

applications whose working set does not fit in the last-levelcache, it is very likely

that read requests arrive at the DRAM system before all constraints are satisfied.

Therefore subsequent reads suffer large write-to-read penalties.

In contrast, our mechanism does not aim to minimize immediate write-

caused interference but targets minimizing the write-caused penalties for the entire

run of an application. It allows to stop servicing current reads to service writes.

However, once it does, it makes the DRAM controller service many writes fast by

exploiting row buffer locality such that servicing writes next time can be performed

168

a long time later.

We extensively analyze and compare DRAM-aware writeback and eager

writeback in Section 8.7.

8.5 Experimental Methodology

8.5.1 Metrics

To measure multi-core system performance, we use Individual Speedup

(IS), Weighted Speedup (WS), and Harmonic mean of Speedups (HS), which are

defined in Section 5.3.1.

8.5.2 System Model

The baseline configuration of processing cores and the memory system for

single, 4, and 8-core CMP systems is shown in Table 8.3 (identical to the model

in Chapter 7). The DDR3 DRAM performance-related timing constraints are the

same as in Table 7.2 in Chapter 7.

To evaluate the effectiveness of our mechanism in systems with prefetch-

ing, we employ the aggressive stream prefetcher (32 streams, prefetch degree of 4,

prefetch distance of 64 cache lines) in Chapters 5 and 6 for each core.

8.5.3 Workloads

We use the same methodology for compiling and running the SPEC work-

loads using ICC/IFORT and Pinpoints as discussed in Sections 5.3.3, 6.3.3 and 7.6.3.

We evaluate 18 SPEC benchmarks on the single-core system. The 16 bench-

marks (which have at least 10% ideal performance improvement when all writes are

removed) discussed in Section 8.1.1 and the two benchmarks,vpr andtwolf men-

tioned in Section 8.3.2. The characteristics of the 18 SPEC benchmarks are shown

in Table 8.4. To evaluate our mechanism on CMP systems, we formed combinations

of multiprogrammed workloads from all the 55 SPEC 2000/2006benchmarks. We

169

Out of order, decode/retire up to 4 instructions,
Execution Core issue/execute up to 8 microinstructions; 15 stages

256-entry reorder buffer;
Fetch up to 2 branches; 4K-entry BTB;

Front End 64-entry return address stack;
64K-entry gshare/PAs hybrid branch predictor
L1 I/D-cache: 32KB, 4-way, 2-cycle, 64B line size;
Shared last-level cache: 16-way, 8-bank, 15-cycle,

Caches and 1 read/write port per bank, LRU replacement
on-chip buffers writeback, 64B line size, 1, 2, 4MB for 1, 4 and 8-core systems;

32, 128, 256-entry MSHRs & LLC access/miss/fill buffers,
for 1, 4 and 8-core systems
1, 2, 2 channels (DRAM controllers) for 1, 4, 8-core systems;
800MHz DRAM bus cycle,

DRAM and bus Double Data Rate (DDR3 1600MHz) [49];
8B-wide data bus per channel, BL = 8;
1 rank, 8 banks per channel, 8KB row buffer per bank;
On-chip, open-row, FR-FCFS scheduling policy [66];

DRAM
64-entry (8× 8 banks) DRAM read and write buffers per channel

controllers
drain when full write buffer policy

Table 8.3: Baseline configuration for DRAM-aware writeback

ran 30 and 12 randomly chosen workload combinations for our 4and 8-core CMP

configurations respectively.

8.6 Implementation and Hardware Cost of DRAM-Aware Write-
back

As shown in Figure 8.5, our DRAM-aware writeback mechanism requires

a simple state machine in each last-level cache bank and a monitor unit. Most of

the hardware cost is in logic modifications. For example, thecomparator structure

should be modified to support tag comparison with the row address in each state

machine. The only noticeable storage cost is eight bytes percache bank for storing

the row address of the recent writeback. Note that none of thelast-level cache

structure we modify is on the critical path. As Tables 8.1 and8.2 show, the accesses

to the last-level cache are not very frequent.

170

Reads Writes

Benchmark Type IPC MPKI RHR(%) WPKI RHR(%)

171.swim FP00 0.35 23.10 36.95 8.24 78.33
173.applu FP00 0.93 11.40 90.34 1.78 81.34
175.vpr IN00 1.02 0.89 16.11 0.27 25.67

178.galgel FP00 1.42 4.84 54.45 1.16 11.51
179.art FP00 0.26 90.92 95.43 9.79 86.75

189.lucas FP00 0.61 10.61 61.00 2.38 34.19
191.fma3d FP00 1.01 4.13 74.75 1.82 70.58
300.twolf INT00 0.98 0.72 38.49 20.82 20.82
429.mcf INT06 0.15 33.64 18.36 10.69 16.58
433.milc FP06 0.48 29.33 90.78 5.19 48.26

436.cactusADM FP06 0.63 4.51 7.42 1.22 33.31
450.soplex FP06 0.40 21.24 81.64 3.75 42.48

459.GemsFDTD FP06 0.49 15.63 45.81 6.91 50.60
462.libquantum INT06 0.67 13.51 94.96 5.87 89.13

470.lbm FP06 0.46 20.16 66.67 10.42 66.42
471.omnetpp INT06 0.49 10.11 63.45 4.17 6.88

473.astar INT06 0.47 10.19 55.16 3.80 8.96
481.wrf FP06 0.72 8.11 72.95 2.52 76.17

Table 8.4: Characteristics for 18 SPEC benchmarks for DRAM-aware writeback:
IPC, MPKI (last-level cache misses per 1K instructions), WPKI (last-level cache
Writebacks Per 1K Instructions), DRAM row hit rate (RHR)

If we implement the optimization in Section 8.3.2, one additional bit and

core ID bits (for multi-core systems) for each cache line arerequired. Three regis-

ters (2 bytes for each) are required to keep track of the number of writebacks sent,

the number of rewrites, and the rewrite rate.

8.7 Experimental Evaluation

We first show that the baseline write buffer management policy that we use

outperforms other policies and then we evaluate and analyzeour proposed DRAM-

aware writeback mechanism on the single and multi-core systems.

8.7.1 Performance of Write Buffer Management Policies

In addition to our baseline (drain whenfull), we evaluate four other write

buffer management policies that are all based on the same principle as previous

171

work [40, 57, 68]. The first one,exposealways, is a policy that always exposes

DRAM writes and reads to the DRAM controller together. The DRAM controller

makes scheduling decisions based on the baseline FR-FCFS scheduling policy while

always prioritizing reads over writes. However, if all DRAMtiming constraints are

satisfied for a write, the write can be scheduled even though there are reads in the

read request buffer. For example, while a precharge for a read is in progress in one

bank, a row-hit write in a different bank can be scheduled andserviced if all tim-

ing constraints for the write are satisfied (assuming there is no pending read to the

corresponding bank). The second policy isserviceat no readwhich was discussed

in Section 8.1.1. This policy exposes writes to the DRAM controller only when

there is no pending read request or when the write buffer is full, and stops exposing

writes when a read request arrives or when the write buffer isnot full any more. The

third policy is serviceat no read and drain whenfull which is the same as ser-

vice at no read except that once the write buffer is full, all writes areexposed until

the buffer becomes empty. The fourth policy,drain whenno read and whenfull

is the same as our baseline policy that exposes all writes anddrains the buffer every

time the write buffer is full, except that it also keeps exposing all writes until the

buffer becomes empty even when writes are exposed due to no pending read in the

read request buffer. The DRAM controller follows the FR-FCFS policy to schedule

reads and exposed writes for all of the above policies.

