DRAM-Aware Prefetching and Cache Management

Chang Joo Lee

High Performance Systems Group
Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, Texas 78712-0240

TR-HPS-2010-004
December 2010

This page is intentionally left blank.

Copyright
by
Chang Joo Lee
2010

The Dissertation Committee for Chang Joo Lee
certifies that this is the approved version of the followingseértation:

DRAM-Aware Prefetching and Cache Management

Committee;

Yale N. Patt, Supervisor

Nur A. Touba

Derek Chiou

Hossein Namazi

Onur Mutlu

DRAM-Aware Prefetching and Cache Management

by

Chang Joo Lee, B.S.E.; M.S.E.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
December 2010

Dedicated to my family

Acknowledgments

Many people contributed both directly and indirectly tostliissertation.
First of all, | would like to thank the current and previous migers of the HPS
research group. The HPS group was everything to me duringamy graduate
student life.

| thank my advisor, Yale N. Patt for giving me the opportunity work
with many people who are great human beings as well as smertaéemted, for
helping me build a strong foundation in computer architestéor motivating me
to perform serious research, and, most of all, for beingepativith me in making

good progress on serious research topics.

Many thanks to Onur Mutlu for the mentorship he provided dredgrofes-
sionalism he demonstrated to me. He taught me how to writgahlish ideas. He
always encouraged me to continue working hard, and his teahfeedback and
criticism on my work made this dissertation stronger. | dlsank him for always
being a friend and bearing with my complaints and unreadenahts. My graduate
student life would have been miserable without both hisresai and non-technical

support.

I thank Veynu Narasiman for working with me on all the topicegented in
this dissertation, for correcting both my spoken and wniemglish, and for being a
good friend and listening to me whenever | was discouragetkpressed. | cannot
forget the valuable discussions with him on both researchiéan

| had a wonderful time working with Eiman Ebrahimi on the cadbpics
proposed in this dissertation. He cared about me on both adkprivate issues,
helped me write and speak English better, and put up with reyreactions, harsh
jokes, and complaints. | could not have had any fun in the ghasé years without

him.

Vil

| thank Jog A. Joao for always being a friend and listening to me on both
technical and private issues. | enjoyed the time with him niee rebuilt and

enhanced our simulation infrastructure environment togret

| also had a great time with Aater M. Suleman, Rustam Miftaémov, and
Khubaib during my graduate studies. They provided valu&dxténical feedback
and criticism, and tried to help me all the time. Their feezkban my research also
made this dissertation stronger and clearer. Especiahank Rustam for always
being joyful and enjoying my jokes, and Khubaib for proofte® many chapters
of this dissertation.

| thank Hyesoon Kim for providing mentorship and encourggime to per-
form meaningful work. | thank Moinuddin K. Qureshi, Frangdiseng, Daniel N.
Lynch, Santhosh Srinath, David Thompson, and other previ¢RS members for
their mentorship and friendship. Many thanks to Leticiaalfior her long-standing
administrative support in the HPS group. | also thank rdggotned members,
Milad Hashemi and Faruk Guvenilir for proofreading somepthes in this disser-
tation.

Besides the HPS members, | would like to express my gratitodether

people and organizations.

| thank Derek Chiou, Nur Touba, and Hossein Namazi for sgran my
dissertation committee and for giving me valuable commentshis dissertation.
| also thank Thomas Puzak, Philip Emma, Vijayalakshmi Sasan, and James
Holt for providing me with a chance to have a great experiexgan intern at IBM
and Freescale. | gratefully acknowledge the governmentaye& and IBM for
providing me with fellowships during my graduate studies.

| appreciate the support and friendship of my friends, Damvi&o and
Joonsoo Kim. We all had fun making our serious project swefaés 382N. | will

never forget the great feeling we had at that time.

Special thanks to the “Lunch Bank” lady who delivered a lubol to me

on campus everyday during several semesters, which helpedanage time more

viii

efficiently.

Finally, I would like to thank my grandmother, Jung Hee Yonigonpassed
away during my studies, my parents, Jong Rak Lee and Jong KyonKmy
brother, Seung Hoon Lee, and my wife, Eunyoung Park for givire their end-

less love and unconditional support. | dedicate this diatsen to them.

Chang Joo Lee
December 2010, Austin, TX

DRAM-Aware Prefetching and Cache Management

Chang Joo Lee, Ph.D.
The University of Texas at Austin, 2010

Supervisor: Yale N. Patt

Main memory system performance is crucial for high perfangemicroproces-
sors. Even though the peak bandwidth of main memory systeradritreased
through improvements in the microarchitecture of Dynamam&om Access Mem-
ory (DRAM) chips, conventional on-chip memory systems otmprocessors do
not fully take advantage of it. This results in underutitina of the DRAM system,
in other words, many idle cycles on the DRAM data bus. The maason for this
is that conventional on-chip memory system designs do riyttiake into account
important DRAM characteristics. Therefore, the high barmiiwof DRAM-based

main memory systems cannot be realized and exploited byrtdeegsor.

This dissertation identifies three major performanceteelaharacteristics
that can significantly affect DRAM performance and makes sedar DRAM
characteristic-aware on-chip memory system design. Wes shat on-chip mem-
ory resource management policies (such as prefetchintgrbahd cache policies)
that are aware of these DRAM characteristics can signifigamthance entire sys-
tem performance. The key idea of the proposed mechanismssenid out to the
DRAM system useful memory requests that can be servicedlaithatency or in

parallel with other requests rather than requests thateaxgced with high latency

or serially. Our evaluations demonstrate that each of tlpgsed DRAM-aware
mechanisms significantly improves performance by increpSiIRAM utilization
for useful data. We also show that when employed togethempénrformance ben-
efit of each mechanism is achieved additively: they work syis@cally and sig-
nificantly improve the overall system performance of botmg&-core and Chip

MultiProcessor (CMP) systems.

Xi

Table of Contents

Acknowledgments Vil

Abstract

List of Tables Xvili

List of Figures XX

Chapter 1. Introduction 1

11
1.2
1.3
1.4

Problem 1
Thesis Statement 5
Contributions 5
Dissertation Organization 7

Chapter 2. Background: DRAM Performance-Related Characteistics 9

2.1 RowBufferLocality 9
2.2 Bank-Level Parallelism 12
2.3 Write-Caused Interference 2 1
2.3.1 Read-to-write and write-to-read latencies 14
2.3.2 Write-to-precharge latency 16
Chapter 3. Overview of the Solutions 19
Chapter 4. Related Work 22
4.1 Researchin DRAM System Management. 22
4.1.1 DRAM Access Scheduling. 22
4.1.2 DRAM Write Buffer Management. 24
4.2 Research in Improving Memory-Level Parallelism 25
4.3 Research in Prefetching and PrefetchHandling 26
4.3.1 Prefetching Algorithms 26
4.3.2 Useless Prefetch Filtering 27
4.3.3 Adaptive Prefetching 28
4.4 Researchin Cache Management. 29

Xii

4.4.1 Cache ManagementforlLocality 29

4.4.2 Cost-Aware Cache Management 30
4.4.3 Writeback Management 30
Chapter 5. Prefetch Management for Reducing DRAM Latency 32
5.1 Motivation 32
5.2 Mechanism: Prefetch-Aware DRAM Controller (PADC) 37
5.2.1 Prefetch Accuracy Estimation 37
5.2.2 Adaptive Prefetch Scheduling 39
5.2.3 Adaptive PrefetchDropping 41
5.3 Experimental Methodology, 44
531 Metrics 44
5.3.2 SystemModel 45
533 Workloads 45
5.4 Implementation and Hardware Costof PADC 7 4
5.5 Experimental Evaluation and Analysison PADC 49
5.5.1 Single-CoreResults 50
5.5.1.1 Adaptive Behaviorof PADC 53
5.5.1.2 Effect of PADC on Row Buffer HitRate 54
552 2-CoreResults 55
553 4-CoreResults, 56

5.5.3.1 Case Study I: All Prefetch-Friendly Applications. .56
5.5.3.2 Case Study II: All Prefetch-Unfriendly Applicat® 58
5.5.3.3 Case Study III: Mix of Prefetch-Friendly and Preffet

Unfriendly Applications 60
5.5.3.4 Effect of Prioritizing Urgent Requests 62
5.5.3.5 Effect on Identical-Application Workloads 36
5.5.3.6 Overall Performance 65
554 8-CoreResults 65
5.5.5 Optimizing PADC for Fairness Improvement in CMP Sys-
tems: Incorporating Request Ranking 66
5.5.6 Effect on Multiple DRAM Controllers 70
5.5.7 Effect with Different DRAM Row Buffer Sizes 27
5.5.8 Effect with a Closed-Row DRAM Row Buffer Policy 74
5.5.9 Effect with a Shared Last-LevelCache 76
5.5.10 Effect with Different Last-Level Cache Sizes 78
5.5.11 Effect on Other Prefetching Mechanisms 80

Xiii

5.6

6.1

6.2

6.3

5.5.12 Effect on a Runahead Execution Processor 82.
5.5.13 Comparison with Dynamic Data Prefetch Filtering Badd-

back Directed Prefetching 84
5.5.14 Interaction with Permutation-Based Page Intenteav. . . . 87
Summary 89

Chapter 6. Prefetch Management for Increasing DRAM Bank-Level Par-

allelism (BLP) 90
Prefetch Issue Policy to IncreaseBLP 90
6.1.1 Prefetching: Increasing Potential for DRAMBLP 90
6.1.2 What Can Limit Prefetching’s Benefits? 29
6.1.3 Mechanism: BLP-Aware PrefetchIssue 95

6.1.3.1 Hardware Support 95

6.1.3.2 BLP-Aware Prefetch Issue Policy 96

6.1.3.3 Adaptive Thresholding Based on Prefetch Accuracyy 9
Preserving DRAM Bank-Level Parallelism in CMP systems... . 98
6.2.1 What Can Destroy BLP of Applications Running Together 99
6.2.2 Mechanism: BLP-Preserving Multi-core Issue101
Experimental Methodology 103
6.3.1 Metrics 103
6.3.2 SystemModelo 104
6.3.3 Workloads 104

6.4
6.5

6.6

6.7

Implementation and Hardware Cost of BLP-Aware Issu&les| . . 105
Experimental Evaluation and Analysis on BLP-Aware ¢ésBolicies 107

6.5.1 Single-CoreResults 107
6.5.1.1 Analysis. 108
6.5.1.2 Adaptivity to Usefulness of Prefetches 011
6.5.1.3 Adaptivity to Phase Behavior. 111
6.5.1.4 Sensitivity to MSHR Size 112

6.5.2 4-CoreResults 113
6.5.2.1 CaseStudy 113
6.5.2.2 Overall Performance 116

6.5.3 8-CoreResults 116

6.5.4 Effect on Other Prefetching Mechanisms 171

6.5.5 Comparison with Parallelism-Aware Batch DRAM ScHeuy117

Combination of Prefetch-Aware DRAM Controller and BRARare
Issue Policies 120

Summary e e 121

XV

Chapter 7. Last-Level Cache Management for Improving DRAM Char-

7.1

7.2

7.3

7.4

7.5
7.6

7.7

7.8

7.9

acteristics 122
Cache Replacement for Reducing Latency and IncreadifRg B . . 122
7.1.1 Why Should We Consider DRAM Characteristics in Cache

Management? 123
7.1.2 Mechanism: Latency and Parallelism-Aware (LPA) Reet
ment 125
7.1.2.1 Low-Cost Estimation Using BLP Information 127
7.1.2.2 Low-Cost Estimation Using Row hit/conflict infor-
mation 129
Cache Replacement for Reducing Write-Caused Intertere. . . . 131
7.2.1 Why Should We Consider Write-Caused Interferenceaich@
Management? 131
7.2.2 Mechanism: Write-Caused Interference-Aware (WIA R
placement 133
Combining Latency and Parallelism-Aware and Write$&alinterference-
Aware Policies 135
Multi-Core System Considerations 135
7.4.1 LPA ReplacementinMulti-Core 136
7.4.2 WIA Replacementin Multi-Core 136
Comparison to Memory-Level Parallelism-Aware Reptaest . . . 137
Experimental Methodology 138
7.6.1 Metrics e 138
7.6.2 SystemModel 138
7.6.3 Workloads 139
Implementation and Hardware Cost of DRAM-Aware Repiaeet
Policies. 140
Experimental Evaluation and Analysis on DRAM-Aware Rep-
mentPolicies. L 141
7.8.1 Single-CoreResults 142
7.8.1.1 Why Does LPA Policy PerformWell? 144
7.8.1.2 Why Is Write-Caused Interference Awareness De-
sirable? 145
7.8.1.3 Combining LPAandWIA 147
7.8.1.4 Effect on System with Prefetching 147
7.8.2 4-CoreResults 149
Summary 150

XV

Chapter 8. Last-Level Cache Management for Reducing WriteCaused

Interference 151
8.1 Write-Caused Interference in the DRAM System151
8.1.1 Performance Impact of Write-Caused Interferen(:@mﬂ]s
DRAM System 153
8.1.2 Performance Impact of Write-Caused InterferencherFuture 155
8.2 Motivation 157
8.2.1 Reducing Read-to-Write and Write-to-Read Penalties . . 157
8.2.2 Last-Level Cache Writeback: A Way to Further ReduceéA/r
Caused Interference 160
8.3 Mechanism: DRAM-Aware Writeback 163
8.3.1 Does Last-Level Cache Have Sufficient Bandwidth foAIR
Aware Writeback? oL 166
8.3.2 Dynamic Optimization for Frequent Rewrites 166
8.4 Comparisonto Eager Writeback 816
8.5 Experimental Methodology, 169
851 Metrics 169
8.5.2 SystemModel L. 169
853 Workloads 169
8.6 Implementation and Hardware Cost of DRAM-Aware Writgba. . 170
8.7 Experimental Evaluation 171
8.7.1 Performance of Write Buffer Management Policies 171
8.7.2 Single-CoreResults 174
8.7.2.1 Why Does Eager Writeback Not Perform Well? . . . 177
8.7.2.2 Why Does DRAM-Aware Writeback Perform Better? 179
8.7.2.3 When is Dynamic DRAM-Aware Writeback Required?180
8.7.3 Multi-CoreResults 182
8.7.4 Effect on Systems with Prefetching 318
8.8 Summary 185
Chapter 9. Combining All DRAM-Aware Mechanisms 186
9.1 DRAM-Aware Mechanisms Are Complementary 861
9.2 Methodology 187
9.2.1 SystemModel 187
9.2.2 Workloads 187
9.3 Experimental Evaluation 188

XVi

Chapter 10. Conclusion and Future Research Directions 192

10.1 Conclusion e 192

10.2 Future Research Directions 94 1
Bibliography 196
Vita 207

XVii

5.1
5.2
5.3

5.4

5.5

5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4

6.5
6.6

6.7

7.1
7.2

7.3

List of Tables

Baseline configuration of each core for PADC 45
Baseline configuration of shared CMP resources for PADC. . . 46

Characteristics of 18 SPEC benchmarks for PADC: IPC, MPK
(last-level cache misses per 1K instructions), RBH (Row@&uit
rate), ACC (prefetch accuracy), COV (prefetch coveragegs. . . 47

Hardware storage cost of PADG,...... number of cache lines
per coreN,,,... number of cores)V,.,: number of DRAM request
bufferentries) 49

Dynamicdrop_threshold values for Adaptive Prefetch Dropping
based on prefetchaccuracy

Row buffer hit rate of PADC for useful requests 55
Effect of prioritizing urgent requests in PADC 63
Effect of PADC on four identical prefetch-friendly apaitions . . . 64

Effect of PADC on four identical prefetch-unfriendly@gations . 64

Baseline configuration of each core for BLP-aware isslieips . . 104
Baseline shared resource configuration for BLP-awaresipolicies 104
DRAM timing specifications for BLP-aware issue policies. . . . 105

Characteristics of 14 memory-intensive SPEC benchsifarlBLP-
aware issue: IPC, MPKI (last-level cache misses per 1Kunstr
tions), BLP, ACC (prefetch accuracy), COV (prefetch cogea . . 106

Dynamicpre fetch_send_threshold values for BAPI 106

Hardware storage cost of BAPI and BPMRV 4., Neore, Nyrsur,

Nyusfers Nehannels Noank: NUMber of last-level cache lines, cores,
MSHR entries, prefetch request buffer entries, DRAM chéigne
DRAM banksperchannel) 107

Average IPC performance of BAPI with various MSHR sizes. ..112

Baseline configuration for DRAM-aware replacement@es . . . 139
DDR3-1600 DRAM timing specifications for DRAM-aware i&ge-
mentpolicies 140

Characteristics of 16 SPEC benchmarks for DRAM-awgrace-

ment: IPC, MPKI (last-level cache misses per 1K instruc)pn
WPKI (last-level cache Writebacks Per 1K Instructions)y fuit

rate (RHR),BLP 141

XViii

7.4

8.1
8.2

8.3
8.4

8.5

8.6

9.1

Hardware storage cost for DRAM-aware replacement igsli@V..,
Niines Noanks Nbu{fer: number of cores, last-level cache lines, DRAM

banks, cache fill bufferentries) 142
Last-level cache bank idle cycles (%) on single coressyst 166
Average last-level cache bank idle cycles (%) on singlend 8-
COresystems e e 166
Baseline configuration for DRAM-aware writeback 170
Characteristics for 18 SPEC benchmarks for DRAM-awatigew

back: IPC, MPKI (last-level cache misses per 1K instru&jpn
WPKI (last-level cache Writebacks Per 1K Instructions),ANR

row hitrate (RHR) 171
Number of write buffer drains and number of writes perimfar

various policies e 180
Number of DRAM-aware writebacks generated, rereadecéinbs

and rewritten cache lines, and rewriterate 182

Baseline configuration for all combined DRAM-aware neubms 188

XiX

11

2.1
2.2
2.3
2.4

3.1

5.1

5.2
5.3
5.4
5.5
5.6

5.7
5.8
5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19

List of Figures

Performance and DRAM bus utilization for a conventionamory
system with no prefetching and a stream prefetcher (withptrek
DRAM bandwidth of 12.8, 25.6, 25.6GB/s for single, 4, ando8ec

systemsrespectively) o o 4
Row conflict and row hit in modern DRAM system 11
DRAM bank-level parallelism 13
Read-to-write and write-to-read latencies 15
Write-to-precharge (write recovery time) latency 17
Overview of proposed DRAM-aware mechanisms 20

Example illustrating the performance impact of demérsd-and

demand-prefetch-equal policies 34
Performance of two rigid prefetch scheduling policies... 36
Prefetch-Aware DRAM Controller 38
Example of behavior of prefetchesforlc. 43
DRAM requestfield for PADC, 48
Performance of PADC on single-core system: Normali&«d for

15 benchmarks and average for all 55 (gmean55) 50
Stall time per load (SPL) of PADC on single-core system..... . 52
Bus traffic of PADC on single-core system 53
Fraction of execution time in different PADC schedulingdes on
single-core system 54
Performance of PADC on 2-coresystem 6. 5
Performance of PADC for prefetch-friendly 4-core wodd 57
SPL and bus traffic of PADC for prefetch-friendly 4-cererkload . 57
Performance of PADC for prefetch-unfriendly 4-corekload . . . 59
SPL and bus traffic of PADC for prefetch-unfriendly 4eworkload 60
Performance of PADC for mixed 4-core workload 61
SPL and bus traffic of PADC for mixed 4-core workload 61
Performance of PADC on 4-coresystem 5 6
Performance of PADC on 8-coresystem 6. 6
DRAM request fields for PADC withranking 96

XX

5.20 Optimized PADC with ranking on 4-core system 70
5.21 Optimized PADC using ranking mechanism on 8-core syste . . 71
5.22 Performance of PADC on 4-core system with two DRAM caolidrs 72
5.23 Performance of PADC on 8-core system with two DRAM caligrs 72
5.24 Effect of PADC with various DRAM row buffer sizes on 4reo

SYSteM . . . L e e e 73
5.25 Effect of PADC on closed-row scheduling policy 75
5.26 Effect of PADC on shared last-level cache on 4-coreesyst. . . . 77
5.27 Effect of PADC on shared last-level cache on 8-coreesyst. . . . 77
5.28 Effect of PADC on various cache sizes on 4-core system. . . . 79
5.29 PADC on stride, C/DC, and Markov prefetchers 81
5.30 Effect of PADC onrunahead execution 83

5.31 Comparison of PADC with DDPF and FDP with demand-first .. 86
5.32 Comparison of PADC to DDPF and FDP with demand-prefetgal 87

5.33 Effect of PADC on permutation-based page interleaving 88
6.1 How prefetching can increase DRAM BLibQuantun) 91
6.2 FIFO vs. DRAM BLP-aware prefetch issue policy 93
6.3 Hardware structures for BLP-Aware Prefetch Issue (BAPL . . . 96
6.4 Round-robin vs. BLP-preserving request issue policy..... . . . 100
6.5 Performance, BLP, and SPL of BAPI on single-core system . . 109
6.6 Bus traffic of BAPI on single-core system 110
6.7 Performance of BLP-aware issue policies for prefetamily work-

load 114
6.8 Performance of BLP-aware issue policies on 4-core syste . . . 116
6.9 Performance of BLP-aware issue policies on 8-core syste . . . 117
6.10 BLP-aware issue policies with stride and C/DC prefetsh. 118
6.11 Comparison of BLP-aware issue policies with PAR-BS 120
6.12 Combination of PADC and BLP-Aware Issue Policies 121
7.1 DRAM and processor performance for two different miggiof

outstandingmisses 124
7.2 Low-costestimationforLPA 126
7.3 Conventional vs. write-caused interference-awarkaogpnent poli-

CIBS . . . e 132
7.4 Dirty row-hitsearchforWIA 134
7.5 Performance of DRAM-aware replacement policies onlsiagre

SYStemM . . . L e e e 143

XXI

7.6

7.7

7.8

7.9

8.1

8.2

8.3
8.4

8.5
8.6

8.7

8.8
8.9
8.10
8.11
8.12

9.1

9.2

DRAM read traffic and aggregate BLP of DRAM-aware replace

mentpolicies 144
DRAM write traffic and aggregate BLP of DRAM-aware re@ac
mentpolicies 146
Performance of DRAM-aware replacement policies onlstagre
systemwith prefetching 149

Performance of DRAM-aware replacement policies onr-sgstem 150

Potential (simulated) performance of intelligentlyntlBng write-
caused interference in the DRAM system 154

Performance potential by eliminating all writes as mantaois clock
frequencyincreases oo 156

Serviceat.no_read vs. drainvhenfull write buffer policies 158

Write-cause interference-aware replacement vs. DRéWre write-
back 161

Writeback mechanism in last-level cache164

Performance and DRAM bus utilization of various writéfeupoli-
CIES . . . e 173

Performance and DRAM bus utilization of DRAM-aware exit
back on single-coresystem oL 176

Row hit rate of DRAM writes and reads for DRAM-aware wiidek 178
Number of DRAM requests for DRAM-aware writeback 181
Performance of DRAM-aware writeback on 4-core system. .. . 183
Performance of DRAM-aware writeback on 8-core system. .. . 183

Performance of DRAM-aware writeback on 4-core systétimpvefetch-
] 184

Performance of individual DRAM-aware mechanisms oglsi,
and 8-core systems 189

Performance and DRAM bus utilization of combined DRAMase
mechanisms 190

XXIi

Chapter 1

Introduction

1.1 Problem

Memory system performance is crucial for high performanemguting.

Dynamic Random Access Memory (DRAM) is the most commonlydusehnol-

ogy for building the main memory system in modern computettesys. There-

fore, computer architects need to understand the chaistaterof DRAM in order

to build high performance memory systems. There are three pexformance-

related characteristics associated with DRADANK-level parallelism, row buffer

locality, andwrite-caused interference

e Bank-Level Parallelism: A modern DRAM chip consists of nplé banks
that can be accessed independently. Memory requests &yeadiff DRAM
banks can proceed concurrently. Therefore, the requasts’sa latencies can
be overlapped, thereby increasing DRAM throughput. Théonatf servic-
ing multiple requests in parallel in different DRAM bankscalled DRAM
Bank-Level Parallelism (BLP)

Row Buffer Locality: Each DRAM bank consists of rows and cohs of
DRAM cells. A row contains a fixed-size block of data (usuasiveral
Kbytes). Each bank hagew buffer(or sense amplifigr and a DRAM access
can be made only by reading (writing) data from (to) the rofdnusing a
column address. To perform a complete access, 1) a row ietbsdo the
row buffer and 2) the data in the row buffer is read (writtej tdhe row
buffer keeps the most recently accessed row in the DRAM b#@nkubse-

guent access to the last accessed row can be serviced sigtififaster than

an access to a different row. This concept is referred toaduffer locality
Prioritizing a request among multiple memory requests ¢ociirrently open

row results in higher DRAM throughput.

e Write-Caused Interference: Write requests interfere watid requests in the
DRAM system by causing idle cycles on the DRAM data bus. Oneeite
is serviced, subsequent reads and even some writes (eligs o different
rows in the same bank) cannot be started for a certain amduime even
after the write is fully serviced. This introduces idle agglon the data bus and
in turn degrades DRAM throughput. We call tivisite-caused interference
in the DRAM system.

We define a processomm-chip memory systeas the collection of the fol-
lowing: 1) the memory controller, 2) the structures that grate main memory
requests (e.g., last-level cache and prefetcher strg)tud the buffer structures
which memory requests go through until they are servicechbyORAM system,
and 4) the corresponding management policies associatedlyi2), and 3). If
the on-chip memory system takes into account bank-levelllgism, row buffer
locality, and write-caused interference, DRAM performaaad in turn system per-
formance can be significantly improved. However, convergimn-chip memory
systems do not fully consider these DRAM system charatiesiand therefore
often do not provide the best system performance. This prolddecomes more
significant for Chip MultiProcessor (CMP) systems where BifRAM system is
shared by multiple cores on a chip. Figure 1.1 shows the geesgstem perfor-
mance and DRAM data bus utilization for single, 4, and 8-&ygtems. In this
experiment, we used a DDR3 DRAM system [49] and aggress®eGHz x86
microprocessors with and without an aggressive stream prefetcher [77, 78, 36
We ran the 20 most memory-intensive SPEC CPU 2000/2006 bear&ls on the

We deliberately chose an aggressive processor frequerayctuunt for future technology ad-
vancements. The performance and DRAM bus utilization sestebwn here do not change signifi-
cantly with less aggressive frequencies (e.g., 3.2GHz).

single-core system. We simulated 30 and 20 pseudo-randohagen multipro-
grammed workloads [39] on the 4-core and 8-core CMP systespectively? We

make four observations from Figure 1.1.

First, with no prefetching, as the number of cores incred3R&M bus
utilization increases. This is because multiple applarairun together on different

cores on the chip and generate more memory requests to thé/Ddygstem.

Second, the DRAM data bus is not fully utilized for any of theee sys-
tems even with prefetching. For the single and 4-core systevhen the stream
prefetcher is employed, bus utilization increases andopadnce improves (by
30.8% and 4.5%) compared to no prefetching. However, theretdl a significant
number of idle data bus cycles. One of the main reasons istimaentional on-chip
memory systems do not fully take advantage of the DRAM systéhrey some-
times limit the amount of row buffer locality and bank-leysrallelism exploited
by the DRAM controller or do not try to minimize write-causederference. Sys-
tem performance can be improved by exploiting or reducirag¢hidle cycles for

useful requests.

Third, even though prefetching increases bus utilizatiothe 4 and 8-core
systems, the performance improvement is not very significanfact, the 8-core
system suffers performance degradation (by 1.3%) companea prefetching even
though more DRAM bandwidth is consumed. This is becausenitreased mem-
ory request contention due to the increased number of cerastimanaged effi-
ciently by conventional memory systems since they do nat tato account the
DRAM system’s characteristics and applications’ behatagether. For example,
contention between memory requests from applications ABanghning together
can cause application B to close a row buffer that was opegeapplication A.
This results in longer DRAM latency for application A's lalmemory access to
the closed row since the closed row must be reopened. Alsmamerequests to
different banks from application A that could potentially serviced in parallel in

2Chapter 9 explains the system configurations and the watkloadetail.

=
y
=
o

D c -
= o ——idle
1.2 - < == pref-useless
o N 0.8+
S ol B = === pref-useful
e 5 m— Jemand
0.6
T 0.8 - g
N 2
© 0.6 B 8 0.4+
e @©
S 0 4A [U
o .
c = 0.2
= 0.2] - <
[
O 0.0 ‘ O oo
" no pref pref no pref pref

(a) Single-core processor

=
n
[any
o

——=idle
= pref-useless
= pref-useful
= demand

o
o
1l
[

o
[ep}
1
[

o©
n

Perf normalized to no pref
>
I
DRAM data bus utilization
o
n

0.0‘ T 0.0‘
no pref pref no pref pref

(b) 4-core chip multiprocessor

=
i
[any
o

——=idle
= pref-useless
= pref-useful
= demand

o
o
1l
[

© c
5 S
2 N
e 5
o) o 0.6+
(O] >
N B Q
< 8 0.4
= - g
c = 0.2
“— - <
() o
no pref pref no pref pref

(c) 8-core chip multiprocessor

Figure 1.1: Performance and DRAM bus utilization for a carti@nal memory sys-
tem with no prefetching and a stream prefetcher (with thé&k @RAM bandwidth
of 12.8, 25.6, 25.6GB/s for single, 4, and 8-core systensa@s/ely)

4

multiple DRAM banks may end up being serviced serially duaterference from
application B’s memory requests. Both examples can resybor performance
even though data bus utilization has increased comparea poafetching.

Finally, a significant number of cycles are spent for usef@sdetch re-
quests (brought from DRAM but not used). Useless prefetcbesume DRAM
bandwidth without contributing to performance. Even wotkey sometimes even
hurt performance as shown in Figure 1.1(c). Removing usglefetches results in

more efficient data bus utilization, allowing useful reqsds be serviced faster.

We would like to develop a comprehensive on-chip memoryesgsdesign
that can efficiently exploit or reduce the idle DRAM data bysles for high per-
formance. To this end, this dissertation proposes new last-on-chip memory
system (i.e., prefetcher, buffer, and cache structuresigde that take into account
DRAM characteristics. The proposed mechanisms significamiprove system
performance by reducing DRAM access latency and incred3R@M access par-
allelism for useful memory requests for both single-cord ahip multiprocessor

systems.

1.2 Thesis Statement

Performance of microprocessors can be improved significdoyt taking
into account the main memory system’s characteristics @ir thn-chip memory

system designs.

1.3 Contributions

This dissertation makes the following contributions.

e This dissertation introduces the notion of main memory (IMyAaware de-
sign of a microprocessor’s on-chip memory system. It idegithree ma-
jor DRAM characteristics in state-of-the-art DRAM systemBich signif-

icantly affect performance: row buffer locality, bank-&\parallelism, and

write-caused interference. It shows that conventionatloip-memory sys-

tem designs that do not take into account these charaatsrigisult in un-

derutilization of the DRAM system, thereby limiting ovdraystem perfor-

mance. To overcome this problem, this dissertation prapasel evaluates
DRAM characteristic-aware prefetch scheduling/issuing eache manage-
ment techniques.

This dissertation identifies problems of the conventionRAD controller
design in the presence of prefetching. It presents a ptefaiare DRAM
controller design that aims to maximize row buffer localiyly for demand
and useful prefetch memory requests and to minimize thetvegeaifect of
useless prefetch requests. The proposed technique sagnifiemproves per-
formance by reducing the latency of useful requests and vemgaiseless
prefetches.

This dissertation shows that conventional request isstlieig®to resource-
limited on-chip buffers can limit the amount of Bank-LevalrBllelism (BLP)
realized by the DRAM controller. This reduces the effeatiss of prefetch-
ing and out-of-order execution. This dissertation presamd analyzes on-
chip request issue policies that aim to maximize DRAM BLPe Hvalua-
tions show that the proposed BLP-aware policies signiflgantrease BLP
and therefore improve system performance.

This dissertation demonstrates that due to the DRAM chariatts, not all
misses and evictions of the last-level cache incur the sarsite it proposes a
DRAM-aware last-level cache replacement policy that fatbe replacement
of low-cost cache lines that will likely take advantage ofvrouffer locality
and BLP and lines that can reduce write-caused interferéifeeevaluations
show that the DRAM-aware replacement policy can improvégoerance by
exploiting all DRAM characteristics.

This dissertation identifies limitations of our DRAM-awaeplacement pol-

icy that aims to reduce write-caused interference in the DRgystem. It

proposes a more aggressive writeback technique for thdehasit cache to
further reduce write-caused interference. The proposetéack mecha-
nism proactively sends writebacks from dirty lines that banserviced fast
due to row buffer locality. The results presented in thisdsation show that
this mechanism allows the DRAM controller to service mor&eg quickly,
thereby resulting in less write-caused interference tharbiRAM-aware re-
placement policy.

e This dissertation evaluates the performance and DRAM effay of all the
proposed DRAM-aware techniques when employed togethee r&bults
show that the techniques work synergistically and incr€d2AM utilization
significantly. The proposed mechanisms significantly imprperformance
on both single-core and chip multiprocessor systems.

1.4 Dissertation Organization

This dissertation is organized into ten chapters. Chapiaofides back-
ground information on the three DRAM performance-relatbdracteristics based
on the industry standards. Chapter 3 provides an overvidaunfproposed mecha-
nisms that aim to improve DRAM performance. Chapter 4 disesselated work.
In the following four chapters, we propose and evaluate foachanisms. Chap-
ter 5 presents and analyzes a prefetch-aware DRAM contibide tries to maxi-
mize row buffer locality for demand and useful prefetched annimize the nega-
tive effect of useless prefetches. Chapter 6 proposes aondsties two Bank-Level
Parallelism (BLP)-aware memory request issue policiesrdeioto improve BLP.
Chapter 7 presents and evaluates a DRAM-aware last-legkeaaplacement pol-
icy that aims to improve all three DRAM characteristics. Qtes 8 proposes and
analyzes a DRAM-aware last-level cache writeback mechatt can signifi-
cantly reduce write-caused interference. Chapter 9 eteduand discusses perfor-
mance and DRAM efficiency when all four proposed DRAM-awatmchanisms

are employed together on both single-core and multi-coseesys. Chapter 10 con-

cludes this dissertation.

Chapter 2

Background: DRAM Performance-Related
Characteristics

In this chapter, we provide background on three DRAM charéstics based
on the Double Data Rate 3 (DDR3) SDRAM Joint Electron Deviogikeering
Council (JEDEC) standard. We follow the abbreviations &f skandard. We refer
readers to the DDR standard documentations and producthesges [22, 49] for
further detailed information. We accurately model all #ngerformance-related
timing constraints in our DRAM simulation model for our exjpeental evaluations

of the proposed mechanisms.

2.1 Row Buffer Locality

Each DRAM bank is arranged in rows and columns of DRAM cellke T
size of a row is several Kbytes (1 or 2 Kbytes in each bank peARRhip) in
modern DRAM systems. To perform a complete access to a damaeel, three
steps are required for the DRAM controller. Firstpgechargecommand is sent
to precharge the bank’s bitlines. Second, aamivate command is sent to open
the source/destination row through the sense amplifierdfwiie call row buffer
throughout this dissertation) in the bank. Finallyeador write command is sched-
uled to access the appropriate columns from the row dateeinav buffer. Every
access can be performed only by reading from or writing tortlve buffer. There-
fore, if a subsequent access to the bank is mapped to a diffeve, these three
steps (i.e., precharge, activate, and read/write) musteb@nmed again. We call

an access to a different romraw conflict On the other hand, a subsequent access

which is mapped to the same row as the previous row can berpextbsimply by

accessing the appropriate column from the currently open Ve call this access a
row hit. Since a row hit requires only the third of the three stegsDiRAM service

time is much less than that of a row conflict.

Figure 2.1 illustrates exactly how the DRAM system works tloese ac-
cesses. Figure 2.1(a) shows that three reads (A, B, and @egtiag in the DRAM
read buffer for DRAM scheduling. Figure 2.1(b) shows theilitisg DRAM timing
when these reads are serviced. The DDR3 DRAMe&fetch buffeenables a burst
mode of up to eight (burst lengtlB L = 8) by bringing (eight) consecutive columns
from the row buffer to the prefetch buffer. Each command (e.g., read, write, or
precharge) takes a DRAM bus cycle and every data transfeme th burst mode
at twice the rate of the clock (i.e., double data rate, 4 DRAdMK cycles for BL =
8).2

In this example, all reads are mapped to the same row (Row Bairk O.
Currently Row 5 is open in the row buffer of bank 0. Read A hagdahrough all
three steps since it is a row conflict. The total service tiordRead A is the sum of
the latencies for the three steps (precharge period + Aetitaread/write delay +
column address strobe lateneyp + trep + C'L) as shown in Figure 2.1(b). After
this latency, the data required by Read A is put onto the dasa Bince the burst
length is eight, eight bursts of data are sent to the data bhs. subsequent two
reads can simply access the row opened by Read A. Even thoaghsang a given
column within a row takes only column address strobe latgntdy), consecutive
row-hit reads are serviced even faster. This is because BirIsystem allows
row-hit latencies (' Ls) to overlap in order to support back-to-back data tragsfer
among row-hit reads (even among row-hit reads in differemkds). Therefore the
effective latency of a row hit can be simply data burst layeinom the processor’s

1This is called theBn-bit prefetch architecturen the DDR3 technology, where n is the number
of data pins in a DDR3 DRAM chip. The DRAM prefetch buffer isasbd by all sense amplifiers
(i.e., row buffers, each of which is in a bank).

2Throughout this dissertation, we assume that the DRAM gystas a DRAM Dual Inline Mem-
ory Module (DIMM) with a 64-bit wide data bus per DRAM chann@&herefore, the data transfer
for a 64-byte cache line can be completed with a burst leniyéigit.

10

Row
Row

Bank O T Bank 1 DRAM

Read A DRAM controller

DRAM read buffer
Read A (0, 1): mapped to row 1 in bank|0
Read B (0, 1): mapped to row 1 in bank|0
Read C (0, 1): mapped to row 1 in bank|0

(a) DRAM state

Activate Read A Read B Read C

Precharge 0 (0, 1) (0,1) (0, 1)(0, 1)
Command & M M N
address bus U . U |
. tRP . tRCD . CL = tBL
. CL
{CCD 5
tCCD
Data bus
Request service time Read A: Row conflict : : :
in bank 0 - ISSSS e —

. T : :
Read B: Row hit="p 2o

tRP: Precharge period
tRCD: Activate—-to—-read/write delay in the bank
CL: Read column address strobe (CAS) latency
tBL: Burst length time

tCCD: CAS-to—CAS delay

(b) DRAM timing

Figure 2.1: Row conflict and row hit in modern DRAM system

11

point of view. This makes a row-hit request much faster theswaconflict request
(up to 9 times faster in a DDR3-1600 chip [49]). Note that shabk-to-back data
transfers are supported among row-hit writes as well by lapging write column
address strobe latencieS(/ Ls).

Since row hits can be serviced (effectively~39 times) faster than row
conflicts, many DRAM controllers prioritize row hits overwoconflicts in their
scheduling decisions [92, 66, 48].