Figure 8.6 shows IPC normalized to the baseline and DRAM databus uti-

lization on the single-core system for the above five write buffer policies. DRAM

bus utilization is calculated by dividing the number of cycles the data bus transfers

data (both reads and writes) by the number of total executioncycles. Note that since

we only change the write buffer policy, the total number of reads and writes does

not change significantly among the five policies. Therefore,we can meaningfully

compare the DRAM data bus utilization of each policy as shownin Figure 8.6(b). A

large number of busy cycles indicates high DRAM throughput.On the other hand,

a larger number of idle cycles indicates more interference among memory requests.

Our baselinedrain whenfull policy outperforms the other four polices sig-

172

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

IP
C

 n
or

m
al

iz
ed

 to
 b

as
el

in
e

expose_always
service_at_no_read
service_at_no_read_and_drain_when_full
drain_when_no_read_and_when_full
drain_when_full (base)

sw
im

ap
plu

ga
lge

l
ar

t
luc

as

fm
a3

d
m

cf
m

ilc

ca
ctu

sA
DM

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm
om

ne
tp

p

as
ta

r
wrf vp

r
tw

olf

gm
ea

n

(a) Performance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
R

A
M

 d
at

a
bu

s
ut

ili
za

tio
n idle

busy

sw
im

ap
plu

ga
lge

l
ar

t
luc

as

fm
a3

d
m

cf
m

ilc

ca
ctu

sA
DM

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm
om

ne
tp

p

as
ta

r
wrf vp

r
tw

olf

am
ea

n

(b) Data bus utilization

Figure 8.6: Performance and DRAM bus utilization of variouswrite buffer policies

173

nificantly for almost all benchmarks. The other policies cause many idle cycles due

to frequent read-to-write and write-to-read switching as shown in Figure 8.6(b). The

exposealwayspolicy performs worst since writes are always exposed and can be

scheduled more freely than other policies by the DRAM controller, hence the most

read-to-write and write-to-read penalties. Theserviceat no read and drain whenfull

anddrain whenno read and whenfull policies also cause some writes to be sched-

uled when there is no read in the read buffer. This results in many write-to-read

switching penalties (i.e., many idle cycles) since reads usually arrive at the read

buffer soon after writes are scheduled for most of the benchmarks shown.

In contrast, thedrain whenfull policy increases data bus utilization by al-

lowing the DRAM controller to service reads without interference from writes as

much as possible. It also reduces write-to-read switching penalties overall because

only one write-to-read switching penalty (also one read-to-write penalty) is needed

to drain all the writes from the write buffer. Finally it alsogives more chances to

the DRAM controller to exploit better row buffer locality and bank-level parallelism

(servicing writes to different DRAM banks concurrently, ifpossible) by exposing

more writes together. To summarize, thedrain whenfull policy improves perfor-

mance by 8.8% on average and increases data bus utilization by 9.4% on average

compared to the best of the other four policies (serviceat no read).

Note that there is still a significant number of idle bus cycles in Figure 8.6(b)

even with the best policy. Our DRAM-aware writeback mechanism aims to mini-

mize write-caused interference so that idle cycles are better utilized.

8.7.2 Single-Core Results

This section presents performance evaluation of the DRAM-aware write-

back mechanism on the single-core system. Figure 8.7 shows IPC normalized to

the baselinedrain whenfull policy and DRAM data bus utilization for eager write-

back technique, Write-caused Interference-aware (WIA) replacement (proposed in

Chapter 7), DRAM-aware writeback, and DRAM-aware writeback with the opti-

174

mization described in Section 8.3.2. The optimization dynamically adjusts the dirty

line LRU positions which are considered for writeback basedon the rewrite rate es-

timation. When the rewrite rate is less than 50%, we allow anyLRU position which

generates a row-hit to be written back. If the rewrite rate isbetween 50% and 90%,

only the least recently used half of the LRU stack can be sent out. If the rewrite

rate is more than 90%, only writebacks in the LRU position canbe sent out. Note

that the eager writeback mechanism uses a write buffer policy that sends writes

when the bus is idle as discussed in Section 8.4. In Section 8.7.1, we showed that

sending out writes when the bus is idle is inferior to draining the write buffer only

when it is full (drain whenfull). As such, for fair comparison we use an improved

version of eager writeback that uses the baselinedrain whenfull policy. First we

make the following major performance-related observations from Figure 8.7, and

then provide more insights and supporting data using other DRAM and last-level

cache statistics in subsections.

First, the eager writeback technique degrades performanceby 1.1% com-

pared to the baseline. This is mainly because it is not aware of DRAM characteris-

tics. Filling the write buffers with writebacks for dirty lines which are in the LRU

position of their respective sets does not guarantee fast service time of writes since

servicing row-conflict writes must pay the large write-to-precharge penalties. As

shown in Figure 8.7(b), eager writeback suffers as many idlecycles as the baseline

on average.

Second, DRAM-aware writeback improves performance for allbenchmarks

except forvpr andtwolf. It improves performance by more than 10% forlucas, milc,

cactusADM, libquantumandomnetpp. This is because our mechanism sends many

row-hit writes that are serviced quickly by the DRAM controller, which in turn re-

duces write-to-read switching penalties. As shown in Figure 8.7(b), our mechanism

improves DRAM bus utilization by 12.3% on average across all18 benchmarks.

Increased bus utilization translates to high performance.On average, the mecha-

nism improves performance by 7.1%. However, the increased bus utilization does

not increase performance forvpr andtwolf. In fact, the mechanism degrades per-

175

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

IP
C

 n
or

m
al

iz
ed

 to
 b

as
el

in
e

base
eager
WIA
DRAM-aware
DRAM-aware dyn

sw
im

ap
plu

ga
lge

l
ar

t
luc

as

fm
a3

d
m

cf
m

ilc

ca
ctu

sA
DM

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm
om

ne
tp

p

as
ta

r
wrf vp

r
tw

olf

gm
ea

n

(a) Performance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
R

A
M

 d
at

a
bu

s
ut

ili
za

tio
n idle

busy

sw
im

ap
plu

ga
lge

l
ar

t
luc

as

fm
a3

d
m

cf
m

ilc

ca
ctu

sA
DM

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm
om

ne
tp

p

as
ta

r
wrf vp

r
tw

olf

am
ea

n

base
eager

WIA
DRAM-aware

DRAM-
aware
dyn

(b) Data bus utilization

Figure 8.7: Performance and DRAM bus utilization of DRAM-aware writeback on
single-core system

176

formance for these two benchmarks by 2.4% and 3.8% respectively. This is due to

the large number of writebacks that are generated by the DRAM-aware writeback

mechanism for these two benchmarks. We developed a dynamic optimization as

presented in Section 8.3.2 to mitigate this degradation, which we refer to as dy-

namic DRAM-aware writeback.

Third, dynamic DRAM-aware writeback mitigates the performance degra-

dation forvpr andtwolf by selectively sending writebacks based on the rewrite rate

of DRAM-aware writebacks. By doing so, the performance degradation ofvpr

andtwolf becomes 1.2% and 1.8% respectively, which results in 7.2% average per-

formance improvement for all 18 benchmarks. Note that the dynamic mechanism

still achieves almost all of the performance benefits of non-dynamic DRAM-aware

writeback for the other 16 benchmarks. As we discussed in Section 8.3.2, the gain

from this optimization is small compared to design effort and hardware cost.

Finally, our DRAM-aware writeback policies significantly outperform the

WIA replacement policy. WIA improves the performance of thebaseline only by

2.2%. This is mainly because WIA looses opportunities that more row-hit dirty

lines can be written back fast, since it writebacks only whena replacement oc-

curs. Our mechanism reduces more write-caused interference in the DRAM system

thereby better utilizing DRAM bus.

8.7.2.1 Why Does Eager Writeback Not Perform Well?

As discussed above, eager writeback degrades performance compared to the

baseline in today’s DDR DRAM systems since it generates writebacks in a DRAM-

unaware manner. In other words, it can fill the write buffer with many row-conflict

writes. Figure 8.8 shows the row-hit rate for write and read requests serviced by

DRAM for the 18 benchmarks. Because we use the open-row policy (that does not

use either auto precharge or manual precharge after each access), row-conflict rate

can be calculated by subtracting row-hit rate from one.

While eager writeback does not change row-hit rates for reads as shown

177

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
ow

-h
it

ra
te

sw
im

ap
plu

ga
lge

l
ar

t
luc

as

fm
a3

d
m

cf
m

ilc

ca
ctu

sA
DM

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm
om

ne
tp

p

as
ta

r
wrf vp

r
tw

olf

am
ea

n

(a) Writes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
ow

-h
it

ra
te

base
eager
WIA
DRAM-aware
DRAM-aware dyn

sw
im

ap
plu

ga
lge

l
ar

t
luc

as

fm
a3

d
m

cf
m

ilc

ca
ctu

sA
DM

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm
om

ne
tp

p

as
ta

r
wrf vp

r
tw

olf

am
ea

n

(b) Reads

Figure 8.8: Row hit rate of DRAM writes and reads for DRAM-aware writeback

178

in Figure 8.8(b), it generates more row-conflict writes (fewer row-hits) forswim,

art, milc, andlibquantumcompared to the baseline as shown in Figure 8.8(a). For

these benchmarks, these row-conflict writes introduce manyidle cycles during the

servicing of writes with the baselinedrain whenfull write buffer policy as shown

in Figure 8.7(b). This increases the time to drain the write buffer which in turn

delays the service of critical reads required for an applications’ progress.

8.7.2.2 Why Does DRAM-Aware Writeback Perform Better?

In contrast to eager writeback, DRAM-aware writeback selectively sends

many row-hit writes that are serviced quickly by the DRAM controller. Therefore

the row-hit rate for writes significantly increases (to 94.6% on average) as shown

in Figure 8.8(a). Note that it also increases the row-hit rate for reads (by 3.3% on

average) as shown in Figure 8.8(b). This is mainly because DRAM-aware writeback

reduces row-conflicts between reads and writes as well by reducing write-to-read

switching occurrences. We found that due to the last-level cache and row locality of

programs, it is very unlikely that while servicing reads to arow, a dirty cache line

to that row is evicted from the cache. Therefore decreased write-to-read switching

frequency reduces row-conflicts between writes and reads for the entire run of an

application.

DRAM-aware writeback leverages the benefits of the write buffer and the

drain whenfull write buffer policy as discussed in Section 8.3. Once the mecha-

nism starts sending all possible row-hit writebacks for a row, the write buffer be-

comes full very quickly. Thedrain whenfull write buffer policy continues to ex-

pose writes until the buffer becomes empty. This makes it possible for the DRAM

controller to service all possible writes to a row very quickly. Therefore our mecha-

nism reduces the total number of write buffer drains over theentire run of an appli-

cation. Table 8.5 provides the evidence of such behavior. Itshows the total number

of write buffer drains and the average number of writes per write buffer drain for

each benchmark. The number of writes per write buffer drain for DRAM-aware

writeback is increased significantly compared to the baseline, eager writeback, and

179

WIA. Therefore the total number of drains is significantly reduced, which indicates

that DRAM-aware writeback reduces write-to-read switching frequency thereby in-

creasing row hit rate for reads as well. The increased row hits (i.e., reduced row con-

flicts) lead to high data bus utilization for both reads and writes and performance

improvement as shown in Figure 8.7.

Benchmark swim applu galgel art lucas fma3d mcf

base 64960 24784 2891 83870 19890 24625 62521
eager 76660 26367 4264 90020 22096 25263 62938drains
WIA 95356 26758 5681 104271 50783 24106 69574

DRAM-aware 13642 2927 8043 16754 7677 2995 49915
base 25.38 14.36 80.11 23.34 23.93 14.79 34.19
eager 21.52 13.51 97.86 24.29 22.47 14.43 34.09writes/drain
WIA 17.34 13.33 40.16 19.86 12.27 15.15 31.37

DRAM-aware 121.90 121.97 50.19 128.26 96.24 122.09 45.05
Benchmark milc cactusADM soplex GemsFDTD libquantum

base 50764 15264 43967 49027 115563
eager 52581 15243 43033 50805 114461drains
WIA 63305 18093 46992 63179 115561

DRAM-aware 47982 2142 17611 14023 12535
base 20.43 15.99 17.07 28.21 10.16
eager 19.75 16.05 17.53 27.34 10.26writes/drain
WIA 16.51 13.52 16.09 21.95 10.16

DRAM-aware 21.83 114.27 44.32 99.49 93.66
Benchmark lbm omnetpp astar wrf vpr twolf

base 92310 35902 26377 38353 1961 4785
eager 94396 36425 26859 38622 2732 8080drains
WIA 94519 37455 27119 42492 4165 5493

DRAM-aware 24630 44413 29836 4921 4346 9030
base 22.57 23.22 28.78 13.16 27.54 21.18
eager 22.19 23.24 28.48 13.08 29.72 27.15writes/drain
WIA 22.04 22.54 28.15 11.97 27.97 20.99

DRAM-aware 85.08 20.50 27.05 103.26 69.91 71.88

Table 8.5: Number of write buffer drains and number of writesper drain for various
policies

8.7.2.3 When is Dynamic DRAM-Aware Writeback Required?

Recall that DRAM-aware writeback degrades performance forvprandtwolf.

Figure 8.9 shows the total number of DRAM read and write requests serviced by

DRAM for the 18 benchmarks. While DRAM-aware writeback doesnot increase

180

the total number of reads and writes significantly for the other 16 benchmarks as the

baseline and eager writeback do, it does increase the numberof writes significantly

for vpr andtwolf.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

M
ill

io
n

D
R

A
M

 r
eq

ue
st

s

writes
reads

base
eager

WIA
DRAM-aware

DRAM-
aware
dyn

sw
im

ap
plu

ga
lge

l
ar

t
luc

as

fm
a3

d
m

cf
m

ilc

ca
ctu

sA
DM

so
ple

x

Gem
sF

DTD

lib
qu

an
tu

m

lbm
om

ne
tp

p

as
ta

r
wrf

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ill

io
n

D
R

A
M

 r
eq

ue
st

s

vp
r
tw

olf

Figure 8.9: Number of DRAM requests for DRAM-aware writeback

Table 8.6 shows the total number of writebacks generated by DRAM-aware

writeback, cache lines that were cleaned but reread, and cache lines that were

cleaned but rewritten. It also shows the number of rewrites per cache line writ-

ten back (referred to as rewrite rate). Forvpr and twolf, rewrites to cache lines

cleaned by the mechanism happen very frequently (82% and 85%respectively).

These rewritten lines’ writebacks are sent again by the mechanism thereby increas-

ing the number of writes significantly. The increased writesmake the write buffer

full frequently, therefore aggregate write-to-read switching penalty becomes larger,

which degrades performance. However, the performance degradation is not signif-

icant for these two benchmarks, because the total number of requests is not large

(i.e., memory non-intensive) as shown in Figure 8.9. .