2.2 Bank-Level Parallelism

A DRAM chip consists of multiple (4~ 8) independent banks and accesses
to different banks can be serviced concurrently. Figuresh@vs the DRAM be-
havior of two row conflict accesses to different banks. Read Aapped to Row
1 in Bank 0 and Read B is mapped to Row 1 in Bank 1 as shown in &@@(a).
Even though they are row conflicts (i.e., the current opersrave different from
the rows they access), their DRAM service times can be sagmfly overlapped as
shown in Figure 2.2(b). Therefore the effective stall tifhéh@ processor for these
two requests is much less than the sum of the two access ikdendote that if
two row conflicts are mapped to different rows in the same b#rdy are serviced
completely serially and the processor experiences the guwmoorow-conflict ac-

cesses.

2.3 Write-Caused Interference

Write-caused interference in DRAM comes from read-to-eyritvrite-to-
read, and write-to-precharge latency penalties. Reawite-and write-to-read la-
tencies dictate the minimum latencies between a read cochigadh a write com-
mand regardless of what DRAM banks they belong to. In cohtrage-to-precharge

3To be precise, the total service time of two consecutive ronflicts in the same bank is more
than the sum of two row conflict latencies due to other DRAMttigconstraints such as the activate-
to-activate command period#) and the activate-to-precharge command perigd §).

12

Row
Row

Bank O T Bank 1 DRAM

Read A DRAM controller

DRAM read buffer

o

Read A (0, 1): mapped to row 1 in bank
Read B (1, 1): mapped to row 1 in bank|1

(a) DRAM state

Precharge 1 Activate (1, 1)

Precharae O Activate Read ARead B
k (0. 1) 0.1) (1)
Command & N N
address bus U U
tRP | tRCD CL tBL
: ? ? ? } JIBL
: tRRD tRCD CL o
Data bus | TS
Request service time Read A: Row conflict bata A Data B
in bank 0 : - . :
Request service time Read B: Row conflict 3 3
inbank1 — & SSS==

Overlapped DRAM service time

tRP: Precharge period

tRCD: Activate—to—read/write delay

CL: Read column address strobe (CAS) latency
tBL: Burst length time

tRRD: Activate—to—activate period in different banks

(b) DRAM timing

Figure 2.2: DRAM bank-level parallelism

13

specifies the minimum latency between a write burst and aesulent precharge
command to the same bank. We first describe read-to-writevaitetto-read laten-

cies.

2.3.1 Read-to-write and write-to-read latencies

Read-to-write latency is the minimum latency from a readadairst to a
write data burst. This latency is required to change the blasd/O pins’ state from
read state to write state. Therefore, during this lateneyhilss has to be idle. This
latency must be satisfied regardless of whether the readhendiite access the
same bank or different banks. In DDR3 DRAM systems, readkite latency is
two DRAM clock cycles

Write-to-read ;1) latency is the minimum latency from a write burst
to a subsequent read command. In addition to the time retjéorethe 1/O state
change from write to read, this latency also includes the tieguired to guarantee
that modified data (in the DRAM’s prefetch buffer) can be bkaferitten to the
row buffer (i.e., sense amplifier). A common internal biditenal bus connects
the prefetch buffer and the row buffers of all DRAM banks. Adad and write
transfers use this bidirectional bus. Therefore, a sub=@igread cannot use the
common internal bus to bring data into the prefetch buffeil time current write’'s
modified data is completely written back to the correspogdiank’s row buffer.
Thereforety,rr is much larger (e.g.six DRAM clock cyclesfor DDR3-1600)
than read-to-write latency and introduces more idle DRANadaus cycles. Also,
write-to-read latency must be satisfied regardless of vdrdtie write and the read

are to the same bank or different banks.

We demonstrate these penalties using an example in Figiréigure 2.3(a)
shows the initial state of the DRAM read/write buffer and tbes buffer state of
two banks. Two reads (A and C) and one write (B) are in the readwaite buffer
respectively. Read A and Write B are mapped to the currergbnaow in Bank
0 whereas Read C is mapped to the currently open row in Bankehcéithey are

14

Row

Bank O Bank 1

T # DRAM
Read A Write B | DRAM controller
Read C

DRAM read buffer DRAM write buffer

Read A (0, 5): mapped to row 5 in bank O
Write B (0, 5): mapped to row 5 in bank 0
Read C (1, 3): mapped to row 3 in bank 1
Scheduling order: Read A, Write B, Read ¢

(a) DRAM state

Read A Write B Read C
(0, 5) (0, 5) (1,3)
Command @
address bus 3 cL BL 3
5 - tBL ;
CL+tBL+2-CWL = CWL. =~ T tWTR CL tBL

>

Read to write latency_

il

{>§Data C

Data bus

Data bus idle cycles Data bus idle cycles

CL: Read column address strobe (CAS) latency
CWL: Write column address strobe (CAS) laten
tBL: Burst length time

tWTR: Write—to—read latency

(b) DRAM timing

O

y

Figure 2.3: Read-to-write and write-to-read latencies

15

all row hits. Let us assume that the underlying DRAM con&oBchedules these
requests in the order of Read A, Write B, and Read C. Figuréhp shows the
resulting DRAM timing diagram.

The command for Write B after Read A must be scheduled sudttlea
read-to-write latency between the corresponding datatbusssatisfied. In order
for the write burst to be on the bus two DRAM cycles after thadrdourst, the
command for Write B has to be scheduled by the DRAM contratdeastC'L +
tpr + 2 — CW L DRAM clock cycles after the read command is scheduled [22].
Also, Read C after Write B satisfieg 1 (i.e., write-to-read latency). Read C can
only be scheduledy,rr cycles after the data burst for Write B is completed. In
contrast to read-to-write latency, the data bus must befadle,, - + C'L cycles
since the subsequent read command cannot be schedulggdfeprycles.

Due to read-to-write and write-to-read penalties, switgrservice between
reads and writes frequently in the DRAM system results inynidle cycles. This
problem can be mitigated by a good write buffer policy as wiédiscuss in Chap-
ter 8. However a write buffer policy cannot solve the probleompletely due to

write-to-precharge (or write recovery timgy z) penalties as we show below.

2.3.2 Write-to-precharge latency

Write-to-precharge latency (write recovery timg)’ R) comes into play
when a subsequent precharge command is scheduled to opi#erardirow after
a write to a bank. Write-to-precharge latency specifies tiemum latency from
a write data burst to a precharge command in the same DRAM. bEmk latency
is very large 12 DRAM clock cyclesfor DDR3-1600) because the written data in
the DRAM'’s prefetch buffer must be written back to the cop@sding DRAM row
through the row buffer before precharging the DRAM bank.slieeds to be done

“We assume that the additive latency (AL) is zero in this dtasien. If a non-zero AL is consid-
ered, the subsequent write command can be schedWled AL +tccp+2— (CW L+ AL) cycles
after the read command, wheltgecp is the minimum column strobe to column strobe latency). To
maximize bandwidth we set u;;, to eight, thereforeéccp is equal to {BL) [22].

16

to avoid the loss of modified data.

Row
Row

B?nk 0 Ba?k 1 DRAM
Read B Write A| DRAM

controller

DRAM read buffer DRAM write buffer

Write A (0, 2): mapped to row 2 in bank 0
Read B (0, 3): mapped to row 3 in bank 0
Scheduling order: Write A, Read B

(a) DRAM state

Write A Activate Read B
Command & %2 Precharge 0 (0, 3) (003)

address bus > ™

WR__"iRP " tRCD ~ CL | BL

Data bus

:Data B
I

Data bus idle cycles

tRP: Precharge period

tRCD: Activate—to—-read/write latency
CL: Read column address strobe (CAS) latency
CWL: Write column address strobe (CAS) laten
tBL: Burst length time

tWR: Write Recovery time (write—to—precharge

(b) DRAM timing

Q

Yy

Figure 2.4: Write-to-precharge (write recovery time) tatg

Figure 2.4 illustrates write-to-precharge penalty in a INRBank. Write A
and Read B access different rows in the same bank (Bank Ojefine, after Write
Alis serviced, a precharge command is required to open théordread B (i.e., row
conflict). Subsequent to the scheduling of Write A, the paegh command must
wait until write-to-precharge latency is satisfied befdrean be scheduled. Note
that this penalty must be satisfied regardless of whethesubsequent precharge

command is for a read or a write. The resulting data bus idbesyistyy r + trp +

17

trep + C' L DRAM clock cycles unless there are other requests that ang lbead
or written in different banks.

Since the write-to-precharge latency must be satisfied wem precharge
for a subsequent write, row conflicts among writes degraddMRhroughput for
writes. For example, a write to Row 1 after a write to Row 3 ia fame bank must
still satisfy this write-to-precharge penalty before thregharge command for the
write to Row 3 can be scheduled. This problem cannot be sdiyeitte DRAM
write buffer and its policy. If writes in the write buffer aess different rows (row-
conflict writes) in the same bank, the total amount of wrdestecharge penalty
becomes very large. This degrades DRAM throughput for wréed eventually
results in delaying the service of reads, thereby degraapdication performance.

18

Chapter 3

Overview of the Solutions

The dissertation makes a case for DRAM-aware on-chip mersgsiem
design. We propose DRAM characteristic-aware prefetclaing cache manage-
ment mechanisms that aim to maximize DRAM row buffer logadihd bank-level
parallelism and to minimize write-caused interference. phpose four different
mechanisms, each of which works on a different on-chip mgmesource struc-
ture to improve DRAM performance. Figure 3.1 illustratesandhour mechanisms
(shown in highlighted areas) would be employed in a coneaiadimicroprocessor.

We briefly overview each of these mechanisms as follows.

The first mechanism is a prefetch-aware DRAM controller thas to min-
imize DRAM access latencies for useful memory requests &hehand accurate
prefetches) by exploiting row buffer locality when prefeitog. We make the DRAM
controller(s) prefetch-aware and take advantage of loanleies for row-hit prefetches
when the prefetches are estimated as useful. To minimizedtative effect of use-
less prefetches, the DRAM controller delays and drops prleés predicted to be
useless. Chapter 5 analyzes this mechanism.

The second mechanism is DRAM bank-level parallelism-awssmory re-
quest issue policies in on-chip buffer structures that amaximize BLP in the
presence of prefetching. They determine the order in whecjuests are sent from
one on-chip buffer to another buffer so that requests t@mfit banks are eventu-
ally exposed together to the DRAM controller. We discuss &Bilware prefetch
issue policy from the prefetch request buffer to the Misgusidnformation Holding
Registers (MSHRS) in order to maximize the BLP of requesten@nds and useful
prefetches) exposed to the DRAM controller. We also pro@o8t P-preserving

19

DRAM system

BankO | ee e |BankK-1 | e e e Bank 0 | @ @ @ |Bank K-1

DRAM bus ®* * ° DRAMbus
Prefetch—Aware
DRAMN(r;antroIIer 0 DRAM cqrrrjrtroller M-1 - DRAM Controllers
1 3 (Chapter 5)
B g S |+ BLP-Preserving Request
Issue Policy (Chapter 6)
Last-level cache . DRAM-Aware
: Replacement (Chapter 7)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, y & Writeback (Chapter 8)
Policies
MSHRs MSHRs
1 e o o f 1 1 .|, BLP-Aware Prefetch
! 1 Y v Issue Policy (Chapter 6)
Core 0 Prefetche Core N-1 Prefetche
Chip multi—processor

Figure 3.1: Overview of proposed DRAM-aware mechanisms

memory request issue policy from the last-level cache totR&AM controller’s

buffers (DRAM request buffer). This policy tries to make stinat requests from
each core can be serviced together by the DRAM controlldraut destroying the
BLP of each core in CMP systems. Chapter 6 discusses anchéssilinese BLP-

aware issue policies.

The third mechanism is a DRAM-aware last-level cache regstaant policy
that tries to improve all three DRAM characteristics. Itdexges the fact that a
last-level cache replacement policy can fundamentallypgbahe mixture/property
of outstanding memory requests, which can affect DRAM perémce due to the
DRAM characteristics. The DRAM-aware replacement polayofrs the eviction of
cache lines that would be refetched in quickly due to rowdauticality or serviced

20

together with other misses in different DRAM banks, wherythee refetched. It
also evicts dirty lines that can be written back to DRAM qlydiy exploiting row

buffer locality, in order to reduce write-caused interfece in the DRAM system.
Since row-hit writes are serviced quickly (back-to-bat¢kie DRAM controller can
resume servicing reads sooner, which in turn improves DRAIIggmance. We

discuss and analyze the DRAM-aware replacement policy ap@in 7.

The fourth mechanism is a DRAM-aware last-level cache Wwatdk pol-
icy that aims to further reduce write-caused interferemche DRAM system. In
contrast to the DRAM-aware replacement, it proactivelydsanritebacks that are
expected to hit in the DRAM row buffers even before a replasenmappens. This
significantly reduces write-caused interference becaus®ivs more writes to be
written back faster than the DRAM-aware replacement wo@tapter 8 studies

and analyzes this DRAM-aware writeback policy.

Note that each of the four mechanisms manages a differenhipnmem-
ory system management policy to improve DRAM utilizatiorhefefore the four
mechanisms are complementary. We evaluate and analyzethigmation of all

four mechanisms in Chapter 9.

21

Chapter 4

Related Work

How memory requests are managed in the on-chip memory sySiBAM
controller, buffers, caches, and prefetching) of a prozesignificantly affects main
memory (DRAM) performance. This chapter discusses stuiti@sare relevant
to on-chip memory system designs with respect to DRAM systaemory-level

parallelism, prefetching, and last-level cache managémen

4.1 Researchin DRAM System Management
4.1.1 DRAM Access Scheduling

A number of DRAM scheduling policies have been proposed. Bkt al.
proposed DRAM scheduling policies that exploit row bufi@cdlity and bank-level
parallelism for streaming applications in a page mode DRAstamM [46, 45, 47].
Zuravleff and Robinson patented a DRAM scheduling polieyilsir to McKee et
al’'s [92]. Carter et al. proposed an off-chip memory colierthat aims to reduces
wasteful memory bandwidth consumption by remapping playsacidresses [3].
Their mechanism also prefetches data from DRAM into an SRANeb in the
memory controller to hide DRAM access latency. Rixner epabposed and evalu-
ated DRAM scheduling policies in a stream processor [66arand McKee eval-
uated a stride (stream) prefetcher combined with a schaglplolicy that reorders
memory requests such that multiple requests can be seriogether in different
banks in a Rambus DRAM system [86, 48]. Since then, many aitieeduling
policies have been proposed in single-threaded [18, 68hauitthreaded [65, 89,
57, 85] systems. In addition, several recent studies [58,%,30, 30, 31] proposed
techniques for fairness (quality of service) and/or higHgenance across different

22

applications sharing the DRAM system. These prior promokale the following

limitations.

First, some DRAM scheduling policies [46, 45, 47, 92, 66, 3, 89,
58, 68, 53, 54, 20, 85, 30, 31] do not consider hardware piefeg. Hardware
prefetching is an important memory latency-tolerance negplre already employed
in most commercial processors [77, 17, 80, 68, 34]. It is vergortant to in-
telligently manage demand and prefetch requests to the DRyd¥em, since the
performance with a prefetcher can significantly differ degieg on how the DRAM
controller handles prefetch requests compared to demaneesés. In contrast to
these prior prefetch-unaware scheduling policies, théefre-aware DRAM con-
troller proposed in Chapter 5 adaptively prioritizes dethand prefetch requests
based on prefetch usefulness to maximize row buffer lgc&bit useful requests
and minimize the negative effect of useless prefetches. cbneept of adaptive
prefetch handling can be applied to the existing prefetctsare DRAM access

scheduling policies.

Second, the DRAM controller proposals that do considenhard prefetch-
ing take two different approaches to handling prefetch estgi Some propos-
als [42, 18, 19, 73] always prioritize demand requests oxefiech requests. Other
proposals [86, 48, 65, 3] and some commercial processor2B]areat prefetch
requests the same as demand requests. Neither of thesaampgsavorks best for
all types of applications. This is because they do not take @&ccount both the
DRAM characteristics and prefetch usefulness for theiedciting decisions. The
prefetch-aware controller outperforms these two rigidgteh handling policies in
DRAM scheduling, as we show in Chapter 5.

Third, the performance of the DRAM scheduling policies mited by the
number and composition of requests in the DRAM controll&ddfers, i.e., the
DRAM request buffers. If requests in the DRAM request bigfare not mapped to
different DRAM banks, bank-level parallelism will be lonwg&rdless of the DRAM

scheduling policy. Similarly, if multiple requests thaeanapped to the same row

23

are not present in the DRAM request buffer, high row buffeality cannot be ex-
ploited by a DRAM scheduling policy. The BLP-aware requsstie (in Chapter 6),
DRAM-aware last-level cache replacement (in Chapter 7J,RRAM-aware last-
level cache writeback (in Chapter 8) mechanisms send ouestg that can expose
more BLP and row buffer locality in the DRAM request bufferBhis allows the
underlying DRAM scheduling policy to exploit higher BLP araiv buffer locality.

4.1.2 DRAM Write Buffer Management

Some previous proposals [40, 57, 68] discuss DRAM write dyufhan-
agement polices to reduce write-caused interference iméie memory system.
Writes in the write buffer are not considered for schedulindgil the underlying
write buffer policy decides to do so. Lee et al. [40] employedrite buffer man-
agement policy that allows the Rambus DRAM controller toesithe a write when
the data bus is idle. Natarajan et al. [57] discussed diftengite buffer manage-
ment policies that also opportunistically allow writes t® $cheduled in a DDR2
DRAM system when there are no pending reads or when the wirffertis almost
full (i.e., the number of writes is more than a threshold)eiflpolicies also make
sure that a certain number of writes are serviced, even whewaead comes while
servicing the writes. Shao and Davis [68] proposed a DRAMedaling policy in
a DDR2 system which services writes when there are no reditie iDRAM read
buffer, when the write buffer is full, or when a write hits tharrently open row. If
a new read comes into the DRAM request buffer, their mechaaitows the read
to preempt writes that are being serviced.

Even though there are small differences among these writertpolicies,
they are essentially based on the principle that schedwliiigs when the bus is idle
(no pending reads) can reduce the contention between reddsrides. However,
we show in Chapter 8 that this principle is not the best wittaigs high-bandwidth
DDR (DDR3) DRAM systems because of their large write-cauagéehcy penal-
ties. We show that the policy which services all writes prnése the write buffer

only when the write buffer becomes full (which we call ghain_whenfull policy)

24

outperforms prior policies. This is because it 1) reducesftquency of read-to-
write/write-to-read switching, and 2) allows the DRAM cuwoiter to better exploit
row buffer locality and bank-level parallelism exposed bgrenwrites. We use
this drainwhenfull policy in our baseline memory system. Also, the aggress
DRAM-aware writeback policy in Chapter 8 further reducestevcaused interfer-

ence by leveraging the benefits of this baseline dvetvenfull policy.

4.2 Research in Improving Memory-Level Parallelism

Many memory latency-tolerant techniques exploit Memoge! Parallelism
(MLP) by increasing the number of outstanding memory retpugsthe on-chip
memory system [15]. Out-of-order execution [78] and nooeking caches [33] al-
low generating concurrent memory requests. Prefetchictgiigues [32, 50, 14, 27,
1, 26] also increase MLP by issuing concurrent memory regubat are predicted

to be used by the program.

Pai and Adve proposed a compiler optimization that gengred@current
memory requests by reordering memory instructions [60]ndead execution [9,
55, 56] issues requests by executing future instructioas dhe independent of a
long latency load instruction during the stall time of thaad instruction. Zhou
and Conte proposed a prefetching technique with the helmlfevprediction to
generate data dependent misses earlier [88]. Chou et alyzadathe impact of
various microarchitecture parameters and structures o® Y8]. Qureshi et al.
proposed a cache replacement policy that favors evictiaaohe lines that could
be serviced together with other misses when they are reddtletter [63]. Eyerman
and Eeckhout proposed fetch policies for simultaneousithtdading that prefer

to fetch threads that generate many concurrent misses [12].

All of these studies define MLP as the average number of oudstg mem-
ory requests when there is at least one outstanding requestrhory. They implic-
itly assume that the DRAM latency of outstanding requestsdmory will overlap.

However, simply having a large number of outstanding retgugses not necessar-

25

ily mean that their DRAM latencies will overlap. Multiple anding last-level
cache misses that are all mapped to the same DRAM bank aieexkserially in

the DRAM system. Therefore it is very important to send oulttiple requests
that are mapped to different DRAM banks to maximize the bénefithe MLP

enhancement techniques. This is especially importane sheetotal number of out-
standing requests allowed in an on-chip memory system iseltn The Miss Sta-
tus/Information Holding Registers (MSHRSs) that keep tratkll outstanding re-
quests are costly to increase in size [79]. Simply filling epaurce-limited MSHRs
with many requests that are mapped to only a few DRAM bankgesuit in low

BLP. In order to exploit true Memory-Level Parallelism (M),Rn on-chip mem-
ory resource management policy (e.g., buffer and cacheips)i should be main
memory (DRAM)-aware so that memory requests to differentnmy banks can
be sent to the DRAM system at the same time. The BLP-awarest@gsue pol-
icy proposed in Chapter 6 and the DRAM-aware replacemerntypplesented in

Chapter 7 aim to achieve this goal.

4.3 Research in Prefetching and Prefetch Handling
4.3.1 Prefetching Algorithms

Prefetching predicts memory access patterns and bringsialat a cache
or buffer before the data is needed by the processor. Thisigge also improves
MLP by increasing the number of memory requests in the op-gtemory system.
Software prefetching [2, 32, 50] tries to prefetch data kseming prefetch instruc-
tions in the program. This technique is effective for regul@mory access patterns.

However it requires compiler support and modification okérig binaries.

Various hardware prefetching techniques have been prdptuseapture
runtime memory access pattern without requiring compilgrp®rt or modifica-
tion of binaries: e.g., next-line prefetching [14], strepnefetching [27], stride
prefetching [1], and correlation prefetching [5, 26]. A tamare prefetcher can
generate many useless prefetches depending on the rurppfigadion and exe-

26

cution phases. Useless prefetches can hurt performamoe giey also consume
memory system resources (DRAM bandwidth, buffers, and esichnd contend
with demand requests. Also, depending on how the on-chipanesystem (e.qg.,

buffers and DRAM controller) handles prefetches with respe demands, system
performance with a prefetcher becomes dramatically dgifier Our mechanisms
discussed in Chapters 5 and 6 aim to maximize the benefiteailyzefetches and
minimize the negative effect of useless prefetches by ¢(aRIRAM characteristics

into account in prefetch handling.

4.3.2 Useless Prefetch Filtering

To reduce useless prefetches, several prefetch filterinchamsms were
proposed [50, 4, 74, 90, 51].

Charney and Puzak proposed a useless prefetch filteringnecfoe an L2
to L1 next sequential cache line prefetcher [4]. Using a cor#tion bit per L2
cache line, their scheme does not service prefetch regtredtdave been proven
to be useless in the past. Although this may work for an L2 tgtefetcher, this
mechanism has high hardware cost for prefetching from mgnwthe last-level
cache since every cache block in the entire physical memsegsito be tagged.

Mutlu et al. use the L1 cache as a prefetch filter for L2 cachleipon [51].

In their scheme, if a line that was prefetched into the L1 wagenused, it would
not be inserted into the L2 cache when it is evicted from theBdth of the above
proposals unnecessarily consume memory bandwidth siredesssprefetches are
filtered out only after they are serviced by the DRAM system. contrast, the
prefetch-aware DRAM controller and BLP-aware prefetclugspolicy in this dis-
sertation remove useless prefetches before they consulmablea DRAM band-
width.

Mowry et. al. proposed a prefetch dropping mechanism thatela soft-
ware prefetches when the prefetch issue queue is full talguaicessor stalls [50].

As opposed to dealing with software prefetches, which dgbhale high accuracy,

27

the prefetch-aware DRAM controller (Chapter 5) and BLP-@marefetch issue
policy (Chapter 6) deal with hardware prefetch requestedas runtime prefetcher
accuracy. The former cancels useless hardware prefetthes RRAM controller,
and the latter limits the issue of useless prefetches torthghgp memory system.

Zhuang and Lee proposed a mechanism that eliminates thetghefe-
guest for an address if the prefetch request for the samessidras useless in the
past [90]. We show in Chapter 5 that this technique removes/mseful prefetches

as well as useless prefetches.

4.3.3 Adaptive Prefetching

In addition to the prefetch filtering mechanisms, adaptrefgich manage-
ment techniques [19, 73, 11] have been proposed to increadeenefits and also
reduce the harm of prefetching. They adjust the aggresssseof prefetching based

on the contention in the memory system and/or prefetch Ursefs information

Hur and Lin designed a probabilistic prefetching techniguech adjusts
prefetcher aggressiveness [19]. They schedule prefetprests to DRAM adap-
tively based on the frequency of DRAM bank conflicts causepreyetch requests.
However, their scheme always prioritizes demand requestspefetches.

Srinath et al. show how adjusting the aggressiveness ofrdfetpher based
on accuracy, lateness, and cache pollution informatiorredance bus traffic with-

out compromising the benefit of prefetching [73].

Ebrahimi et al. discuss how to manage multiple differenfgichers each
of which can prefetch different access patterns [11]. Thechanism adjusts the

aggressiveness of each prefetcher depending on its agamddimeliness.

These techniques have limitations. First, none of themiden®RAM
characteristics in order to achieve better performancetusrirom prefetching. For
example, as we show in this dissertation, 1) useful row-tefgiches can be ser-
viced significantly faster and 2) prioritizing the issue oéfetches that are mapped

to different DRAM banks can improve DRAM BLP. Second, nonscdss how to

28

manage demand and prefetch requests in a CMP’s on-chipdshmaory system

for high system performance when multiple applicationsaardifferent cores.

More recently, Ebrahimi et al. proposed an adaptive préfetctechnique
to maximize system performance in CMP systems [10]. Theolraaism controls
the aggressiveness of the prefetcher on each core base@ pnefietch accuracy
of each core and inter-core interference caused by eaclsqmefetcher in the
memory system. Even though this mechanism'’s decision icbais the contention
between requests from multiple cores in the DRAM systemoésdnot explicitly
target improving row buffer locality or bank-level pardigm of memory requests.
Therefore, the DRAM-aware mechanisms proposed in thigdes$on are orthog-
onal to this proposal. In fact, Ebrahimi et al. show that thefgtch-aware DRAM
controller in Chapter 5 is orthogonal to their mechanism [10

4.4 Research in Cache Management

4.4.1 Cache Management for Locality

Caches [81] tolerate long memory latency by using small astl dn-chip
storage. Kroftimproved cache performance by allowing ipldtoutstanding cache
misses using Miss Status/Information Holding RegisterSKNRs) in the memory
system [33]. Also, many cache replacement/insertion psibave been proposed
to improve temporal locality in on-chip caches (e.g., [1B, Bl1]).

These cache techniques have limitations. First, the wgrkeat size of some
applications is too large to fit even in large on-chip cacl&scond, some applica-
tions expose no temporal locality (e.g., streaming appboa). Third, a last-level

cache miss still experiences long memory latency.

Furthermore, due to DRAM characteristics, not all laselesache misses
incur the same memory latency from the processor’s poini@i.v Some misses
are serviced quickly by exploiting row buffer locality anther misses are serviced

in parallel with misses in different DRAM banks. Therefoiteis very important

29

for cache management techniques to take into account DRAdvkcteristics for

better performance as we show in this dissertation.

4.4.2 Cost-Aware Cache Management

Jeong and Dubois were the first to propose a replacemenygotia cache
that has two miss costs (local memory access and remote ryeooess) [23, 24].

Qureshi et. al. showed that an MLP-aware replacement poéiayimprove
performance by taking into account the level of concurreocynisses in the on-
chip memory system [63].

Neither of these policies take DRAM characteristics intoaat in their re-
placement decisions. The MLP-aware policy assumes thaesie the same bank
will be serviced in parallel with other misses. Also, neitikensiders the cost of
writebacks. Instead, they consider only the future miss$ cba line when making
eviction decisions. This can increase write-caused ieterfce in the DRAM sys-
tem by causing a large number of row-conflict writebacks. hagter 7, we show
that the MLP-aware policy does not perform as well as our DR&Mracteristic-

aware replacement policy.

4.4.3 Writeback Management

Some prior studies propose aggressive early writebackipslwhich proac-
tively send writebacks of dirty cache lines before they ateted by a replacement
policy. Some of these proactive policies [40, 75] aim to @Ewrite-caused in-
terference in the DRAM system. Eager writeback [40] sendsitelack for a
dirty LRU (Least Recently Used) line in a cache set whendwercache set is ac-
cessed. However, this mechanism is not aware of DRAM chexiatits. We show
in Chapter 8 that simply sending writebacks for dirty LRU &isé Recently Used)

cache lines does not reduce write-caused interference.

Virtual write queue [75] performs early writebacks for gittRU lines in a
DRAM-aware way similar to our DRAM-aware writeback mectsani This mech-

30

anism sends writes that can be written back with other wtiigether in different

DRAM banks as well as writes that can be written back quicklg tb row buffer

locality. However, virtual write queue only considers whacks for the two least
recently used positions in a cache set, which can limit threbwer of writes that can
be written quickly. Also, the mechanism is complex and resgicommunication
between the last-level cache and DRAM controllers. In astiithe DRAM-aware
writeback mechanism we propose in Chapter 8 generates nmaes\that can be
written quickly since writebacks for any LRU position candent out. Our mech-
anism can be implemented at a smaller cost, requiring no agmoation between

the cache and DRAM controllers.

Other early writeback mechanisms [41, 29, 84] periodicsdligd early write-
backs to the next-level cache or DRAM to increase the rditglaif on-chip caches
at low cost. Even though our motivation is not to improveatiiity but to reduce
write-caused interference, our writeback mechanism cémreeluce vulnerability
in the last-level cache since it aggressively sends writiebgust like these early

writeback policies do.

31

Chapter 5

Prefetch Management for Reducing DRAM Latency

In this chapter, we show how to manage demand and prefetclesejin
DRAM controllers in order to reduce DRAM latency by expladgirow buffer lo-

cality.

5.1 Motivation

None of the existing DRAM scheduling policies take into aguoboth the
non-uniform nature of DRAM access latencies and the usesglof prefetch re-
quests. Existing DRAM scheduling policies take largely afferent approaches
as to how to treat prefetch requests with respect to demaqneests. Some poli-
cies [86, 48, 65, 76, 28] give prefetch requests the sameityrias demand re-
qguests. We call this policggemand-prefetch-equalt is the same as the FR-FCFS
(First Ready-First Come First Serve) policy [66] that pitiaes requests as follows:
1) row-hit requests over all others, 2) older requests ovenger requests. This can
significantly delay demand requests and cause performagradhtion, especially
when prefetch requests are not accurate. Other policiedR6L8, 72, 73] always
prioritize demand requests over prefetch requests so Htatkthown-to-be-needed
by the program can be serviced earlier. We call this potlegnand-first One
might think that the demand-first policy provides the bestgenance by elimi-
nating the interference of prefetch requests with demagdeasts. However, such
a rigid policy does not consider the non-uniform accessatef the DRAM sys-
tem (row-hits vs. row-conflicts). A row-hit prefetch reqtiean be serviced much
more quickly than a row-conflict demand request. Therefeegyicing the row-
hit prefetch request first provides higher DRAM throughpot &an sometimes

32

provide better system performance than servicing the romflict demand request

first.

Figure 5.1 illustrates why a rigid, non-adaptive prefetchesluling policy
degrades performance. Consider the example in Figure)5vfech shows three
outstanding memory requests (to the same bank) in the DRAMest buffer. Row
A is currently open in the row buffer of the bank. Two requests prefetches (to
addresses X and Z) that access row A while one request is amteraquest (to

address Y) that accesses row B.

For Figure 5.1(b), let us assume that the processor needadoalddresses
in the order of Y, X, and Z (i.e., both of the prefetch requests useful) and the
computation between each load instruction takes a fixedll smaber of cycles
that is significantly smaller than the DRAM access latencigufe 5.1(b) shows
the service timeline of the requests in DRAM and the resglérecution timeline
of the processor for two different memory scheduling pekscidemand-firstand
demand-prefetch-equaWith demand-first (top), the row-conflict demand request
is satisfied first, which causes the prefetch of address Xdoria row-conflict as
well. The subsequent prefetch request to Z is a row-hit bexdle prefetch of
X opens row A. As a result, the processor first stalls for appnately two row-
conflict latencies (except for a small period of executidrt)e processor then stalls
for an additional row-hit latency since it requires the daten address Z. The total
execution time is the sum of two row-conflict latencies and mw-hit latency plus
a small period of processor execution.

With the demand-prefetch-equal policy (bottom), the ratvpnefetch re-
quests to X and Z are satisfied first followed by the row-contliemand request
to Y. The processor must stall until the demand request tosérngiced. However,
after that, the processor only needs to perform the computabetween the load
instructions because loads to X and Z hit in the cache. Tla ¢éxecution time is
the sum of one row-conflict latency and two row-hit laten¢das a small period of

processor execution), which is less than with the demastidolicy. Hencetreat-

33

DRAM

Bank row buffer

Row A opened

DRAM | controller

X: Pref row A
Y: Dem row B
Z: Prefrow A

DRAM request buffer
(a) DRAM and controller state

— Processor stall

£5) Processor execution (25 cycles)
@ Row-hit (100 cycles)
(O Row—conflict (300 cycles)

DRAM I & DEMAND
Y X z FIRST
Processo, %\
Mij\sY Miss X Miss Z
—=Time |
DRAM ‘ DEMAND
x Z Y PREFETCF
Processo EQUAL
f Cycles saved
Miss Y Hit X 'HitZ

(b) Timeline when prefetches (X and Z) are useful

DRAM I - DEMAND
Y X
Processo @ < FlRST

Cycles saved

Miss Y
———=Time |
DRAM | DEMAND
PREFETCF
PI’OCESSO EQUAL
MISS Y

(c) Timeline when prefetches (X and Z) are useless

Figure 5.1: Example illustrating the performance impactdeimand-first and
demand-prefetch-equal policies

34

ing prefetches and demands equally can significantly ingperformance when

prefetch requests are useful

However, prefetch requests might not always be useful. Eetssume that
the processor needs to load only address Y but still gereetsteless prefetches
to addresses X and Z in Figure 5.1(a). Figure 5.1(c) showsahting timeline.
With demand-first, the processor stalls for only a single-tmsflict latency which
is required to service the demand request to Y. On the othed,haith demand-
prefetch-equal, the processor stalls additional cyclesesX and Z are serviced
(even though they are not needed) before Y in the DRAM banietiyedelaying
the useful request to Y. Hendeeating prefetches and demands equally can signif-
icantly degrade performance when prefetch requests alesse

Figure 5.2 provides supporting data for our observations Tigure shows
the performance impact of an aggressive stream prefetéfie7B] when used with
the two different memory scheduling policies for 10 SPEC®R006 benchmarks.
The vertical axis is retired instructions per cycle (IPCymalized to the IPC on
a processor with no prefetching. The results show tiegther of the two policies
provides the best performance for all applicatiorfsor the leftmost five applica-
tions, prioritizing demands over prefetches results indsgierformance than treat-
ing prefetches and demands equally. In these applicatidagge fraction (70% for
demand-prefetch-equal, and 59% for demand-first) of theigeead stream prefetch
requests are useless. Therefore, it is important to preridlemand requests over
prefetches. In fact, foart and milc, servicing the demand requests with higher
priority is critical to make prefetching effective. Prefbing improves the perfor-
mance of these two applications by 2% and 10% respectively thie demand-
first scheduling policy, whereas it reduces performance by 148w3&% with the
demand-prefetch-equpblicy.

On the other hand, for the rightmost five applications, wesolasthe exact
opposite behavior. Equally treating demand and prefetghests provides signifi-

cantly higher performance than prioritizing demands ovefgiches. In particular,

35

w
o

N
3

== demand-first
== demand-prefetch-equa

n
o

=
o

IPC normalized to no prefetching
o [
o 3

0.0-

Figure 5.2: Performance of two rigid prefetch schedulinggoes

for libquantum the demand-prefetch-equablicy allows the prefetcher to provide
169% performance improvement, in contrast to the 60% perdoice improvement

it provides with thedemand-firsischeduling policy. This is because prefetch re-
guests inlibquantumare very accurate (almost 100% of them are useful). Maxi-
mizing DRAM throughput by preferring row buffer hits in theRAM system re-
gardless of whether a memory request is a demand or a pretgjolest allows for
more efficient bandwidth utilization and improves the timess (and the cover-
age) of prefetches, thereby improving system performanhese results show that
DRAM scheduling policies with rigid prioritization rulesv@eong prefetch and de-
mand requests cannot provide the best performance and raayxause prefetching

to degrade performance.

Note that even though the DRAM scheduling policy has a sicpmifi impact
on the performance provided by prefetching, prefetchingettimes degrades per-
formance regardless of the DRAM scheduling policy. For eglengalgel ammp
andxalancbmisuffer significant performance loss with prefetching beseaailarge
fraction (69%, 94%, and 91%) of the prefetches are not nebgéue program. The
negative performance impact of these useless prefetcleséexjoannot be mitigated

solely by ademand-firstscheduling policy because useless prefetches 1) occupy

36

memory request buffer entries in the memory controller luhigy are serviced,
2) occupy DRAM bandwidth while they are being serviced, ahad&use cache
pollution by evicting possibly useful data from the proagssaches after they are
serviced. As a result, useless prefetches could delay theisg of demand re-
guests and could result in additional demand requests.sknes useless prefetch
requests can deny service to demand requests because thd Bétwvoller is not
aware of the usefulness of prefetch requests in its DRAMeasdwffer To prevent
this, the memory controller should intelligently manage BRAM request buffer
between prefetch and demand requests.

5.2 Mechanism: Prefetch-Aware DRAM Controller (PADC)

We propose Prefetch-Aware DRAM Controller (PADC) which piskaely
controls the interference between prefetch and demancstg|to improve system
performance [37, 36]. PADC aims to maximize the benefits efulsprefetches
and minimize the harm of useless prefetches by taking intoatt a DRAM char-
acteristic: row buffer locality. PADC consists of two paas shown in Figure 5.3:
an Adaptive Prefetch Scheduling (APS) unit and an Adaptrefdich Dropping
(APD) unit. APS adaptively schedules prefetch and demagdess to increase
DRAM throughput for useful requests. APD cancels uselesteprh requests while
preserving the benefits of useful prefetches. Both APS arid af driven by the
measurement of the prefetch accuracy of each processiegrcarmulti-core sys-
tem. Therefore we first explain how prefetch accuracy is mesakfor each core.

5.2.1 Prefetch Accuracy Estimation

We measure the prefetch accuracy for an application runming particular
core over a certain time interval. The accuracy is reset tmeeterval has elapsed
so that the mechanism can adapt to the phase behavior ofgimeig. To measure
the prefetch accuracy of each core, the following hardwappert is required:

1. Prefetch (P) bit per last-level cache line and memoryestjouffer entry:

37

To DRAM
DRAM command & addresf

~ Update
Request: | Adaptive Prefetch
priority :_| Scheduling (APS)
DRAM Request :
Buffer
Drop
Request : Adaptl_/e Prefetch K
information: | Dropping (APD)

Prefetch-Aware :
DRAM Controller :

Prefetch accuracy from each c

Figure 5.3: Prefetch-Aware DRAM Controller

For memory request buffer entries, this bit indicates wletr not the request was
generated by the prefetcher. It is set when a new memory stegigenerated by
the prefetcher, and reset when the processor issues a desguekbt to the same
cache line while the prefetch request is still in the memeguest buffer. For cache
lines, this bit indicates whether or not a cache line was @gindunto the cache by
a prefetch request. It is set when the line is filled (only & fhrefetch bit of the

request is set) and is reset when a cache hit to the same knesoc

2. Prefetch Sent Counter (PSC) per core: This counter keapk of the
total number of prefetch requests sent by a core. It is inerded whenever a

prefetch request is sent to the memory request buffer bydhe ¢

3. Prefetch Used Counter (PUC) per core: This counter kaapk of the
number of prefetches that are useful. Itis incremented vehy@efetched cache line
is used (cache hit) by a demand request and also when a deswrest matches a
prefetch request already in the memory request buffer.

4. Prefetch Accuracy Register (PAR) per core: This registeres the
prefetch accuracy measured every time interval. PAR is egetpby dividing PUC
by PSC.

38

At the end of every time interval, PAR is updated with the ptelfi accu-
racy calculated during that interval and PSC and PUC ard tese to calculate
the accuracy for the next interval. The PAR values for eacle epe fed into the
Prefetch-Aware DRAM Controller which then uses the valweguide its schedul-

ing and memory request buffer management policies.

5.2.2 Adaptive Prefetch Scheduling

Adaptive Prefetch Scheduling (APS) determines the pyiaoit demand/
prefetch requests from a processing core based on the grefeturacy estimated
for that core. The basic idea is to 1) treat useful prefetcjuests the same as
demand requests so that useful prefetches can be servsted by maximizing
DRAM throughput, and 2) give demand requests and usefukfmefrequests a
higher priority than useless prefetch requests so thaessgirefetch requests do
not interfere with useful requests.

If the prefetch accuracy of a core is greater than or equateriain thresh-
old, promotion_threshold, all of the prefetch requests from that core are treated
the same as demand requests. We call such prefetch requestll alemand
requestscritical requests. Otherwise, if the prefetch accuracy of a coress le
thanpromotion_threshold, then demand requests of that core are prioritized over

prefetch requests. We call such prefetch requestscritical requests.

The essence of our proposal is to prioritize critical reggieser non-critical
ones in the memory controller, while preserving DRAM thrbpgt. To accomplish
this, our mechanism prioritizes memory requests in therstewn in Rule 1. Each

prioritization decision in this set of rules is describedurther detail below.

First, critical requests (useful prefetches and demandestg) are priori-
tized over others. This delays the scheduling of non-@ilitiequests, most of which
are likely to be useless prefetches. As aresult, uselettghnes are prevented from

interfering with demands and useful prefetches.

Second, row-hit requests are prioritized over others. Tinseases the

39

Rule 1 Adaptive Prefetch Scheduling (APS)
1. Critical request (C): Demand and useful prefetches are prioritized over all
other requests.
2. Row-hit request (RH): Row-hit requests are prioritized over row-conflict
requests.
3. Urgent request (U} Demand requests generated by cores with low prefetch
accuracy are prioritized over other requests.
4. Oldest request (FCFS) Older requests are prioritized over newer ones.

row-buffer locality for demand and useful prefetch reqaestd maximizes DRAM

throughput as much as possible.

Third, demand requests from cores whose prefetch accusal®ss than
promotion_threshold are prioritized. We call these requestgentrequests. In-
tuitively, this rule tries to boost the demand requests obie avith low prefetch
accuracy over the critical requests of cores with high pgosfaccuracy. We do this
for two reasons. First, if a core has high prefetch accurasyprefetch requests
will be treated the same as the demand requests of anotreenitbr low prefetch
accuracy (due to the critical request prioritization rul&oing so risks starving
the demand requests of the core with low prefetch accurasylting in a perfor-
mance degradation since a large number of critical reqdeteandand prefetch
requests) from the core with high prefetch accuracy canesahivith the critical re-
guests (demand requestsly) from the core with low prefetch accuracy. To avoid
this, we boost the demand requests of the core with low pilef@tcuracy. Second,
the performance of a core with low prefetch accuracy is dyesdfected negatively
by useless prefetches. By prioritizing the demand requestsich cores, we aim
to help the performance of cores that are already losingopmdnce due to poor
prefetcher behavior. We further discuss the effect of grimng urgent requests in
Section 5.5.3.4.

Finally, if all else is equal, older requests have priorigepyounger re-
quests.

40

5.2.3 Adaptive Prefetch Dropping

APS naturally delays (just like the demand-first policy) DIRAM service
of prefetch requests from applications with low prefetcwuaacy by making the
prefetch requests non-critical as described in Sectior25.Even though this re-
duces the interference of useless requests with usefukstgjuit cannot get rid
of all of the negative effects of useless prefetch requéstaqwidth consumption,
cache pollution) because such requests will eventuallyebaced. As such, APS
by itself cannot eliminate all of the negative aspects ofasseprefetches. Our sec-
ond scheme, Adaptive Prefetch Dropping (APD), aims to aveke this limitation
by proactively removing old prefetch requests from the DRAduest buffer if
they have been outstanding for a long period of time. The keight is that if a
prefetch request is old (i.e., has been outstanding for g tone), it is likely to
be useless and dropping it from the memory request bufferimtites the negative
effects the useless request might cause in the future. Wedéscribe why old

prefetch requests are likely to be useless based on enfpiressurements.

Why are old prefetch requests likely to be useless¥igure 5.4(a) shows
the memory service time (from entry into the DRAM requestféuto entry into
the last-level cache fill buffer) of both useful and useleg$giches fomilc using
the demand-first scheduling policy. Note that we show dedadlata for onlym | ¢
but found similar behavior in other applications. The grégp histogram with nine
latency intervals measured in processor cycles. Each lbarates the number of
useful/useless prefetch requests whose memory servieawams within that inter-
val. 56% of all prefetches have a service time greater th&® JBocessor cycles,
and 86% of these prefetches are useless. Useful prefetehesd have a shorter
service time than useless prefetches (1486 cycles compag88 cycles on aver-
age formilc). This is because a prefetch request that is waiting in theeast buffer
becomes a demand request if the processor sends a demaedtriEguhat same

address while the prefetch request is still in the buffSuch useful prefetches that

LA prefetch request that is hit by a demand request in the DRa§liest buffer becomes a real
demand request. However, we count it as a useful prefetolugimout this dissertation since it was

41

are hit by demand requests will be serviced earlier by theadhehfirst prioritiza-
tion policy. Therefore, useful prefetches on average agpee a shorter service
time than useless prefetches. This is also true when we a&#p8/since it priori-

tizes critical requests over non-critical requests.

Mechanism: The observation that old prefetch requests are likely to be
useless motivates us to remove a prefetch request from theese buffer if the
prefetch is old enough. Our proposal, APD, monitors préfeaquests for each
core and invalidates any prefetch request that has beetandisg in the DRAM
request buffer for longer thatrop_threshold cycles. We adjustirop_threshold
based on the prefetch accuracy for each core measured ireieyss time interval.

If the prefetch accuracy in the interval is low, our mechanisses a relatively low
value fordrop_threshold so that it can quickly remove useless prefetches from the
request buffer. If the prefetch accuracy is high in the va&rour mechanism uses a
relatively high value fotirop_threshold so that it does not prematurely remove use-
ful prefetches from the request buffer. By removing usepgs$etches, APD saves
resources such as request buffer entries, DRAM bandwidth¢cache space, which
can instead be used for critical requests (i.e., demand sefdiuprefetch requests)
rather than being wasted on useless prefetch requestsiiNdt®PD interacts pos-
itively with APS since APS naturally delays the service oéless (non-critical)
requests so that the APD unit can completely remove them fhremmemory sys-
tem thereby freeing up request buffer entries and avoidmgeaessary bandwidth

consumption.

Determining drop_threshold: Figure 5.4(b) shows the runtime behavior
of the stream prefetcher accuracy foilc, an application that suffers from many
useless prefetches. Prefetch accuracy was measured abedse Section 5.2.1
using an interval of 100K cycles. The figure clearly shows fivafetch accuracy
can have very strong phase behavior. From 150 million to 2iftiomcycles, the

prefetch accuracy is very low (close to 0%) implying manylesg prefetch requests

first requested by the prefetcher rather than the processiregy

42

[$2)

S

w

==—= pref-useless
s pref-useful

N

=

i

Millions of prefetches

o
1

200100 49%%600

60%00

8019

020

4]'!.40 4-0%600 1601 -

Memory service time (P-rocessor cycles)
(a) Prefetch service time with demand-first policy

100
90

80

70

60

50

40
304
20

Prefetch accuracy (%)

10

P

0 50

100

150 200

250

300 350 400

Million processor cycles

(b) Prefetch accuracy every 100K cycles

Figure 5.4: Example of behavior of prefetches raifc

were generated during this time. Since almost all prefetelne useless during this

period, we would like to be able to quickly drop them. Our magsm accom-

plishes this using a low value felrop_threshold. On the other hand, we would

wantdrop_threshold to be much higher during periods of high prefetch accuracy.

Our evaluation shows that a simple 4-levebp_threshold adjusted dynamically

can effectively eliminate useless prefetch requests ftoemtemory system while

keeping useful prefetch requests in the DRAM request huffer

43

5.3 Experimental Methodology
5.3.1 Metrics

We define the metrics used for experimental evaluation mgbction.Bus
traffic is the number of cache lines transferred over the bus dunegxecution of
a workload. It comprises the cache lines brought in from deimaseful prefetch,
and useless prefetch requests. We deRrefetch accuracy (ACCandcoverage
(COV)as follows:

N
ACC — umber of use ful prefetches

Number of prefetches sent

N
lelo) umber of use ful prefetches

~ Number of demand requests + Number of use ful prefetches

To evaluate the effect of DRAM throughput improvement ongheessing
core, we definenstruction window Stall cycles Per Load instruction (SRich
indicates on average how much time the processor spendwailiyng for DRAM

service.

Total number of window stall cycles

SPL =

Total number of load instructions

To measure CMP system performance, we msvidual Speedup (I1S)
Weighted Speedup (W§)1], and Harmonic mean of Speedups (HEB]. As
shown by Eyerman and Eeckhout [13], WS corresponds to systeughput and
HS corresponds to the inverse of job turnaround time. In theatons that fol-
low, N is the number of cores in the CMP systef?C%°" is the IPC measured
when an application runs alone on one core in the CMP systémer(gores are
idle) andI PCto9¢thr is the IPC measured when an application runs on one core
while other applications are running on the other cores ef@P. Unless other-
wise mentioned, we use the demand-first policy to measbi@*°" for all of our

experiments to show the effectiveness of our mechanism oR €ydtems.

44

IPC;&ogether

N together
I1PC N
1S; = L

[PCdone WS = XZ: JP(Calone ’ HS = N [PC@lone
[? 7

Z IPC?ogether
i

)

5.3.2 System Model

We use an in-house cycle accurate x86 CMP simulator for oaluation.
Our processor faithfully models port contention, queuifigats, bank conflicts,
and other DDR3 DRAM system constraints. The baseline corstgun of each
processing core is shown in Table 5.1. The shared resourdgaaation for single,
2, 4, and 8-core CMPs is shown in Table 5.2. Note that we etatua mechanism
on CMP systems with private on-chip last-level caches (&K each core) rather
than a shared cache to easily show and analyze the effect@CRA the shared
DRAM system by isolating the effect of contention in the DRAlYktem from the
effect of interference in shared caches. We evaluate ouhamsm for a shared

last-level cache in Section 5.5.9 as well.

Out of order; 15 stages; decode/retire up to 4 instructions,
Execution core| issue/execute up to 8 microinstructions

256-entry reorder buffer; 32-entry load-store queue

Fetch up to 2 branches; 4K-entry BTB; 64K-entry gshare[44],
64K-entry PAs [83], 64K-entry selector hybrid branch potali [25]
L1 I and D caches: 32KB, 4-way, 2-cycle, 1 read and 1 writegport
On-chip cacheg Unified last-level cache: 512KB (1MB for 1-core), 8-way, 8nllx,
15-cycle, 1 read/write port; 64B line size for all caches
Stream prefetcher with 32 streams, prefetch degree of 4,
cache line prefetch distance (lookahead) of 64 [77, 73]

Front end

Prefetcher

Table 5.1: Baseline configuration of each core for PADC

5.3.3 Workloads

We use the SPEC 2000/2006 benchmarks for experimentalagiaiu Each
single-threaded benchmark was compiled using ICC (Inteb@fller) or IFORT

45

On-chip, demand-first FR-FCFS scheduling policy;

1 controller for 1, 2, 4, 8-core CMP (also 2 for 4, 8-core)

64, 64, 128, 256-entry last-level cache MSHR/DRAM requefiel
for1, 2, 4, 8-core

DDR3 1333MHz [49], 16B-wide data bus per controller

DRAM and bus | Latency: 15-15-15ng gp,trcp, CL), BL = 4;

8 DRAM banks, 4KB row buffer per bank

DRAM controller

Table 5.2: Baseline configuration of shared CMP resouraeBA®C

(Intel Fortran Compiler) with the -O3 option. We ran each dfanark with the
reference input set for 200 million x86 instructions sedelchby Pinpoints [61] as a
representative portion of each benchmark.

We classify the benchmarks into three categories: prefeistnsitive, prefetch-
friendly, and prefetch-unfriendly (class 0, 1, and 2 respety) based on the perfor-
mance impact the stream prefetcher described in Table 5.arhehe application. If
MPKI (last-level cache Misses Per 1K Instructions) incesashen the prefetcher
is enabled, the benchmark is classified as 2. If MPKI with@etgiching is greater
than 10 (indicating memory intensive) and bus traffic insesaby more than 75%
when prefetching is enabled the benchmark is also classafez2l Otherwise, if
IPC increases by 5%, the benchmark is classified as 1. Otbeniis classified
as 0. Note that memory intensive applications that expeeiencreased IPC and
reduced MPKI (such amiilc) may still be classified as prefetch-unfriendly if bus
traffic increases significantly. The reason for this is théitaugh an increase in bus
traffic may not have much of a performance impact on single sgstems, in CMP
systems with shared resources, the additional bus trafficlegrade performance
substantially. The characteristics for a subset of bencksnaith and without a
stream prefetcher are shown in Table 5.3. We evaluate thee esgtt of 55 SPEC
CPU 2000/2006 benchmarks for single core experiments foresults. To evalu-
ate our mechanism on CMP systems, we formed combinationsibifpmogrammed
workloads from the 55 SPEC 2000/2006 benchmarks. We ranB481 21 ran-
domly chosen workload combinations (from the 55 SPEC beiacks) for our 2,

46

4, and 8-core CMP configurations respectively.

| | No prefetcher]| Prefetcher with demand-first policy |
Benchmark || IPC | MPKI || IPC | MPKI | RBH(%) | ACC(%) | COV(%) | Class
eon00 2.08 0.01 2.08 0.00 84.93 37.37 52.64 0
swim.00 0.35| 27.57| 0.62 8.66 42.83 99.95 68.58 1
galgel00 1.42 4.26 | 1.10 7.56 65.50 30.96 23.94 2
art 00 0.18 | 89.39|| 0.18| 65.52 91.46 35.88 34.00 2
ammp00 1.70 0.80|| 1.47 1.70 56.20 5.96 8.03 2
gcc 06 0.55 6.28 || 0.81 2.23 81.57 32.62 65.37 1
mcf_06 0.13| 33.73| 0.15| 29.70 25.63 31.43 14.75 1
sjeng06 1.57 0.38 || 1.57 0.38 25.13 1.67 1.11 0
omnetpp06 0.41| 10.16|| 0.44| 9.57 61.86 10.50 18.33 2
libquantumO6 | 0.41| 13.51| 0.65 2.75 81.39 99.98 79.63 1
xalancbmk06 || 0.80 1.70|| 0.71 2.12 49.35 8.96 13.26 2
bwaves06 0.59| 18.71| 1.23 0.37 83.99 99.97 98.00 1
milc_06 0.41| 29.33|| 0.46| 20.88 81.13 19.45 28.81 2
cactusADMO6 || 0.71 4541 0.84 2.21 33.56 45.12 51.47 1
leslie3d06 0.53| 20.89|| 0.86 241 77.32 89.72 88.66 1
soplex06 0.35| 21.25{ 0.72 3.61 78.81 80.12 83.08 1
GemsFDTDO6 | 0.44 | 15.61| 0.80 2.02 55.82 90.71 87.12 1
Ibm_06 0.46| 20.16| 0.70 2.93 58.24 94.27 85.45 1

Table 5.3: Characteristics of 18 SPEC benchmarks for PAPC, IMPKI (last-
level cache misses per 1K instructions), RBH (Row Bufferrklie), ACC (prefetch
accuracy), COV (prefetch coverage), class

5.4 Implementation and Hardware Cost of PADC

An implementation of PADC requires storing additional imf@tion in each
DRAM request buffer entry to support the priority and aginfprmation needed
by APS and APD. The required additional information (in terof the fields added

to each request buffer entry) is shown in Figure 5.5.

The C (as prefetch bit), RH, and FCFS fields are already usine ipaseline
demand-first FR-FCFS policy to indicate prefetch states,(@emand or prefetch),
row-hit status, and arrival time of the request. Thereftwednly additional fields
are U, P, ID, and AGE, which indicate the urgency, prefetetust, core ID, and age
of the request. Each DRAM cycle, the priority encoder logidES chooses the
highest priority request using the priority fields (C, RH,ahd FCFS) in the order

47

shown in Figure 5.5.

The APD unit removes a prefetch request from the DRAM reqoeffer if
the request is older than thleop_threshold of the core that generated the request.
It does not remove a prefetch request (which is not schedoledRAM service)
until it ensures that the prefetch cannot be matched by a deémegiuest. This is
accomplished by invalidating the MSHR entry of the prefa®tuest before actu-
ally dropping it. The APD unit knows if a request is a prefetetd also which core
it belongs to from the P and ID fields. The AGE field of each rejeatry keeps
track of the age of the request. APD compares the AGE of theesido the corre-
sponding core'drop_threshold and removes the request accordingly. Note that the
estimation of the age of a request does not need to be higblyae. For example,

the AGE field is incremented every 100 processor cycles foewgaluation.

The hardware storage cost required for our implementatidheoPADC is
shown in Table 5.4. Note that the storage cost for PADC ligeacreases with the
number of cores, request buffer entries, and cache linessidrage cost for our 4-
core CMP system described in Section 5.3.2 is only 34,720(ki4.25KB) which
is equivalent to only 0.2% of the last-level cache data g@®ra our baseline 4-core
CMP. Note that the Prefetch bit (P) per cache line accoumtsvier 4KB of storage
by itself (~95% of the total required storage). Many previous propdd4ls69, 90,
91, 73] already use a prefetch bit for each cache line. If agssor already employs
prefetch bits in its cache, the total additional storage odur prefetch-aware
DRAM controller is only 1,824 bits{228B). Note that the overhead of prefetch

*Row-hit (1 bity ~ *FCFS Core ID (log, (N) bits)

*Critical (1 bit) l Urgent (1 bit) l Prefetch (1 bit) AGE (10 bits)

'
C | RH U FCES P ID AGE

Priority for APS Information for APD

N: Number of cores
*Already used in demand-firs

Figure 5.5: DRAM request field for PADC

48

bits can also be reduced by using set sampling [63], i.e.cassrg prefetch bits
with only a selected number of sets.

\ | Bit field \ Cost equation (bits) | Cost (bits)|
P (l blt) Ncache X Ncore + Nreq 32,896

Prefetch PSC (16 bits) Neore X 16 64
accuracy PUC (16 bits) Neore X 16 64
PAR (8 bits) Neore X 8 32

APS U (1 bit) Nreq 128

ID (logaNeore bits) Nyeq X 10gaNeore 256

APD AGE (10 bits) Nyog % 10 1,080
Total storage cost for the 4-core system in Section 5.3.2 34,720
Total storage cost as a fraction of the last-level cachedagpa 0.2%

Table 5.4: Hardware storage cost of PADG;,.... number of cache lines per core
Neore: NUMber of coresp,.,: number of DRAM request buffer entries)

For the evaluation of our PADC, we use a prefetch accuraayevaf 85%
for promotion_threshold (for APS) and a dynamic threshold shown in Table 5.5
for drop_threshold (for APD). The accuracy is calculated every 100K cycles.

Prefetch accuracy (%) 0-10|10-30| 30-70| 70-100
drop_threshold (processor cycles] 100 | 1,500 | 50,000| 100,000

Table 5.5: Dynamiclrop_threshold values for Adaptive Prefetch Dropping based
on prefetch accuracy

5.5 Experimental Evaluation and Analysis on PADC

We first evaluate PADC on single, 2, 4, and 8-core systemstidses.5.5
analyzes PADC's fairness and discusses additional teghsitp improve CMP sys-
tem fairness. Sections 5.5.6 through 5.5.14 analyze tleetedif PADC on sys-
tems with different configurations and characteristichsag multiple DRAM con-
trollers, different row buffer policies, different type$ prefetchers, prefetch filter-
ing, and runahead execution. This analysis shows that PACCgeneral mecha-

nism that is effective for a variety of systems and that itrith@gonal to previously

49

proposed prefetching and prefetch filtering techniques.

5.5.1 Single-Core Results

Figure 5.6 shows the performance of PADC on a single-coresysPC is
normalized to the baseline which employs the demand-firgtdualing policy. We
show the performance of only 15 individual benchmarks. Tigletmost bars show
the average performance of all 55 SPEC CPU 2000/2006 bemkbr{ggmean5h
As discussed earlier, neither of the rigid scheduling pedi¢demand-first, demand-
prefetch-equal) provides the best performance acrospplications. Demand-first
performs better for most prefetch-unfriendly benchmantags 2) such agalgel,
art andammpwhile demand-prefetch-equal does better for most preftehdly
ones (class 1) such asvim, libquantumandlbm. Averaged over all 55 SPEC
benchmarks, the demand-prefetch-equal policy outpedatemand-first by 0.5%

since there are more benchmarks (29 out of 55) that belonig$s &.

2.0 =no-pref
=demand-first
=demand-pref-equa
15 =aps-only

= apd-only
=aps-apd (PADC)

Normalized IPC

N
\((\ Q<

L
RS

S s &

Figure 5.6: Performance of PADC on single-core system: Ndized IPC for 15
benchmarks and average for all 55 (gmean55)

Adaptive Prefetch Scheduling (APS), shown in the fourthfban the left,
effectively adapts to the behavior of the prefetcher. Innbemchmarks, APS pro-
vides at least as good performance as the best rigid predetadduling policy. As
a result, APS improves performance by 3.6% over all 55 bemecksncompared

to the baseline. APS (and demand-prefetch-equal) imprpee®rmance over

50

demand-first for many prefetch friendly applications suslilzaguantum, bwaves
andleslie3d This is due to two reasons. First, APS increases DRAM thnpug
in these applications because it treats demands and pgreteérjually most of the
time. Doing so improves the timeliness of the prefetchenbse prefetch requests
do not get delayed behind demand requests. Second, impfRai1 throughput
reduces the probability of the DRAM request buffer beind. féls a result, more
prefetches are able to enter the request buffer. This ingsr¢ive coverage of the
prefetcher as more useful prefetch requests get a chaneeissued. For example,
APS improves the prefetch coverage from 80%, 98%, and 89%Q@&6] 100%, and
92% forlibquantum, bwavesndleslie3drespectively (as shown in Figure 5.8).

On the other hand, even though APS is able to provide the ipeaiaoce of
the best rigid prefetch scheduling policy for each appiagtit is unable to over-
come the performance loss due to prefetching in some pretetriendly appli-
cations such agalgel, ammpmandxalancbmk The prefetcher generates many use-
less prefetches in these benchmarks that a simple DRAM sthggolicy cannot

eliminate.

When adaptive prefetch dropping (APD) is employed with dedafirst
(APD-only), it improves performance for prefetch-unfriiy applications by elim-
inating many useless prefetches. This is also true when ARhployed with APS
(i.e., PADC). Using APD recovers part of the performances ldge to prefetching
in galgel ammp andxalancbmkbecause it eliminates 54%, 76%, and 54% of the
useless prefetch requests respectively as shown in Figgurds a result, using both
of our proposed mechanisms (APD in conjunction with APS)yples 4.3% per-
formance improvement over the baseline for all 55 SPEC 2Tl benchmarks.
Note that for 17 most memory intensive SPEC benchmarks, PADioves per-

formance by 11.8% (not shown in the figure).

Figure 5.7 provides insight into the performance improveta# the pro-
posed mechanisms by showing the effect of each mechanistrecstdll time ex-
perienced per load instruction (SPL). Our PADC reduces SPPb.0% compared

51

to the baseline. By providing better DRAM scheduling andneliating useless
prefetches, PADC reduces the amount of time the procesalts &r each load
instruction and allows the processor to make faster pregrés a result, PADC

significantly improves performance.

22

2 =no-pref

. =demand-first
="' =demand-pref-equal
e]
S 16 =aps-only
5" =apd-only
% 12 =aps-apd (PADC)
9>~/ 10

84
-
O 64
(9]

P

2]

0,

Figure 5.7: Stall time per load (SPL) of PADC on single-corstem

Figure 5.8 breaks down the bus traffic into three categousstul prefetches,
useless prefetches, and demand requests. PADC reduceafbasy 10.4% across
all benchmarks (amean55) as shown. Reduction in bus traffi@inly due to APD
which significantly reduces the number of useless prefstciteor many bench-
marks, APS by itself provides the same bandwidth consumggrovided by the
best rigid policy for each benchmark. We conclude that oafgich-aware DRAM
controller is very effective at improving both performarase bandwidth-efficiency

in the single-core system.

Note that simply turning off prefetching for prefetch-uefndly applications
may lose opportunity to improve performance. This is truepi@fetch-unfriendly
applications that have 1) significant phase changes, 2) ascmgate prefetches in-
terleaved with inaccurate prefetches. For such benchmpr&getching hurts per-
formance in some phases but increases performance sigiiyica others. If the
prefetcher is turned off, the performance benefits of ugakefietch phases and use-
ful prefetch requests will be lost. In fact, due to this phbskavior,art andmilc

do not benefit much from prefetching unless adaptive prefetanagement is used.

52

~~3073
D 284 o demand-pref-equal
£ 21 = pref-useless | . _Japs-only aps-apd (PADC)
= = pref-useful =pref-useless demand-firs Apd-only~
D 244 = demand = pref-useful
S 224 =demand
IS
O 205
c 184
8 161
= 144
\8’127
& 104
g 84
5 4]
2.
m 3

o S

& & &

Figure 5.8: Bus traffic of PADC on single-core system

Figure 5.6 shows that PADC improves performance signiflggfot art andmilc
(compared to no prefetching) since it is able to adapt teedbffit phases and elimi-

nate useless prefetches while keeping useful prefetches.

5.5.1.1 Adaptive Behavior of PADC

We analyze the adaptive runtime behavior of PADC in thisisactAPS
prioritizes demands over prefetches (i.e., demand-firaBmthe estimated prefetch
accuracy is less thamomotion_threshold. It treats demands and prefetches equally
(i.e., demand-prefetch-equal) when prefetch accuracyaatgr than or equal to
promotion_threshold. PADC continuously changes the DRAM scheduling mode
(between demand-first and demand-prefetch-equal) forgphkcation based on the

prefetch accuracy estimated every interval.

Figure 5.9 shows the fraction of time APS and PADC spend it @hthe
two scheduling modes for the single-core system. APS and®#i2nd a majority
of their execution time in demand-prefetch-equal mode fefgich-friendly appli-
cations but spend most of their execution time in demant+fiede for prefetch-
unfriendly applications. Therefore, APS and PADC provitkeast as good perfor-
mance as the best rigid prefetch scheduling policy in mopliegtions, as shown

in Figure 5.6.

53

aps-only aps-apd (PADC)
100+ e

©
o
|

Fraction of execution time (%)

o
I

Figure 5.9: Fraction of execution time in different PADC edhling modes on
single-core system

5.5.1.2 Effect of PADC on Row Buffer Hit Rate

Recall that the demand-prefetch-equal policy prioriticeg-hit requests re-
gardless of whether arequest is a prefetch or demand. If n&der all demand and
prefetch requests (regardless of whether or not a prefstciseful) for the entire
run of an application, the demand-prefetch-equal policy msult in the highest
row buffer hit rate (RBH) and therefore the lowest averageAllRaccess latency
among all considered policies. However, this does not mieanthis policy per-
forms best since prefetches are NOT always useful as disdussSection 5.5.1.
When prefetching is enabled, we need a better metric to sltmweahmechanism
reduces effective memory latency. Hereby, we define ronedit rate for useful

(demand and useful prefetch) requests (RBHU) as follows:

Number of row-hit demands + Number of useful row-hit prefetches

RBHU =
Number of demands + Number of useful prefetches

The demand-prefetch-equal policy will still show the highBRBHU since
RBHU is also maximized by prioritizing row-hit requests. Wever, a good DRAM
scheduling mechanism should keep its RBHU close to demesfdiph-equal’s

RBHU because it should aim to maximize DRAM bandwidth forfuse2quests.

54

Table 5.6 shows RBHU values for 13 benchmarks on the singleqrocessor with
no prefetching, demand-first, demand-prefetch-equal,,AR8 PADC. The RBHU
of APS is very close to that of demand-prefetch-equal andifsegntly better than
the RBHU of demand-first since APS successfully exploits boifer locality for

useful requests.

Employing APD with APS (i.e., PADC) slightly reduces RBHU fsome
applications such agalgel ammp mcf omnetpp xalancbmk andsoplex This is
because adaptive prefetch dropping cancels some usefetgres as shown in Fig-
ure 5.8, thereby reducing the fraction of useful row buffies. hNonetheless, APD
improves overall performance for these applications sineuces the contention
between demands and prefetches by eliminating a signifizamiber of useless
prefetches as discussed in Section 5.5.1.

| Benchmark || swim | galgel| art | ammp]| mcf.06 | libquantum| omnetpp|
no-pref 0.18 | 0.51 | 0.94| 0.40 0.12 0.86 0.47
demand-first 0.44 | 0.58 | 0.94| 0.48 0.19 0.86 0.56
demand-pref-equal 0.50 | 0.58 | 0.96 | 0.50 0.23 0.98 0.59
aps 050 | 0.58 | 0.94| 0.48 0.19 0.98 0.56
aps-apd (PADC) || 0.50 | 056 | 0.94| 0.44 | 0.18 0.98 0.54

| Benchmark || xalancbmk| bwaves| milc | leslie3d | soplex| Ibm | amean55)
no-pref 0.23 0.76 | 0.85 0.71 0.81 | 0.53 0.55
demand-first 0.27 0.87 | 0.88| 0.81 0.87 | 0.64 0.63
demand-pref-equal 0.28 0.89 | 090| 0.91 0.93 | 0.92 0.68
aps 0.27 0.89 | 0.88| 0.90 0.91 | 0.90 0.66
aps-apd (PADC) 0.25 0.89 | 0.88] 090 | 0.90 | 0.90| 0.65

Table 5.6: Row buffer hit rate of PADC for useful requests

5.5.2 2-Core Results

We briefly discuss only the average performance and buscifaffithe 54
workloads on the 2-core system. Figure 5.10 shows that PAD)dves both per-
formance metrics (weighted speedup and harmonic mean eftdsps) by 8.4%,
and 6.4% respectively compared to the demand-first polidyadso reduces mem-
ory bus traffic by 10.0%. Thus, the proposed mechanism istw@feefor dual-core

55

systems. We do not discuss these results further sincectu@lprocessors are no
longer the state-of-the-art in multi-core systems. Wemrstitely analyze PADC on

4-core systems in the next sections.

©

2.0

e
o
1
o ~ [«
I |

o
I

== nO-pref
=== demand-first
-+ === demand-pref-equal
=== gps-only

=== gps-apd (PADC)

IN
|

Value of metric

o
o

w

N}
|

Bus traffic (M cache lines)

[,
I

0.0~

o
I

WS S
(a) System performance (b) Average traffic

Figure 5.10: Performance of PADC on 2-core system

5.5.3 4-Core Results

We ran 32 different workloads to evaluate the effectivermé$3ADC on the
4-core system. In the following sections, we discuss these studies in detail to
provide insights into the behavior of the Prefetch-AwareAMRController on a

CMP system.

5.5.3.1 Case Study I: All Prefetch-Friendly Applications

Our first case study examines the behavior of our proposedhamézms
when four prefetch-friendly applicationswim, bwaves, leslie3é@ndsopley run
together on the 4-core system. Figure 5.11(a) shows thelapex each application

and Figure 5.11(b) shows system performance.

In addition, Figure 5.12 provides insight into the perfonoa changes by
showing how each mechanism affects stall-time per load dsaseanemory bus

traffic. Several observations are in order:

First, since all four applications show very high prefetclw@acy/coverage

56

I
i,

M,
i

IR RARE AR
® © ¥ «

5 W) oen sng

04

soplex
20

(b) System performance

Fon)
0 18
Q
E 16
_C 147
Cﬁ 12

T T
@ a 0
5

J118W JO anjeA

2.0

demand-first

g
i,
T
(i

B 3 S | /s
T y = 5 2 o =y
g g b - 2 _ = .
7% % S ge § < 5| =\ W
L Es23 ? 3228 Lo iF
SEE2 3 $5542 o —~ | 213 | W=
°eg8g g3 5 [T111 = &) s\s W/ 2
111171 ® g £ Ve«
m) A //////1/11111] =
o 5)

bwaves
(b) Bus traffic breakdown

bwaves
(a) Individual speedup

(peoy/sslohD) 1dS

Figure 5.11: Performance of PADC for prefetch-friendly@reworkload

| (saul ayoeo) oiess sng

o

uni 9|Buis J1ano dnpaads

(c) Total traffic

Figure 5.12: SPL and bus traffic of PADC for prefetch-frigndicore workload
57

(i.e., prefetch-friendly) as shown in Figure 5.12(b), ptehing provides significant
performance improvement in all applications regardlesthefDRAM scheduling
policy. In addition, the demand-prefetch-equal policyndigantly outperforms the
demand-first policy (by 28% in terms of weighted speedupphbse prefetches are
very accurate in all four applications. The demand-préfatqual policy reduces
stall-time per load as shown in Figure 5.12(a) because itongs DRAM through-
put.

Second, PADC outperforms both of the rigid prefetch schedubolicies
improving weighted speedup by 31.3% over the baseline défiest policy. This
is because it 1) successfully prioritizes critical (usgfefuests over others thereby
reducing SPL, and 2) drops useless prefetchdsshe3dand soplexthereby re-
ducing their negative effects on all applications. Consadjy, PADC also im-
proves prefetch coverage from 56% to 73% as shown in Figur2(&). This is
because it improves DRAM throughput and reduces conteftiomemory system
resources by dropping useless prefetches flestie3dand soplexallowing more

useful prefetches to enter the memory system.

Finally, the bandwidth savings provided by PADC is reldihvamall (0.9%
compared to the baseline demand-first) because theseatppis do not generate
a large number of useless prefetch requests. However, ithstit a non-negligible
reduction in bus traffic due to the effective dropping of esslprefetches ieslie3d
andsoplex We conclude that the Prefetch-Aware DRAM Controller caovpe
system performance (WS and HS) and bandwidth-efficiencyomgments even
when all applications benefit significantly from prefetdhin

5.5.3.2 Case Study IlI: All Prefetch-Unfriendly Applications

The second case study examines the behavior of our proposetamsms
when four prefetch-unfriendly applicationar{, galgel, ammpandmilc) run to-
gether on the 4-core system. Since the prefetcher is vexgcurate for all ap-
plications, prefetching degrades performance regardiésise scheduling policy.

58

However, as shown in Figure 5.13, the demand-first policy AR& provide bet-

ter performance than the demand-prefetch-equal policyrloyifizing demand re-

quests over prefetch requests which are more than likelyetadeless. Employ-
ing adaptive prefetch dropping drastically reduces théagseprefetches in all four
applications as shown in Figure 5.14(b) and therefore fupesiemory system re-
sources to be used by demands and useful prefetch requésteff€ct of this can
be seen by the reduced SPL as shown in Figure 5.14(a) for @licapons. As a

result, our PADC performs better than either rigid prefetcheduling policy foall

considered applications.

1.0 2,
% = no-pref
= == demand-first 1
2 o = demand-pref-equal o
> pref-equa 2
= —aps-only =
2o —aps-apd (PADC) £ 15
(] §—
> o
o

} D 104
S E
i <
Q o. > 05
[oR
)

0.0
galgel ammp WS HS
(a) Individual speedup (b) System performance

Figure 5.13: Performance of PADC for prefetch-unfriendigate workload

PADC improves system performance by 17.7% (weighted sp®eand
21.5% (harmonic mean of speedups), while reducing bantdwadhsumption by
9.1% over the baseline demand-first scheduler as shown uré=ig.14(c). By
largely reducing the negative effects of useless prefsttioth in scheduling and
memory system buffers/resources, PADC almost elimin&esystem performance
loss observed in this prefetch-unfriendly mix of applioas. Weighted speedup is
within 2% and harmonic mean of speedups is within 1% of thdgained with
no prefetching. We conclude that the Prefetch-Aware DRAM@iler can ef-
fectively eliminate the negative performance impact cduseinaccurate prefetch-
ing by intelligently managing the scheduling and buffer ag@ment of prefetch
requests even in workload mixes where prefetching perfarmasiciently for all

applications.

59

== no-pref

== demand-first
== demand-pref-equal
==aps-only

== gps-apd (PADC)

40

&
it

Now W
<

o
L

N
S)
T

@
it

B

SPL (Cycles/load)

o u
I I

galgel ammp
(a) SPL
40
== pref-useless
] ==pref-useful |
w0l demand-pref-equal ==demand

N
@

Bus traffic (MN cache lines)
, /)
wiii),

= =
1) o
T L

o
1

o
I

galgel
(b) Bus traffic breakdown (c) Total traffic

Figure 5.14: SPL and bus traffic of PADC for prefetch-unfdr4-core workload

5.5.3.3 Case Study IlI: Mix of Prefetch-Friendly and Prefeth-Unfriendly
Applications
Our final case study examines the behavior of PADC when twtefote-
friendly (libquantumandGemsFDTD and two prefetch-unfriendlyofmnetppand
galge) applications are run together on the 4-core system. Fagbirgs and 5.16

show performance, SPL, and bus traffic.

The prefetches foibguantumandGemsFDTDare very beneficial. There-
fore demand-prefetch-equal significantly improves wesghspeedup. However,
the prefetcher generates many useless prefetchesfoetppandgalgelas shown
in Figure 5.16(b). These useless prefetches temporanly dervice to critical re-
guests (demands and useful prefetches) from the two othhes.cdecause APD
eliminates a large portion (67% and 57%) of all useless prkés inomnetppand
galgel it frees up both request buffer entries and bandwidth innti@enory sys-

tem. These freed up resources are utilized efficiently byctiitecal requests of

60

1.0 25

c
2 == no-pref
@ 087 == demand-first o 207
E’ —demanld-pref-equa -%
o 1| ==aps-only 1
5 o6 ==aps-apd (PADC) E e
3 o
o 04+ % 1.04
3 &
o) >
O 0.2+ 0.5
[oR
)

0.0 . 0.0

omnetpp libquantum galgel GemsFDTD WS S
(a) Individual speedup (b) System performance

Figure 5.15: Performance of PADC for mixed 4-core workload

630 = no-pref

8 == demand-first

s ==demand-pref-equa}——————
Q ==aps-only

Q2 — aps-apd (PADC)

)

|

o

(%))

omnetpp libquantum galgel GemsFDTD
(a) SPL

N

o

==pref-uselesg——
==pref-useful
51 nand-first —aps-onty =demand

/aps—apd (PADC)

demand-pref-equal

=
S
\
ISS

i
M,
I,

i
wmi,
i
i

Bus traffic (M cache lines)

omnetpp libquantum galgel GemsFDTD
(b) Bus traffic breakdown (c) Total traffic

Figure 5.16: SPL and bus traffic of PADC for mixed 4-core wosdd

61

libquantumandGemsFDTDhereby significantly improving their individual perfor-
mance while slightly reducingmnetppandgalgels individual performance. Since
it eliminates a large number of useless prefetches, PADGcesdtotal bandwidth
consumption by 14.5% over the baseline demand-first polide conclude that
PADC can effectively prevent the denial of service causethbyseless prefetches

of prefetch-unfriendly applications on the useful reqaedtother applications.