The dynamic DRAM-aware writeback mechanism discussed in Section 8.3.2

mitigates this problem by adaptively limiting writebacks based on rewrite rate esti-

mation. Since the rewrite rate is high most of the time forvprandtwolf, the dynamic

181

Benchmark swim applu galgel art lucas fma3d mcf

Writebacks 1640260 350641 346550 2061007 731063 361590 2167616
Reread 42 183 23741 70931 0 0 122290

Rewritten 20 0 166871 191596 0 501 108871
Rewrite Rate 0.00 0.00 0.48 0.09 0.00 0.00 0.05
Benchmark milc cactusADM soplex GemsFDTD libquantum lbm

Writebacks 947328 242377 732556 1251832 1161287 2069208
Reread 0 16 1599 1905 0 0

Rewritten 0 55 28593 13474 0 0
Rewrite Rate 0.00 0.00 0.04 0.01 0.00 0.00

Benchmark omnetpp astar wrf vpr twolf

Writebacks 698896 612423 500963 299262 639582
Reread 21982 6012 746 12479 24230

Rewritten 73667 37075 2588 245645 540604
Rewrite Rate 0.11 0.06 0.01 0.82 0.85

Table 8.6: Number of DRAM-aware writebacks generated, reread cache lines and
rewritten cache lines, and rewrite rate

mechanism allows writebacks only for row-hit dirty lines which are in the LRU po-

sition of their respective sets. Therefore, it reduces the number of writebacks as

shown in Figure 8.9. In this way, it mitigates the performance degradation for these

two benchmarks as shown in Figure 8.7. Note that the dynamic mechanism does

not change the benefits of DRAM-aware writeback for the other16 benchmarks

since it adapts itself to the rewrite behavior of the applications.

8.7.3 Multi-Core Results

We also evaluate the DRAM-aware writeback mechanism on multi-core sys-

tems. Figures 8.10 and 8.11 show average system performanceand bus utilization

for the 4 and 8-core systems described in Section 8.5. In multi-core systems, write-

caused interference is more severe since there is greater contention between reads

and writes from multiple cores in the DRAM system. Furthermore, writes can de-

lay critical reads of all cores. As such, reducing write-caused interference is even

more important in multi-core systems. Our DRAM-aware writeback mechanism

increases bus utilization by 16.5% and 18.1% for the 4 and 8-core systems respec-

tively. This leads to an increase in weighted speedup (WS) and harmonic mean of

182

speedups (HS) by 11.8% and 12.8% for the 4-core system and by 12.0% and 14.4%

for the 8-core system. We conclude that DRAM-aware writeback is effective for

multi-core systems.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

V
al

ue
 o

f m
et

ric

(a) WS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
al

ue
 o

f m
et

ric

base
eager
WIA
DRAM-aware

(b) HS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
R

A
M

 d
at

a
bu

s
ut

ili
za

tio
n

idle
busy

(c) Bus utilization

Figure 8.10: Performance of DRAM-aware writeback on 4-coresystem

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

V
al

ue
 o

f m
et

ric

(a) WS

0.0

0.1

0.2

0.3

0.4

V
al

ue
 o

f m
et

ric

base
eager
WIA
DRAM-aware

(b) HS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
R

A
M

 d
at

a
bu

s
ut

ili
za

tio
n

idle
busy

(c) Bus utilization

Figure 8.11: Performance of DRAM-aware writeback on 8-coresystem

8.7.4 Effect on Systems with Prefetching

We evaluate DRAM-aware writeback when it is employed in a 4-core sys-

tem with the aggressive stream prefetcher described in Section 8.5. Figure 8.12

shows average system performance and bus utilization for the baseline with the

183

baseline with no prefetching, the baseline with prefetching, eager writeback, Write-

caused Interference-Aware (WIA) replacement and DRAM-aware writeback for our

30 4-core workloads. All three mechanisms are employed on the baseline with

prefetching.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

V
al

ue
 o

f m
et

ric

(a) WS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

V
al

ue
 o

f m
et

ric

base
pref
eager
WIA
DRAM-aware

(b) HS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
R

A
M

 d
at

a
bu

s
ut

ili
za

tio
n

idle
busy

(c) Bus utilization

Figure 8.12: Performance of DRAM-aware writeback on 4-coresystem with
prefetching

Prefetching increases write-caused interference severely. Prefetch requests,

which are essentially reads, put more pressure on the DRAM system. Prefetching

improves weighted speedup by 11.5% by utilizing idle DRAM bus cycles while it

degrades harmonic speedup by 8.6% compared to the baseline with no prefetch-

ing. Eager writeback suffers performance degradation (WS and HS by 1.7% and

1.6%) compared to prefetching alone mainly due to its DRAM-unawareness. In

contrast, WIA improves WS and HS by 7.5% and 8.5% compared to prefetch-

ing by reducing write-caused interference (increasing DRAM bus utilization by

9.3%). Using DRAM-aware writeback significantly improves DRAM bus utiliza-

tion (by 19.4% compared to prefetching) by further reducingwrite-caused interfer-

ence. The increased bus utilization turns into higher performance. DRAM-aware

writeback performs best by improving WS and HS by 15.4% and 13.5%. We con-

clude that DRAM-aware writeback is also effective in multi-core systems that em-

ploy prefetching.

184

8.8 Summary

This chapter describes the problem of write-caused interference in today’s

DRAM systems, and shows it has significant performance impact in modern proces-

sors. Write-caused interference will continue to be a performance bottleneck in the

future because the memory system’s bus clock frequency continues to increase in

order to provide more memory bandwidth. To reduce write-caused interference, we

propose a new writeback policy for the last-level cache, called DRAM-aware write-

back, which aggressively sends out writebacks for dirty lines that can be quickly

written back to DRAM by exploiting row buffer locality. We demonstrate that the

proposed mechanism and the previous best write buffer management policy are syn-

ergistic in that they work together to reduce write-caused interference by allowing

the DRAM controller to service many writes quickly together. This reduces the de-

lays incurred by read requests and therefore increases performance significantly in

both single-core and multi-core systems. We also show that the performance bene-

fits of the mechanism increases in multi-core systems and systems with prefetching

where there is higher contention between reads and writes inthe DRAM system.

We conclude that DRAM-aware writeback can be a simple solution to reduce write-

caused interference.

185

Chapter 9

Combining All DRAM-Aware Mechanisms

This chapter discusses and evaluates the performance of allproposed DRAM-

aware mechanisms when they are employed together on single,4, and 8-core sys-

tems.

9.1 DRAM-Aware Mechanisms Are Complementary

The Prefetch-Aware DRAM Controller (PADC) in Chapter 5 manages the

DRAM request buffers to maximize row buffer locality for useful prefetches and

demand requests. The BLP-aware request issue policies in Chapter 6 manage the

issue order to Miss Status/Information Holding Registers (MSHRs) and to DRAM

requests buffers to maximize the BLP of each application (orcore).

On the other hand, the DRAM-aware replacement policy in Chapter 7 changes

the mixture of memory read and write requests from the last-level cache to improve

all three DRAM characteristics. It consists of Latency and Parallelism-Aware Re-

placement (LPA) and Write-caused Interference-Aware (WIA) replacement poli-

cies. LPA evicts lines that would take advantage of row buffer locality or BLP when

they are refetched later. WIA evicts dirty lines that can be written back quickly

by exploiting row buffer locality. The DRAM-aware writeback in Chapter 8 also

changes the mixture of write requests to further reduce write-caused interference in

the DRAM system.