5.5.3.4 Effect of Prioritizing Urgent Requests

In this section, we discuss the effectiveness of priongzurgent requests
using the application mix in case study Ill. We say that a rudte system igair
if each application experiences the same individual speecen multiple appli-
cations run together on the system. To indicate the degraafafrness, we define
Unfairness (UF)13] as follows:

_ MAX(ISp, IS, ..., I5,-1)

UF =
MIN(ISo, IS1, ..., 1Sn_1)’

N : Number of Cores

Table 5.7 shows individual speedup, unfairness, weighteddup, and har-
monic mean of speedups for the workload from case study Hifif@ policies:
demand-first, versions of APS and PADC that do not use theemiraf “urgent
requests,” and regular APS and PADC (with “urgent requégstié'the concept of
“urgent requests” is not used, demand requests from theetoretinfriendly ap-
plications pmnetppand galge) unfairly starve because a large number of criti-
cal requests from the prefetch-friendly applicatiohisquantumand GemsFDTD
are given the same priority as those demand requests. Hmnssbn, combined
with the negative effects of useless prefetches, leadsaoaaptably low individual
speedups for these applications resulting in high unfagn&/hen urgency is used
to prioritize requests, this unfairness is significantlyigated as shown in Table 5.7.
In addition, harmonic mean of speedups (i.e., average jotlataund time) signifi-

cantly improves at the cost of very little weighted speedig,(system throughput)

62

degradation. However, we found that for most workloads (@0ad the 32), prior-
itizing urgent requests improves weighted speedup as wehis trend holds true
for most workload mixes that consist of prefetch-friendhdgrefetch-unfriendly
applications. On average (not shown in the table), priong urgent requests im-
proves UF, HS, and WS by 13.7%, 8.8%, and 3.8% respectivaehpaced to PADC
with no concept of urgency for the 32 4-core workloads. Wechatte that incor-
porating the concept of urgency into PADC significantly iioyes system fairness
while keeping system performance high.

Individual speedup
omnetpp| libquantum| galgel| GemsFDTD UF | WS | HS
demand-first 0.40 0.42 0.68 0.41 1.69| 1.92| 0.46
aps-no-urgent 0.26 0.68 0.47 0.61 2571202 0.44
aps 0.43 0.41 0.72 0.46 1.73| 2.02| 0.48
aps-apd-no-urgent 0.21 0.94 0.42 0.70 455| 2.26| 041
aps-apd (PADC) || 0.35 0.65 0.64 0.59 1.84| 2.23| 0.52

Table 5.7: Effect of prioritizing urgent requests in PADC

5.5.3.5 Effect on Identical-Application Workloads

It is common that commercial servers frequently run mudtipistances of
identical applications. In this section, we evaluate tlieatfveness of PADC when
the 4-core system runs four identical applications togetBence APS prioritizes
memory requests and APD drops useless prefetches (botd badbe estimated
prefetch accuracy), PADC should evenly improve individspéedup of each in-
stance of the identical applications running together. theowords, all instances
of the application are likely to show the same behavior aedstime adaptive deci-

sion should be made for every interval.

Table 5.8 shows the system performance of PADC when fouangsis
of libquantumrun together on the 4-core system. Becalisguantumis very
prefetch-friendly and most prefetches are row-hits, thmaied-prefetch-equal pol-
icy performs very well by achieving almost the same speeduplf four instances.
APS and PADC perform similarly to demand-prefetch-equalpfioving weighted

63

speedup by 18.2% compared to demand-first) since they sfattgsreat demands

and prefetches equally for all four instances.

Individual speedup

libquantum| libquantum| libquantum]| libquantum WS | HS | UF

no-pref 0.60 0.60 0.60 0.59 2.40| 0.60| 1.01
demand-first 0.69 0.67 0.65 0.64 2.66| 0.66 | 1.08
demand-pref-equal 0.80 0.79 0.78 0.77 3.14| 0.78 | 1.05
aps 0.80 0.79 0.78 0.77 3.14| 0.79| 1.04
aps-apd (PADC) 0.80 0.79 0.78 0.77 3.14] 0.79] 1.04

Table 5.8: Effect of PADC on four identical prefetch-fridgpapplications

Table 5.9 shows the system performance of PADC when fouamasis of a

prefetch-unfriendly applicatiormilc, run together on the 4-core system. Because

the prefetches generated for each instance are uselesseg$bofithe execution time

of milc, demand-first and APS outperform demand-pref-equal foh éastance.

Incorporating APD into APS (i.e., PADC) further improveslividual speedup of

all instances equally by reducing useless prefetches famh mstance. As a result,

PADC significantly improves all system performance metrlogact, using PADC

allows the system to gain significant performance improvanfiom prefetching

whereas using a rigid prefetch scheduling policy results ilarge performance

loss due to prefetching. To conclude, PADC is also very &ffeavhen multiple

identical applications run together on a CMP system.

Individual speedup

. - ' g WS | HS | UF

milc | milc | milc | milc
no-pref 0.53| 0.53| 0.53| 0.53 || 2.11| 0.53| 1.00
demand-first 0521 051| 050| 046 1.99| 0.50| 1.13
demand-pref-equal 0.36 | 0.36| 0.36 | 0.36 || 1.45| 0.36| 1.01
aps 0521 051| 050| 046 1.99| 050 1.14
aps-apd (PADC) || 0.59 | 0.58 | 0.58 | 0.58 || 2.33| 0.58 | 1.02

Table 5.9: Effect of PADC on four identical prefetch-unfréy applications

64

5.5.3.6 Overall Performance

Figure 5.17 shows the average system performance and lfiis fioa the
32 workloads run on the 4-core system. PADC provides the fm$drmance and
lowest bandwidth consumption compared to all previousgtosfhandling policies.
It improves weighted speedup and harmonic mean of speedu@2% and 4.1%
respectively compared to the demand-first policy and reslbos traffic by 10.1%
over demand-first (the best-performing rigid policy).

i
[

35
» 10
3.0 Q
£ 9
2 251 o 8
3 S
]
Ew i
o 151 é 51| === no-pref '
=] [3) === demand-first
‘>° 10] E *J| == demand-pref-equal
g 3y ==aps-only
0.5 g 2| === aps-apd (PADC)
m 14
0.0-
WS S E
(a) System performance (b) Average traffic

Figure 5.17: Performance of PADC on 4-core system

We found that PADC outperforms both the demand-first and delrpaefetch-
equal policies for all but one workload we examined. The wpesforming work-
load is the combination ofpr, gamess, deallandcalculix. PADC’s WS degrada-
tionis only 1.2% compared to the demand-first policy. Thgg®ieations are either

insensitive to prefetching (class 0) or not memory inte@$inpr).

5.5.4 8-Core Results

Figure 5.18 shows average performance and bus traffic oee?thwork-
loads we simulated on the 8-core system. Note that the rigitefrh scheduling
policies actually cause stream prefetching to degradeoprdnce in the 8-core
system. The demand-first policy reduces performance by haécthe demand-
prefetch-equal policy by 3.0% compared to no prefetchinBAM bandwidth be-

comes a lot more valuable with the increased number of caesuse the cores put

65

more pressure on the memory system. At any given time thareisch larger num-
ber of demand and useful/useless prefetch requests in tAd/DBquest buffer. As
a result, it becomes more likely that 1) a useless prefettdyde@ demand or use-
ful prefetch (if demand-prefetch-equal policy is used)d & DRAM throughput
degrades if a demand request causes significant reductiba now-buffer locality
of prefetch requests (if demand-first policy is used). Hepegformance degrades
with a rigid scheduling policy.

n
=]

5.0
’qw?ls
4.0 £ 16]
g g 141
9] @]
3.0+ 1
E 8 12
o = 107 === no-pref
S 207 o 84 === demand-first
© = === demand-pref-equal
> Lol g & == aps-only
) 47 === aps-apd (PADC)
@ 2
WS S o-
(a) System performance (b) Average traffic

Figure 5.18: Performance of PADC on 8-core system

For the very same reasons, PADC becomes more effective wkeamutmber
of cores increases. As resource contention becomes hiflegoerformance bene-
fit of intelligent prioritization and dropping of uselessefgtch requests increases.
Our PADC improves overall system performance (WS) by 9.9% a&so reduces
memory bandwidth consumption by 9.4% compared to demasteiir the 8-core
system. We conclude that the benefits of PADC will continuacdeease as off-chip
memory bandwidth becomes a larger performance bottlemefiture systems with

many cores.

5.5.5 Optimizing PADC for Fairness Improvement in CMP Systens: Incor-
porating Request Ranking

PADC can be better tuned and optimized for the requiremdr@®viP sys-
tems. One major issue in designing memory controllers forfFCdfstems is the

66

need to ensure fair access to memory by different cores (h&4. So far we have
considered PADC only as a way to improve overall system perdoce. However,
to be more effective in CMP systems, PADC can be augmentddanitechanism
that provides fairness to different cores’ requests. Tdeaehthis purpose, this
section describes a new scheduling algorithm that incatpsra request ranking

scheme into our Adaptive Prefetch Scheduling (APS) meshani

Recall that APS prioritizes urgent requests (demand raguesm cores
whose prefetch accuracy is low) over others to mitigatequarance degradation
and unfairness for prefetch-unfriendly applications. wer, APS follows the
FCFS policy if all other priorities (i.e., criticality, rovit, urgency) are the same.
This FCFS rule can degrade fairness and system performanpedsitizing re-
quests of memory intensive applications over those of mgmon-intensive appli-
cations as was shown in previous work [58, 53, 54]. This hapfxecause delay-
ing the requests of memory non-intensive applicationsltegua lower individual
speedup (or a higher slowdown) for those applications thaould for memory
intensive applications which already suffer from long DRARFvice time. There-
fore, PADC (and APS) itself cannot completely solve the uinéss problem. This
is especially true in cases where all of the applicationabelthe same in terms of
prefetch friendliness (either all are prefetch-friendtyadl are prefetch-unfriendly).
In such cases, PADC will likely degenerate into the FCFSgydiiequently (since
the criticality, row-hit, and urgency priorities would bgual) resulting in high un-
fairness and performance degradation. For example, instasly 1l discussed in
Section 5.5.3.2, all the applications are prefetch-untitg. Therefore, PADC pri-
oritizes demands over prefetches most of the time. PAD(gatitis performance
degradation by prioritizing demand requests and droppsaass prefetches. How-
ever,art is very memory intensive and continuously generates manyade re-
guests. These demand requests significantly interfereatitér applications’ de-
mand requests resulting in high slowdowns for the otherieaiibns. Howeverart
experiences the least slowdown thereby creating unfanmethe system as shown
in Figure 5.13.

67

To take into account fairness in PADC, we incorporate thecephof rank-
ing, as employed by Mutlu and Moscibroda [54]. Our rankingesue is based on
theshortest job firsprinciple [70] which can better mitigate the unfairnessiyem
and performance degradation caused by the FCFS rule. Fbraggatication, the
DRAM controller keeps track of the total number of criticalenand and useful
prefetch) requests in the DRAM request buffer. Applicasiovith fewer outstand-
ing critical requests are given a higher rank. The insighitas if an application that
has fewer critical requests is delayed, the impact of thistyden that application’s
slowdown is much higher than the impact of delaying an appibo with a large
number of critical requests. In other words, it is more untfaidelay an application
that has a small number of useful requests (i.e., a “shodpplication/job) than
delaying an application that has a large number of usefulests (i.e., a “longer”
application/job). To achieve this while still being prefietaware, the DRAM con-
troller schedules memory requests based on the modifieshaen in Rule 2. A
highly-ranked request is scheduled by the DRAM controlleewall requests in the
DRAM request buffer have the same priority for criticalitgw-hit, and urgency.

Rule 2 Adaptive prefetch scheduling with ranking
1. Critical request (C): Critical requests are prioritized over all other requests
2. Row-hit request (RH): Row-hit requests are prioritized over row-conflict
requests.
3. Urgent request (U} Demand requests generated by cores with low prefetch
accuracy are prioritized over other requests.
4. Highest rank request (RANK): Critical requests from a higher-ranked core
are prioritized over critical requests from a lower-raniade. Critical requests
from cores that have fewer outstanding critical requestganked higher.
5. Oldest request (FCFS) Older requests are prioritized over younger requests.

To implement ranking the priority field for each memory resues aug-
mented as shown in Figure 5.19. A counter per core is requir&dep track of the
total number of critical requests in the DRAM request bufféthen the estimated
prefetch accuracy of a core is greater thaamotion_threshold, the total num-
ber of outstanding demand and prefetch requests (critzplests) for that core is
counted. When the accuracy is less than the threshold, th@erostores only the

68

number of outstanding demand requests. Cores are rankeddauy to the total
number of critical requests they have in the DRAM requestdoua core that has a
larger number of critical requests is ranked lower. The RAINHd of a request is
the same as the rank value of the core determined in this mafesuch, the crit-
ical requests of a core with a lower value in its counter arerpized. This process
is done every DRAM bus cycle in our implementation. Alteivy, determination
of the ranking can be done periodically since it does not nede highly accurate

and is not on the critical path.

Rank (log (N) bits) N: Number of cores

C | RH U | RANK FCFS P ID AGE

Priority for APS Information for APD

Figure 5.19: DRAM request fields for PADC with ranking

Note that in this study we do not rank non-critical requests,(prefetch
requests from cores whose prefetch accuracy is low). The IRABId of these
requests is automatically set to O (the lowest rank value) eVéluated a mechanism
that also ranks non-critical requests based on estimaggdtph accuracy and found
that this mechanism does not perform better than the mesmmatiat ranks only

critical requests.

Figure 5.20 shows the average system performance, bus teffil unfair-
ness when we incorporate the ranking mechanism into PADGh®r32 4-core
workloads. On average, the ranking mechanism slightlyatées weighted speedup
(by 0.4%) and slightly improves harmonic mean of speedup®(®%) and keeps
bandwidth consumption about the same compared to the ali§i_DC. Unfair-
ness is improved from 1.63 to 1.53. The performance impr@rerns not signif-
icant because the contention in the memory system is nothigtyin the 4-core
system. Nonetheless, the ranking scheme improves all 8tersyperformance and

unfairness metrics for most workloads with memory inteasienchmarks. For the

69

workload in case study Il, the ranking scheme improves WS,at#8 UF by 7.5%,
10.3%, and 15.1% compared to PADC without ranking.

2.0

3.5 11+
o 104
3.0 (]
£ 9
8 2.54 _qc_) 84 157
o (9]
(&) 4
GEJ 2.0 QS 8
— O 6 c
3 151 2 . ‘T O] e demand-first
=l o | =—no-pref € ||==PADC
g 10 . 3(:; 3| == demand-first - == PADC-rank
© 31 === PADC os
05 ; »3| ==PADC-rank
>
m 14 —
0.0+
WS HS o — 0.0
(a) Performance (b) Average traffic (c) Unfairness

Figure 5.20: Optimized PADC with ranking on 4-core system

We also evaluate the optimized PADC scheme with ranking erBtlsore
system which places significantly more pressure on the DRpdtesn. As shown
in Figure 5.21, the ranking mechanism improves WS and HS 0%2and 5.4%
respectively and reduces unfairness by 10.4% compared DCRAithout ranking.
The effectiveness of the ranking scheme is much higher irBtbere system than
the 4-core system since it is more critical to schedule mgmequests fairly in
many-core bandwidth-limited systems. Improving fairnesguces starvation of
some cores resulting in improved utilization of the coreshi@ system, which in
turn results in improved system performance. Since stanvas more likely when
the memory system is shared between eight cores ratherdbaritie performance

improvement obtained with the ranking scheme is higheré&tore system.

We conclude that augmenting PADC with an intelligent fassisnechanism

improves both unfairness and system performance.

5.5.6 Effect on Multiple DRAM Controllers

We also evaluate the performance impact of PADC when two DRkt

trollers are employed in the 4 and 8-core systems. Each meaaottroller works

70

= PADC === PADC-rank
== PADC-rank

L
=] <)
[} %]
(] Q
£ S g
o S —
% N—r qg
o — i
= £ m— nO-pref . S Lol demand-first
> ® == demand-first == PADC
%]
S
m

ORNWAUON®O
[TV TR TV NI OO DO R DT TV FOV 7O TV O TV TP |

WS HS
(a) Performance (b) Average traffic (c) Unfairness

Figure 5.21: Optimized PADC using ranking mechanism on i&sgstem

independently through a dedicated channel (address,atpatrd data buses) dou-
bling the peak memory bandwidth. Because there is more baditiavailable
in the system, contention between prefetch and demand stxjisesignificantly
reduced. Therefore, the baseline system performance msfisantly improved
compared to the single controller. Adding one more DRAM coligr improves
weighted speedup by 16.9% and 30.9% compared to the singileter for 4 and

8-core systems respectively.

Figures 5.22 and 5.23 show the average performance andditis tor 4
and 8-core systems with two memory controllers. Note thatle 8-core system,
unlike the single memory controller configuration shown igufe 5.18(a) where
adding a prefetcher actually degrades performance, pedioce increases when
adding a prefetcher even for the rigid scheduling policiesause of the increased

memory bandwidth.

PADC is still very effective with two memory controllers amehproves
weighted speedup by 5.9% and 5.5% and also reduces bandeaddumption
by 12.9% and 13.2% compared to the demand-first policy fordl &waore sys-
tems respectively. Therefore, we conclude that PADC stitfqgems effectively on

a multi-core processor with very high DRAM bandwidth.

71

w
[N
[

w
o
=
o
I

N
w

N
=}

== nO-pref

=== demand-first

=== demand-pref-equal
7] === aps-only

J| === gps-apd (PADC)

[
7

Value of metric

e
<

o
3

Bus traffic (M cache lines)

o B N W b U O N © ©
[I P Y VA A

o
=}

WS S
(a) System performance (b) Average traffic

Figure 5.22: Performance of PADC on 4-core system with twaAMRcontrollers

N
=]

7.0

%\18
6.0
é 16+
2 50 g 14
© &}
E 4.0 8 124
g 30 \E_,lof == no0-pref
= o 84 ==demand-first
S, £]| === demand-pref-equal
2.0 6
> g == aps-only
1.0 o 47| === aps-apd (PADC)
m 24
0.0
WS HS 0-
(a) System performance (b) Average traffic

Figure 5.23: Performance of PADC on 8-core system with twaADRcontrollers

5.5.7 Effect with Different DRAM Row Buffer Sizes

As motivated in Section 5.1, PADC takes advantage of andgseln the row
buffer locality of demand and prefetch requests generdtachéime. To determine
the sensitivity of PADC to row buffer size, we varied the saféhe row buffer from
2KB to 128KB for the 32 workloads run on the 4-core systemuFad.24 shows
the WS improvements of PADC and APS compared to no prefegchdemand-first,
and demand-prefetch-equal.

PADC consistently outperforms no prefetching, demand;faisd demand-
prefetch-equal with various row buffer sizes. Note thatdtemand-first policy starts
degrading performance compared to no prefetching as thdudfer becomes very

72

>
=)

-o-no-pref

-m- demand-first
-o-demand-pref-equal
-e- aps

—-—aps-apd (PADC)

w
o

Weighted speedup (WS)

g
(=}

4KB 8KB 16KB 32KB 64KB 128KB

x~
o8}

Figure 5.24: Effect of PADC with various DRAM row buffer sgen 4-core system

large (64KB and 128KB). This is because preserving row budfeality for use-
ful requests is more critical when the row buffer size is é&afgspecially when the
stream prefetcher is enabled). No prefetching with larger buffer sizes exploits
row buffer locality more (higher row-hit rate) than smallew buffer sizes. How-
ever, with demand-first, the negative performance impatteofuent re-activations
of DRAM rows for demand and prefetch requests becomes signify worse at
larger row buffer sizes. Therefore, the demand-first pokgyperiences a higher

memory service time on average than no prefetching withelaogy buffer sizes.

Similarly, the demand-prefetch-equal policy does not iovprperformance
compared to no prefetching for 64KB and 128KB row buffer sizence it does
not take into account the usefulness of prefetches. Witinge leow buffer, useless
prefetches have higher row buffer locality because manyheirt hit in the row
buffer due to the streaming nature of the prefetcher. As altiedemand-prefetch-
equal significantly delays the service of demand requedtsge row buffer sizes

by servicing more useless row-hit prefetches first.

In contrast to these two rigid scheduling policies, PADE4drio service only
useful row-hit memory requests first, thereby significaimiyproving performance
even for large row buffer sizes (8.8% and 7.3% compared toneéefching for
64KB and 128KB row buffers). Therefore, PADC can make a pcéfer viable and
effective even when a large row buffer size is used becausgkats advantage of the

increased row buffer locality opportunity provided by agar row bufferonly for

73

useful requests instead of wasting the increased amourtaivadth enabled by a

larger row buffer on useless prefetch requests.

5.5.8 Effect with a Closed-Row DRAM Row Buffer Policy

So far we have assumed that the DRAM controller employs tles-opw
policy (i.e., it keeps the accessed row open in the row buaifer the access even
if there are no more outstanding requests requiring the.rdwhis section, we
evaluate the effectiveness of PADC with a closed-row polidye closed-row pol-
icy closes (by issuing a precharge command) the curreménred row when all
row-hit requests in the DRAM request buffer have been sedvicy the DRAM
controller. This policy can hide effective precharge time 1) overlapping the
precharge latency with the row-access latency [22, 49] amssRing the precharge
command (closing a row buffer) earlier than the open-rowigyol Therefore, if
no more requests to the same row arrive at the DRAM requegtrbafter a row
buffer is closed by a precharge command, the closed-rowyoén outperform the
open-row policy. This is because with the closed-row polibg later requests do
not need a precharge before activating the different ronwvél@r, if a request to
the same row arrives at the DRAM request buffer soon afterdies closed, this
policy has to pay a penalty (the sum of the non-overlappedharge latency and
the activation latency) which would not have been requicedte open-row policy.
Consequently, for applications that have high row buffealdy (i.e., applications
that generate bursty row-hit requests) such as streantiiliytg applications, the
open-row policy outperforms the closed-row policy by reidgcre-activations of

the same rows that will be needed again in the near future.

Since the closed-row policy still services row-hit reqedsst until no more
requests to the same row remain in the DRAM request buffeaniincrease DRAM
throughput within the scope of the requests that are outstgrn the DRAM re-
quest buffer. Therefore, when a prefetcher is enabled Welttosed-row policy, the
same problem exists as for the open-row policy: none of thid prefetch schedul-

ing policies can achieve the best performance for all appbas since they are not

74

aware of prefetch usefulness. Therefore PADC can still vedf&ctively with the

closed-row policy.

Figure 5.25 shows the performance and bus traffic when PADGsé&sl
with the closed-row policy for the 32 4-core workloads. THesed-row policy
with demand-first scheduling slightly degrades perforneabg 0.5% compared
to the open-row policy with demand-first scheduling. Thidveézause there is a
large number of streaming/striding (and prefetch-frighdipplications in the SPEC
2000/2006 benchmarks whose performance can be signifraamroved with the
open-row policy. The performance improvement of the opmmpolicy is not very
significant because there is also a large number of apmitathat work well with
the closed-row policy as they do not have high row buffer libza

w
=
[y
=)

™ O 100
2 3.0 — 8
= £ o0
N =
Q 25 - O 804
2 5
8 & | @]| ===demand-first

2.0 &) .
g = 601 == demand-first-closed-row
0 15 | < 50} ===demand-pref-equal-closed-row
T © ,,1| ==aps-closed-row
Z 1ol | % 1| ==PADC-closed-row
2 = ==PADC
Q n
; 0.5 — S

m

0.0- L 0.0-

(a) System performance (b) Average traffic

Figure 5.25: Effect of PADC on closed-row scheduling policy

The results show that PADC is still effective with the closed policy
since it still effectively exploits row buffer locality (whin the scope of the requests
outstanding in the DRAM request buffer) and reduces the thegaffects of use-
less prefetch requests. PADC improves weighted speedup@9% @nd reduces
bandwidth consumption by 10.9% compared to demand-firsgddding with the
closed-row policy. Note that PADC with the open-row politghtly outperforms
PADC with the closed-row by 1.1% for weighted speedup. QOljerge conclude
that PADC is suitable for different row buffer managemenliges but it is more

75

effective with the open-row policy due to the existence argér number of bench-

marks with high row buffer locality.

5.5.9 Effect with a Shared Last-Level Cache

Throughout this chapter, we evaluate our mechanism on Cidtes\s with
private on-chip last-level caches rather than a sharedecattere all cores share
a large on-chip last-level cache. This allowed us to easiynsand analyze the
effect of PADC in the shared DRAM system by isolating the @ffef contention
in the DRAM system from the effect of interference in sharadhes. However,
many commercial processors already employ shared lastdaches in their CMP
designs [77, 80]. In this section, we evaluate the perfooaaf PADC in on-chip
shared last-level caches on the 4 and 8-core systems to $leogffectiveness of
PADC in systems with a shared last-level cache.

For this experiment, we use a shared last-level cache whpséss=quiva-
lent to the sum of all the private last-level cache sizes inb@seline system. We
scaled the associativity of the shared cache with the numibeores on the chip
since as the number of cores increases, the contention faclecset increases.
Therefore the 4-core system employs a 2MB, 16 way set-aasarcache and the
8-core system has a 4MB, 32 way set-associative cache. \&etsel32 way set-
associativity for the 8-core system in order to show how tleemanism works with
a very aggressive last-level cache. If the associativitgss, our mechanism per-
forms even better. We also assume that each core employsitsnolependent
stream prefetcher that monitors the core’s demand accessesends prefetched
data into the shared last-level cache. Note that our meshmoan also work for
a single prefetcher which monitors all cores’ accesses andrgtes prefetches for
all cores [77, 80] by simply associating core ID bits with legrefetch request,
signifying which core generated the prefetch request. Waig, PADC can update
the appropriate per-core counters to estimate prefetalracg of each core.

Figures 5.26 and 5.27 show weighted speedup and averageatfficsan the

76

4 and 8-core systems with shared last-level caches. PAD@edatms demand-
first by 8.0% and 7.6% on the 4 and 8-core systems respectiyconclude that
PADC works efficiently for shared last-level caches as well.

w

o
-
N

[

N
o
]
2R
o

N
7

== nO-pref

=== demand-first

=== demand-pref-equal
=== gps-only

== gps-apd (PADC)

I
7

Weighted speedup (WS)
Bus traffic (M cache lines)

o r N W M OO N ®©® ©
I T T O T S D N

0.0-

(a) System performance (b) Average traffic

Figure 5.26: Effect of PADC on shared last-level cache onr-system

45 20
~
=, ad 0 18
) 40 D 17
s S
< 3.5 -
o [}
> 3.0 < 134
o Q
@ @ 124
O 251 O 114
o 104
0 é 94
2 O 87| mmmm no-pref
= = 1| == demand-first
=2 = 54 === demand-pref-equal
o 0 ;‘: == aps-only
; @ 2i|===aps-apd (PADC)
14
0’

(a) System performance (b) Average traffic

Figure 5.27: Effect of PADC on shared last-level cache oo@& system

Note that the demand-prefetch-equal policy does not wotkameeither of
the shared cache systems (degrading WS by 2.4% and 10.4%oexhtp demand-
first for 4 and 8-core systems). This is because the contemtithe shared cache
among the requests from different cores significantly iases compared to that
of a private cache system. With private caches, uselesstphefs from one core
can only replace useful lines of that same core. Howevel) wishared cache,

useless prefetches from one core can also replace the Ulisefsilof all the other

77

cores. These replaced lines must be brought back into thee@gain from DRAM
when they are needed. Therefore, the total bandwidth copgamsignificantly in-
creases. This cache contention among cores becomes digpeaiae with demand-
prefetch-equal for prefetch-unfriendly applications.isTts because the demand-
prefetch-equal policy results in high cache pollution siiitcblindly prefers to in-
crease DRAM throughput without considering the usefulrefgsrefetches. The
demand-prefetch-equal policy increases bus traffic by%28d 46.3% compared
to demand-first for the 4 and 8-core systems as shown in Bgué(b) and 5.27(b).
In contrast, PADC delays the service of useless prefetchdsatso drops them
thereby mitigating contention in both the shared cache hadghared DRAM sys-

tem.

5.5.10 Effect with Different Last-Level Cache Sizes

PADC aims to maximize DRAM throughput for useful memory (derd
and useful prefetch) requests and to delay and drop useles®m requests. One
might think that a prefetch/demand management technigcle ast PADC would
not be needed for larger last-level caches since a largdrecean reduce cache
misses (i.e., memory requests). However, a prefetchertitegemerate a significant
number of useful prefetch requests for some applicationgrogram phases by
correctly predicting demand access patterns which canaatdred even in large
caches due to the large working set size or streaming nafuteeqorogram. In
addition, the prefetcher can issue a significant number efegs prefetches for
other applications or program phases. For these reasangttérference between
demands and prefetches still exists in systems with largeesa Therefore, we

hypothesize PADC is likely to be effective in systems wittytalast-level caches.

To test this hypothesis, we evaluate the effectiveness &f@Pfor various
last-level cache sizes. We vary the private last-level eatre from 512KB to 8MB
per core and the shared cache size from 2MB to 32MB (otherecpaltameters are
as described in Section 5.5.9) on our 4-core CMP system.r&igi28 shows the
system performance (weighted speedup) for the 32 4-corkloams.

78

As expected, baseline system performance improves wiktaache sizes.
However, the stream prefetcher still effectively impropesformance compared to
no prefetching with either the demand-first or the demaredgtch-equal policy. In
addition, PADC consistently and significantly improvesfpenance compared to
both demand-first and demand-prefetch-equal policies dtin private and shared
caches, regardless of cache size. This is mainly becausevétie large caches
there is still a significant number of both useful and usepgs$etches generated.
Therefore, the interference between prefetch and demaqueksts still needs to be

intelligently controlled.

»
=}

%)
=

S - .-

Q - -

@

Q. 309" e

%)

3 -o- no-pref

2 I////- demand-first

% -o-demand-pref-equal
2 -e- aps

; ——aps-apd (PADC)

2.0 : ‘ ‘ ‘
512KB 1MB 2MB 4MB 8MB
(a) Private last-level caches per core

n “T= no-pref

; -m- demand-first

Z -o-demand-pref-equal

S -e-aps

? —»—aps-apd (PADC)

[}

Q 30

n

©

)

=

2

()

=

2.0 T T
2MB 4MB 8MB 16MB 32MB
(b) Shared last-level cache

Figure 5.28: Effect of PADC on various cache sizes on 4-cgsées

There are two other notable observations from Figure 5.2&d demand-
pref-equal policy starts outperforming the demand-firdigyofor private caches
greater than 1MB (8MB for the shared cache), and 2) the pmdace of APS

79

(without APD) becomes closer to that of PADC (APS and APD tiogg as the
cache size becomes larger. These trends hold for both @arat shared last-level

caches.

Both observations can be explained by two reasons. Firstiged cache
reduces irregular (or hard-to-prefetch) conflict cachesessdue to the increased
cache capacity. This makes the prefetcher more accuratubedt reduces the
allocations of stream entries for hard-to-prefetch acgadterns (note that only a
demand cache miss allocates a stream prefetch entry). &esdarger cache can
tolerate some degree of cache pollution. Due to the incceeaehe capacity, the
probability of replacing a demand or useful prefetch linéhva useless prefetch in
the cache is reduced.

For these reasons, the effect of deprioritizing or droppikgly-useless
prefetches becomes less significant with a larger cache résudt, as cache size in-
creases, techniques that prioritize demands (e.g., defivatjdand drop prefetches
(APD) start becoming less effective. However, the intenfee between prefetch
and demand requests is not completely eliminated since appleations still suf-
fer from useless prefetches. PADC (and APS) is effectiveducing this interfer-
ence in systems with large caches and therefore still ppdaignificantly better

than the rigid scheduling policies.

Note that PADC is cost-effective for both private and shaastilevel caches.
For instance, PADC with a 512KB private last-level cacheqoee performs almost
the same as demand-first with a 2MB private last-level caeneg@e as shown in
Figure 5.28(a). Thus, PADC (which requires only 4.25KB atym) achieves the
equivalent performance improvement that an additional gUBMB x 4 cores) of
cache storage would provide in the 4-core system.

5.5.11 Effect on Other Prefetching Mechanisms

To show that the benefits of PADC are orthogonal to the prefetcalgo-
rithm employed, we briefly evaluate the effect of our PADC difedent types of

80

prefetchers: PC-based stride [1], CZone Delta Correlat@tC) [59], and the
Markov prefetcher [26]. Figure 5.29 shows the performanug laus traffic results
averaged over all 32 workloads run on the 4-core system \ighthree different
prefetchers. PADC consistently improves performance addees bandwidth con-
sumption compared to the demand-first or demand-prefedoaigolicies with all

three prefetchers.

3.5 35 3.5

Stride C/DC Markov

— 3.0

w
=}

N
b

2.5+

— 2.04

»
?

== no-pref
== demand-first
== demand-pref-equal
== PADC

1.5+

— 1.5

e
7

L 1.04

Weighted speedup (WS)

o
2

L~ 0.5

©
o

— 0.0-

(a) Performance
12

Stride c/bC 1 Markov

11

[
SN
PP
=N

i
L.
=
o
I

== no-pref
== demand-first
== demand-pref-equal
==PADC

Bus traffic (M cache lines)

o P N W A O O N ® ©
I | | | | | | | I I
o B N W M OO O N ®© ©
I | | | | | | | I I

o Br N W A OO N ®©® ©
[T TN VI OTA T T SO DT VO

(b) Traffic

Figure 5.29: PADC on stride, C/DC, and Markov prefetchers

The PC-based stride and C/DC prefetchers successfullymesgsignificant
number of memory access patterns as the stream prefetobetltgreby increasing
the potential for exploiting row buffer locality. In addi, these prefetchers also
generate many useless prefetches for certain applicafldresefore, PADC signif-
icantly improves performance and bandwidth efficiency witbse prefetchers by

increasing DRAM throughput for useful requests and redyte negative impact

81

of useless prefetches.

The performance improvement of PADC on the Markov prefatibiehe
least. This is because the Markov prefetcher, which expleinporal as opposed
to spatial correlation, does not work as well as the othefepebers for the SPEC
benchmarks. It generates many useless prefetches whithdesagnificant waste
and interference in DRAM bandwidth, cache space, and meimaffgr resources.
Furthermore, it does not generate many useful prefetchiebdd SPEC benchmarks
and therefore its maximum potential for performance improent is low. As such,
the Markov prefetcher significantly increases bandwidthstonption and results
in little performance improvement compared to no prefetghas shown in Fig-
ure 5.29. PADC improves the performance of the Markov pogfet (mainly due
to APD) by removing a large number of useless prefetchesakeieping the small
number of useful prefetches. PADC improves WS by 2.2% andaesibandwidth
consumption by 10.3% (mainly due to APD) compared to the dhehiast policy.

We conclude that PADC is effective with a wide variety of gtehing mechanisms.

5.5.12 Effect on a Runahead Execution Processor

Runahead execution [8, 55] is a promising technique thdefotees use-
ful data by executing future instructions that are indeggndf a long latency
(runahead-causing) load instruction during the stall tohehe load instruction.
Because it is based on the execution of actual instructromshead execution can
prefetch irregular data access patterns as well as regoks. oUsually, runahead
execution complements hardware prefetching and resuhgim performance. In
this section, we analyze the effect of PADC on a runaheadegsmr. We imple-
mented runahead capability in our baseline system by augmgemvalid bits in
the register files for each core. Since memory requests glaiinahead modes are
very accurate most of the time [55], we treat runahead ragules same as demand
requests in DRAM scheduling.

Figure 5.30 shows the effect of PADC on a runahead processahé 32

82

workloads on the 4-core CMP system. Each runahead prochasoexactly the
same parameters as our baseline processor, but it also Uskstayte runahead
cache to support store-load forwarding during runaheadwgian. Adding runa-
head execution on top of the baseline demand-first policyongs system perfor-
mance by 3.7% and also reduces bandwidth consumption by. 3.6Bbis because
we use a prefetcher update policy that trains existing strpeefetch entries but
does not allocate a new stream prefetch entry on a cache mwsygdunahead
execution @nly-train). Previous research [52] shows that this policy is best per-
forming and most efficient. Runahead execution with the -@rain policy can
make prefetching more accurate and efficient by capturirggidar cache misses
during runahead execution. These irregular misses trastieg stream prefetch
entries but new, more speculative, stream prefetch entriésiot be created dur-
ing runahead mode. This not only prevents the prefetchen fyenerating useless
prefetches due to falsely created streams but also imptbeesccuracy and time-
liness of the stream prefetcher since existing streamsragnto be trained during

runahead mode.

w
=
o

w
o
T
I

N
2
|
I

H === no-pref

== no-pref-ra

== demand-first

1 ==demand-first-ra
|| == aps-only

== aps-only-ra

| ==PADC

| = PADC-ra

i - N B

(a) Performance (b) Average traffic

= g
o2
I I

Weighted speedup (WS)
I

Bus traffic (M cache lines)
o L N w S o (o2} ~ [e<] ©

o
o
1
I

0.0-

Figure 5.30: Effect of PADC on runahead execution

Figure 5.30 shows that PADC still effectively improves pemiance by
6.7% and reduces bandwidth consumption by 10.2% compai@duacahead CMP
processor with the stream prefetcher and the demand-fifstypoWe conclude

that PADC is effective at improving performance and bandhviefficiency for an

83

aggressive runahead CMP by successfully reducing thefenéeice between de-
mand/runahead and prefetch requests in the DRAM controller

5.5.13 Comparison with Dynamic Data Prefetch Filtering andFeedback Di-
rected Prefetching

Dynamic Data Prefetch Filtering (DDPF) [91] tries to eliata useless
prefetches based on whether or not the prefetches werd us#ie past. It records
either the past usefulness of the prefetched address (d?@hef the instruction
which triggered the prefetch) in a table similar to how a t\&eel branch predictor
stores history information [82]. When a prefetch requestésited, the history table
is consulted and the previous usefulness information id tseletermine whether
or not to send out the prefetch request. Feedback Direcif@tehing (FDP) [73]
adaptively adjusts the aggressiveness of the prefetcloedér to reduce its negative

effects.

Recall that PADC has two components: APS (Adaptive Pref8tdiedul-
ing) and APD (Adaptive Prefetch Dropping). Both DDPF and RD® orthogonal
to APS because they do not deal with the scheduling of piedstevith respect
to demands. As such, they can be employed together with AR$atamize the
benefits of prefetching. On the other hand, the benefits of BIHF®P, and APD
overlap. DDPF filters out useless prefetches before thegeme to the memory
system. FDP eliminates useless prefetches by reducinggtiressiveness of the
prefetcher thereby reducing the likelihood that useles$gpch requests are gener-
ated. In contrast, APD eliminates useless prefetches lyptrg themafter they
are generated. As a result, we find (based on our experimamadyses) that APD

has the following advantages over DDPF and FDP:

1. Both DDPF and FDP eliminate not only useless prefetchésilbao a
significant fraction of useful prefetches. DDPF removes ynaseful prefetches by
falsely predicting many useful prefetches to be uselesss i§hdue to the aliasing
problem caused by sharing the limited size of the historyetalmmong many ad-

dresses. FDP can eliminate useful prefetches when it redbheeaggressiveness of

84

the prefetcher. In addition, we found that FDP can be verw sibincreasing the
aggressiveness of the prefetcher when a new phase stactdiexe In such cases,
FDP cannot issue useful prefetches whereas APD would hswedgshem because

it always keeps the prefetcher aggressive.