Since each of the four mechanisms manages a different on-chip memory

structure/policy to improve DRAM performance, they are orthogonal to one an-

other except for the WIA replacement and DRAM-aware writeback. The objec-

tives of these two mechanisms are identical, which is to reduce write-caused inter-

186

ference. In Chapter 8, we compared these two mechanisms and showed that the

DRAM-aware writeback outperforms WIA by reducing more write-caused inter-

ference. However, these two mechanisms are partially complementary when they

are combined. This is because WIA can be helpful for sending more row-hit writes

quickly. If a replacement occurs while the writebacks for a row are sent out by

DRAM-aware writeback, it is likely that WIA will evict a dirty line that is mapped

to the same row if found. As a result, writes can be sent out faster than the DRAM-

aware writeback alone. Therefore the combined mechanisms we evaluate in this

chapter include both the WIA replacement and DRAM-aware writeback mecha-

nisms.

9.2 Methodology

9.2.1 System Model

Table 9.1 shows the baseline system configuration used for performance

evaluations when all DRAM-aware mechanisms are combined together on the same

system. The DRAM timing constraints we modeled are identical to the DDR3-1600

constraints presented in Section 7.2.

9.2.2 Workloads

We use the same methodology for compiling and running the SPEC work-

loads as in Section 5.3.3. We evaluated the 20 most memory intensive or prefetch-

sensitive (either prefetch-friendly or prefetch-unfriendly) SPEC 2000/2006 bench-

marks on the single-core system. To evaluate our mechanism on CMP systems, we

formed new combinations of multiprogrammed workloads fromall the 55 SPEC

2000/2006 benchmarks. We ran 30 and 20 pseudo-randomly chosen workload com-

binations for our 4 and 8-core CMP configurations respectively. We imposed the

requirement that each of the multiprogrammed workloads hasat least one memory

intensive application since these applications are most relevant to our study.

187

4.8 GHz, out of order, decode/retire up to 4 instructions,
Execution Core issue/execute up to 8 microinstructions; 15 stages

256-entry reorder buffer;
Fetch up to 2 branches; 4K-entry BTB;

Front End 64-entry return address stack;
64K-entry gshare/PAs hybrid branch predictor
L1 I/D-cache: 32KB, 4-way, 2-cycle, 64B line size;
Shared last-level cache: 16-way, 8-bank, 15-cycle,

Caches and 1 read/write port per bank, LRU replacement
on-chip buffers writeback, 64B line size, 1, 2, 4MB for 1, 4 and 8-core systems;

32-entry MSHRs per core & LLC access/miss/fill buffers,
for 1, 4 and 8-core systems
Stream prefetcher per core: 32 stream entries,

Prefetcher prefetch degree of 4, prefetch distance of 64 [77, 73],
128-entry prefetch request buffer per core
1, 2, 2 channels (DRAM controllers) for 1, 4, 8-core systems;
800MHz DRAM bus cycle,

DRAM and bus Double Data Rate (DDR3 1600MHz) [49];
8B-wide data bus per channel, BL = 8;
1 rank, 8 banks per channel, 8KB row buffer per bank;
On-chip, open-row, demand-first FR-FCFS scheduling policy[66];

DRAM
64-entry (8× 8 banks) DRAM read and write buffers per channel

controllers
drain when full write buffer policy

Table 9.1: Baseline configuration for all combined DRAM-aware mechanisms

9.3 Experimental Evaluation

To show that our mechanisms are complementary, we first evaluate per-

formance when each mechanism is employed alone on the systems shown in Sec-

tion 9.2.1. Figure 9.1 shows the performance of no prefetching, prefetching, PADC,

BLP-aware issue policies (BAPI-BPMRI), DRAM-aware replacement (LPA-WIA),

and DRAM-Aware Writeback (DAW) on the single, 4, and 8-core systems. The

performance numbers are normalized to the baseline prefetching.

As shown in Figures 9.1(a), (b), and (c), each of the mechanisms alone

significantly improves performance. Each mechanism improves all performance

metrics more than 6.0% on all systems.

Figure 9.2 shows the average performance and DRAM data utilization of no

188

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
er

f n
or

m
al

iz
ed

 to
 p

re
f

no-pref
pref
PADC
BAPI
LPA-WIA
DAW

IPC
(a) Single-core processor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
er

f n
or

m
al

iz
ed

 to
 p

re
f

WS
0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
er

f n
or

m
al

iz
ed

 to
 p

re
f

no-pref
pref
PADC
BAPI-BPMRI
LPA-WIA
DAW

HS
(b) 4-core chip multiprocessor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
er

f n
or

m
al

iz
ed

 to
 p

re
f

WS
0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
er

f n
or

m
al

iz
ed

 to
 p

re
f

no-pref
pref
PADC
BAPI-BPMRI
LPA-WIA
DAW

HS
(c) 8-core chip multiprocessor

Figure 9.1: Performance of individual DRAM-aware mechanisms on single, 4, and
8-core systems

189

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

IP
C

 n
or

m
al

iz
ed

 to
 n

o
pr

ef

no pref pref DRAM-
aware

0.0

0.2

0.4

0.6

0.8

1.0

D
R

A
M

 d
at

a
bu

s
ut

ili
za

tio
n

idle
pref-useless
pref-useful
demand

no pref pref DRAM-
aware

(a) Single-core processor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W
S

 n
or

m
al

iz
ed

 to
 p

re
f

no pref pref DRAM-
aware

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H
S

 n
or

m
al

iz
ed

 to
 p

re
f

no pref pref DRAM-
aware

0.0

0.2

0.4

0.6

0.8

1.0

D
R

A
M

 d
at

a
bu

s
ut

ili
za

tio
n

idle
pref-useless
pref-useful
demand

no pref pref DRAM-
aware

(b) 4-core chip multiprocessor

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W
S

 n
or

m
al

iz
ed

 to
 p

re
f

no pref pref DRAM-
aware

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

H
S

 n
or

m
al

iz
ed

 to
 p

re
f

no pref pref DRAM-
aware

0.0

0.2

0.4

0.6

0.8

1.0

D
R

A
M

 d
at

a
bu

s
ut

ili
za

tio
n

idle
pref-useless
pref-useful
demand

no pref pref DRAM-
aware

(c) 8-core chip multiprocessor

Figure 9.2: Performance and DRAM bus utilization of combined DRAM-aware
mechanisms

190

prefetching, the baseline with prefetching, and all DRAM-aware polices combined

on the single, 4 and 8-core systems. The performance numbersare normalized to

the baseline systems with stream prefetching.

The DRAM-aware mechanisms significantly increase DRAM bus utiliza-

tion by 6.5% for the 20 memory intensive benchmarks on the single-core system as

shown in Figure 9.2(a). This is because the DRAM-aware mechanisms allow the

DRAM controllers to increase row buffer locality and BLP while reducing write-

caused interference. They reduce bus utilization of useless prefetches by 25.5%

compared to the baseline prefetching mainly due to AdaptivePrefetch Dropping

(APD) and BLP-Aware Prefetch Issue (BAPI). As discussed in Chapters 5 and 6,

APD cancels prefetches and BAPI limits the issue of prefetches when the estimated

prefetch accuracy is low. The increased DRAM utilization for useful requests im-

proves performance by 19.4% compared to the baseline prefetching.

The DRAM-aware mechanisms are also very effective on the 4 and 8-core

systems as shown in Figures 9.2(b) and (c). The mechanisms together increase

DRAM utilization by 22.4% (from 59.1% to 72.4% utilization of the peak band-

width) while reducing useless utilization by 29.9% compared to the baseline for the

30 4-core workloads. This in turn improves weighted speedupand harmonic mean

of speedups by 22.6% and 23.0% respectively.

On the 8-core system, they improve WS and HS by 26.5% and 27.6%by

increasing DRAM bus utilization by 27.1% (from 62.2% to 79.0% utilization of the

peak bandwidth). This reduces useless utilization by 38.9%as well. The benefits

become larger as the number of cores increases.

We conclude that our DRAM-aware policies work synergistically and sig-

nificantly improve system performance by better utilizing the DRAM system for

useful requests on single, 4, and 8-core systems.

191

Chapter 10

Conclusion and Future Research Directions

10.1 Conclusion

DRAM performance is one of the most important contributing factors to

the overall performance of computer systems. However, DRAMperformance is

severely limited if a microprocessor’s on-chip memory system management policies

do not take into account DRAM characteristics: row buffer locality, bank-level

parallelism (BLP), and write-caused interference.

This dissertation identified conventional on-chip memory system manage-

ment policies that can limit DRAM performance, and proposednew low-cost poli-

cies that allow higher performance of the DRAM system. We proposed and evalu-

ated four low-cost DRAM characteristic-aware mechanisms,each of which works

on a different on-chip memory resource management policy.

To maximize DRAM row buffer locality for useful memory requests and

minimize the negative effect of useless prefetches, this dissertation proposed Prefetch-

Aware DRAM Controllers (PADC). PADC treats likely-useful prefetches and de-

mands equally so that the DRAM controller can exploit row buffer locality for

useful requests. It also delays and drops likely-useless prefetches. We show in

Chapter 5 that PADC significantly outperforms the existing rigid DRAM schedul-

ing policies and requires low-cost hardware and design support.

To maximize DRAM bank-level parallelism in the presence of prefetching,

we proposed in Chapter 6 two BLP-aware memory request issue policies. They

determine the order in which memory requests are sent from one on-chip buffer

to another. The BLP-aware prefetch issue policy sends prefetches that can be ser-

viced in parallel with requests to other DRAM banks. The BLP-preserving memory

192

request issue policy does the actual loading of the DRAM request buffers so that re-

quests from the same core can be serviced in parallel. This reduces the serialization

of each core’s otherwise parallel requests. The proposed request issue policies in-

crease and preserve BLP, thereby significantly reducing memory stall time on both

single and multi-core systems.

To maximize row buffer locality and bank-level parallelismand minimize

write-caused interference in the DRAM system, this dissertation proposed a DRAM-

aware last-level cache replacement policy. The DRAM-awarereplacement pol-

icy replaces cache lines that would incur low-cost (serviced quickly or in paral-

lel) rather than high-cost (serviced slowly or serially) interms of refetching and

writeback due to the three DRAM characteristics. We showed in Chapter 7 that

the DRAM-aware replacement policy significantly outperforms DRAM-unaware

replacement policies.

To further reduce write-caused interference, this dissertation proposed an

aggressive DRAM-aware last-level cache writeback policy.In contrast to the pro-

posed DRAM replacement policy that takes action only when a replacement is nec-

essary, DRAM-aware writeback proactively cleans dirty lines that can be written

back quickly to DRAM due to row buffer locality. We showed in Chapter 8 that this

policy significantly reduces write-caused interference because it allows more writes

to be written back quickly.

Each of the four mechanisms manages different on-chip memory resources

to improve DRAM utilization. We showed in Chapter 9 that the four mechanisms

work synergistically when employed together. They significantly increase DRAM

bus utilization for useful data and significantly improve performance beyond what

can be achieved by each one alone on both single and multi-core systems. We con-

clude that DRAM-aware on-chip memory system design can significantly improve

DRAM performance, enabling higher performance for the entire system.

Our proposals are not limited to DRAM-based main memory systems. Other

memory technologies in the future are also likely to employ multiple banks and row

193

buffers (i.e., sense amplifiers which can serve as row buffers) to provide high band-

width and low latency. They will also likely have large write-caused interference

due to high bus clock frequency. As such, the key ideas of the proposed mechanisms

in this dissertation should be able to be seamlessly appliedto on-chip memory sys-

tems that employ other main memory technologies.

10.2 Future Research Directions

This dissertation introduced the notion of main memory system-aware de-

sign in on-chip microarchitectures. There are several possible future research di-

rections in improving main memory performance.

• As discussed above, the key ideas of the proposed mechanismsin this disser-

tation are not limited to today’s DRAM-based systems. Othermore scalable

main memory technologies in the future will likely present characteristics

similar to DRAM in order to provide high peak bandwidth. For example, a re-

cently developed technology, phase change memory [35, 64] exhibits longer

latency of writes, which likely increases write-caused interference. The key

ideas presented in this dissertation could be extended to processors that em-

ploy new main memory technologies.

• DRAM performance varies depending on the memory address mapping and

the applications’ memory behavior as well as on-chip memorysystem man-

agement policies. DRAM characteristic-aware memory allocators, compil-

ers, and profilers can increase DRAM utilization efficiency by changing ad-

dress mapping in a DRAM-aware manner and giving hints about an applica-

tion’s memory behavior to the on-chip memory resource management poli-

cies.

• The concept of DRAM-awareness can also be applied to other on-chip mem-

ory resources for many-core systems in the future. An example is on-chip

interconnect. A DRAM-aware interconnect could prioritizerequests to better

194

exploit row buffer locality and bank-level parallelism so that effective mem-

ory stall time could be minimized.

• Last-level cache management that takes into account both temporal locality

and DRAM characteristics can further improve efficiency. Anexample is

to switch between temporal locality-aware replacement andDRAM-aware

policies based on runtime behavior of an application. This will result in both

cache and DRAM efficiency.

195

Bibliography

[1] J. Baer and T. Chen. An effective on-chip preloading scheme to reduce data

access penalty. InProceedings of Supercomputing ’91, 1991.

[2] D. Callahan, K. Kennedy, and A. Porterfield. Software prefetching. InPro-

ceedings of the 4th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, 1991.

[3] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand, A. Davis,

C.-C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and T. Tateyama. Im-

pulse: Building a smarter memory controller. InProceedings of the 5th Inter-

national Symposium on High Performance Computer Architecture (HPCA-5),

1999.

[4] M. Charney and T. Puzak. Prefetching and memory system behavior of the

SPEC95 benchmark suite.IBM Journal of Research and Development, 31(3),

1997.

[5] M. Charney and A. Reeves. Generalized correlation basedhardware prefetch-

ing. Technical Report EE-CEG-95-1, Cornell University, Feb. 1995.

[6] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture optimizations for ex-

ploiting memory-level parallelism. InProceedings of the 31st International

Symposium on Computer Architecture (ISCA-31), 2004.

[7] J. Doweck. Inside Intel Core microarchitecture and smart memory access.

Intel Technical White Paper, 2006.

[8] J. Dundas and T. Mudge. Improving data cache performanceby pre-executing

instructions under a cache miss. InProceedings of the 1997 International

Conference on Supercomputing (ICS), 1997.

196

[9] J. D. Dundas.Improving Processor Performance by Dynamically Pre-Processing

the Instruction Stream. PhD thesis, University of Michigan, 1998.

[10] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. Patt. Coordinated control of multiple

prefetchers in multi-core systems. InProceedings of the 42nd International

Symposium on Microarchitecture (MICRO-42), 2009.

[11] E. Ebrahimi, O. Mutlu, and Y. Patt. Techniques for bandwidth-efficient

prefetching of linked data structures in hybrid prefetching systems. InPro-

ceedings of the 15th International Symposium on High Performance Computer

Architecture (HPCA-15), 2009.

[12] S. Eyerman and L. Eeckhout. A memory-level parallelismaware fetch policy

for SMT processors. InProceedings of the 13th International Symposium on

High Performance Computer Architecture (HPCA-13), 2007.