2. The hardware cost of DDPF for an last-level cache is experssnce
each cache line and MSHR must carry several bits for indetkiagrefetch history
table (PHT) to update the table appropriately. For exanfplea PC-based gshare
DDPF with a 4K-entry PHT, 24 bits (12-bit branch history ardlit load PC bits)
per cache line are needed in addition to the prefetch bit pehe line. For the
4-core system we use, this index information alone accdont36KB of storage.
In contrast, APD does not require significant hardware cest/@ have shown in
Section 5.4.

3. FDP requires the tuning of multiple threshold values tottle the ag-
gressiveness of the prefetcher which is a non-trivial oation problem. APD
allows the baseline prefetcheratwaysbe very aggressive because it can eliminate
useless prefetches after they are generated. As suchjsheyaeed to tune multi-
ple different threshold values in APD because the aggressss of the prefetcher

never changes.

To evaluate the performance of these mechanisms, we imptech® DPF
(PC-based gshare DDPF for last-level cache prefetch figd81]) and FDP in our
CMP system. All the relevant parameters (FDP: prefetch raoguof 90%, 40%,
lateness of 1%, and pollution of 0.5% thresholds and polfutilter size of 4Kbits;
DDPF: filtering threshold of 3, table size of 4K entry 2-bitucers) for DDPF
and FDP were tuned for the best performance with the streafetoher in our
CMP system. Figure 5.31 shows the performance and bus todffidferent com-
binations of DDPF, FDP, and PADC averaged across the 32 walkl run on the
4-core system. From left to right, the seven bars show: 18lbesstream prefetch-
ing with the rigid demand-first policy, 2) DDPF with demandsfipolicy, 3) FDP
with demand-first policy, 4) APD with demand-first policy,BPPF combined with

85

APS, 6) FDP combined with APS, and 7) APD combined with AP&,(PADC).

When used with the demand-first policy, DDPF and FDP impraméopmance by
1.5% and 1.7% respectively while reducing bus traffic by 22 &nd 12.6%. In
contrast, APD improves performance by 2.6% while reducingtbaffic by 10.4%.
DDPF and FDP eliminate more useless prefetches than APMingsin less bus
traffic. However, DDPF and FDP eliminate many useful préfescas well. There-

fore, their performance improvement is not as high as APD.

w

3
[N
o

g 3.0 - g Z
_g. 2.5 — % 71

D 20] | ® 69 == demand-first

o S 59 == demand-first-ddpf.
_“O’ 151 - < 1| ==demand-first-fdp |
> 2 == demand-first-apd
< 10l n 'S 3| ==aps-ddpf
-% = 1| ==aps-fdp L
; 051 | é . == gps-apd (PADC)

0.0- o
(a) System performance (b) Average traffic

Figure 5.31: Comparison of PADC with DDPF and FDP with demfursd

Our adaptive scheduling policy and DDPF/FDP are compleangmaind im-
prove performance significantly when combined togethereMilsed together with
Adaptive Prefetch Scheduling, DDPF and FDP improve perémoe by 6.3% and
7.4% respectively. Finally, the results show that PADC etftprms the combi-
nation of DDPF/FDP and APS which illustrates that Adaptivef€ch Dropping
IS better suited to eliminate the negative performancectdsfef prefetching than
DDPF and FDP. We conclude that 1) our adaptive schedulingntgae comple-
ments DDPF and FDP whereas our APD technique outperformsHdpid FDP,
and 2) DDPF and FDP reduce bandwidth consumption more th@ntA®they do
So at the expense of performance.

If a prefetch filtering mechanism is able to eliminate alllase prefetches
while keeping all useful prefetches, the demand-prefetpal policy would be

best performing. That is to say, we do not need an adaptiveanestheduling

86

policy since all prefetches sent to the memory system woalddeful. However,
it is not trivial to design such a perfect prefetch filteringechanism. As discussed
above, DDPF and FDP filter out not only useless prefetchealbata lot of use-
ful prefetches. Therefore, combining those schemes withasel-prefetch-equal
does not necessarily significantly improve performanceesthe benefits of useful

prefetches are reduced.

Figure 5.32 shows performance and average traffic when DDBFBP are
combined with demand-prefetch-equal. Since DDPF and FB®ve a significant
number of useful prefetches, performance improvementtisery significant (only
by 2.3% and 2.7% compared to demand-first). On the other FRRNOC signifi-
cantly improves performance (by 8.2%) by keeping the benefitiseful prefetches

as much as possible.

w
[N
=

~ 0 10
g 3.0 - § ol
2 - g
S o 71
D 20] I 8
g = 63 === demand-first
s | < 5 ==demand-pref-equal
8 A .© 1| === demand-pref-equal-ddpf
Z 10 o , || ==demand-pref-equal-fdp
= =] == aps
g 05 | @ 24 =aps-apd (PADC)
m 14

0.0- | 01

(a) System performance (b) Average traffic

Figure 5.32: Comparison of PADC to DDPF and FDP with demaredepch-equal

5.5.14 Interaction with Permutation-Based Page Interleawg

Permutation-based page interleaving [87] aims to redusecanflicts by
randomly mapping the DRAM bank indexes of addresses so liegt are more
spread out across the multiple banks in the memory systeis.t@thnique signif-
icantly improves DRAM throughput by increasing utilizatiof multiple DRAM
banks (exploiting bank-level parallelism). The increaséitization of the banks

has the potential to reduce the interference between memqguests. However,

87

this technique cannot completely eliminate the interfeeebhetween demand and
prefetch requests in the presence of prefetching. Any pgédetch scheduling pol-
icy in conjunction with this technique will still have theraa problem we describe
in Section 5.1: none of the rigid prefetch scheduling pebotan achieve the best
performance for all applications since they are not awarprefetch usefulness.

Therefore, PADC is complementary to permutation-base@ pagrleaving.

Figure 5.33 shows the performance impact of PADC for the 82r-work-
loads when a permutation-based interleaving scheme igegpprhe permutation-
based scheme improves system performance by 3.8% over salirmwith the
demand-first policy. This is because the permutation schrenheces row-conflicts
by spreading out requests across multiple banks.

w
[N
o

w
o
T
I

1

N
2
f
I

H === no-pref
|| == no-pref-perm
== demand-first

n
o
T
I

=
b

1| ==demand-first-perm
|| == aps-only

== aps-only-perm

{| ==PADC

ll = PADC-perm

T [

(a) Performance (b) Average traffic

Weighted speedup (WS)
I

°
b

Bus traffic (M cache lines)
e R e s g2 r 2

0.0-

Figure 5.33: Effect of PADC on permutation-based page led®ring

APS and PADC consistently work effectively combined wita germutation-
based interleaving scheme by efficiently managing the fetence between de-
mands and prefetches based on usefulness of prefetchesardPBADC improve
system performance by 2.9% and 5.4% respectively compargtetdemand-first
policy with the permutation-based interleaving schemesoAPADC reduces band-
width consumption by 11.3% due to adaptive prefetch dragppin

88

5.6 Summary

This chapter shows that existing DRAM controllers that esgplgid, non-
adaptive prefetch scheduling and buffer management pslean limit performance
since they do not take into account the usefulness of pfrefetjuests. To overcome
this limitation, we propose a low hardware cost Prefetchraf@dDRAM Controller
(PADC), which aims to 1) maximize the benefit of useful prefies by adaptively
prioritizing them, and 2) minimize the harm caused by usefgefetches by adap-
tively deprioritizing them and dropping them from the memoequest buffers. To
this end, PADC dynamically adapts its memory schedulingauffér management
policies based on prefetcher accuracy. We show that it isyargémechanism that
is effective for a variety of systems and that it is orthoddoagreviously proposed
prefetching and prefetch filtering techniques.

89

Chapter 6

Prefetch Management for Increasing DRAM
Bank-Level Parallelism (BLP)

This chapter studies how to manage prefetch and demandstsgueon-
chip request buffers to improve DRAM bank-level paralleli¢éBLP) in the pres-
ence of prefetching. We propose two techniques [39]. On@isfetch issue policy
that aims to maximize BLP for memory requests of the runnimgiaation on each
core. The other is a request issue policy which tries to mirenthe destructive
interference in the BLP of each application when multiplplegations run together

on a CMP system.

6.1 Prefetch Issue Policy to Increase BLP
6.1.1 Prefetching: Increasing Potential for DRAM BLP

Hardware prefetchers can increase the potential for DRAMP Blecause
they generate multiple memory requests within a short gesfaime. With prefetch-
ing enabled, demand requests and potential future req(estful prefetches) are
both in the memory system at the same time. This increasenouceent requests

provides more potential to exploit DRAM BLP as shown in thikdiwing example.

Figure 6.1(a) shows a code example frbbguantumwhere a significant
number of useful prefetches are generated by the streametpinet we used in
Chapter 5. With no prefetching, the demand accesses wouid thee sequence:
cacheline addresses A, A+1, A+2, and A+3 (for regede([].state). When prefetch-
ing is employed, cache lines to A+1, A+2, and A+3 would be gieied. We as-
sume that the first two accesses (to cache line addressed A;dr) are mapped to
the same DRAM bank and that the two subsequent accessesZi@Ad A+3) are

90

mapped to a different bank.
for(i=0; i<reg—>size; i++)

reg—>node[i].state "=
((MAX_UNSIGNED) 1 << target);

(a) Code example

For reg—>node[].state
Dem x: Demand to address x
Pref x: Prefetch to address x

Overlapped service time
<+

Bank 1 —[Dem A+i Dem A+} Without

""""""""" T refetchin
Bank 0[Dem AIDem A@ P J

Time |
(b) DRAM service time without pfrefetcher

|
Overlapped service time !
< >

! N Saved cycles
Bank 1 Pref A+2| Pref A+3 .

{ I j With
""""""""" Tttt TT prefetching
Bank 0 Dem A | Pref A+1)

Time
(c) DRAM service time with prefetcher

Figure 6.1: How prefetching can increase DRAM BLiBquantun)

Figure 6.1(b) shows the DRAM service time when the code iswbesl
without prefetching. Due to the lookahead provided by theepssor’s instruction
window, accesses to A+1 and A+2 are slightly overlapped. l@nadther hand,
with the prefetcher enabled, if the prefetches reach the ongsystem (DRAM
request buffers) quickly such that the DRAM controller cae sll these requests,
the DRAM service time of the prefetches significantly overis shown in Fig-
ure 6.1(c). Therefore, overall DRAM service time is sigrafitly improved com-

pared to no prefetching (shown as “Saved cycles” in the figure

91

As shown in the example, a hardware prefetcher can incréaspdtential
for improving DRAM bank-level parallelism. However, nortlyathis potential is

NOT always fully exposed to the DRAM system.

6.1.2 What Can Limit Prefetching’s Benefits?

If an on-chip memory system design does not take DRAM BLP auo
count, it may limit the benefits of prefetching when the totainber of outstanding
requests allowed in the on-chip memory system is limitedis Thtrue for Miss
Status/Information Holding Registers (MSHRs) that keepskt of all outstand-
ing cache misses in the system. All memory requests mustboistllocated an
MSHR entry before entering the DRAM request buffers wheey tire considered
for DRAM scheduling. The request remains in the MSHR untvged by DRAM.
The MSHR structure is complex and therefore costly to ineeda size [79] since
it requires content-associative search. Therefore, tloecelof which requests are
placed into the resource-limited MSHRs and finally into DRA®{uest buffers
significantly affects the amount of BLP exploited by the DRAnNtroller.

For example, the FIFO buffer (which we call the prefetch esjbuffer)
in the Intel Core design [7] buffers prefetch requests uhily can be sent to the
memory system. This FIFO structure will always send the stlgeefetch request
to the memory system provided that the memory system has fooam additional
request. This design choice can limit the amount of DRAM BixPleited when
servicing the prefetch requests since the oldest prefeiaibe buffer is always sent
first regardless of whether or not it can be serviced in palralith other requests. A
more intelligent policy would consider DRAM BLP when serglprefetch requests

to the memory system.

Figure 6.2 illustrates this problem. Figure 6.2(a) shovestiitial state of the
prefetch request buffer, MSHRs (three entries), and DRANuest buffers (three
entries per DRAM bank). There is only one outstanding demagdest (Request
1 in the figure). This request is mapped to Bank 0 and just afoobé scheduled

92

DRAM controller

A A
1

DRAM

request

buffers

Bank O Bank 1
MSHRs Prefetch request buffer

1.Dem BO

6.Pref B1

5.Pref B1

A 4 Pref B1
3.Pref BO Dem Bx: Demand to DRAM bank X
Older Pref Bx: Prefetch to DRAM bank x

2.Pref BO

|

() Initial state of memory buffers

Overlapped service time
< B

Bank 14I[4.Pref B1) 5.Pref Elai[e.Pref BY)
777777777777777777777777 -3 FIFO

Bank O@Dem BOIZ.Pref BOI3.Pref B@I :

Time .
Prefetch issue order to MSHRs: 2, 3, 4, 5, §

(b) DRAM service time for FIFO prefetch issue

Overlapped service time
>

Bank 1/-{4.Pref B1| 5.Pref B1 6.Pref B

Bank OL. DemBO) 2. PrefBd 3. PrefBd

' Saved cycllls

BLP-
aware

Time
Prefetch issue order to MSHRs: 4, 2, 5, 3, 6
(c) DRAM service time for DRAM BLP-aware prefetch issu

Figure 6.2: FIFO vs. DRAM BLP-aware prefetch issue policy

93

to access DRAM. There are five prefetches in the prefetchesicauffer. The first
two prefetches will access DRAM Bank 0 and the three subsequefetches will
access DRAM Bank 1. For this example we assume that all tHietphes are useful

and therefore will be required by the program soon.

Figure 6.2(b) shows the DRAM service timeline when prefetchre is-
sued into MSHRs in a FIFO fashion. In this case, the demangestgnd the two
prefetch requests to Bank O fill up the MSHRs and thereforditbeprefetch to
Bank 1 will not be issued until the demand request gets setiiiy DRAM and its
MSHR entry is freed. As a result, BLP is low.

A DRAM BLP-aware issue policy would send a prefetch to Bankst ffol-
lowed by a prefetch to Bank 0. In other words, we can altefpétsue prefetches to
Bank 1 and Bank 0. Using this issue policy, the service ofgiotfes to Bank 1 can
start earlier and overlap with accesses to Bank 0 as showiginé=6.2(c). There-
fore, BLP increases and overall DRAM service time improw&@sogvn as “Saved
cycles” in the figure).

This example provides two insights. Firstiply increasing the number of
outstanding requests in the memory system does not neitgssaan that their la-
tencies will overlapA BLP-unaware prefetch issue policy (to MSHRs) can seyerel
limit the BLP exploited by the DRAM controller. Second, a i prefetch is-
sue policy that is aware of which bank a memory request widkas can improve
DRAM service time by prioritizing prefetches to differerditiks over prefetches to

the same bank.

So far we assumed that all prefetches are useful. Howevaeiétches are
useless, the BLP-aware prefetch issue policy will not befaél It may increase
DRAM throughput but only for useless requests. Uselessfokés should be not
issued to the memory system regardless of whether it ineseBEP or not.

94

6.1.3 Mechanism: BLP-Aware Prefetch Issue

We propose BLP-Aware Prefetch Issue (BAPI) to maximize BEBseful
memory requests exposed to the DRAM controller. BAPI treesénd prefetches
from the prefetch request buffer to the MSHRs such that thelbmar of different
DRAM banks the requests access is maximized rather thannggtiek prefetches
based on FIFO order. To achieve this, the following hardvsaggport is required.

6.1.3.1 Hardware Support

The FIFO prefetch request buffer is modified into the strregushown in
Figure 6.3. Instead of having one unified FIFO buffer for bufig new prefetch
requests before they enter MSHRs, BAPI contains multipfeCs! (one per DRAM
bank) that buffer new prefetch requests. However, to keemtimber of supported
new prefetch requests the same as the baseline and alsamaizeithe total storage
cost dedicated to prefetch requests, we use muliifglex buffer§one per DRAM
bank) and a single, unifigatefetch request storagructure. An index buffer stores
indexes (i.e., pointers) into the prefetch request stostgecture. The prefetch
request storage structure is a regular memory array thegsfwrefetch addresses
generated by the prefetcher. Last, therefiea listthat keeps track of free indexes
in the prefetch request storage structure. The index Biffed free list are all FIFO
buffers and all of the buffers have the same number of erdas¢le baseline unified
FIFO.

When the prefetcher generates a request, the free list mutted. If a free
index exists, the request address is inserted into thetplefequest storage struc-
ture at the index allocated to it. At the same time, that indetso inserted into the
appropriate index buffer corresponding to the bank thegtcéfis mapped to. BAPI
selects one index among the oldest indexes from each ind&x lewery processor
cycle. Then, the corresponding prefetch request (i.efefmle address) is obtained
from the prefetch request storage and sent to the MSHR &tlocH the MSHR

allocator successfully allocates an entry for the prefe¢cjuest, the selected index

95

From prefetcher
P 7 !

Pref addr £ Index buffer Index buffer
generated Free |ist| | forbank O for bank N-1
Prefetch request ° ° °
storage o e e o b
Index Index Index
: Index Index Index
Pref add Eree mdef $ $
Pref addf™ |ndex selociad BLP-aware prefetch issuef
l Prefetch selected ﬁ f
MSHR bank Prefetch
MSHR allocator occupancy accuracy

Figure 6.3: Hardware structures for BLP-Aware Prefetclués@BAPI)

is inserted into the free list and also removed from the inolgker.

6.1.3.2 BLP-Aware Prefetch Issue Policy

BAPI, shown in Figure 6.3, decides which prefetch to sencheoNISHR
allocator among the prefetch indexes from each index hulffenakes its decision
based on the DRAM BLP currently exposed in the memory sysi@monitor the
DRAM BLP of requests, the processor keeps track of the nurabeutstanding
requests (both demands and prefetches) in the MSHRs selydmateach DRAM
bank. To accomplish this, we use a counter for each DRAM bealked MSHR
bank occupancy countewhich keeps track of how many requests to that bank
are currently present in the MSHRs. When a demand/prefefgphest is allocated
an MSHR entry, its corresponding bank occupancy counterciemented. When
a request is serviced and its MSHR is freed, the correspgniolaimk occupancy

counter is decremented.

The key idea of BAPI is to select the next prefetch to place ihe MSHRs
by examining MSHR bank occupancy counters such that thetseleequest im-
proves the potential DRAM BLP. To do so, one would choose &eful request to
the bank whose MSHR bank occupancy counter is the smallesteter, we found

96

that this policy alone is not enough to expose more BLP to tRAM controller
for all applications. There are a large number of applicaifor which a prefetcher
generates many prefetches to just a single bank but almgsefetches to the other
banks during a phase of execution (especially for streampomjcations). For such
applications, the issue policy based on MSHR occupancyeatt ends up filling
the MSHRs with requests to only one bank. This results in trablems. First, it
results in no BLP improvement because the prefetches/désrtarother banks that
are soon generated cannot be sent to the memory system bahaudSHRs are
already full. Second, the MSHRs can be filled up with prefescind thus demands
that need MSHR entries can be delayed.

To prevent this problem, BAPI uses a thresheld; fetch_send_threshold
to limit the maximum number of requests to a single bank thatlwe outstanding
in the MSHRs. This policy reserves room in the MSHRs for restgi¢o other
banks when most requests being generated are biased tofgusbanks. Because
many applications exploit row buffer locality in DRAM banksince the access
latency to the same row accessed last time is relatively,|bwaying too low a
threshold can hurt performance by preventing many of théulipeefetches to the
same row from being row hits (because the row may be closamtdodie remaining
prefetch requests arrive). On the other hand, having tolo aitpreshold will result
in no BLP improvement as the MSHRs may get filled with accetsemly few
banks. Therefore, balancing the threshold is importanhigh performance. We
empirically found that a value of 27 (when the total numbeM&HR entries is 32)
for prefetch_send_threshold provides a good trade-off for SPEC benchmarks by

exploiting BLP without constraining the row-buffer lodgliof requests.

Rule 3 summarizes our prefetch issue policy to MSHRs.

6.1.3.3 Adaptive Thresholding Based on Prefetch Accuracy

Prefetching does not work well for all applications or allagls of a sin-
gle application. In such cases, performance improvemefaws(or may even

97

Rule 3BLP-Aware Prefetch Issue policy (BAPI)

for each issue cycldo
1. Make the oldest prefetch to each banklid only if the cor-
responding M SH R_bank_occupancy_counter value is less than
prefetch_send_threshold.
2. Among those valid prefetches, select the request to timk bdose
M S H R_bank_occupancy_counter value is least.

end for

degrade) since useless prefetches will eventually be catyiresulting in artifi-
cially high BLP and wasted DRAM bandwidth. To mitigate thisiplem, our BLP-
aware adaptive prefetch issue policy limits the number efgiches allowed in the
MSHRs by dynamically adjustingre fetch_send_threshold based on the run-time
prefetch accuracy estimation described in Section 5.2His faturally limits the
number of prefetches sent to memory when prefetch accusbywi. This im-
proves performance for two main reasons: 1) it reserves moan@ in the MSHRsS
for demands, thereby reducing contention between demaqneests and useless
prefetches and 2) it effectively stalls the prefetcher frgemerating more useless
prefetches since the prefetch request buffer will quicldgdmme full.

BAPI dynamically adjustprefetchsendthresholdfor each core based on
the estimated prefetch accuracy in the previous intenfdhd estimated accuracy
is very low, a lowprefetchsendthresholdvalue is used, which severely limits the
number of useless prefetches sent to each bank. We emilyificahd that three
levels ofprefetchsendthresholdwork well for SPEC workloads.

6.2 Preserving DRAM Bank-Level Parallelism in CMP systems

BLP-Aware Prefetch Issue (BAPI) increases the potentidDBAM BLP
for individual applications on each core. In order for the ANR controller to ex-
ploit this potential, the increased BLP should be exposeth¢oDRAM request
buffers. However, in CMP systems, multiple cores sharesparthe on-chip mem-
ory system. In our CMP system described in 6.3.2, the DRAMrotler (s) is

98

(are) shared by all cores. Therefore, requests from diffeceres contend for the
shared DRAM request buffers in the DRAM controller. Due t tbontention, a
BLP-unaware Last-Level Cache-to-DRAM Controller (LLGIEE) request issue

policy can destroy the BLP of an individual application.

6.2.1 What Can Destroy BLP of Applications Running Togethe?

Figure 6.4 describes this problem. Figure 6.4(a) showgtitialistate of the
last-level cache (LLC) miss buffers of two cores (A and B) #mel DRAM request
buffers for two DRAM banks. Each core has potential to berfiefin BLP in that
one request of each core goes to Bank 0 and the other goeskdB&he LLC-to-
DC request issuer chooses a single request from the LLC rafssr$ to be placed

in the corresponding DRAM request buffer every cycle.

When a round-robin policy is employed in the LLC-to-DC regussuer,
for each cycle, a request from a different core is issuedDRAM request buffers
and the cores are prioritized in a round-robin order. If sacpolicy is used as
shown in Figure 6.4(b), Core As request to Bank 0 is sent @@DRAM request
buffers the first cycle and Core B’s request to Bank 1 is semtnixt cycle. The
DRAM controller based FR-FCFS [66, 76] would service thesguests (A0 and
B1) from different cores concurrently because they are tdest in each DRAM
bank request buffer. This results in the destruction of thé Botential of each
core because requests from the same core are servicediysestdad of in parallel.
Hence, the full latency of each request is exposed to eacharat therefore each

core stalls for approximately two DRAM bank access latesicie

On the other hand, a BLP-preserving LLC-to-DC request igsliey would
send all the requests from one core first as shown in Figuig)é.Fherefore, the
DRAM controller will service Core As requests (A0 and Al)raurrently since
they are the oldest in each bank. The requests from Core Balsdl be serviced in
parallel, after Core A's requests are complete. In this déseBLP potential of each
core is realized by the DRAM controller. The service of Coigrequests finishes

99

DRAM controller

v ! vt

DRAM reques
buffers Older
Bank 0 Bank 1
LLC-to—DRAM controller
request issuer
Req AQ Req B1
LLC miss buffers| Req Al Req BQ | Older
Core A Core B

(a) Initial state
Core B overlap

4‘>|I<7
Bank 1 { Req BlI Req Al)

DRAM request buffers

Req AQ |ReqBI] R P Round-
Olderl |Req BQ |ReqAl Bank 0 | Req AOI Req BO) _ robin
Core B Stall O Ti
Bank0 Bank1 Core A t Sl D p

(b) Final state of DRAM request buffers & resulting scheduIng for round-robin iss

Core A overlap __ Core B overlap ., Core B increased

4>'_|<7
7 > <3 1 cycles
DRAM request buffers ! \ =, y
Bank 1 [{ Req AL | ReqB1|
Req AQ |ReqAl e P = BLP-
Oider| |[ReqBQ |ReqBl BankO [ReqAO | ReqBO] _ @ preserving

Core B Stall JTim
Bank0 Bankl core A (s D= >
Core A saved cycles

(c) Final state of DRAM request buffers & resulting scheduling for BLP—preserving is¢

Figure 6.4: Round-robin vs. BLP-preserving request isileyp

100

much earlier compared to the round-robin policy becausee @ requests are
overlapped. Core A stalls for approximately a single DRAMkaccess latency
instead of two and core B’s stall time does not change mucleréefbre, overall

system performance improves because Core A can make fastgeps instead of

stalling.

This example shows that a round-robin-based LLC-to-DCestjissue pol-
icy can destroy the BLP within an application by conseclyiy@acing requests
from different cores into the DRAM request buffers. As sutiie DRAM con-
troller may not be able to exploit the BLP potential of eacpleyation, which ulti-
mately results in performance degradation. To ensure et application makes
fast progress with its DRAM requests serviced in parallstead of serially, the
LLC-to-DC request issuer should preserve the BLP of reguesin each core.

6.2.2 Mechanism: BLP-Preserving Multi-core Issue

BLP Preserving Multi-core Request Issue (BPMRI) tries tmimize the
destructive interference in the BLP of each application @MP system. The basic
idea is to consecutively send many memory requests from oreeto the DRAM
request buffers so that the BLP of that core (or applicaticar) be preserved in
the DRAM request buffers for DRAM scheduling. If requesisnira single core
arrive consecutively (back-to-back) into the DRAM requlestfers, they will be
serviced concurrently as long as the requests span muligleM banks, thereby
preserving the BLP within the individual application. Nkt our first technique,
BAPI, already increases the likelihood that outstandingnoy requests of a core

are to different banks; hence, BAPI and BPMRI are synewisti

BPMRI continues issuing memory requests from a single cieDRAM
request buffers until the number of consecutive requestsreaches a threshold,
request_send_threshold, or there are no more requests in that core’s LLC miss
buffer. When this termination condition is met, BPMRI chessnother core and
repeats the process. BPMRI selects the next core based ombowry intensive

101

each application is. It prioritizes the core (applicatiohat is the least memory
intensive. To do this, BPMRI monitors the number of requésa come into the
LLC miss buffer during predetermined intervals using a degi.LC miss counter
for each core. At the start of an interval, BPMRI ranks eaate ciased on the ac-
cumulated LLC miss counters (computed during the previotesval) and records
the rank in a registerank register for each core. The core with the lowest value
in its LLC miss counter is ranked the highest. The rank deir@eohfor each core is
used to select the next core (upon meeting a terminationitomdduring that in-
terval. The LLC miss counters are reset each interval totatdape phase behavior
of applications. Rule 4 summarizes the BPMRI policy.

Rule 4 BLP-Preserving Multi-core Request Issue policy (BPMRI)
A valid requests a request in a core’s LLC miss buffer that has a free entry in
the corresponding bank’s DRAM request buffer.

for each issue cycldo
next core «+ previous core
condl+« no valid requests inext core’sLLC miss buffer
cond2« consecutive requests fronext core >= threshold
if cond1 OR cond2 then

next core < highest ranked core with valid request

end if
issue oldest valid request fronext core

end for

We choose to limit the maximum number of consecutive regussit and
also choose to prioritize memory non-intensive applicaisince an uncontrolled
“one core-first policy” can lead to the starvation of memonpnsantensive appli-
cations. If a memory intensive application continuousipgates many requests,
once those requests start to be issued into the DRAM requéfetdy requests from
other applications may not get a chance to enter the DRAMestjouffers. Lim-
iting the maximum number of requests consecutively semhfeosingle core al-
leviates this problem. In addition, the performance impafctielaying requests
from a memory non-intensive application is more signifidghan delaying requests

from a memory intensive application. Therefore, priofiig requests from mem-

102

ory non-intensive applications (ranking) leads to bettarall system performance.
Note that this approach is similar to the shortest-job-pdicy in that it prioritizes
shorter jobs (memory non-intensive cores that spend lessith the memory sys-
tem) from the point of view of the memory system. The sho+jelstfirst policy

was shown to lead to optimal system throughput [70].

6.3 Experimental Methodology
6.3.1 Metrics

To measure CMP system performance, we use Individual Spe@&,
Weighted Speedup (WS), and Harmonic mean of Speedups (Hhwre de-
fined in Section 5.3.1. We also use prefetch accuracy (ACf&fefch coverage
(COV), bus traffic, and instruction window Stall cycles P@ald instruction (SPL)

as defined in Section 5.3.1 to analyze the performance of duhamisms .

To measure the degree of BLP exploited by the DRAM contra@jleantita-
tively, we define a BLP metric. We define DRAM BLP as the avenageber of
DRAM banks which are busy (servicing a request) when at leastbank is busy.
More formally, BLP; is defined as the number of DRAM banks that are servicing
a request in Cycleé. 1 BUSY; is set to one when at least one bank is servicing
a request in Cycle and reset when no bank is servicing any requests. We define
Aggregate BLPf an application’s total execution as follows:

2.i BLF;

A te BLP = ———-—
ggregate S~ BUSY,

More precisely, a DRAM bank can service multiple row hitshe same time to support back-
to-back data transfers as discussed in Section 2.1. Hoyweeaassume that only the last request is
being serviced in this case to simplify the metric.

103

6.3.2 System Model

We use a slightly different configuration of the x86 systendeidrom the
one in Section 5.3.2 for the experimental evaluation of Biviare request issue
policies. The baseline configuration of each core is showiaiole 6.1 and the
shared resource configuration for single, 4, and 8-coreemystis shown in Ta-
ble 6.2. Our simulator also models a DDR3-1600 DRAM systendetail and
Table 6.3 shows the DDR3 DRAM timing specifications used forevaluations.

Out of order; decode/retire up to 4 instructions,
Execution core| issue/execute up to 8 microinstructions; 15 stages
256-entry reorder buffer; 32-entry MSHRs

Fetch up to 2 branches; 4K-entry BTB;

64K-entry gshare/PAs hybrid branch predictor

L1 I and D: 32KB, 4-way, 2-cycle, 1 read/write ports;
On-chip caches Unified last-level: 512KB (1MB for 1-core), 8-way, 8-ban
15-cycle, 1 read/write port; 64B line size for all caches
Stream prefetcher: 32 stream entries,

Prefetcher | prefetch degree of 4, prefetch distance of 64 [77, 73],
128-entry prefetch request buffer

Front end

~

Table 6.1: Baseline configuration of each core for BLP-avisgee policies

800MHz DRAM bus cycle, DDR3 1600MHz [49],
8 to 1 core to DRAM bus frequency ratio;
8B-wide data bus per channel, BL = 8; 1 rank,

8 banks per channel, 8KB row buffer per bank;
On-chip, open-row, demand-first [36] FR-FCFS [G6]
1, 2, 4 channels for 1, 4, 8-core CMPs;
64-entry (8x 8 banks) for single-core processor
256 and 512-entry (16 8 banks per channel)
for 4 and 8-core CMPs

DRAM and bus

DRAM controllers

DRAM request
buffers

Table 6.2: Baseline shared resource configuration for BivBra issue policies

6.3.3 Workloads

We use the same methodology for compiling and running theCSRé&rk-

loads as in Section 5.3.3. The characteristics of the 14 mestory intensive SPEC

104

\ Latency | Symbol| DRAM cycles |

Precharge trp 11

Activate to read/write trRcD 11

Read column address strobe (CAS) CL 11
Write column address strobe (CA$) CW L 8
Additive AL 0

Activate to activate tre 39
Activate to precharge tRAS 28

Read to precharge trTP 4

Burst length tBL 4

CASto CAS tcep 4

Activate to activate (different bank) trrp 4
Four activate windows tFAW 24

Write to read tWTR 4

Write recovery twr 12

Table 6.3: DRAM timing specifications for BLP-aware issudiges

benchmarks with and without the stream prefetcher on thelin@ssingle-core sys-
tem model (in Section 6.3.2) are shown in Table 6.4. To evalaar mechanism on
CMP systems, we formed combinations of multiprogrammedkisads from all
the 55 SPEC 2000/2006 benchmarks. We ran 30 and 15 pseudiorignchosen
workload combinations for our 4 and 8-core CMP configuratioespectively. We
imposed the requirement that each of the multiprogramme#loads have at least
one memory intensive application since these applicagoasnost relevant to our
study. We consider an application to be memory intensivésitast-level cache
Misses Per 1K Instructions (MPKI) is greater than 5.

6.4 Implementation and Hardware Cost of BLP-Aware Issue
Policies

For evaluations of BAPI, we ugeec fetch_send_threshold values based on
the run-time prefetcher accuracy as shown in Table 6.5. Weauglue of 10 for
request_send_threshold for BPMRI. The estimation of prefetch accuracy and rank

recording is performed every 100K processor cycles. Thakeeg were empirically

105

| No prefetcher | Prefetcher

Benchmark Type IPC | MPKI | BLP || IPC| MPKI | BLP | ACC(%) | COV(%)

171.swim FPOO || 0.29| 27.58| 2.60| 0.61| 10.81| 3.58| 99.95 60.79

178.galgel FPOO || 1.05| 12.62| 3.78| 0.93| 11.53| 3.35| 23.98 12.50

179.art FPOO || 0.14| 130.80| 1.25| 0.13| 106.74| 1.60| 46.76 18.40

183.equake FPOO || 0.48| 19.89| 1.29 || 1.08 0.78| 1.89| 94.76 96.06

189.lucas FPOO || 0.48| 10.61| 1.60 | 0.62 3.01| 1.60| 7281 71.62

429.mcf INTO6 || 0.12| 39.08| 1.86|| 0.13| 36.03| 1.98| 23.00 11.13
410.bwaves FPO6 || 0.58| 18.71| 1.56 || 1.25 0.08| 1.69| 99.96 99.57
433.milc FPO6 || 0.40| 29.33| 1.40| 0.35| 21.13| 1.94| 20.24 27.96

437 .leslie3d FPO6 || 0.46| 21.14| 1.64 | 0.76 2.06| 2.20| 88.25 90.39

450.soplex FPO6 || 0.36| 21.52| 1.37 || 0.64 3.58| 1.84| 81.83 83.40

459.GemsFDTD| FPO6 || 0.42| 16.29| 2.27| 0.81 1.95| 280 | 90.36 88.04

462.libquantum| INTO6 || 0.45| 13.51| 1.01| 1.03 0.00| 1.19| 99.98 99.99

470.lom FPO6 || 0.36| 20.16| 2.12 || 0.40 7.46| 1.91| 9237 63.01

471.omnetpp | INTO6 | 0.39| 11.47| 1.46| 0.39 9.89| 1.77| 11.40 19.84

Table 6.4: Characteristics of 14 memory-intensive SPEC:erarks for BLP-
aware issue: IPC, MPKI (last-level cache misses per 1Kunsons), BLP, ACC
(prefetch accuracy), COV (prefetch coverage)

determined by simulations.

Prefetch accuracy (%) || 0-40| 40-85| 85-100
prefetch_send_threshold 1 7 27

Table 6.5: Dynamigrefetch_send_threshold values for BAPI

Table 6.6 shows the storage cost for our implementation &?Béd BPMRI.
The total storage cost for the 4-core system described ile3#&bl and 6.2 is 94,440
bits (~11.5KB), which is equivalent to only 0.6% of the last-levathe data stor-
age. Note that the additional FIFOs (for index buffers ame fiists) and prefetch
bits account for 99% of the total storage. FIFOs are mademflae memory ar-
rays and index registers (pointers to the head/tail) ancetbee the actual design

cost/effort is not expensive.

None of the issuing logic for BAPI or BPMRI is on the criticahth of
execution. Therefore, we believe that our mechanism is eaayplement with

low design cost/effort.

106

. . Cost for
Structure Cost equation (bits) 4-core
N, X Nehannel X Noan,
Index buffer core = channel = “Tbank 57,344
><]\fbuffer X logQNbuffer
Free list Neore X Nbuffer X lOQQNbuffer 3,584
MSHR bank Neore X Nchannel X Nbank 384
occupancy counter X (logaNyrspr + 1)
BAPI Prefetch bit Neore X (Nline + NMSHR) 32,896
Prefetch sent counter Neore X 16 64
Prefetch used counter Neore X 16 64
Prefetch accuracy
register Neore x 8 32
LLC miss counter Neore X 16 64
BPMRI Rank register Neore X 1092 Neore 8
Total storage cost for the 4-core system in Table 6.1 and 6.2 94,440
Total storage cost as a fraction of the last-level cache capity 0.6%

Table 6.6: Hardware storage cost of BAPI and BPMRY; (., Neore» Nysur,
Nyusrers Nehannets Noank: NUmMber of last-level cache lines, cores, MSHR entries,
prefetch request buffer entries, DRAM channels, DRAM bapdischannel)

6.5 Experimental Evaluation and Analysis on BLP-Aware Isse
Policies

We evaluate the performance of BLP-Aware Prefetch IssueP{BAand
BLP-Preserving Multi-core Request Issue (BPMRI) in thistesm. We first an-
alyze only BAPI on the single-core system in Section 6.5ntesiBPMRI works
only for in multi-core systems. We study both BAPI and BPMRI multi-core

systems in the following sections.

6.5.1 Single-Core Results

We evaluate BLP-Aware Prefetch Issue (BAPI) in this secti@ecall that
BAPI aims to increase the BLP potential of a single applarativhether the ap-
plication is running alone on a single core machine or rugniogether with other
applications on a CMP system. To eliminate the effects @riapplication inter-

ference, we first evaluate BAPI on our single core system.

107

Figures 6.5 and 6.6 show IPC, DRAM BLP, stall cycles per |oestiruction
(SPL), and bus traffic for the 14 most memory intensive beraaskemwhen we use
1) no prefetching, 2) the baseline with stream prefetchusgng the FIFO prefetch
issue policy), 3) BAPI with a static threshold (BAPI-statiand 4) BAPI (with
adaptive thresholding; BAPI-dynamic or simply BAPI). BA8thtic uses a single
constant value foprefetchsendthresholdwhich is set to 27 empirically, whereas
BAPI-dynamic varies this threshold based on the accuradghefprefetcher (as
shown in Table 6.5). IPC is normalized to prefetching witl Baseline issue poli-

cies.