[13] S. Eyerman and L. Eeckhout. System-level performance metrics for multi-

program workloads.IEEE Micro, 28(3), 2008.

[14] J. D. Gindele. Buffer block prefetching method.IBM Technical Disclosure

Bulletin, 20(2):696–697, July 1977.

[15] A. Glew. MLP yes! ILP no! InASPLOS Wild and Crazy Idea Session ’98,

Oct. 1998.

[16] E. G. Hallnor and S. K. Reinhardt. A compressed memory hierarchy using an

indirect index cache. InWorkshop on Memory Performance Issues, 2004.

[17] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Rous-

sel. The microarchitecture of the Pentium 4 processor.Intel Technology

Journal, Feb. 2001. Q1 2001 Issue.

[18] I. Hur and C. Lin. Adaptive history-based memory scheduler. In Proceedings

of the 37th International Symposium on Microarchitecture (MICRO-37), 2004.

197

[19] I. Hur and C. Lin. Memory prefetching using adaptive stream detection.

In Proceedings of the 39th International Symposium on Microarchitecture

(MICRO-39), 2006.

[20] E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana. Self-optimizing memory

controllers: A reinforcement learning approach. InProceedings of the 35th

International Symposium on Computer Architecture (ISCA-35), 2008.

[21] A. Jaleel, K. Theobald, S. C. S. Jr, and J. Emer. High performance cache

replacement using re-reference interval prediction (RRIP). In Proceedings of

the 37th International Symposium on Computer Architecture(ISCA-37), 2010.

[22] JEDEC. JEDEC Standard: DDR3 SDRAM STANDARD (JESD79-3D).

http://www.jedec.org/standards-documents/docs/jesd-79-3d.

[23] J. Jeong and M. Dubois. Optimal replacements in caches with two miss costs.

In Proceedings of the eleventh annual ACM symposium on Parallel algorithms

and architectures, 1999.

[24] J. Jeong and M. Dubois. Cost-sensitive cache replacement algorithms. In

Proceedings of the 9th International Symposium on High Performance Com-

puter Architecture (HPCA-9), 2003.

[25] D. A. Jiménez and C. Lin. Dynamic branch prediction with perceptrons. In

Proceedings of the 7th International Symposium on High Performance Com-

puter Architecture (HPCA-7), 2001.

[26] D. Joseph and D. Grunwald. Prefetching using Markov predictors. In

Proceedings of the 24th International Symposium on Computer Architecture

(ISCA-24), 1997.

[27] N. P. Jouppi. Improving direct-mapped cache performance by the addition

of a small fully-associative cache and prefetch buffers. InProceedings of the

17th International Symposium on Computer Architecture (ISCA-17), 1990.

198

[28] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 chip: A dual-core

multithreaded processor.IEEE Micro, 24(2):40, 2004.

[29] S. Kim. Area-efficient error protection for caches. InProceedings of Design,

Automation and Test in Europe (DATE), 2006.

[30] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: ascalable and

high-performance scheduling algorithm for multiple memory controllers. In

Proceedings of the 16th International Symposium on High Performance Com-

puter Architecture (HPCA-16), 2010.

[31] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread clus-

ter memory scheduling: Exploiting differences in memory access behavior.

In Proceedings of the 43rd International Symposium on Microarchitecture

(MICRO-43), 2010.

[32] A. C. Klaiber and H. M. Levy. An architecture for software-controlled data

prefetching. InProceedings of the 18th International Symposium on Com-

puter Architecture (ISCA-18), 1991.

[33] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In

Proceedings of the 8th International Symposium on ComputerArchitecture

(ISCA-8), 1981.

[34] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D. Q.Nguyen, B. J.

Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden. IBM power6

microarchitecture.IBM Journal of Research and Development, 51, 2007.

[35] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architectingphase change mem-

ory as a scalable DRAM alternative. InProceedings of the 36th International

Symposium on Computer Architecture (ISCA-36), 2009.

[36] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prefetch-aware DRAM

controllers. InProceedings of the 41st International Symposium on Microar-

chitecture (MICRO-41), 2008.

199

[37] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prefetch-aware DRAM

controllers. Technical Report TR-HPS-2008-002, University of Texas at

Autin, 2008.

[38] C. J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and Y. N. Patt. DRAM-aware

last-level cache writeback: Reducing write-caused interference in memory

systems. Technical Report TR-HPS-2010-002, The University of Texas at

Autin, Apr. 2010.

[39] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt. Improving memory bank-

level parallelism in the presence of prefetching. InProceedings of the 42nd

International Symposium on Microarchitecture (MICRO-42), 2009.

[40] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens. Eager writeback - a technique

for improving bandwidth utilization. InProceedings of the 33rd International

Symposium on Microarchitecture (MICRO-33), 2000.

[41] L. Li, V. Degalahal, N. Vijaykrishnan, M. Kandemir, andM. J. Irwin. Soft

error and energy consumption interactions: A data cache perspective. InPro-

ceedings of International Symposium on Low Power Electronics and Design

(ISLPED), 2004.

[42] W.-F. Lin, S. K. Reinhardt, and D. Burger. Reducing DRAMlatencies with an

integrated memory hierarchy design. InProceedings of the 7th International

Symposium on High Performance Computer Architecture (HPCA-7), 2001.

[43] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput and fairness in

SMT processors. InProceedings of International Symposium on Performance

Analysis of Systems and Software (ISPASS), 2001.

[44] S. McFarling. Combining branch predictors. TechnicalReport TN-36, Digi-

tal Western Research Laboratory, June 1993.

200

[45] S. A. McKee. Hardware support for dynamic access ordering: Performance

of some design options. Technical Report CS-93-08, University of Virginia,

Aug. 1993.

[46] S. A. McKee, R. H. Klenke, A. J. Schwab, W. A. Wulf, S. A. Moyer, J. H.

Aylor, and C. Y. Hitchcock. Experimental implementation ofdynamic access

ordering. Technical Report CS-93-42, University of Virginia, Aug. 1993.

[47] S. A. McKee, R. H. Klenke, A. J. Schwab, W. A. Wulf, S. A. Moyer, C. Y.

Hitchcock, and J. H. Aylor. Experimental implementation ofdynamic access

ordering. InProceedings of IEEE 27th Hawaii International Conference on

Systems Sciences (HICSS-27), 1994.

[48] S. A. McKee, W. A. Wulf, J. H. Aylor, R. H. Klenke, M. H. Salinas, S. I.

Hong, and D. A. Weikle. Dynamic access ordering for streamedcomputa-

tions. IEEE Transactions on Computers, 49, Nov. 2000.

[49] Micron. 2Gb DDR3 SDRAM, MT41J512M4 - 64 Meg x 4 x 8 banks, 2002.

http://download.micron.com/pdf/datasheets/dram/ddr3/.

[50] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a compiler

algorithm for prefetching. InProceedings of the 5th International Confer-

ence on Architectural Support for Programming Languages and Operating

Systems, 1992.

[51] O. Mutlu, H. Kim, D. N. Armstrong, and Y. N. Patt. Using the first-level

caches as filters to reduce the pollution caused by speculative memory refer-

ences.International Journal of Parallel Programming, 33(5), October 2005.

[52] O. Mutlu, H. Kim, and Y. N. Patt. Techniques for efficient processing in runa-

head execution engines. InProceedings of the 32nd International Symposium

on Computer Architecture (ISCA-32), 2005.

201

[53] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling for

chip multiprocessors. InProceedings of the 40th International Symposium on

Microarchitecture (MICRO-40), 2007.

[54] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: Enhancing

both performance and fairness of shared DRAM systems. InProceedings of

the 35th International Symposium on Computer Architecture(ISCA-35), 2008.