On average, BAPI-dynamic improves performance over thelles by
8.5%. This improvement is due to two major factors: 1) inseshDRAM BLP
of prefetches in phases where the prefetcher works well, 2nithiting the issue
of prefetches for applications or phases where the predetshinaccurate. These

two factors are analyzed in detail below.

6.5.1.1 Analysis

Both BAPI-static and dynamic improve performance for theenlieftmost
benchmarks shown in Figure 6.5(a). These benchmarks goesditch friendly as
can be seen in Figure 6.6: most of the prefetches are uséghl nefetch accuracy)
and these useful prefetches cover a majority of the totalttaifsic (high prefetch

coverage).

BAPI increases performance over baseline prefetching ippsrg more
DRAM BLP of prefetches to the DRAM controller. As shown in kig 6.5(b),
BAPI increases BLP for these nine applications and theeeiimproves DRAM
throughput. This leads to significant reductions in stalileg per load (SPL) as
shown in Figure 6.5(c). DRAM throughput improvement alsaieto high prefetch
coverage. Since MSHR entries are freed sooner due to be®R&MDthroughput,
more prefetches are able to enter the memory system whiclouag prefetcher
coverage. This is best illustrated by the increase in ugg&ietches with BAPI for

108

=
w

IPC normalized to prefetching

(a) Performance

0
4
c
Iy
o
©
)
o]
S
>
Z
(b) Aggregate DRAM BLP

26
c 24
-% 22 =no-pref
S20 =pref (base)
g 18 = bapi-stati
=16 =bapi
S
O 12
glOa
0» &
Q 64
(&)
> 4]
O .

- > 4+ &K Q

2 2 3 QY O N R S
S F»FP LIS Fo &SP
S FFTFS NECFOL T SE

(c) Stall cycles per load instruction
Figure 6.5: Performance, BLP, and SPL of BAPI on single-aystem

109

swimandlbm as shown in Figure 6.6.

Note that forlom, baseline prefetching with FIFO issue degrades DRAM
BLP while improving performance by 10.9% compared to no gueing. Lbm
consists of multiple sequential memory access streamsooand therefore it ex-
ploits DRAM BLP even without prefetching. The stream prelfier is beneficial by
bringing in many cache lines earlier than needed; hencmptaves performance.
However, this is done in a BLP inefficient way due to the FIF@fgich issue pol-
icy as described in Section 6.1.2. In other words, the FIF€gbch issue policy
significantly limits the DRAM BLP potential fobm by filling up the MSHRs with
prefetch requests that span just a few banks even though #nermany younger
prefetches to other free DRAM banks waiting in the prefeetuest buffer. As
a result, the prefetcher’s performance improvement idivelly small compared to
the other prefetch friendly benchmarks. BAPI mitigates fimoblem by prioritizing
prefetches to different banks, thereby improving DRAM BLyP1».1% and overall
performance by 27.9% compared to the FIFO issue policy.

324 8

304

284

264
@ 247
£ 224
o 204
L 184
@ 164
O 144
5 121
= 104
S e
64
44
PE!
0;

=pref-useless bapi-sttatic
- gref-usgful pref (base)\ bapi
eman no-pref \ /

Figure 6.6: Bus traffic of BAPI on single-core system

6.5.1.2 Adaptivity to Usefulness of Prefetches

On the other hand, for the five rightmost benchmarks, BARlistdoes

not improve performance over the baseline. As shown in Eigu6, the stream

110

prefetcher does not work well for these benchmarks: it gaesra large number
of useless prefetches which unnecessarily consume orbalffigr/cache resources
and DRAM bandwidth. As shown in Figure 6.5(a), prefetchimgmdes perfor-
mance forgalgel, art andmilc compared to no prefetching. BAPI-static does not
help these benchmarks either since the useless prefetehsslleserviced. In fact,

for galgel, art andmilc, BAPI-static increases the number of useless prefetches du
to increased DRAM throughput as shown in Figure 6.6. Thus?Blvare prefetch
issue alone does not help performance when prefetch agoigrioy.

BAPI-dynamic alleviates the problem of useless prefetdiyelmiting the
number of prefetches issued into the MSHRs when the prefetimerates a large
number of useless prefetches. As a result, MSHR entries tdauiokly fill up
with useless prefetches and thus can be used by demandtediigis mechanism
causes the prefetch request buffer to fill up, thereby stpithe prefetcher. As
shown in Figure 6.6, BAPI-dynamic eliminates a large nundferseless prefetches
and reduces total bus traffic by 5.2% on average. BAPI-dyoaimost recovers
the performance loss due to useless prefetchegdtgel and art, and improves

performance for botimilc andomnetppby 6.6%.

6.5.1.3 Adaptivity to Phase Behavior

BAPI (or BAPI-dynamic) adapts to the phase behaviotughs, leslie3d,
soplex, GemsFDTDandlbm. While most of the time the prefetcher generates
useful requests, in certain phases of these applicatiogsniérates many useless
prefetches. BAPI-dynamic improves performance for thesechmarks by adap-
tively adjustingpre fetch_send_threshold which removes many useless prefetches

while keeping the useful ones as shown in Figure 6.6.

We conclude that BAPI significantly improves performance 86%) by
increasing DRAM BLP (by 11.7%) while also reducing memorns litaffic (by
5.2%) in the single-core system.

111

6.5.1.4 Sensitivity to MSHR Size

Thus far we have assumed that each core has a limited numb4sdR
entries (32) because MSHRs are costly to scale since thayeszpmplex associa-
tive search [79]. In this section, we study the effect of @ahiniques with various
MSHR sizes. We varied the total number of MSHR entries from 836 and mea-
sured the average IPC (gmean) for the 14 most memory-iveet@nchmarks as
shown in Table 6.7. To isolate the effect of limited MSHRs, agsume that there
is an unlimited number of DRAM request buffer entries fosstekperiment (this is
why the IPC improvement of BAPI with a 32-entry MSHR is diffat from that
shown in Section 6.5.1). The valuesjofe fetch_send_threshold are empirically
determined for both BAPI-static and BAPI separately forremtSHR size to pro-
vide the best performance.

MSHR entries 8 16 32 64 128 256
Storage cost 0.6KB | 1.3KB | 2.5KB | 5.1KB | 10.1KB | 20.3KB
no-pref IPC 0.36| 0.38| 0.38| 0.38 0.38 0.38

pref (base) IPC 0.43| 050 0.53| 0.56 0.59 0.58
bapi-static IPC 0.47| 054 0.57| 0.59 0.59 0.58
bapi IPC 0.48| 055 059 0.60 0.61 0.61
bapi-static's IPCA 85%| 9.1%| 7.8%| 4.0% 0.0%| -0.1%
bapi's IPCA 10.5%| 10.3%| 10.0%| 6.4% 3.0% 4.3%

Table 6.7: Average IPC performance of BAPI with various MSsiEes

We make three major observations. First, as the number of RI8htries
increases, the performance of baseline prefetching isesesince more BLP is ex-
posed in DRAM request buffers. The performance improversatirates at 128
entries because the DRAM system itself becomes the perfareiaottleneck when
a high level of BLP is exposed. In fact, increasing the MSH# $iom 128 to 256
entries slightly degrades performance because more gsgalefetches of some ap-
plications (especiallyart andmilc) enter the memory system (due to the large num-
ber of MSHR entries) causing interference with demand retguieoth in DRAM
and in caches.

112

Second, both BAPI-static and BAPI (with dynamic threshadgicontinue
to improve performance up to 64-entry MSHRs since they expoere BLP of
prefetches to DRAM request buffers. Even though BAPI-s&performance sat-
urates at 64 MSHR entries, BAPI improves performance wit8 48d 256-entry
MSHRs because it continues to expose higher leveisefulBLP without filling
the memory system with useless prefetches. Its ability &ptadely expose useful
BLP to the memory system and thereby more efficiently utiliee MSHR entries
makes BAPI best-performing regardless of MSHR size.

Finally, BAPI with a smaller MSHR achieves the benefits ofgngicantly
larger MSHR without the associated cost of building one: BMARh 32-entry
MSHRs performs as well as the baseline with 128-entry MSHRwilarly, BAPI
with 16-entry MSHRs performs within 1% of the baseline with-éntry MSHRs.
Note that BAPI requires very simple extra logic and FIFOstres ¢-2KB storage
cost for the single-core system) whereas increasing théoeuof MSHR entries is
more costly in terms of both latency and area due to two reap]: 1) MSHRs
require associative search, 2) MSHRs require the storagadfe line data. We
conclude that BAPI is a cost-effective mechanism that effity uses MSHRs and
therefore provides higher levels of BLP without the costasfe MSHRs.

6.5.2 4-Core Results

In this section, we evaluate BLP-Aware Prefetch Issue (BA#ld BLP-
Preserving Multi-core Request Issue (BPMRI) when emplagpeether in the 4-
core CMP system. To provide insight into how our mechanisragkywe begin

with a case study.

6.5.2.1 Case Study

We evaluate a workload consisting of four prefetch-frigngiigh prefetch
accuracy and coverage) applications to show how our mestmerfurther improve

the benefits of prefetching and thus system performance pyovming and preserv-

113

ing DRAM BLP. Figure 6.7 shows performance metrics wiiequantum, lucas,

soplexandGemsFDTDrun together on the 4-core system.

e
\‘

20— 0.5q

o
o

1.8

o

®. =

[y
I

Speedup over single run

© © o o o o
N

1.6 0.4
1.4
1.2
1.04
0.8
0.6
0.4
0.2]

Value of metric

.02
libquantum lucas soplex GemsFDTD 0.0
(a) Individual speedup (b) WS (c) HS
c 12
211
gloA
B O
£ 8
T 7
©
o & =
w5 = no-pref i
g 4 = pref (base
0 37 = bapi
QL 5 ;
(&)
> 17
O

]ibquatu lucas soplex GemsFDTD
(d) Stall cycles per load instruction

Figure 6.7: Performance of BLP-aware issue policies fofgioh-friendly work-

load

As shown in Figure 6.7(b), prefetching with the baselinaiéspolicies

(FIFO prefetch issue and round-robin LLC-to-DC requestégsmproves WS by

23.5% compared to no prefetching. This increase is due t@dén®rmance im-

provement ofibquantum, soplexandGemsFDTD The performance diicasac-

tually degrades even though baseline prefetching imprpee®rmance fotucas

on the single-core system (as shown in Section 6.5.1). Téeréwo reasons for

this. First, the baseline round-robin LLC-to-DC issue ppldestroys the BLP of

requests fotucasthe most among the four applications. Singeasis the least

114

memory intensive (as shown in Table 6.4) of the four appbcet, the issue ofu-
cass requests to DRAM request buffers is relatively infrequeampared to the
others. As a result, lucass requests starve behind more intensive applications’
requests in the LLC miss buffer andlRfass BLP is more easily destroyed because
requests from other applications intervene betwleeass requests when a round-
robin issue policy is used. Second, although amenable fetpheng in general, the
prefetch accuracy dficasis not as good compared to the other applications, and

thereforducassuffers the most from useless prefetches (as shown in $e&0l).

BPMRI alleviates the first problem as shown in Figures 6.&G@) (d).
BPMRI rankslucass requests highest becauseasis the least memory intensive
application among the four. Whenever BPMRI needs to chdosenéxt core to
issue requests froniycasgets prioritized and its requests are issued consecutively
into the DRAM request buffers. Thereforeicass starvation is mitigated and its
BLP is preserved. BPMRI regains the performance lost dueaselme prefetch-
ing as shown in Figure 6.7(a). BPMRI also significantly im@®the performance
of the other three benchmarks by preserving the BLP of eaphcapion, thereby
improving WS and HS by 12.0% and 11.3% respectively comperdae baseline.

BAPI mitigates the second problemlatas As discussed in Section 6.5.1,
BAPI adapts to the phase behaviorlotas when the prefetcher generates many
useless prefetches, BAPI limits the issue of prefetche®liyereducing many of
the negative effects of prefetching. On the other hand, B&Pbses more BLP of
prefetches to the memory system when the prefetcher is atecurherefore, BAPI
increases performance farcasas well as the other three applications, improving
WS and HS by 9.4% and 7.9% compared to baseline prefetching.

When BPMRI and BAPI are combined, the performance of eachcapion
further improves as each application’s SPL is reduced awshio Figure 6.7(d).
BAPI increases each application’s BLP potential and BPMiREgrves this BLP
thereby allowing the DRAM controller to exploit it. As a rédsuNS and HS im-
prove by 19.4% and 17.4% respectively compared to the esptiefetching with

BLP-unaware request issue policies.

115

6.5.2.2 Overall Performance

Figure 6.8 shows the average system performance and bfis toafall 30
4-core workloads. When employed alone, BAPI improves geeg@erformance
(WS) by 9.1%, BPMRI by 4.6% compared to the baseline. Contbingether,
BAPI and BPMRI improve WS and HS by 11.7% and 13.8% respdgtiseowing
that the two techniques are complementary. Bus traffic sraduced by 5.3%. The
performance gain of the two mechanisms are due to 1) inaidaBRAM BLP pro-
vided by intelligent memory issue policies, 2) reduced wastDRAM bandwidth

and on-chip cache space due to limiting the number of usple$stches.

2.2 0.6 22,
2.0]
1.8 0.5

1.61

1.4 0.4+
1.24 0.3
1.0 7 ==no-pref

0.8
0.6
0.4
0.2]
0.0- 0.0~

(a) WS (b) HS (c) Bus traffic

7|=pref (base
11 ==bapi
H=bpmri

1 ==bapi-bpmr

0.2¢

Value of metric

0.14

Figure 6.8: Performance of BLP-aware issue policies onré-sgstem

6.5.3 8-Core Results

Figure 6.9 shows the average system performance and biis fafthe
15 workloads we examined on the 8-core system. BAPI and BPai&still very
effective and significantly improve system performancemBmed together, they
improve WS and HS by 10.9% and 13.6%, while reducing bus ¢réafji 2.9%.
In contrast to the 4-core system where BAPI alone providgdhdr performance
than BPMRI alone, BPMRI alone improves performance more 8P| alone.
This is because as the number of cores increases, destrutgrference in each
application’s BLP also increases, and reducing this ieterice becomes a lot more

116

important.

4.5
4.0
o 3.5
= 3.0
E s
8 2.01 7| ==no-pref
S 15 i|=pref (base
< 1| =bapi
> 1.0 : .
' il=bpmri
0.5 1| =Dbapi-bpmr
0.0
(a) WS (b) HS (c) Bus traffic

Figure 6.9: Performance of BLP-aware issue policies onrg-sgstem

We conclude that the proposed techniques are effectivenmstef both per-
formance and bandwidth-efficiency for a wide variety of nuttgrammed work-

loads on both 4-core and 8-core systems.

6.5.4 Effect on Other Prefetching Mechanisms

We evaluate our mechanisms on two different types of preé&tc GHB
(Global History Buffer)-based CZone Delta Correlation@C)) [59] and PC-based
stride [1]. Both the C/DC and stride prefetchers accuratalgture a substantial
number of memory accesses that are mapped to different DR&M4) just as the
stream prefetcher does. Therefore, BAPI and BPMRI imprggéesn performance
compared to the baseline (WS: 10.9% and 5.4%, for C/DC aidegtespectively)
as shown in Figure 6.10. Our techniques also reduce bustfit.7% and 2.9%
for C/DC and stride respectively. To conclude, our propcsaffective for a variety

of state-of-the-art prefetching algorithms.

6.5.5 Comparison with Parallelism-Aware Batch DRAM Schedling

Parallelism-Aware Batch Scheduling (PAR-BS) [54] aimsrtgpiove per-

formance and fairness in DRAM request scheduling. It treesdrvice memory

117

C/DC "1 Stride

0.21

Value of metric
Value of metric

0.14

0.0-
(b) HS

Stride

== no-pref
= pref

== bapi

= bpmri
= bapi-bpmr

(c) Bus traffic

Figure 6.10: BLP-aware issue policies with stride and C/D€&fgichers

118

requestsn the DRAM request buffefsom the same core concurrently so that the
DRAM BLP of each application is preserved in DRAM schedulifierefore, just
like other scheduling mechanisms, the amount of BLP exgiday PAR-BS is also

limited by the number of requests to different banks in DRAMuest buffers.

BAPI complements PAR-BS: it increases the number of preéstdo dif-
ferent banks and PAR-BS can exploit this increased levelLéf ® improve perfor-
mance further. BPMRI also complements PAR-BS even thougin bienefits par-
tially overlap. If an application’s requests to differemiriixs are not all in the DRAM
request buffers, PAR-BS cannot exploit the full BLP of eapple&ation. BPMRI,
by consecutively issuing an application’s requests froenthC miss buffer to the
DRAM request buffers, increases the probability that eqaglieation’s requests to
different banks are all in the DRAM request buffers. HenceMRI increases the
potential of each application’s BLP that can be exploitedPBR-BS.

In addition, by consecutively issuing requests from a caaekkto-back
into the DRAM request buffers, BPMRI enablasy DRAM controller to service
those requests in parallel. Hence, a first-come-first-seaged DRAM controller
combined with BPMRI can preserve each application’s BLRaeut requiring the
DRAM controller to be BLP-aware.

To verify this, we implemented PAR-BS tuned for best perfance for our
4-core workloads. Figure 6.11 shows the performance of $glbge prefetching
with our baseline FR-FCFS DRAM scheduling policy which edd row-buffer
locality [66], 2) PAR-BS, 3) BPMRI, 4) PAR-BS with BPMRI, 5AR-BS with
BAPI, 6) PAR-BS with BAPI and BPMRI, and 7) BAPI and BPMRI.

BPMRI's performance gain is equivalent to that of PAR-B3wvthe round-
robin LLC-to-DC issue policy) since it successfully prases the BLP of each ap-
plication and makes the simple FR-FCFS DRAM schedulingcgdbehave simi-
larly to PAR-BS. When combined with PAR-BS, BPMRI improve$S\&nd HS by
an additional 1.9% and 1.4% by better preserving the BLP gfiests from each
application. BAPI along with PAR-BS significantly improvédse performance of

119

22— 0.6

2.0 [

2 16 .

O 1.4 | 0.4 = pref (base)

E 1.2 - = parbs

© 1.0 L O3 —bpmri

3 0.8] - ool < parbs-bpmri

S 0.6 .]| =parbs-bapi

> 0.44 L 0.14| = parbs-bapi-bpmri
0.2 i = bapi-bpmri
0.0- £ oolNENTETET

(@) WS (b) HS

Figure 6.11: Comparison of BLP-aware issue policies witiRFBS

PAR-BS (WS and HS improve by 7.1% and 7.3% respectively) iee8AP| ex-
poses more BLP potential of each application in the DRAM estgi buffers for
PAR-BS to exploit. To conclude, our mechanisms 1) complérRaR-BS, and 2)
enable parallelism-unaware DRAM controllers to achiewverilgir performance as
PAR-BS.

6.6 Combination of Prefetch-Aware DRAM Controller and BLP-
Aware Issue Policies

Recall that we proposed Prefetch-Aware DRAM ControllerAQE) to
maximize DRAM row buffer hits for useful requests (demanald aseful prefetches)
in Chapter 5. PADC aims to minimize DRAM latency of usefuluegts by prior-
itizing useful row-hit requests over others to the same bankother words, the
main goal of PADC is to exploit row buffer locality in each taim a useful man-
ner. The goal of BLP-aware issue policies is orthogonal: Bai BPMRI aim to
maximize DRAM bank-level parallelism so that more requésis) an application

can be serviced in different DRAM banks in parallel.

Figure 6.12 shows the performance of PADC alone and PADC owadb
with our mechanisms for the 4-core workloads. PADC signifigaimproves WS

and HS by 14.1% and 16.3% respectively compared to the hasélWhen com-

120

24— 0.67
2.2]
2.04
1.8

1.64

1.4

1o 0.3l pref (base)
10 = padc

== padc-bapi
= padc-bpmri
0.14 = padc-bapi-bpmi

0.8
0.61
0.44
0.24
0.0-

(@) WS (b) HS

Value of metric

Figure 6.12: Combination of PADC and BLP-Aware Issue Pefci

bined with PADC, BAPI and BPMRI improve WS and HS by 20.6% a@d%o.
We conclude that our DRAM-aware prefetch management meésmancomple-
ment each other and significantly improve system performanc

6.7 Summary

In this chapter, we show that conventional uncontrolled mgmequest is-
sue policies to resource-limited on-chip buffers limit teeel of DRAM bank-level
parallelism (BLP) that can be exploited by the DRAM congalthereby limiting
system performance. To overcome this limitation, we preposw cost-effective
on-chip memory request issue mechanisms to improve aneémpe8LP of the
running applications. Our evaluations show that the meishas1) work synergisti-
cally and significantly improve both system performance lagwadwidth-efficiency,
2) work well with various types of prefetchers, and 3) compdat various DRAM
scheduling policies.

121

Chapter 7

Last-Level Cache Management for Improving DRAM
Characteristics

In this chapter, we make a case for DRAM-aware last-leveheatesign:
we show that designing the last-level cache replacementig®lto be aware of
major DRAM characteristics/state can significantly enleaentire system perfor-
mance. Due to DRAM characteristics, not all misses and ievistof the last-level
cache incur the same cost. Bank-level parallelism and roffeiblocality allow
different outstanding cache misses to be serviced at diffdatency costs to the
processor: fast or slow, parallel or serial. On the otherdhawnite-caused interfer-
ence can cause writebacks of dirty cache lines that delagehace of reads and
even other writes. This makes cache line evictions incdeht cost.

To leverage this, we propose two DRAM-aware last-level eaeplacement
policies that work together synergistically. The first iseplacement policy that
favors the eviction of cache lines that can be refetchedkfuidue to row buffer
locality or serviced together with other misses in diffdarBIRAM banks when they
are refetched later. The second is a policy that evicts tirgs that can be written
back to DRAM quickly by exploiting row buffer locality, in der to reduce write-

caused interference in the DRAM system.

7.1 Cache Replacement for Reducing Latency and Increasing
BLP

Due to row buffer locality and bank-level parallelism, nditraisses incur
the same cost from the processor’s point of view. Row-hitsessare serviced very

quickly, so the processor does not stall very long even thaugny such misses

122

occur in the last-level cache. Row conflicts that are sedvingarallel in different
banks can also reduce the processor’s stall time even theagi individual row
conflict incurs a long latency. Taking into account these MRéharacteristics in

the last-level cache replacement policy has advantagepos@ous work.

7.1.1 Why Should We Consider DRAM Characteristics in Cache Mnage-
ment?

Previously proposed Memory-Level Parallelism (MLP)-agveache replace-
ment [63] assumes that clustered cache misses incur lowetham isolated misses.
MLP-aware cache replacement makes the implicit assumiitairthe service times
of all clustered cache misses are overlapped with each.otherefore, such poli-
cies prefer to evict cache lines that are serviced conctlyrevith other misses.
However, in many cases, concurrent outstanding misseoarenessarily serviced
in parallel in the DRAM system. When multiple row-conflictsees are outstand-
ing in the memory system, they are serviced in paraligy if they are mapped to
different DRAM banks.

Figure 7.1 describes how the mix of outstanding last-lewshe misses
can affect DRAM performance and processor stall time. Tlaeeefour outstand-
ing misses present in the Miss Status/Information HoldiregiBers (MSHRs) as
shown in Figure 7.1(a). Row 1 and Row 2 are open in the row boffBank 0 and
Bank 1 respectively. The four misses are waiting in the DRASd buffer to be
serviced by DRAM.

Figure 7.1(b) shows the DRAM service time and processoustahen two
reads (Reads A and D from Misses A and D) are row conflicts inkBaand two
other reads (Reads B and C) are row hits in Bank 1. Since thesaes to Bank 1
are row hits (and therefore low latency), their latencies @rerlapped with Read
A in Bank 0O (a row conflict). However, Read D is completely sesd alone. The
processor must experience the sum of the two row-conflientzes serially.

On the other hand, Figure 7.1(c) shows the DRAM service tinmgk @o-

123

Row
Row

Bank O T Bank 1 DRAM

Read A DRAM controller
Read B
Read C
Read D Read A: mapped to row 1 in bank 0
Read B: mapped to row 2 in bank 1
DRAM read buffer Read C: mapped to row 2 in bank 1
Miss A Read D:Mapped to row 3 in bank O for (b)
!SS ead mapped to row 4 in bank 1 for (c)
Miss B, = Last-level cachg
Miss C
Miss D
MSHRs
(a) DRAM and MSHR state
Read A: Row conflict Read D: Row conflict
Bank 0 —< X
Read B: Row hit . i
Bank 1 —— sy ead G Row hit
Processor Stall 1@\ @ Stall a Stall a
Com/g)ute Compute Compute

(b) DRAM service time when read D is mapped to row3 in bank 0

Read A: Row conflict

Bank 0 —< . -)
. + Read C: Row hit : . .
Bank 1 Read B: nggt@(Read D: Row %onfl|ct
Processor Stall o | Stall A Stall

Compute Compute Compute

(c) DRAM service time when read D is mapped to row 4 in bank 1

Figure 7.1: DRAM and processor performance for two diffénerxtures of out-
standing misses

124

cessor status when Read D is mapped to Bank 1 instead of Ban#l & &till a

row conflict (other requests are the same as Figure 7.1(b¢adm still takes a
long time since it is a row conflict. However, a significant gpmr of its latency is
overlapped with the row-conflict latency of Read A. Thereftris composition of
requests results in a significant reduction of processdrrtstee compared to the

previous case.

In contrast to what the MLP-aware mechanism assumes, silmphng
many misses outstanding in the MSHRs does not necessaully that those misses
are serviced in parallel. Even though Read D is outstanditigttwee other misses
in both Figures 7.1(b) and (c), its latency is not at all capged in the former case
yet mostly overlapped in the latter case. As such, deperatirtbe mix of clustered

misses, their memory service time (or cost) varies sigmfiga

Not only isolated misses but also clustered misses to difterows in the
same bank incur very high cost. Also row hit misses can alwsey/sonsidered
low cost due to their low latencies regardless of BLP (reitat multiple row hits’
data is transferred back-to-back in the DRAM system as d&sdiin Section 2.1).
Rather than simply clustering memory requests, an in@tligache control mech-
anism should take advantage of low latency and high paisattetonditions in the
DRAM system.

To minimize miss cost, a DRAM-aware cache replacement ypobn con-
trol the mixture of requests such that 1) row-hit misseseathan row-conflict
misses occur more frequently and 2) row conflict misses thatle serviced in
parallel rather than serially in the DRAM system happen nfoequently. Our
replacement policy does exactly this by measuring thesectexistics.

7.1.2 Mechanism: Latency and Parallelism-Aware (LPA) Re@cement

We propose Latency and Parallelism-Aware (LPA) last-l@ashe replace-
ment. The basic idea is to favor the eviction of cache linas ¢ould be refetched

quickly due to row buffer locality or serviced together wither misses in different

125

DRAM banks, when they are refetched later.

The LPA replacement policy leverages the observation thaemory re-
quests of an application show high BLP or row buffer locaiitya certain execu-
tion phase, similar BLP or row buffer behavior will likely ogr in the future. For
example, current high BLP requests show high BLP when theyefetched later.
Previous research [63] also shows that the memory behalagpdications repeats.
Therefore, LPA assumes that cache linedanecostif they show high BLP or row
buffer locality when they are serviced in the DRAM systemgufe 7.2 illustrates
the logic that performs this function.

DRAM
i

DRAM controller

BLP

estimation Row-hit

estimation

| Low cost

- Low—cost "

i estlmatlon

. logic ' Line oc
— .

Low—cost bit inserted

Last-level cache

MSHRs

Figure 7.2: Low-cost estimation for LPA

LPA evicts cache lines that are predicted as low-cost. Lost-cache lines
are identified by a one-bibw-cost fieldin each line. LPA always prioritizes low-
cost lines over less recently used lines in the set for enctif multiple low-cost
lines exist, the least recently used (LRU) line among theselected as the victim.

If there is no low-cost line, the LRU line is evicted.

126

To take into account temporal locality in reused cache |itleslow-cost bit
of a cache line that is reused in the cache is deassertedg[3oienables LPA to
outperform LRU replacement for SPEC benchmarks that perfeell with LRU
replacement. Lines whose low-cost bit are deasserted &i@ed in the cache by
LPA. Additionally, the effective memory latency of misseddaw-cost lines that did
not exhibit reuse is significantly reduced by taking advgetaf row buffer locality
and BLP using LPA.

7.1.2.1 Low-Cost Estimation Using BLP Information

To estimate the BLP of a request (or cache line), we need BidPnmation
at runtime. This information is measured by the DRAM coré&oand sent to the

estimation logic.

To measure the degree of BLP quantitatively, we define BLRioset3 L P,
is defined as the number of DRAM banks that are servicing aegtga Cycle;.
BUSY; is set to one when at least one bank is servicing a request ¢o gero
when no bank is servicing any requests in Cyiclé/e defineAggregate BLRf an
application’s total execution (the same as in Section pahtlindividual BLPof a
request that is serviced from Cyché to Cycle M as follows:

> BLP;

A te BLP = = —
ggregate S~ BUSY,
My BLP,
Individual BLP = ZJ\E[Z—NiN—Fl

Aggregate BLP indicates how many banks were busy servigggests on
average when at least one bank was busy, while an applicatsnrunning. Its
value is bound by one and the total number of DRAM banks. iddai BLP
of a request indicates how many banks were busy servicingestg in parallel

(including its bank) while the request was being servicedteNhat these metrics

127

can be measured in the DRAM controller at runtime since théMRontroller

already keeps track of which requests are being servicedhichabank.

For a multi-core system, these metrics can be easily gathmra per-core
basis. BLP; of a core is obtained by considering only the banks that anarge
that core’s requests3U SY; of a core is one when at least one request of that core
is being serviced in a bank. Aggregate BLP of a core and iddaliBLP of a core’s

requests are calculated using these modifications.

To estimate the BLP of a request (or cache line), we need teoepi of
BLP information at runtime: the aggregate BLP during a ptegeined execution
interval of the application and the request’s individuallBBI'he DRAM controller
measures this information and sends it to the estimatioic.ldgule 5 shows how
the low-cost estimation works. The estimation logic workéyovhen the aggre-
gate BLP is greater thatygregate_BLP _threshold. During a high BLP period,
the estimation logic marks as low-cost those requests thatnhuch higher indi-
vidual BLP (@ggregate_BLP of f set greater) than the aggregate BLP during that

interval.

Rule 5 Low-cost estimation using BLP information
for eachrow-conflict request whose service is completial
if aggregate BLP> aggregate_BLP threshold then
if individual BLP of the request > (aggregate BLP +
aggregate_BLP _of fset) then
mark the request as low-cost
end if
end if
end for

Starting estimation only when aggregate BLP is high prevesquests from
being marked as low-cost during low BLP phases where thene iarge perfor-
mance benefit from BLP. Marking only those requests that stemy high indi-
vidual BLP compared to the aggregate BLP allows the logicelect only those
lines for eviction that are likely to exploit high BLP (i.et,allows the logic to dis-
tinguish very low-cost lines from others). We empiricallgtdrmined the values

128

for aggregate_BL P _threshold andaggregate_.BLP of fset (2.5 and 0.3 respec-

tively in our evaluation).

7.1.2.2 Low-Cost Estimation Using Row hit/conflict informdion

For the low-cost estimation due to row hits, we measure a@ggecrow hit
rate for all requests of an application periodically (as weasure aggregate BLP).
Row hit/conflict information of each request is also congefiesing one bit) from

the DRAM controller to the last-level cache.

To estimate whether a cache line is likely to be a row hit, wkecbthe
average row hit rate of the load instruction that caused tiss.nthe insight behind
this is that the majority of row-hit misses occur from a fewtst load instructions.

An example is a load instruction that accesses array dateesies in a loop.

The low-cost estimation for frequent row hits is describeRuule 6. We
measure the average row hit rate of a load using a small tabtache structure,
16-entry 4-way associative) each entry of which is assediatith a load PC. Each
entry keeps track of the total number of requests servicedlaa total number of
row hits for the load. Whenever a request is serviced, thie iallooked up with the
load’s PC. If a match is found, its counters are updated &sasl 1) the counter for
the total number of requests is incremented, and 2) if it wamnaahit, the counter
for the number of row hits is incremented. If no match is foutie LRU entry is
replaced with a new entry and its counters are initialized.

Predicting whether a miss is low-cost or not is made usingrtf@mation
looked up from the load PC table before updating the tableolmatch is found,
the new cache line is estimated as high-cost (i.e., the lmstgit is not set). If a
match is found, the average row hit rate for the load is cateal by dividing the
number of row hits by the number of serviced requests. Ptiedics made based
on this calculated average row hit rate and the aggregatéitaate for all requests

serviced during an interval.

A fetched line is only considered for low-cost estimationemntthe row hit

129

Rule 6 Low-cost estimation using row hit/conflict information
for each request whose service is completed
match found— look up load PC table (request’s PC)
if match foundhen
(total number of row hits, total number of requests)load PC table (re-
guest’s PC)
load PC table (request’'s P&} (total number of row hits + (request row hit
? 1:0), total number of requests + 1)
adjusted aggregate row hit rate- MAX(aggregate row hit rate,
aggregate_row_hit_rate_min)
if total number of requests request_threshold and row hit rate > ad-
justed aggregate row hit ratden
Mark the request as low-cost
end if
else
get entry from load PC table (request’s PC)
load PC table (request’s P&} ((request row hit? 1: 0), 1)
end if
end for

rate information is collected for long enough (more thaguest_threshold) to
indicate the load will likely generate many row hits. Not kiag lines whose load
had only few requests serviced prevents making a wrong idaecabout whether

the load would generate many row hits or not.

The logic marks the line as low-cost only if the row hit ratettod load that
caused the line’s fetch is greater than the aggregate rowatat(using adjusted
aggregate row hit rate) for all fetched lines. We also impasainimum value
of aggregate row hit rateiggregate_row_hit_rate_min) to avoid falsely marking
lines as low-cost simply because their row hit rate, althoggite low, is larger
than a very low aggregate row hit rate. We empirically foursgtof the parameter
values tequest_threshold of 30 andaggregate_row_hit_rate_min of 0.6) for our

evaluation.

130

7.2 Cache Replacement for Reducing Write-Caused Interfer-
ence

Not all dirty line evictions for the last-level cache incuret same cost.
This is because row-conflict writes are much more expensiga tow-hit writes
as shown in Section 2.3. Long delays caused by row-conflitevaccesses can
delay the service of writes in the write buffer and eventuadisult in delaying the
service of reads. In contrast, row-hit writes can be sed/ieack-to-back just like
row-hit reads. Therefore, increasing row-hit writes thigg eoncurrently outstand-
ing is desirable. Note that the source of DRAM writes is th&t-lavel cache’s
writebacks, i.e., dirty line evictions. A write-causeddrference-aware replace-
ment policy would find and evict dirty cache lines that cawse-hit write accesses
to DRAM. The resulting row-hit writes can significantly ingwe the service time
of the writes. The following example shows the implicatiom DRAM system

performance for last-level cache replacement policies.

7.2.1 Why Should We Consider Write-Caused Interference in @che Man-
agement?

Figure 7.3 shows how a write-caused interference-awaracement pol-
icy can improve DRAM performance. Figure 7.3(a) shows thgainstate of the
DRAM read/write buffers and a set of the last-level cache.of-hit read (Read
A) and a row-hit write (Write B) are waiting to be scheduleddBAM. Two dirty
lines (Dirties C and D) are at the least recently used (LRWjtmms of the shown
last-level cache set. Dirty C is mapped to a different rownrfrine currently open

row in Bank O whereas Dirty D is mapped to the same row as Write B

Figure 7.3(b) shows the resulting cache state and the DRANhg when
a conventional LRU policy is used in the cache. The LRU linet¢DC) is evicted
by the fetched line for Read A after Read A is serviced by DRAMerefore a
write (Write C) is generated for Row 1 and is inserted intowhde buffer. Writes
are serviced in the order of Writes B and C. Because Write @ss®s a different

row from Write B (row conflict), precharging is required to@pRow 1. Since a

131

Row

Bank O u Bank 1 DRAM

Read A Write B| DRAM
controller

Read A (0, 0): mapped to row 0 in bank

. 0
DRAM read buffer DRAM write buffer

Write B (0, 0): mapped to row 0 in bank |0

D

D

Less recently used Dirty C (0, 1): mapped to row 1 in bank
e Dirty D (0, 0): mapped to row 0 in bank
Clean| Clean| Dirty D\ Dirty C| Set

[]
[]

Last-level cache
(a) Cache/DRAM buffer initial state

Less recently used
—
[]

[]
Clean A| Clean| Clean | Dirty D
[]

[]
Last-level cache

Write buffer full

Read A Dirty C write B Activate Write C
(0,0) evicted (g 0) Precharge 0 (0,1) (0, 1)
Comman Q n n

&addressbus” CL tBL U U g
T T T cwL tBL s | |
: 1 3 . tWR .. tRP : tRCD . CWL

Data bus (I i
Data A Data B Data C

(b) Cache state and DRAM timing for conventional replacement (Dirty C is evic:ted)

Less recently used

—
L]

[]
Clean A| Clean| Clean| Dirty C

Last-level cache

Write buffer full

Read A DIty D wite B Write D
(0,0) evicted (9, 0) (0, 0)
=

Comman
& address bus: CL tBL : 3
3 11 CWL ‘
: 1 1tCCD CWL tBL
Data bus il A Saved cycles

Data A Data B Data D

(c) Cache and DRAM timing for interference—aware replacement (Dirty D is evicted)

Figure 7.3: Conventional vs. write-caused interferenwasa replacement policies

132

write was serviced before, write-to-precharge penalty tnbessatisfied before the
precharge command for Write C is scheduled. This incredsesglte cycles on the
DRAM data bus since the write data for Write C must waitt@i +trp +trcp +
CW L cycles after the write burst for Write B.

On the other hand, as shown in Figure 7.3(c), if Dirty D is &dcinstead
of Dirty C, the two writes (Writes B and C) are serviced baokback, thereby
resulting in significant reduction of DRAM service time. Shexample illustrates
that a simple cache replacement policy which evicts rowahiteback requests
can improve service time for writes. Our Write-caused ligemce-Aware (WIA)
replacement policy is designed to achieve this.

7.2.2 Mechanism: Write-Caused Interference-Aware (WIA) Replacement

WIA evicts row-hit dirty lines when a replacement happenthimmlast-level
cache. Ideally, row-hit dirty lines can be found by compgrthe row address of
each dirty line in the set (that is considered for replaceyjneith the address of
every write in the DRAM write buffer. However, the hardwatesign cost of this
is not acceptable since it requires an associative searttteafrite buffer with the
address of each dirty line in the cache set. To simplify im@atation and hardware
cost, we use a row address register for each DRAM bank to kaelp of the address
of the last evicted dirty line mapped to that bank. In our addimapping, the last-
level set index field includes the DRAM bank index fiéldTherefore all lines in a
set belong to one DRAM bank. This requires one associateekethe stored row
address in a register is compared to the address of eacHidetin the cache set.
This can be performed by the tag comparison logic in the cathe tag comparison

structure should be modified to support comparing the stayedaddress with the

1This mapping can increase DRAM bank conflicts (among readsnaites with different row
addresses) that causes many row conflicts. However, a wrifertpolicy that drains writes only
when it is full can mitigate this problem significantly. Weeuthis write buffer policy as presented
in Section 7.6.2. Also, we found that keeping track of onky kst evicted dirty line’s row address
globally regardless of the banks also works well. This aptian be used for systems with different
address mapping.

133

row addresses of all lines in the set. Figure 7.4 illustréi@s WIA searches for

row-hit dirty lines.

Writeback Writeback Read Read
address data address data
A l '
[J
[J
®
Last-level cache Replacement
Set .
| | < logic
Dirty row hit "
-] |
. Row address for DRAM bank N-1

[(-—

Row address for DRAM bank 1
Row address for DRAM bank 0

Cache access address

Figure 7.4: Dirty row-hit search for WIA

Whenever a dirty line is evicted (i.e., a writeback is getent its DRAM
bank’s row address register is updated with the dirty limeis address. When a
replacement happens in a cache set, WIA looks for a dirtythaeis mapped to the
same row as the last evicted dirty line for the correspon@RAM bank using tag
comparison logic in the cache. We found that keeping trackefast evicted row
address is enough to gain most of the benefits of searchingwhaddresses of all

writes in the entire write buffer.

WIA prioritizes row-hit dirty lines (if found) over the LRUme for eviction.
If multiple row-hit dirty lines are found, the LRU among thesrevicted. If none are
found, the LRU line is evicted. We found that prioritizingarénit dirty lines over
LRU lines for eviction does not hurt performance due to lostemporal locality.
This is because 1) if the evicted dirty line is required, thréenbuffer forwards it to
the cache unless it is already written back, 2) very few eddirty lines by WIA

134

are reused, and 3) performance benefits of evicting rowdty tnes outweighs

the cost of re-fetching (a small number of) these lines froRAM.

7.3 Combining Latency and Parallelism-Aware and Write-Catsed
Interference-Aware Policies

LPA and WIA can be combined to reduce both miss and dirty linietien
penalties. We found that prioritizing row-hit dirty lineddgtected by WIA) over low-
cost lines (predicted by LPA) for victim decision performery well. The reasons

are as follows.

First, LPA alone is unaware of the dirty line eviction cosPA_can increase
write-caused interference if it evicts costly dirty line(, row conflicts to the same
bank) since it only predicts whether or not lines would be-lmygt when they are

fetched again later.

Second, WIAs detection of row-hit dirty lines is more acata than LPA's
prediction of low-cost read misses. This is because WIA sofgk dirty lines that
can be serviced very soon with other currently outstandinides; whereas LPA
predicts low-cost read misses that are required in the dutur

Finally, WIAs penalty of wrong decisions, i.e., an evictddty line is
reused, is mitigated by possible forwarding of such cacheslifrom the write
buffer. In contrast, LPA's wrong decision, evicting a usdedfad costly cache line,
can negatively affect performance more: the processor statfor a long time as
the cache line needs to be fetched from main memory.

7.4 Multi-Core System Considerations

In many chip-multiprocessors (CMP), multiple cores share last-level
cache and main memory resources. When multiple application on different
cores, their requests compete with each other for the shasedrces. Usinglobal

BLP and row hit rate (as opposed to per-application inforomtfor the purposes

135

of our LPA replacement policy can cause unwanted cacheaepiant decisions.
For example, cache lines of an application that generatewy hosv-cost requests
(high row-hit rate and high BLP) can be evicted too frequen8imilarly, cache
lines of another application with many high-cost (low row+ate and low BLP)

misses could be evicted very rarely. This can hurt systerfopeance.

7.4.1 LPA Replacement in Multi-Core

We modify the LPA replacement policy to be core-aware to @vwois prob-
lem. To make LPA effective in CMPs, we estimate low-costdim® a per-core
basis. We measure aggregate BLP/row hit rate and individLBlrow-hit for each
core independently. As discussed in Section 7.1.2.1, theeggte BLP for Core A
and individual BLP for the requests of Core A are calculatgctnsidering only
Core As requests that are serviced in different banks. lcost estimation for Core
As lines is performed using these aggregate BLP and indali@LP values. Row
hit rate of Core A is measured by dividing the number of CorerAw-hit requests
by the total number of Core As requests serviced in the tinterval. Finally,
one load PC table is required for each core for low-cost egton using row-hit

information.

When a cache line is inserted into a cache set, LPA deterremes core’s
victim by considering only its lines based on LPA policy dissed in Section 7.1.2.
Among each of the cores victims, LPA chooses to evict thamiidf the core to

which the LRU line in the entire cache set belongs.

7.4.2 WIA Replacement in Multi-Core

On the other hand, WIA does not need to be core-aware. Thisaause
writes are not critical to an application’s progress. W&itgecome critical only
when the DRAM controller cannot service reads due to wraased interference.
Therefore, servicing many writes (from any core) very qiycdo that reads (from

any core) can be serviced soon and without delay leads togedgormance. As

136

such, the WIA policy in multi-core systems stays the sameeas@scribed for the

single-core system.

We evaluate our mechanism using these techniques on a £iPesystem
in Section 7.8.2.

7.5 Comparison to Memory-Level Parallelism-Aware Replace
ment

Qureshi et al. [63] proposed a MLP-aware cache replacendityphat
prioritizes the eviction of a cache line that is likely to bengced together with
other misses when it is fetched next. Any misses that ar¢amdsg concurrently
in the miss buffers are assumed (and hoped) to be actuaihcedrin parallel in
the main memory system. This policy does not take into adcthen state and
characteristics of DRAM in its decision making. As such,astimultiple important
limitations compared to our DRAM-aware policies.

First, the MLP-aware policy is not DRAM bank-aware. As wecdissed
in Section 7.1.1, clustered misses to different rows in thmes bank incur very
high cost. Since the MLP-aware policy estimates the “MLR"coka cache line
using the absolute number of outstanding misses (in the MSyHRassumes that
misses to the same bank will be serviced in parallel with othisses, which is not
correct. As such, the MLP-aware policy is prone to mispreagcthe cost of misses

significantly.

Second, the MLP-aware policy does not consider the cost @élacks.
Instead, it considers only the future miss cost of a line winking eviction deci-
sions. This can hurt performance because it can increase-gaused interference
in the DRAM system by causing a large number of row-confligtetracks. As we
showed in Sections 7.2.1 and 7.8.1.2, row-conflict writébaman degrade system
performance significantly.

Third, the MLP-aware policy is unaware of the cause of loteit@y misses.

The MLP-aware policy implicitly identifies low-latency nsiss by estimating the

137

MLP cost for each miss. However, it does not know whether tve ¢dost was
due to high BLP or row buffer locality. This distinction is partant since a row-hit
request that is serviced slowly the first time (due to mangtamiding requests) may

be serviced quickly (and therefore low-cost) when refetiche

Finally, the hardware/design cost of the MLP-aware polggnore than our
proposal. Since MLP cost is stored in each cache line, nielbgs are required
in each line (e.g, 3 bits per cache line). In contrast, our k&g4uires only one bit

(indicating low-cost) per line.

We quantitatively compare the performance of the MLP-aweptacement

policy to our mechanisms in Section 7.8.

7.6 Experimental Methodology
7.6.1 Metrics

To measure multi-core system performance, we use IndiviBpaedup
(IS), Weighted Speedup (WS), and Harmonic mean of Speedi} (vhich are
defined in Section 5.3.1.

7.6.2 System Model

The baseline configuration of processing cores and the megaystem for
single and 4-core CMP systems is shown in Table 7.1. Our sitoiullso models
DDR3 DRAM performance-related timing constraints in de&s shown in Ta-
ble 7.2. Note that our baseline employsiain_.whenfull DRAM write buffer
policy for the evaluation of the proposed replacement jpedic This write buffer
policy tolerates read-to-write switching penalties beghwoday’s high-bandwidth
DDR DRAM systems with their large write-caused interferen&Ve discuss and
compare this policy to other existing write buffer policedensively in Chapter 8.

138

Out of order, decode/retire up to 4 instructions,

Execution Core| issue/execute up to 8 microinstructions; 15 stages

256-entry reorder buffer;

Fetch up to 2 branches; 4K-entry BTB;

Front End 64-entry return address stack;

64K-entry gshare/PAs hybrid branch predictor

L1 I/D-cache: 32KB, 4-way, 2-cycle, 64B line size;

Shared last-level cache: 16-way, 8-bank, 15-cycle,
Caches and | 1 read/write port per bank, LRU replacement

on-chip buffers| writeback, 64B line size, 1, 2MB for 1, 4-core systems;

32, 128 MSHRs for 1, 4-core systems

32, 128-entry LLC access/miss/fill buffers for 1, 4-coreteyss

1, 2 channels (DRAM controllers) for 1, 4-core systems;

800MHz DRAM bus cycle,

DRAM and bus| Double Data Rate (DDR3 1600MHZz) [49];

8B-wide data bus per channel, BL = 8;

1 rank, 8 banks per channel, 8KB row buffer per bank;

On-chip, open-row, FR-FCFS scheduling policy [66];

64-entry (8x 8 banks) DRAM read/write buffers per channel

drainwhenfull write buffer policy

DRAM
controllers

Table 7.1: Baseline configuration for DRAM-aware replacetpmlicies

7.6.3 Workloads

We use the same methodology for compiling and running theCSR&rk-
loads using ICC/IFORT and Pinpoints as discussed in SebtiA.

Even though we evaluated all the 55 SPEC benchmarks, wetreparem-
ory intensive benchmarks on which the performance impacuoimechanisms is
significant; the effect of our mechanisms on the remainingliegtions is negli-
gible. Characteristics of the 16 SPEC benchmarks are showiable 7.3. We
consider memory read (cache miss) and write (writebackjacheristics indepen-
dently since LPA is designed for DRAM read efficiency and Wékgets DRAM
write efficiency. Last-level cache Writebacks Per 1K Instians (WPKI) indicates
how intensively a benchmark generates write requests tDR®M system.

To evaluate our mechanism on CMP systems, we formed connnsabf
multiprogrammed workloads from all the 55 SPEC 2000/200&hearks. We ran

139

\ Latency | Symbol| DRAM cycles |

Precharge trp 11

Activate to read/write trRcD 11

Read column address strobe (CAS) CL 11
Write column address strobe (CA$) CW L 8
Additive AL 0

Activate to activate tre 39
Activate to precharge tRAS 28

Read to precharge trTP 6

Burst length tBL 4

CASto CAS tcop 4

Activate to activate (different bank) trrp 6
Four activate windows tFAW 24

Write to read tWTR 6

Write recovery twr 12

Table 7.2: DDR3-1600 DRAM timing specifications for DRAM-axe replacement
policies

17 randomly chosen workload combinations for our 4-core GiRfiguration.

7.7 Implementation and Hardware Cost of DRAM-Aware Re-
placement Policies

For evaluations, we periodically measure the aggregate hibwate and
BLP every 100K processor cycles for low-cost estimation. &wuepirically set
aggregate_BLP threshold andaggregate_BLP of fset to 2.5 and 0.3 respec-
tively for high BLP estimation. We use a 16-entry 4-way sefogsative structure
for the load PC table and setquest_threshold andaggregate_row_hit_rate_min
to 30 and 0.6 for row-hit estimation. BLP and row-hit infortioa required for LPA
is collected only from reads (not writes).

Table 7.4 shows hardware storage cost for our mechanisnieairigle and
4-core systems in Table 7.1. The BLP information (aggregatkindividual BLP)
is not sent from the DRAM controller to the last-level cacbeatoid additional
storage and long wires. The BLP estimation is performedenDRAM controller,

140

| | | Reads | Writes |
[Benchmark | Type || IPC | MPKI | RHR(%) | BLP | WPKI | RHR(%) | BLP |

179.art FPOO || 0.26 | 90.92 95.43| 1.78| 9.79 86.75| 1.49
482.sphinx3 FPO6 || 0.39| 12.94 83.01| 1.17 0.63 58.18| 1.79
181.mcf INTOO | 0.06 | 107.74 70.08| 1.32| 11.50 15.03| 2.89

171.swim FPOO || 0.35| 23.10 36.95| 2.31| 8.24 78.33| 2.55
173.applu FPOO || 0.93| 11.40 90.34| 1.56 1.78 81.34| 1.74
462.libquantum| INTO6 || 0.67 | 13.51 9496 1.01 5.87 89.13| 1.06
437.leslie3d FPO6 || 0.54| 20.88 70.50| 1.95| 272 73.80| 2.05
481 .wrf FPO6 || 0.72 8.11 72.95| 1.47 2.52 76.17| 1.70
459.GemsFDTD| FPO6 || 0.49| 15.63 4581 2.21 6.91 50.60| 2.70
189.lucas FPOO || 0.61| 10.61 61.00| 1.36| 2.38 34.19| 1.08
450.soplex FPO6 || 0.40| 21.24 81.64| 1.30| 3.75 42.48 | 1.60

436.cactusADM| FPO6 || 0.63 451 7.42| 1.36 1.22 33.31| 1.54
471.omnetpp | INTO6 | 0.49| 10.11 63.45| 1.27| 4.17 6.88 | 2.46
176.gcc INTOO || 0.93 3.24 90.62| 1.07 0.54 39.53| 1.56

178.galgel FPOO || 1.42 4.84 54.45] 2.99 1.16 11.51| 3.08
464.h264ref | INTO6 || 1.48 1.28 89.56 | 1.07 0.28 63.55| 1.90

Table 7.3: Characteristics of 16 SPEC benchmarks for DRAWre replacement:
IPC, MPKI (last-level cache misses per 1K instructions), KVRast-level cache
Writebacks Per 1K Instructions), row hit rate (RHR), BLP

and a one-bit field (high/low BLP bit in Table 7.4) is carriegldlach read request.
Similarly, one bit row hit/conflict field is also carried by @arequest for row-hit
estimation before being inserted into the cache.

LPA and WIA require only 0.2% of the total last-level cachesp on both
systems. We assume that the core ID field is already availalelach cache line on
the 4-core system. If the core ID field (2 bits) is also consdeour mechanisms
require 12.7KB (0.6% of last-level cache), which is stilsignificant. Note that

none of the logic or structures required for the mechanishosithe critical path.

7.8 Experimental Evaluation and Analysis on DRAM-Aware Re-
placement Policies

We present experimental results for our mechanisms on tiggescore and
4-core systems. We first analyze the DRAM-aware replacepuiies intensively

on the single-core system.

141

Cost for

Structure Cost equation (bits) 4-core
Aggregate BLP & bl_sz counters 16 % 3 % Noore 192
and BLP register

Individual BLP & busy counters 16 x 2 X Npank 512

High/low BLP bit 1 X Npyuffer 128

Aggregate row—h_lt & reque_st counters 16 % 3 x Nyyre 192

LPA and row hit rate register

Load PC table’s tag store (16-entry 4-way) 27 x 16 X Neore 1,728

Load F_’C table’s data store 9 % 16 % 16 % Nopre 2048

(row-hit/request counters)

Row hit/conflict bit 1 X Nyuffer 128

Low-cost bit 1 X Niine 32,768
| WIA | Row address registers \ 32 X Npank \ 512 |
Total storage cost for the 4-core systems in Table 7.1 38,208

Total storage cost as a fraction of the last-level cacheagpa 0.2%

Table 7.4: Hardware storage cost for DRAM-aware replacemehcies (V.. ,
Niiney Nvank, Nousser: NUMber of cores, last-level cache lines, DRAM banks, cache
fill buffer entries)

7.8.1 Single-Core Results

Figure 7.5 shows IPC normalized to the baseline for the bus¢lRU,
MLP-aware, Latency and Parallelism-Aware (LPA), Writaisad Interference-Aware
(WIA), and combined LPA-WIA replacement polices. The MLWRaae policy is
implemented with a set-sampling mechanism that seleciseeet (MLP-aware)
linear and LRU policies as proposed by Qureshi et. al [63].

Overall, the best performing policy is the combination ofALeénd WIA,
which improves performance by 11.4% (6.9% excludamt) on average. In con-
trast, the MLP-aware policy improves performance by 4.6%%¥®excludingart).
LPA and WIA complement each other and act synergistically.nféke the follow-

ing major observations:

First, both LPA and MLP-aware policies improve performafarert, sphinx3,
mcf, gcc, galgebnd h264ref However, LPA outperforms the MLP-aware policy

for most benchmarks. Especially, fewim LPA improves performance by 2.3%

142

IPC normalized to baseline

Figure 7.5: Performance of DRAM-aware replacement pdioie single-core sys-
tem

while the MLP-aware policy degrades performance by 3.8% rEason why LPA
outperforms the MLP-aware policy overall is that LPA is ket identifying and
evicting low-cost lines that are serviced faster or in datah the DRAM system.

Second, both the LPA and MLP-aware policies degrade pedgoom for
applu, libquantum, leslie3d, wrand GemsFDTD This is because neither of the
two mechanisms are aware of write-caused interference wisgrevict dirty cache
lines. This signifies the importance of write-caused itexhce when replacement

decisions are made.

Third, the performance degradations due to LPA are recoMeyeemploy-
ing WIA together with LPA. Additionally, WIA alone improvegerformance for
GemsFDTD, lucas, soplex, cactusAD&domnetppmainly due to its ability to
reduce write-caused interference in the DRAM system. Asalteusing LPA and

WIA (LPA-WIA) together provides the best performance amatigolicies.

In the following subsections, we provide further insightngssupporting

data about DRAM characteristics.

143

7.8.1.1 Why Does LPA Policy Perform Well?

Figure 7.6 shows the total read bus traffic (from DRAM to thegassor)
and aggregate DRAM BLP. Read traffic is essentially misdi¢raind is divided
into row hits and row conflicts. A good cache replacementgyolould lead to less
read traffic (i.e., fewer misses or higher cache localitgyydr row conflicts, and
higher BLP.

22 _ 10—
20 I :
ims : 0 i
%) 18A=~. : o) 0.8 i
@ 164K N] il
S M 368§
=1 19 =row hits <§E 06 RN T
x olH RS =row conflicts P Y
O e O o.4ffEs
is H LPA
[8Al I N c
O N HE MLP| WIA IS
= SN Base \ |/ LPA-WIA g 0.2]
S 4 -
2138
o i n 0.0
> S ad IR
Fa Q& O &FH Q" o @ . R N
T ITTTEE LXK &L > &
PRI EYF RFSE S AF N
R S ,\@x N4 SN o S S &&9
(a) Traffic
3.0
25
5
m 2.0
)
S 15
S b
(@) =pase
1.0
< =MLP
05 = PA
' = WIA
0.0 = LPA-WIA

(b) Aggregate BLP

Figure 7.6: DRAM read traffic and aggregate BLP of DRAM-awagplacement
policies

LPA reduces row-conflict read traffic significantly fart, sphinx3 andmcf

144

(by 73.3%, 68.5%, and 14.2% compared to the baseline) iniaddo reducing the
overall read traffic as shown in Figure 7.6(a). This impropegormance signifi-
cantly for these applications. The MLP-aware policy alstuees read traffic, but

much less so than LPA does.

LPA also increases BLP foncfandswimby 12.3% and 10.0% compared to
the baseline as shown in Figure 7.6(b). The increased BLPaghated read traffic
cause LPA to outperform the MLP-aware policy. The improvddPRlue to LPA
translates to performance improvement$arimeven though LPA increases cache
misses (total read traffic) by 8.5%. In contrast, the MLP+@ngolicy degrades
performance ofwimbecause many of the concurrent misses it estimates to be low-
cost actually end up being high-cost row conflicts becausg thap to the same
DRAM bank.

LPA significantly outperforms the MLP-aware policy in foysgications:
art, sphinx3, mg¢fandswim This is because the MLP-aware policy is not aware of
DRAM banks and row buffer locality in the DRAM system. It edion only the
information about how many misses are outstanding at the sane, as discussed
in Section 7.5. In contrast, our mechanism explicitly measwand estimates the
BLP and row hit rate in the DRAM system to determine whethenais likely to

be low-cost when refetched later.

7.8.1.2 Why Is Write-Caused Interference Awareness Desitde?

Both the MLP-aware and LPA policies degrade performanceafmulu,
libquantum, leslie3d, wrandGemsFDTDeven though the read traffic (i.e., misses
or row hits/row conflicts) or BLP does not change comparecht liaseline, as
shown in Figures 7.6(a) and (b). The reason for the deg@datn be found by
analyzing write traffic in Figure 7.7(a). Even though theatatrite traffic does not
increase, LPA and MLP-aware increase the number of row-conitites compared
to the baseline. This indicates that these policies inereage-caused interference,
causing DRAM performance to degrade due to a large numbeltetycles on the

145

DRAM data bus. In fact, MLP-aware and LPA policies degrldguantunts per-
formance by 27.0% and 22.0%.

2.4 0.25———
NN q
2ol g iﬁ" LPA U, 1§
0 <.Yig .
2 1gil B MLP| WIA < 020
S 1ok v Base | | / LPA-WIA © i
S 14008 H / S 015 !
Z 1k : HEH . <
v L2 = | = row hits Y
O 104] - = row conflicts: O 0.10
[:. c
5 083 - y . S
= 0.643 | N i I = 00
" — n: : [: 2 .
S 044 i
0.2 8
0.0 I 4 0.0
) > ad O
2 o & o Q"o ¢ w8 N
T CIETTTEL PP S @ > @
P TN LFPS T EF SRS S A
KR ~\§o°‘ N 2 c?’o K L
(a) Traffic
3.5
=base
3.0 =« MLP
o = LPA
—1 2.51 =WIA —
o = LPA-WIA
% 2.0
(@)
o 15
3 !
1o | I
0.5 | I
0.0 U \
) S Q4 R N &
F& L TR 2 a6 (& @
S T LIS L P F RS SH
T TN ES T SKE LY

(b) Aggregate BLP

Figure 7.7: DRAM write traffic and aggregate BLP of DRAM-awaeplacement
policies

When employed with LPA, WIA reduces the number of row condlict as
many as the baseline LRU fapplu, libquantum, leslie3dandwrf as shown in
Figure 7.7(a). It also leads to fewer row conflicts than theshae forGemsFDTD
Hence, by reducing write-caused interference when emgdlayith LPA, WIA re-

covers the performance degradation due to LPA, and somgtren improves per-

146

formance compared to the baseline (feemsFDTDby 3.3%) as shown in Fig-
ure 7.5.

Additionally, WIA alone (without LPA) improves performaador lucas,
cactusADM, soplexand omnetppby increasing row-hit writes (rather than row-
conflict writes) compared to the baseline, thereby redueinite-caused interfer-
ence in the DRAM system. Note that flacas, cactusADMand omnetpp WIA

also increases aggregate BLP for writes, reducing thenageelatency cost.

On the other hand, the MLP-aware policy suffers performategradation
or cannot improve performance for these applications dukéstanawareness of

write-caused interference in the DRAM system.

7.8.1.3 Combining LPA and WIA

We find that LPA and WIA are orthogonal to each other. When dosth
together in the way described in Section 7.3, the performéenefit of each mech-
anism is obtained additively. This can be justified by obsgthat improved
DRAM characteristics for reads and writes of each individuachanism in Fig-
ures 7.6 and 7.7 do not significantly change for LPA-WIA. Wadade that our
DRAM-aware replacement policies largely reduce costlyheamisses and evic-
tions, thereby improving performance significantly on agncore system.

7.8.1.4 Effect on System with Prefetching

In this section, we discuss the DRAM-aware replacementcypafi a sys-
tem with prefetching. When the DRAM-aware policy is naivelyployed with
prefetching, there are two issues that can affect its ef®=oeéss. First, useful
prefetches that are marked as low-cost by LPA can be evigist ljecause they
are marked as low-cost) from the last-level cache beforeuised. This reduces the
effectiveness of prefetching and therefore can hurt perémce compared to the
baseline LRU policy without LPA. Second, useless prefedchat are not marked

(i.e., high cost prefetches) can stay in the cache for a long tonsuming cache

147

space. This can reduce cache efficiency by evicting usetihlecknes.

To overcome these problems, we take prefetch usefulnessaaaount in
LPA replacement decisions. The basic idea is 1) to ignoreldhecost bit of
prefetches that are estimated as useful so that LPA doesviubti@wv-cost use-
ful prefetches that are not used yet and 2) to evict prefsttiet are likely-useless

earlier so that cache space can be used for demand and usf&itpes.

To implement this, we measure prefetch accuracy on an iltéasis as
prefetch-aware DRAM controller and BLP-aware issue pesalo as presented in
Chapters 5 and 6. When the estimated prefetch accuracy Femrévious interval
is greater than a thresholaseful prefetchthreshold the low-cost bits of prefetched
lines are disregarded by LPA in the current interval. Sinylavhen the prefetch
accuracy is less than another threshakklesgrefetchthreshold prefetched lines
are prioritized over any other cache lines in the set coms@tifor replacement. Note
that prefetched lines are identified by examining the poéféit in each cache line,
which is already used by the prefetch estimation (as expthin Section 5.2.1).

On the other hand, WIA is not required to be prefetch-awareis s be-
cause writes are not immediately critical to an applicasigmogress as we already
discussed in Section 7.4.2. Writes become critical onlymtihe DRAM controller
cannot service demands and useful prefetches (i.e., rdadsio write-caused in-
terference. Servicing many writes quickly so that reads loarserviced without

interruption of writes for a long time leads to high performea.

Figure 7.8 shows the average performance of the baselihenaiprefetch-
ing, the baseline prefetching, MLP-aware, and DRAM-awa@acement (LPA
and WIA together) with these optimizations. We ran the 16cbemarks on the
single-core system with the stream prefetcher (used in ey and 6). We
empirically determined the two thresholdgsefulprefetchthresholdof 50% and
uselessrefetchthresholdof 20%. The prefetch accuracy is measured every 100K
processor cycles.

The DRAM-aware replacement policy improves performanc8.B96 com-

148

1.2
1.14
1.04 -
0.9 -
0.8 -
0.7 -
0.6 -

0.5
0.41]= base

0 3i)=npref
i|=MLP
0.2

0.1 = PA-WIA

0.0

IPC normalized to baseline

Figure 7.8: Performance of DRAM-aware replacement paicie single-core sys-
tem with prefetching

pared to prefetching whereas the MLP-aware policy impr@ertormance only by
4.4%. This is mainly because the MLP-aware policy is not avedilDRAM char-
acteristics or prefetch usefulness. We conclude that DR&AMre replacement is

also effective in a system that employs prefetching.

7.8.2 4-Core Results

We evaluate our mechanisms on a 4-core system with a shaebkbval
cache in this section. Figure 7.9 shows average weightesdspe(WS) and har-
monic mean of speedups (HS) for the baseline LRU, MLP-awz#?8, WIA, and
LPA-WIA replacement policies.

LPA alone improves both WS and HS by 4.6% and 8.4% compardukto t
baseline LRU by evicting low-cost lines while keeping higbst lines for the ap-
plication running on each core. WIA alone also significaimthproves system per-
formance (WS and HS by 4.7% and 4.6%) by servicing writes &asl thereby re-
ducing write-caused interference to more critical readfiewcombined together,
LPA and WIA improve WS and HS by 9.5% and 12.3%. On the othedh#re
MLP-aware policy marginally improves only HS by 3.4%. Itsfpemance ben-
efit is insignificant mainly due to its unawareness of DRAM releteristics. We

conclude that our DRAM-aware mechanisms are also very tefeeand improve

149

22— 0.5
2.0
1.84
1.6
1.45
1.2
1.04

= hase

Value of metric
Value of metric

08, =MLP
0.63 —=LPA
0.4A l:IWIA

0.24 = LPA-WIA
0.0 0.0
(a) WS (b) HS

Figure 7.9: Performance of DRAM-aware replacement paioie 4-core system

system performance significantly on multi-core systems.

7.9 Summary

This chapter makes a case for designing the last-level cagflacement
policies in a manner that is aware of DRAM state and charisties. Previous
cache replacement policies overwhelmingly optimize fonimizing cache misses
and ignore DRAM performance characteristics that affeet¢bst of each miss:
row buffer locality, bank-level parallelism, and writetts®ed interference. We show
that taking these DRAM performance characteristics intmaaot in last-level cache
replacement policies can significantly improve entiresysperformance. Our pro-
posed policies estimate the performance cost of a cachéavisson in the DRAM
system, and favor the eviction of the cache line that is eggohto have the least
system performance impact. Our evaluations show that ajpgzed DRAM-aware
cache replacement policies significantly improve perforogaon both single-core

and multi-core systems.

150

Chapter 8

Last-Level Cache Management for Reducing
Write-Caused Interference

In Chapter 7, we have proposed and discussed a cache replatceaticy,
Write-caused Interference-Aware (WIA) Replacement golichich aims to reduce
write-caused interference in the DRAM system. Recall thaf\Victs row-hit
dirty lines that can be written back quickly to DRAM due to rbuffer localityonly
when a replacement happens in the last-level cache. InMlister, we propose a
more aggressive writeback policy that proactively sendgelvacks from the last-
level cache evembeforea replacement happens, in order to further reduce write-
caused interference in the DRAM system [38].

We first motivate the problem of write-caused interferenceday and fu-
ture DRAM systems in more detail, and then we discuss oullibadeRAM write
buffer management policy that performs best among theiegisirite buffer poli-
cies by reducing read-to-write and write-to-read pensgltidfter that, we propose
and evaluate our aggressive cache writeback mechanisnhwaicfurther improve
performance on top of the baseline write buffer policy.

8.1 Write-Caused Interference in the DRAM System

Read and write requests from the processor contend for DRAf lous. In
general, read requests (i.e., miss requests from thedast-¢ache) are critical for
system performance since they are required for an appitatprogress whereas
writes (i.e., writeback requests from the last-level caah@ not need to be per-
formed immediately. In modern DDR (Double Data Rate)-basechory systems,
write requests can interfere significantly with the semirof read requests, degrad-

151

ing overall system performance by delaying the more clitiead requests. There
are two major sources of performance penalty when a writagsjs serviced in-
stead of a read request. First, the critical read requestlesydd for the duration
of the service latency of the write request. Second, evear #fe write is serviced
fully, the read cannot be started because the DDR DRAM pobtexjuires addi-

tional timing constraints to be satisfied which causes igtdas on the DRAM data

bus in which no data transfer can be done.

As discussed in Section 2.3, the two most important of thesmg con-
straints are write-to-read(rz) and write-to-precharge (write recoveryy r) la-
tencies as specified in the current JEDEC DDR DRAM standé?ll [Phese tim-
ing constraints in addition to other DRAM latencies such@sparge, activate and
column address strobe latenciegq, trcp, andC L/CW L) dictate the number of
cycles in which the DRAM data bus must remain idle after aeyrttefore a read
can be performed. Both latencies increase in terms of nuwfi@RAM clock cy-
cles as the bus clock frequency of the DRAM chip increases3@Y as do other
DRAM latencies. The end result is that high penalties cabgesrite requests will
become even larger in terms of number of cycles because theltick frequency

of future DRAM chips will continue to increase to maintairghipeak bandwidth.

An on-chipwrite buffercan mitigate this problem. A write buffer holds
write requests on the chip until they are sent to DRAM acaaydo the write buffer
management policy. While write requests are held by theewbiiffer, read re-
quests from the processor can be serviced by DRAM witho@rf@tence from
write requests. As a result, memory service time for readsdbre required by the
application can be reduced. As the write buffer size ina@sawirite-caused inter-
ference in the memory system decreases. For example, aitafinte buffer can
keep all write requests on-chip, thereby completely remgwirite-caused inter-
ference. However, a very large write buffer is not attraetsmce it requires high
hardware cost and design complexity (especially to enaln@drding of data to
matching read requests) and leads to inefficient utilizadioon-chip hardware and

power. In fact, a write buffer essentially acts as anotheell®ef cache (holding

152

only written-back cache lines) between the last-level eaaid the main memory

system.

8.1.1 Performance Impact of Write-Caused Interference in ®day's DRAM

System

To motivate the performance impact of write-caused interfee, Figure 8.1
shows the simulated performance of a single-core systertin (w0 prefetching)
that employs a state-of-the-art DDR3-1600 DRAM systemg 1Z2B/s peak band-
width) [49] and a First Ready-First Come First Served (FRFBEDRAM con-
troller [66]. We evaluate four write request managementguees: 1) a 64-entry
write buffer with a management policy similar to previousposals [40, 57, 68]
which exposes writes (i.e., makes them visible) to the DRAMtmller only when
there is no pending read request or when the write bufferisgfnd stops exposing
writes when a read request arrives or when the write buffeotgull anymore ger-
vice at_no_read), 2) a 64-entry write buffer with a policy that exposes alites only
when the write buffer is full and continues to expose all esitntil the write buffer
becomes emptydfain_.whenfull), 3) Write-caused Interference-Aware (WIA) re-
placement policy witldrain_.whenfull (proposed in Chapter 7) and 4) ideally elim-
inating all writes assuming that there is no correctnesseigaawrite). Ideally
eliminating all writes removes all write-caused interfeze and therefore shows
the upper bound on performance that can be obtained by Ingnahte-caused in-
terference intelligently. We chose 16 benchmarks among§RE#C2000/2006 CPU
benchmarks that have at least 10% IPC (retired instructesrcycle) performance
improvement compared tdrain_whenfull when all writes are ideally removed.
The performance numbers are normalizeditain_whenfull. The configuration of

the system is identical to the baseline system presenteeldtiof 7.6.

We make two main observations. First, the performanseoficeat no_read
is worse thardrain_.whenfull. This is because when a read arrives at the DRAM
controller very soon after a write is serviced, a significamount of write-caused

penalty delays that read. This happens to all the benchneadept fodlucaswhere

153

IPC normalized to baseline

Figure 8.1: Potential (simulated) performance of intehgy handling write-
caused interference in the DRAM system

there are long enough periods to satisfy the large writesedypenalties during
which reads are not generated. Servicing writes oppotticalsy when there are
no reads degrades performance due to two reasons: 1) itsitlcerrcostly write-
to-read and read-to-write switching penalties, therebgting DRAM bandwidth
(i.e., incurring many idle cycles), 2) it does not exploitwduffer locality when
servicing write requests since writes that go to the samear@nserviced far apart
from each other in time. In contrastrain.whenfull improves performance by
9.8% compared tgerviceat no_read on average because it 1) delays service of
writes as much as possible, 2) services all writes onceriiss$arvicing one write,
thereby amortizing write-to-read switching penaltiesogsrmultiple writes by in-
curring them only once for an entire write-buffer worth ofites, and 3) increases
the possibility of having more writes to the same DRAM row s or higherow
buffer localityin the write buffer that is exploited by the DRAM controllerfbetter
DRAM throughput.

Second, even thougtirain_.whenfull improves performance compared to
serviceat.no_readand WIA outperformslrain_.whenfull, there is still large poten-
tial performance improvement (20.2% and 17.1% comparellaim_whenfull and

WIA respectively) that can be achieved by further reducingeacaused interfer-

154

ence, as shown by the rightmost set of bars.

As shown above, the impact of write-caused interferencenapalication’s
performance is significant even with good write buffer/aacéplacement policies
with a decently-sized (i.e., 64-entry) write buffer. Thgsbhecause a size-limited
write buffer or a write buffer management policy cannot céetgdy remove write-
caused interference since 1) writes eventually have to litewrback to DRAM
whenever the write buffer is full and 2) servicing all writiesthe write buffer still
consumes a significant amount of time mainly due to the watprecharge penal-
ties imposed to row-conflict writes to the same bank as dssmisy 7.2.1. Note that
the write-caused interference-aware replacement poaayot remove all interfer-

ence as well.

8.1.2 Performance Impact of Write-Caused Interference inte Future

We expect that write-caused interference will continualigrease in terms
of number of clock cycles as the bus clock frequency of the MRAip increases
to maintain higher peak bandwidth. The write-to-read pgmahich guarantees
that modified data is written to the row buffer correctly (semmplifier) will not be
easily reduced in absolute time similar to other accessi¢ads such as precharge
period ¢rp) and column address strobe laten€y(C'W L). This is especially true
for the write-to-precharge latency which guarantees medifiata will be com-
pletely written back to the memory rows before a new preaharghis latency
cannot easily be reduced because reducing access latetiey teemory cell core
is very difficult [67, 22]. We believe that this trend will conue to hold for any
future memory technology (not limited to DRAM technologigat supports high
peak bandwidth. This means that write-caused interfer@niteontinue to be a
performance bottleneck in the future.

Figure 8.2 shows the performance improvement of the ideéélack pol-
icy (i.e., all writes are removed) across future high bamtiwvimemory systems.
We assume that the DRAM bus clock frequency continue to asgan the fu-

155

ture. Since the future memory specifications are unknowrspegulatively scaled
the number of clock cycles for all DDR3-1600 performanctexl latencies that
cannot be easily reduced (e.Gw7r, twr, trp, trep, CL, €tc) in absolute time.
For example, x2 of DDR3-1600 indicates a DDR system that taeis twice the
DDR3-1600 peak bandwidth (25.6GB/s =x212.8GB/s). We also assume that the
DRAM bus clock frequency increases as fast as the procekszk tequency. We
show two cases: when no prefetching is employed and whertriens prefetcher

(used in Chapters 5 and 6) is used in the processor.

1.3
1.2
1.14
1.04
0.9
0.87
0.75
0.6
0.57
0.47
0.3
0.25
0.15
0.0+

IPC normalized to baseline
IPC normalized to baseline

&
PCUE U
OQ

(a) No prefetching (b) Prefetching

Figure 8.2: Performance potential by eliminating all wsiss memory bus clock
frequency increases

We make two observations from Figure 8.2. First, the highempeak band-
width, the larger the performance impact of write-causeédrierence. Second,
removing write-caused interference is more critical fosteyns with prefetching.
The performance impact of writes for the systems with podfieig is much higher
due to larger contention between reads and writes (prefetpests are all reads).

156

8.2 Motivation
8.2.1 Reducing Read-to-Write and Write-to-Read Penalties

As discussed in Section 2.3, read-to-write/write-to-readtching penalty
is dictated by the read-to-write latency (latency from adrélata burst to a write
data burst, 2 DRAM clock cycles) and write-to-read latengy;(z, 6 DRAM clock
cycles for DDR3-1600).

We demonstrate how these penalties can be mitigated lyaine whenfull
policy with an example in Figure 8.3. Figure 8.3(a) showsdtate of the DRAM
read and write buffers. For brevity, we assume that eaclebbds only two entries
in this example. All the read requests in the DRAM read budferalways exposed
(or considered for scheduling) to the DRAM controller, wées the writes are ex-
posed based on the write buffer management policy. Thereegead (Read A, a
read request to Row A) and one write (Write B, a write to Row 1Bjhe read and
write buffers respectively. At timé&l, another read (Read C) and a write (Write D)
come from the last-level cache. We assume that each reqaesttg a different
bank and that all requests hit the current open row in thairesponding DRAM

banks (i.e., all requests are row hits).

Figure 8.3(b) shows the DRAM timing diagram for the policyiat ex-
poses writes to the DRAM controller only when there is no pegdead request or
when the write buffer is full and stops exposing writes wheea request comes in
or when the write buffer is not full anymorasérviceat no_readin Section 8.1.1).
Since no read is pending in the DRAM read buffer after Read #cieduled, this
policy schedules Write B from the write buffer. SubsequeRead C and Write D
are scheduled.