[55] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution: An

alternative to very large instruction windows for out-of-order processors. In

Proceedings of the 9th International Symposium on High Performance Com-

puter Architecture (HPCA-9), 2003.

[56] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution: An

effective alternative to large instruction windows.IEEE Micro, 23(6), 2003.

[57] C. Natarajan, B. Christenson, and F. Briggs. A study of performance im-

pact of memory controller features in multi-processor server environment. In

Workshop on Memory Performance Issues, 2004.

[58] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair queuing memory

systems. InProceedings of the 39th International Symposium on Microarchi-

tecture (MICRO-39), 2006.

[59] K. J. Nesbit, A. S. Dhodapkar, J. Laudon, and J. E. Smith.AC/DC: An

adaptive data cache prefetcher. InProceedings of the 13th International Con-

ference on Parallel Architectures and Compilation Techniques, 2004.

[60] V. S. Pai and S. Adve. Code transformations to improve memory parallelism.

In Proceedings of the 32nd International Symposium on Microarchitecture

(MICRO-32), 1999.

[61] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. Pin-

pointing representative portions of large Intel Itanium programs with dynamic

202

instrumentation. InProceedings of the 37th International Symposium on Mi-

croarchitecture (MICRO-37), 2004.

[62] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adaptive

insertion policies for high-performance caching. InProceedings of the 34th

International Symposium on Computer Architecture (ISCA-34), 2007.

[63] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A casefor mlp-aware

cache replacement. InProceedings of the 33rd International Symposium on

Computer Architecture (ISCA-33), 2006.

[64] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalablehigh performance

main memory system using phase-change memory technology. In Proceed-

ings of the 36th International Symposium on Computer Architecture (ISCA-

36), 2009.

[65] S. Rixner. Memory controller optimizations for web servers. InProceedings

of the 37th International Symposium on Microarchitecture (MICRO-37), 2004.

[66] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.Owens. Memory

access scheduling. InProceedings of the 27th International Symposium on

Computer Architecture (ISCA-27), 2000.

[67] Samsung. Application Note: tWR (Write Recovery Time), 2002.

http://www.samsung.com/global/business/semiconductor/products/dram/.

[68] J. Shao and B. T. Davis. A burst scheduling access reordering mechanism.

In Proceedings of the 13th International Symposium on High Performance

Computer Architecture (HPCA-13), 2007.

[69] A. J. Smith. Cache memories.Computing Surveys, 14(4), 1982.

[70] W. E. Smith. Various optimizers for single stage production. Naval Research

Logistics Quarterly, 3, 1956.

203

[71] A. Snavely and D. M. Tullsen. Symbiotic job scheduling for a simultaneous

multithreading processor. InProceedings of the 9th International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS-9), 2000.

[72] L. Spracklen and S. G. Abraham. Chip multithreading: opportunities and

challenges. InProceedings of the 11th International Symposium on High

Performance Computer Architecture (HPCA-11).

[73] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed prefetching:

Improving the performance and bandwidth-efficiency of hardware prefetchers.

In Proceedings of the 13th International Symposium on High Performance

Computer Architecture (HPCA-13), 2007.

[74] V. Srinivasan, G. S. Tyson, and E. S. Davidson. A static filter for reducing

prefetch traffic. Technical Report CSE-TR-400-99, University of Michigan

Technical Report, 1999.

[75] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L.K. John. The virtual

write queue: coordinating DRAM and last-level cache policies. InProceed-

ings of the 37th International Symposium on Computer Architecture (ISCA-

37), 2010.

[76] Sun Microsystems, Inc. OpenSPARC(TM) T1 Microarchitecture Specifica-

tion.

[77] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy.POWER4 system

microarchitecture.IBM Technical White Paper, Oct. 2001.

[78] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic

units. IBM Journal of Research and Development, 11, Jan. 1967.

[79] J. Tuck, L. Ceze, and J. Torrellas. Scalable cache miss handling for high

memory-level parallelism. InProceedings of the 39th International Sympo-

sium on Microarchitecture (MICRO-39), 2006.

204

[80] O. Wechsler. Inside Intel Core microarchitecture.Intel Technical White

Paper, 2006.

[81] M. V. Wilkes. Slave memories and dynamic storage allocation. IEEE Trans-

actions on Electronic Computers, 14(2), 1965.

[82] T.-Y. Yeh and Y. N. Patt. Two-level adaptive branch prediction. In Proceed-

ings of the 24th International Symposium on Microarchitecture (MICRO-24),

1991.

[83] T.-Y. Yeh and Y. N. Patt. Alternative implementations of two-level adaptive

branch prediction. InProceedings of the 19th International Symposium on

Computer Architecture (ISCA-19), 1992.

[84] D. H. Yoon and M. Erez. Memory mapped ECC: low-cost errorprotection

for last level caches. InProceedings of the 36th International Symposium on

Computer Architecture (ISCA-36), 2009.

[85] G. L. Yuan, A. Bakhoda, and T. M. Aamodt. Complexity effective memory

access scheduling for many-core accelerator architectures. InProceedings of

the 42nd International Symposium on Microarchitecture (MICRO-42), 2009.

[86] C. Zhang and S. A. McKee. Hardware-only stream prefetching and dynamic

access ordering. InProceedings of the 2000 International Conference on

Supercomputing (ICS-14), 2000.

[87] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based pageinterleaving

scheme to reduce row-buffer conflicts and exploit data locality. In Proceed-

ings of the 27th International Symposium on Computer Architecture (ISCA-

27), 2000.

[88] H. Zhou and T. M. Conte. Enhancing memory level parallelism via recovery-

free value prediction. InProceedings of the 17th International Conference on

Supercomputing (ICS-17), 2003.

205

[89] Z. Zhu and Z. Zhang. A performance comparison of DRAM memory system

optimizations for SMT processors. InProceedings of the 11th International

Symposium on High Performance Computer Architecture (HPCA-11), 2005.

[90] X. Zhuang and H.-H. S. Lee. A hardware-based cache pollution filtering

mechanism for aggressive prefetches. InProceedings of the 32nd Interna-

tional Conference on Parallel Processing, 2003.

[91] X. Zhuang and H.-H. S. Lee. Reducing cache pollution viadynamic data

prefetch filtering.IEEE Transactions on Computers, 56(1), Jan. 2007.

[92] W. Zuravleff and T. Robinson. Controller for a synchronous DRAM that max-

imizes throughput by allowing memory requests and commandsto be issued

out of order. U.S. Patent Number 5,630,096, 1997.

206

Vita

Chang Joo Lee was born in Seoul, South Korea on 12 September 1975. He

finished Seoul High School, Seoul, Korea in February 1994. Hecompleted his B.S.

degree in Electrical Engineering in February 2001 at Seoul National University,

Seoul, Korea. He earned his M.S. degree in Electrical and Computer Engineering

from the University of Texas at Austin, Texas, USA in May 2004.

Chang Joo was a recipient of the scholarship from Ministry ofInformation

and Communication in Korea during 2002-2006, the IBM PhD fellowship in 2007,

and the IBM scholarship in 2008. He served as a teaching assistant for EE382N

Microarchitecture in Spring 2006, EE360N Computer Architecture in Spring 2007,

and EE306 Introduction to Computing in Fall 2008. Chang Joo worked as a summer

intern at Freescale Semiconductor in 2004 and 2005, and IBM T.J. Watson Research

in 2006 and 2007.

Permanent address: 622-13 Yeoksam-Dong Kangnam-Gu, Seoul
135-080, Republic of Korea

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

207