Two observations are made. First, the command for Write Brdtead A
must satisfy read-to-write latency; it has to be schedulethe DRAM controller
atleastC'L + tg;, + 2 — CW L DRAM clock cycles [22] after the read command
is scheduled such that the write burst can be on the bus twoNDB&les after the
read burst (as discussed in Section 2.3). Second, ReadrG\afte B must satisfy

157

To DRAM

i i

Read A Write B

DRAM read buffer DRAM write buffer Read/write X : Read/wrlte.a_ (_:olumn in row X
? ? Rows A, B, C, and D are initially open

Read C at t1 Write D at t1
(a) DRAM buffer state

CL+tBL+2—CWI\ t
Réad A Write? B: Read C Write D
Command U @ 1 B _
| cL a?ignfeead
Data bus ‘
Data A ﬁ» m B -
Read to write latency Read to write ’:Eten(f:y

(b) DRAM timing for the policy that exposes writes when no read is \:Naiting

tl tCCD

-~

Re%d A Read Ciﬁ Write B; <Write D
Command U L § §

; Drain
Saved cycles ff Wwhen full

CL s CL

Data bus

Read to write latency
(c) DRAM timing for the policy that exposes writes when write buffer is full

Figure 8.3: Servicat no_read vs. drainwhenfull write buffer policies

158

twrr. The command for Read C can only be schedulegdy cycles after the data
burst for Write B is completed. In contrast to read-to-widéency, the data bus
must be idle forty, 1z + C'L cycles since the subsequent read command cannot be
scheduled foty, i cycles. The last write is scheduled after read-to-writerlay

is satisfied as shown.

This policy results in many idle cycles (i.e., poor DRAM izdtion) on the
data bus. This is because it sends writes as soon as ther® gending reads
which is problematic when a subsequent read arrives imrteddiafter the write
is scheduled to DRAM. The penalties introduced by the wréase a significant
amount of interference and therefore increase both theésread write’s service
time. This is the main reason why this policy does not perfarefl as shown in
Figure 8.1.

On the other hand, if the write buffer policy that exposesvaites only
when the write buffer is full and continues to expose all esitintil the write buffer
becomes emptydfain_whenfull) is used, Reads A and C are serviced first (Write
B is not serviced immediately after Read A since the writddyut not full) and
then Writes B and D are serviced. Figure 8.3(c) shows the DRidlvhg diagram
for this policy. Read C can be scheduled once the DRAM cdetrekes it since
there is no unsatisfied timing constraint for Read C. Thert&\Bican be scheduled
CL +tgr +2— CWL cycles after the command for Read A is scheduled. Note
that the command for Write D can be scheduled very soon (m@@sely,tccp
cycles after the command for Write B) since DDR DRAM chips s back-to-
back data bursts for writes by overlapping column addresbkstlatencies{1V L)
as we discussed in Chapter 2.

This policy results in better DRAM service time for the foequests com-
pared to the policy shown in Figure 8.3(b). Since bufferingies in the DRAM
write buffer and servicing all of them together when the butbecomes full re-
duces the large read-to-write and write-to-read latenaafiees, DRAM through-

put increases. Also note that by delaying writes as much ssilple, reads that are

159

more critical to an application’s progress can be serviagdidy thereby improving
performance. This is the main reason this policy outper®thedrain_whenfull
policy as shown in Figure 8.1. We found that this policy is ltlest among the pre-
viously proposed write buffer policies we evaluated (asmsh&ection 8.7.1). We

use this policy as our baseline write buffer policy.

8.2.2 Last-Level Cache Writeback: A Way to Further Reduce Wite-Caused

Interference

As discussed in Section 2.3.2, write-to-precharge pemaltyot be reduced
by write buffer policies (such as drain when full). Servigirow-conflict writes in
the same bank takes a significant number of cycles. This slslaice of writes
in the write buffer and eventually results in delaying seevof reads. Service of
writes can be done faster if the write buffer has many rowalites. The source of
DRAM writes is the last-level cache’s writebacks which airgydine evictions in a
writeback cache. To leverage this fact, we have alreadyqzeg the Write-caused
Interference-Aware (WIA) replacement policy in Chapteifie WIA policy evicts
row-hit dirty lines that can be written back fast to DRAM dwerow buffer locality
when areplacement happens in the last-level cache. Siisqealicy generates row-
hit writes only when a replacement happens in a cache set, it looses opiiegun
that more row-hit dirty lines in other cache sets can be amithack fast. Therefore

overall reduction in write-caused interference can be kmal

The last-level cache can more aggressively and proactsexiyg out write-
backs that can be written fast eveaforea line is evicted to improve service time

of writes.

Figure 8.4 compares an aggressive writeback policy of teelével cache
to the WIA replacement policy. Figure 8.4(a) shows the ahistate of the DRAM
read/write buffers and three sets of the last-level caclna reads (Reads Al and
A2, both to Row 0) and a write (Write BO to Row 1) are waiting tostheduled in
the DRAM read and write buffers (two entries for each) respely. In each of the

three cache sets shown, there is a dirty line that is mappee tsame row (Row 1)

160

Less recently used
—

To DRAM
! } .

Set1 Clean| Clean|Dirty Bl Clean

Set2 Clean| Clean| Clean| Dirty B2
DRAM read buffer DRAM write buffer get 37 Clean Dirty B3| Clean| Clean

Read Al Write BO
Read A2

Read A3 at t1 .
Read A4 at t1 Last—level cache

Reads Al, A2, A3, A4 are mapped to row 0 in bank 0
Writes and dirties BO, B1, B2, B3 are mapped to row 1 in bank O
Rows 1 in bank 0 is initially open

Data for read Al is stored in set 1
Data for read A2 is stored in set 2
Data for read A3 is stored in set 3

(a) Cache/DRAM buffer initial state

Dirty B3 evicted
(write buffer full)
Dirty B1 evicted (write buffer full)

1 2
n Yy
Data bus—{I] | HHIU}HIHHD

tRP + tRCD + CWL /Dirty B2 evicted
tWR + tRP + tRCD + CL tRP + tRCD + CWL

Scheduling order
Read A1 (row hit), Write BO (row conflict), Write B1 (row hit), Read A2 (row conflict),
Read A3 (row hit), Write B2 (row conflict), Write B3 (row hit), Read A4 (row conflict)

(b) DRAM timing for write—caused interference—aware replacement

Wites B1, B2, B3 sent proactively

Saved cycles

tRP + tRCD + CWL tWR + tRP + tRCD + CL

Scheduling order
Read Al (row hit), Write BO (row conflict), Write B1 (row hit), Write B2 (row hit),
Write B3 (row hit), Read A2 (row conflict), Read A3 (row hit), Read A4 (row hit)

(c) DRAM timing for DRAM—-aware writeback: writebacks B1, B2, B3 are sent proactively

Figure 8.4: Write-cause interference-aware replacementDRAM-aware write-
back

161

as Write B. At timetl, a new read to Row 0 (Read A3) comes from the last-level
cache. At time2, another read to Row 0 (Read A4) comes as well. We assume that
Reads A1, A2, and A3 are inserted to Sets 1, 2, and 3 in the caspectively when
serviced by DRAM. We also assume that all (read and write)ests are mapped

to the same bank (Bank 0) for simplicity. Both policies enyloe drain_when full

write buffer policy.

Figure 8.4(b) shows the resulting DRAM timing when the WiAlacement
policy is used. Read Al is serviced by DRAM first since the vioitiffer is not full.
When Read Al is serviced and inserted to Set 1, WIA evictsyBa since it is
mapped to the same row as Write BO in the write buffer (i.en hat). Therefore
the DRAM write buffer becomes full, and Writes BO and B1 arevged back-to-
back next after the row-conflict latencyze + trep + CW L). After this, Reads
A2 and Read A3 are serviced. Read A2 must wait for a longeraomflict latency
(twr + trp + trep + CL) since its precharge command must wait until write-to-
precharge latencyt) is satisfied after the write burst of Write B1. Read A3 is
serviced right after Read A2 since itis a row hit read. Thetd dirty lines (Writes
B2 and B3) due to Data A2 and A3’s insertion are written batérahe row-conflict
latency (zp + trep + CWL). Finally, Read A4 is serviced after another longer
row-conflict latency. This policy results in idle cycles @fd smaller row-conflict
(row conflict after a read) latencies and two larger row-dohffow conflict after a

write) latencies.

On the other hand, as shown in Figure 8.4(c), if the writefacBirties B1,
B2, and B3 in the cache can be sent out before Read A is corypseteviced by
DRAM, all writes are serviced back-to-batkpr+trcp+CW L DRAM cycles after
Read Al's data burst. Reads A2, A3, and A4 are serviced ablatkiyy r+trp+
trep + CL after the write burst of Write B3. This policy results in idigcles of
one smaller row conflict and one larger row conflict. Sinceenarites are serviced
back-to-back, the aggressive writeback policy can resultswer idle DRAM bus

cycles than the WIA policy. Servicing more writes quickhsalresults in higher

162

performance since subsequent reads can be serviced whikmg interfered by

writes for a long time.

8.3 Mechanism: DRAM-Aware Writeback

Our mechanism, DRAM-aware writeback, aims to maximize tieAD
throughput for write requests in order to minimize writaisad interference. It
monitors dirty cache lines (writebacks) that are evictemrirthe last-level cache
and tries to find other dirty cache lines that are mapped tcsdme row as the
evicted line. When found, the mechanism aggressively semitisbacks for those
dirty cache lines to DRAM. Thdrain_.whenfull write buffer policy allows writes
to be seen by the DRAM controller when the write buffer is filléreby allow-
ing the DRAM controller to exploit row buffer locality of wies. The writeback

mechanism only cleans (does not evict) cache lines by sgnditebacks.

The mechanism consists of a global writeback monitor urnitastate ma-
chine in each last-level cache bank as shown in Figure 8.8 wirheback monitor
unit watches evicted cache lines until it sees a dirty caicieedeing evicted. When
it finds one, it records the row address of the cache line il @ache bank’s state
machine. Once a write’s row address is recorded, the stathinmes start sending
out writebacks for dirty lines whose row address is the sastha recorded row
address (row-hit dirty lines). To find row-hit dirty cachadis, each state machine
searches its cache bank. Each state machine shares thé p®dache bank with
the demand cache accesses from the lower-level cache. tBendemand accesses
are more critical to performance, they are prioritized otrex state machine’s ac-
cesses. Once a row-hit dirty line is found, the line’s wréek is sent out through
the conventional writeback ports regardless of the LRU tpwsiof the cache line.
Because the cache lines which are written back in this mamagrbe reused later,
the cache lines stay in the cache and only have their dirtgbét (they become non-
dirty or clean). The state machine in each core continuedisgmow-hit writebacks

until all possible sets that may include cache lines whoseagidress is the same as

163

Writeback to DRAM
A

Data Address Data

Address .| Writeback monitor]

Last-level cache Last-level cache
® ®© o °

Bank O Bank N-1

| i
Last—level cache

Cache accesPata *. Cache accesPData
address ' address

(To write buffer)
Writeback address Writeback data

T 1

Last-level cache bank

Row address
from

; [\{ } writeback monitor
3 Row addresg=—

Writeback state maching

Cache access Data
address

Figure 8.5: Writeback mechanism in last-level cache

164

the recorded row address have been checked. When all statenas in the banks
finish searching, the writeback monitor unit starts obserthe writebacks coming

out of the cache to start another set of DRAM-aware writeback

The DRAM-aware writeback technique leverages the bendfitseowrite
buffer and the baseline write buffer management polanaif.whenfull). It can
send more row-hit writebacks than the number of write busigries within a very
short time. In fact, a single dirty line eviction can triggaur mechanism to send
up to rowsize / cachdine_size writebacks. Once the write buffer becomes full, all
state machines stall and delay the current searching. Aahe time, the underly-
ing drain_whenfull write buffer management policy starts exposing the wribeses
the write buffer is full. As the DRAM controller services was, free write buffer
entries become available for new writebacks. The state machsumes searching
and sending row-hit writes to the write buffer. Because dir@n_whenfull pol-
icy keeps exposing writes until the write buffer becomes gngll possible row-hit
writebacks for a row can be serviced quickly by the DRAM coliér since they are
all row-hits. In this way, our mechanism can effectively leleamore writes to be
serviced quickly, which in turn reduces the number of writdfér drains over the
entire run of an application. This results in fewer writeread switching penalties

which improves DRAM throughput and performance.

Note that two conditions should be true for the DRAM-awarétetack
to be effective. First, the last-level cache banks shoulcenough idle cycles
for the state machine to look for row-hit writes. If this isié¢r, the mechanism
would not significantly contend with demand accesses frardtver-level caches
for the cache bank and will be able to generate many row-htetbacks. Second,
rewrites to cache lines which our mechanism proactivelytesrback to DRAM
should not occur too frequently. If rewrites happen too @rextly, the mechanism
significantly increases the number of writes to DRAM. Eveoutih row-hit writes
can be serviced quickly, the increased writes might in@é@se spent in servicing

writes. We discuss these two issues in the following sestion

165

8.3.1 Does Last-Level Cache Have Sufficient Bandwidth for DRM-Aware
Writeback?
Table 8.1 shows the percent of last-level cache bank idlesy@averaged
over all banks) over the entire run for each of the 16 SPEC20WD6 benchmarks
in a single core system described in Section 8.5. For all lneacks, excepart,

cache bank idle time is more than 95%.

Benchmark || swim | applu| galgel | art | lucas| fma3d| mcf | milc | cactusADM
Idle cycles (%)| 0.96 | 0.97 | 0.92 | 0.91| 098 | 0.97 | 0.97 | 0.97 0.99
Benchmark || soplex| GemsFDTD| libquantum| lbm | omnetpp| astar| wrf
Idle cycles (%)|| 0.98 0.97 0.97 0.95 0.98 0.98 | 0.98

Table 8.1: Last-level cache bank idle cycles (%) on singte system

Table 8.2 shows the average idle bank cycles of the last-taxhe (shared
cache for multi-core systems) of the single, 4, and 8-costesys described in
Section 8.5. Even in multi-core systems, the shared lasl-leache has many
idle cycles. This is because last-level cache accessesoatem frequent com-
pared to lower-level caches, since the lower-level cacimelsMiss Status Hold-
ing/Information Registers (MSHRs) filter out many accesses the last-level
cache. Therefore, we expect contention between demandsuaridRAM-aware
writeback accesses to be insignificant. We find that priong demands over the
accesses for DRAM-aware writeback is enough to reduce tpactof using the

cache banks for our mechanism.

1-core | 4-core | 8-core
Idle cycles (%)| 0.97 0.91 0.89

Table 8.2: Average last-level cache bank idle cycles (%)ingls, 4, and 8-core
systems

8.3.2 Dynamic Optimization for Frequent Rewrites

For applications that exploit temporal locality of the Hestel caches, the

cache lines which are written back by our aggressive writkhaolicy may be

166

rewritten by subsequent dirty line evictions of the lowevd| cache. Thegedirtied

cache lines may come to be written back to DRAM again by thieléa®| cache’s
replacement policy or the DRAM-aware writeback policy. Jkill increase the
number of writebacks (i.e., writes to DRAM) which may hurtrfeemance by de-

laying service of reads due to frequent services for writes.

We mitigate this problem using a simple optimization. Weiqaically es-
timate the rewrite rate of cache lines whose writebacks emésut by the DRAM-
aware writeback mechanism. Based on this estimation, oahareésm dynamically
adjusts its aggressiveness. For instance, when the reatées high, the mecha-
nism sends out only row-hit writebacks close to the LRU positWhen the rewrite
rate is low, the mechanism can send out even row-hit writebalose to the MRU
position. Since the estimation of rewrite rate is periotljcdone, the DRAM-
aware writeback mechanism can adapt to the phase behavaor a@pplication as
well. When employing this optimization in the shared cach& multi-core system,
we adapt the mechanism to estimate the rewrite rate for eareh(or application).

To implement this, each cache line keeps track of which ddoelongs to
using core ID bits and also tracks whether the cache linerhesalean (or non-
dirty) due to the DRAM-aware writeback mechanism using aditamzhal bit for
each line. A counter for each core periodically tracks thaltoumber of the core’s
writebacks sent out by the DRAM-aware writeback mechanigmother counter
counts the number of the core’s rewrites to the clean cackes ivhose writebacks
were sent early by our mechanism. The rewrite rate for each foo an interval is
calculated by dividing the number of rewrites by the totaier of writebacks sent
out in that interval. The estimated rewrite rate is stored negister for each core
and used to determine how aggressively the mechanism semtébacks (from
LRU or from other positions close to MRU) for the next intdrva

We found that our mechanism without this optimization digliegrades
performance for only two applicationsgr andtwolf, both of which are memory
non-intensive) out of all 55 SPEC2000/2006 benchmarks bseasing the num-

ber of writebacks. Therefore the gain from this optimizatie small compared to

167

design effort and hardware cost. We analyze this optinopatvith experimental

results in detail in the results section (Section 8.7.2).

8.4 Comparison to Eager Writeback

Eager writeback [40] was proposed to make efficient use etidk cycle for
writes in a Rambus DRAM system in order to minimize read anitevaontention.
It sends writebacks for dirty LRU lines in a cache set to thaenasuffer when the
set is accessed by a demand request. Writes in the writerlauéescheduled when
the bus is idle. There are important key differences betvesager writeback and
our DRAM-aware writeback technique which we discuss below.

First, eager writeback is not aware of DRAM characteristde find that
simply sending writebacks for dirty LRU cache lines does wotk with today’s
high-frequency DDR DRAM systems because servicing thoseesvin DRAM
IS not necessarily completed quickly. For instance, sergicow-conflict writes
causes large penalties (write-to-precharge latencies)@sn in Section 7.2.1. This
eventually significantly delays the service of subsequeads.

Second, the write-caused penalties of state-of-the-aR DIRAM systems
are too large to send a write only because the data bus isrithei@ are no pending
reads. To tolerate the large write-caused penalties, timeist be no read request
arriving at the DRAM system for a long time such that all wiai@used timing
constraints are satisfied before the subsequent read. lovievmemory intensive
applications whose working set does not fit in the last-leaghe, it is very likely
that read requests arrive at the DRAM system before all caimt$ are satisfied.

Therefore subsequent reads suffer large write-to-readlpes.

In contrast, our mechanism does not aim to minimize immedvatte-
caused interference but targets minimizing the write-edysenalties for the entire
run of an application. It allows to stop servicing currerdae to service writes.
However, once it does, it makes the DRAM controller servianywrites fast by

exploiting row buffer locality such that servicing writeext time can be performed

168

a long time later.

We extensively analyze and compare DRAM-aware writeback eager

writeback in Section 8.7.

8.5 Experimental Methodology
8.5.1 Metrics

To measure multi-core system performance, we use Indivi@paedup
(1S), Weighted Speedup (WS), and Harmonic mean of Speedi®} (vhich are
defined in Section 5.3.1.

8.5.2 System Model

The baseline configuration of processing cores and the mesystem for
single, 4, and 8-core CMP systems is shown in Table 8.3 (ickrnb the model
in Chapter 7). The DDR3 DRAM performance-related timing sto@nts are the
same as in Table 7.2 in Chapter 7.

To evaluate the effectiveness of our mechanism in systertis pefetch-
ing, we employ the aggressive stream prefetcher (32 strgam@fetch degree of 4,
prefetch distance of 64 cache lines) in Chapters 5 and 6 tir eare.

8.5.3 Workloads

We use the same methodology for compiling and running theCSR&rk-
loads using ICC/IFORT and Pinpoints as discussed in Sexchidh3, 6.3.3 and 7.6.3.

We evaluate 18 SPEC benchmarks on the single-core systesi6llench-
marks (which have at least 10% ideal performance improvémkeen all writes are
removed) discussed in Section 8.1.1 and the two benchmarksndtwolf men-
tioned in Section 8.3.2. The characteristics of the 18 SP&®marks are shown
in Table 8.4. To evaluate our mechanism on CMP systems, weesidcombinations
of multiprogrammed workloads from all the 55 SPEC 2000/2b86chmarks. We

169

Out of order, decode/retire up to 4 instructions,

Execution Core| issue/execute up to 8 microinstructions; 15 stages

256-entry reorder buffer;

Fetch up to 2 branches; 4K-entry BTB;

Front End 64-entry return address stack;

64K-entry gshare/PAs hybrid branch predictor

L1 I/D-cache: 32KB, 4-way, 2-cycle, 64B line size;

Shared last-level cache: 16-way, 8-bank, 15-cycle,
Caches and | 1 read/write port per bank, LRU replacement

on-chip buffers| writeback, 64B line size, 1, 2, 4MB for 1, 4 and 8-core systems

32, 128, 256-entry MSHRs & LLC access/miss/fill buffers,

for 1, 4 and 8-core systems

1, 2, 2 channels (DRAM controllers) for 1, 4, 8-core systems;

800MHz DRAM bus cycle,

DRAM and bus| Double Data Rate (DDR3 1600MHZz) [49];

8B-wide data bus per channel, BL = 8;

1 rank, 8 banks per channel, 8KB row buffer per bank;

On-chip, open-row, FR-FCFS scheduling policy [66];

64-entry (8x 8 banks) DRAM read and write buffers per channel

drainwhenfull write buffer policy

DRAM
controllers

Table 8.3: Baseline configuration for DRAM-aware writeback

ran 30 and 12 randomly chosen workload combinations for camad8-core CMP
configurations respectively.

8.6 Implementation and Hardware Cost of DRAM-Aware Write-
back

As shown in Figure 8.5, our DRAM-aware writeback mechanisquires
a simple state machine in each last-level cache bank and @amnanit. Most of
the hardware cost is in logic modifications. For example dtwparator structure
should be modified to support tag comparison with the row esklin each state
machine. The only noticeable storage cost is eight bytesgugve bank for storing
the row address of the recent writeback. Note that none ofabielevel cache
structure we modify is on the critical path. As Tables 8.1 8rilshow, the accesses

to the last-level cache are not very frequent.

170

| | | Reads | Writes |
| Benchmark | Type || IPC| MPKI [RHR(%) | WPKI | RHR(%) |
171.swim FPOO || 0.35| 23.10 36.95 8.24 78.33
173.applu FPOO || 0.93| 11.40 90.34 1.78 81.34

175.vpr INOO || 1.02| 0.89 16.11| 0.27 25.67
178.galgel FPOO || 1.42| 4.84 54.45| 1.16 11.51
179.art FPOO || 0.26 | 90.92 95.43| 9.79 86.75

189.lucas FPOO || 0.61| 10.61 61.00| 2.38 34.19
191.fma3d FPOO || 1.01| 4.13 74.75| 1.82 70.58
300.twolf INTOO || 0.98| 0.72 38.49| 20.82 20.82

429.mcf INTO6 | 0.15| 33.64 18.36| 10.69 16.58
433.milc FPO6 || 0.48 | 29.33 90.78| 5.19 48.26
436.cactusADM| FPO6 || 0.63| 4.51 7.42 1.22 33.31

450.soplex FPO6 || 0.40 | 21.24 81.64| 3.75 42.48
459.GemsFDTD| FPO6 || 0.49 | 15.63 4581 6.91 50.60
462.libquantum| INTO6 || 0.67 | 13.51 94.96| 5.87 89.13

470.lbm FPO6 || 0.46 | 20.16 66.67| 10.42 66.42
471.omnetpp | INTO6 || 0.49| 10.11 63.45| 4.17 6.88
473.astar INTO6 || 0.47 | 10.19 55.16| 3.80 8.96
481.wrf FPO6 || 0.72| 8.11 72.95| 2.52 76.17

Table 8.4: Characteristics for 18 SPEC benchmarks for DRa#\we writeback:
IPC, MPKI (last-level cache misses per 1K instructions), KVRast-level cache
Writebacks Per 1K Instructions), DRAM row hit rate (RHR)

If we implement the optimization in Section 8.3.2, one add#l bit and
core ID bits (for multi-core systems) for each cache lineraguired. Three regis-
ters (2 bytes for each) are required to keep track of the nuwiberitebacks sent,

the number of rewrites, and the rewrite rate.

8.7 Experimental Evaluation

We first show that the baseline write buffer management pdhat we use
outperforms other policies and then we evaluate and analyzproposed DRAM-

aware writeback mechanism on the single and multi-coreegyst

8.7.1 Performance of Write Buffer Management Policies

In addition to our baselinedfain_.whenfull), we evaluate four other write

buffer management policies that are all based on the sameipe as previous

171

work [40, 57, 68]. The first onegxposealways is a policy that always exposes
DRAM writes and reads to the DRAM controller together. TheAMRcontroller
makes scheduling decisions based on the baseline FR-FGE&Wing policy while
always prioritizing reads over writes. However, if all DRAf\ning constraints are
satisfied for a write, the write can be scheduled even thohgtetare reads in the
read request buffer. For example, while a precharge for @ ises progress in one
bank, a row-hit write in a different bank can be scheduled sewdiced if all tim-
ing constraints for the write are satisfied (assuming thereipending read to the
corresponding bank). The second policg&sviceat no_readwhich was discussed
in Section 8.1.1. This policy exposes writes to the DRAM coligr only when
there is no pending read request or when the write bufferlisend stops exposing
writes when a read request arrives or when the write buffieotgull any more. The
third policy is serviceat_.no_read.and.drain_.whenfull which is the same as ser-
vice_at no_read except that once the write buffer is full, all writes exposed until
the buffer becomes empty. The fourth policyain_.whenno_read.and.whenfull

is the same as our baseline policy that exposes all writesliads the buffer every
time the write buffer is full, except that it also keeps expgsall writes until the
buffer becomes empty even when writes are exposed due tonabngeread in the
read request buffer. The DRAM controller follows the FR-FEJpolicy to schedule
reads and exposed writes for all of the above policies.

Figure 8.6 shows IPC normalized to the baseline and DRAM biasauti-
lization on the single-core system for the above five writédspolicies. DRAM
bus utilization is calculated by dividing the number of ®sthe data bus transfers
data (both reads and writes) by the number of total execufroles. Note that since
we only change the write buffer policy, the total number aide and writes does
not change significantly among the five policies. Therefare,can meaningfully
compare the DRAM data bus utilization of each policy as shinwigure 8.6(b). A
large number of busy cycles indicates high DRAM throughgrt.the other hand,

a larger number of idle cycles indicates more interferenmeragy memory requests.

Our baselinarain_whenfull policy outperforms the other four polices sig-

172

~
|

ki

=expose_always

sservice_at _no_read
=service_at_no_read_and_drain_when
=drain_when_no_read_and_when_full
=drain_when_full (base)

IPC normalized to baseline

(a) Performance

DRAM data bus utilization

S Lo 2
6\$\ ‘bQQ q&q Q;\ \0(: @’b-

(b) Data bus utilization

Figure 8.6: Performance and DRAM bus utilization of variewge buffer policies

173

nificantly for almost all benchmarks. The other policiessmmany idle cycles due
to frequent read-to-write and write-to-read switchinglasven in Figure 8.6(b). The
exposealwayspolicy performs worst since writes are always exposed amdbea
scheduled more freely than other policies by the DRAM cdlgrphence the most
read-to-write and write-to-read penalties. Hegviceat no_read.and drain_whenfull
anddrain_.whenno_read and whenfull policies also cause some writes to be sched-
uled when there is no read in the read buffer. This results amyrwrite-to-read
switching penalties (i.e., many idle cycles) since readsllg arrive at the read
buffer soon after writes are scheduled for most of the berachssshown.

In contrast, thedrain_.whenfull policy increases data bus utilization by al-
lowing the DRAM controller to service reads without integace from writes as
much as possible. It also reduces write-to-read switchemptiies overall because
only one write-to-read switching penalty (also one reagvtite penalty) is needed
to drain all the writes from the write buffer. Finally it algpves more chances to
the DRAM controller to exploit better row buffer locality dibank-level parallelism
(servicing writes to different DRAM banks concurrently,pbssible) by exposing
more writes together. To summarize, ttain_whenfull policy improves perfor-
mance by 8.8% on average and increases data bus utilizatiormbo on average

compared to the best of the other four policissr{/iceat_no_read).

Note that there is still a significant number of idle bus cgateFigure 8.6(b)
even with the best policy. Our DRAM-aware writeback meckanaims to mini-
mize write-caused interference so that idle cycles areebatilized.

8.7.2 Single-Core Results

This section presents performance evaluation of the DRAWMra write-
back mechanism on the single-core system. Figure 8.7 sHe@sbrmalized to
the baselinelrain_.whenfull policy and DRAM data bus utilization for eager write-
back technique, Write-caused Interference-aware (WIfJagment (proposed in
Chapter 7), DRAM-aware writeback, and DRAM-aware writdbagth the opti-

174

mization described in Section 8.3.2. The optimization dyitally adjusts the dirty
line LRU positions which are considered for writeback basedhe rewrite rate es-
timation. When the rewrite rate is less than 50%, we allowlaRlY position which
generates a row-hit to be written back. If the rewrite rateasveen 50% and 90%,
only the least recently used half of the LRU stack can be sent l6 the rewrite
rate is more than 90%, only writebacks in the LRU position barsent out. Note
that the eager writeback mechanism uses a write buffer ypdtat sends writes
when the bus is idle as discussed in Section 8.4. In Sectibt,8ve showed that
sending out writes when the bus is idle is inferior to dragnihe write buffer only
when it is full drain_.whenfull). As such, for fair comparison we use an improved
version of eager writeback that uses the basdlirzen_whenfull policy. First we
make the following major performance-related observatifsom Figure 8.7, and
then provide more insights and supporting data using otieAR and last-level

cache statistics in subsections.

First, the eager writeback technique degrades performbapce1% com-
pared to the baseline. This is mainly because it is not awldDd&Ré\M characteris-
tics. Filling the write buffers with writebacks for dirtyries which are in the LRU
position of their respective sets does not guarantee fagtedime of writes since
servicing row-conflict writes must pay the large write-teepharge penalties. As
shown in Figure 8.7(b), eager writeback suffers as manyagétes as the baseline

on average.

Second, DRAM-aware writeback improves performance fobatichmarks
except forvpr andtwolf. It improves performance by more than 10%liacas, milc,
cactusADM, libquanturandomnetpp This is because our mechanism sends many
row-hit writes that are serviced quickly by the DRAM contes) which in turn re-
duces write-to-read switching penalties. As shown in Fedi7(b), our mechanism
improves DRAM bus utilization by 12.3% on average acrossl8lbenchmarks.
Increased bus utilization translates to high performar@e.average, the mecha-
nism improves performance by 7.1%. However, the increassdiblization does

not increase performance fopr andtwolf. In fact, the mechanism degrades per-

175

= eager
=WIA

= DRAM-aware

= DRAM-aware dyn

IPC normalized to baseline

K
> o VO & R 5 S
LS PPF & & N W0 Al Y R R & & 2
< (OMN
(a) Performance
_ 1.0 _ -
.© 0.9300R N AR AHHITRUHRITH =idle H
< o.84||[H|I[H HHITHIH U EH L =busy ({4
N
= o.734IHIIH UMM O HTEIT I
>
o 0.64][[Hl[lIH 1
3 o3|l :
! DRAM
T oM I 1|/ivare
© 0.3
<§E 0.2 I I I
0.0 I
> o
S OE 2 FES o P & ¢ & F
S L T F @ ¢ BN S L

(b) Data bus utilization

Figure 8.7: Performance and DRAM bus utilization of DRAMae writeback on
single-core system

176

formance for these two benchmarks by 2.4% and 3.8% respéctiVhis is due to
the large number of writebacks that are generated by the DRMslre writeback
mechanism for these two benchmarks. We developed a dyngstimipation as
presented in Section 8.3.2 to mitigate this degradationchvive refer to as dy-

namic DRAM-aware writeback.

Third, dynamic DRAM-aware writeback mitigates the perfame degra-

dation forvpr andtwolf by selectively sending writebacks based on the rewrite rate

of DRAM-aware writebacks. By doing so, the performance ddgtion ofvpr
andtwolf becomes 1.2% and 1.8% respectively, which results in 7.28tage per-
formance improvement for all 18 benchmarks. Note that theadyic mechanism
still achieves almost all of the performance benefits of dgnamic DRAM-aware
writeback for the other 16 benchmarks. As we discussed itic#e8.3.2, the gain
from this optimization is small compared to design effortl &xardware cost.

Finally, our DRAM-aware writeback policies significantlytperform the
WIA replacement policy. WIA improves the performance of theseline only by
2.2%. This is mainly because WIA looses opportunities thatenrow-hit dirty
lines can be written back fast, since it writebacks only whereplacement oc-
curs. Our mechanism reduces more write-caused interferartbe DRAM system
thereby better utilizing DRAM bus.

8.7.2.1 Why Does Eager Writeback Not Perform Well?

As discussed above, eager writeback degrades performanggaced to the
baseline in today’s DDR DRAM systems since it generatesWwatks in a DRAM-
unaware manner. In other words, it can fill the write buffethamany row-conflict
writes. Figure 8.8 shows the row-hit rate for write and reagquests serviced by
DRAM for the 18 benchmarks. Because we use the open-rowyphat does not
use either auto precharge or manual precharge after eaebsgcoow-conflict rate
can be calculated by subtracting row-hit rate from one.

While eager writeback does not change row-hit rates for gesglshown

177

L =

Q«@e
%5 ©
%,
%,
(0}

(a) Writes

(b) Reads

Figure 8.8: Row hit rate of DRAM writes and reads for DRAM-awavriteback

178

in Figure 8.8(b), it generates more row-conflict writes (&wow-hits) forswim,

art, milc, andlibquantumcompared to the baseline as shown in Figure 8.8(a). For
these benchmarks, these row-conflict writes introduce nidleycycles during the
servicing of writes with the baselingrain_.whenfull write buffer policy as shown

in Figure 8.7(b). This increases the time to drain the writéfdy which in turn
delays the service of critical reads required for an appbees’ progress.

8.7.2.2 Why Does DRAM-Aware Writeback Perform Better?

In contrast to eager writeback, DRAM-aware writeback dalely sends
many row-hit writes that are serviced quickly by the DRAM tofler. Therefore
the row-hit rate for writes significantly increases (to %.6n average) as shown
in Figure 8.8(a). Note that it also increases the row-hg fat reads (by 3.3% on
average) as shown in Figure 8.8(b). This is mainly becaus&NMaware writeback
reduces row-conflicts between reads and writes as well bycied write-to-read
switching occurrences. We found that due to the last-leaethe and row locality of
programs, it is very unlikely that while servicing reads tooa, a dirty cache line
to that row is evicted from the cache. Therefore decreas@d-ta-read switching
frequency reduces row-conflicts between writes and readthé&entire run of an

application.

DRAM-aware writeback leverages the benefits of the writddsudnd the
drain_.whenfull write buffer policy as discussed in Section 8.3. Once thehaec
nism starts sending all possible row-hit writebacks for &, rthe write buffer be-
comes full very quickly. Thelrain_.whenfull write buffer policy continues to ex-
pose writes until the buffer becomes empty. This makes isiptsfor the DRAM
controller to service all possible writes to a row very quyck herefore our mecha-
nism reduces the total number of write buffer drains overahire run of an appli-
cation. Table 8.5 provides the evidence of such behavishdtvs the total number
of write buffer drains and the average number of writes peteasuffer drain for
each benchmark. The number of writes per write buffer dramORAM-aware

writeback is increased significantly compared to the basgkager writeback, and

179

WIA. Therefore the total number of drains is significantigueed, which indicates
that DRAM-aware writeback reduces write-to-read switgfirequency thereby in-
creasing row hit rate for reads as well. The increased ros\hé., reduced row con-
flicts) lead to high data bus utilization for both reads andegrand performance

improvement as shown in Figure 8.7.

| | Benchmark || swim | applu]| galgel] art | lucas| fma3d| mcf]
base 64960| 24784| 2891| 83870| 19890| 24625| 62521

drains cager 76660 | 26367| 4264 | 90020 | 22096 | 25263 | 62938
WIA 95356 26758 | 5681 | 104271] 50783 24106 69574

DRAM-aware | 13642| 2927 8043| 16754 7677 2995 | 49915

base 25.38| 14.36| 80.11| 23.34] 23.93| 14.79| 34.19

. . cager 21.52| 1351] 97.86| 2429 22.47| 14.43| 34.00
writes/drain WIA 1734 1333| 4016| 19.86] 12.27| 1515 31.37
DRAM-aware | 121.90| 121.97| 50.19| 128.26| 96.24| 122.00| 45.05

| | Benchmark || milc | cactusADM [soplex | GemsFDTD| libquantum |

base 50764 15264 | 43967 49027 115563
drains eager 52581 15243| 43033 50805 114461
WIA 63305 18093 | 46992 63179 115561
DRAM-aware || 47982 2142 | 17611 14023 12535
base 20.43 15.99| 17.07 28.21 10.16
: ; eager 19.75 16.05| 17.53 27.34 10.26
writes/drain WIA 1651 1352| 16.09 21.95 10.16
DRAM-aware || 21.83 114.27| 44.32 99.49 93.66
| | Benchmark | Ibm [omnetpp| astar] wrf [vpr | twolf]
base 92310 35902 | 26377 | 38353 | 1961 | 4785
drains eager 94396 36425| 26859 | 38622 | 2732 | 8080
WIA 94519 37455 | 27119 | 42492 | 4165 | 5493
DRAM-aware || 24630 44413 | 29836 4921 | 4346| 9030
base 22.57 23.22| 28.78| 13.16| 27.54| 21.18
. . eager 22.19 23.24| 28.48| 13.08| 29.72| 27.15
writes/drain | ——gra 2204 2254] 28.15| 11.97| 27.97] 20.99
DRAM-aware || 85.08 20.50| 27.05| 103.26| 69.91| 71.88

Table 8.5: Number of write buffer drains and number of wripes drain for various
policies

8.7.2.3 When is Dynamic DRAM-Aware Writeback Required?

Recall that DRAM-aware writeback degrades performancegoandtwolf.
Figure 8.9 shows the total number of DRAM read and write retpiserviced by
DRAM for the 18 benchmarks. While DRAM-aware writeback does increase

180

the total number of reads and writes significantly for theeott6 benchmarks as the

baseline and eager writeback do, it does increase the nurhbeites significantly

for vpr andtwolf.
21 1.0+—
20
ol g oo
0

o 16 o 08—
-} 15 = 0.7 |
3 14 e i
=13 swrites DRAM-aware = 06 ;
=11 =reads Wﬁw% 0.5 N
< 10 eager| aware & 1 f |
o 8 ; | [/7 ayn 0.4 H
o8 base_[]/ o i
s 0.3
C 64 c M
O 51 Q2 N
= 2 = 0.2788 i

= 3 = 01

1
0 & 0.0
» > OO Q
N P E XL P&

F P PF LTI REL T f &
S R W & 6066\’\‘\00\ N K

Figure 8.9: Number of DRAM requests for DRAM-aware writebac

Table 8.6 shows the total number of writebacks generatedR¥gNd-aware
writeback, cache lines that were cleaned but reread, ankecttes that were
cleaned but rewritten. It also shows the number of rewrit@sgache line writ-
ten back (referred to as rewrite rate). Rgor andtwolf, rewrites to cache lines
cleaned by the mechanism happen very frequently (82% and r@Spectively).
These rewritten lines’ writebacks are sent again by the geisim thereby increas-
ing the number of writes significantly. The increased writggke the write buffer
full frequently, therefore aggregate write-to-read switg penalty becomes larger,
which degrades performance. However, the performanceadagion is not signif-
icant for these two benchmarks, because the total numbesgoiests is not large

(i.e., memory non-intensive) as shown in Figure 8.9. .

The dynamic DRAM-aware writeback mechanism discussedati@e8.3.2
mitigates this problem by adaptively limiting writebackased on rewrite rate esti-

mation. Since the rewrite rate is high most of the timevfmrandtwolf, the dynamic

181

| Benchmark | swim| applu| galgel] art | lucas| fma3d | mcf |

Writebacks || 1640260| 350641| 346550| 2061007| 731063 | 361590 2167616
Reread 42 183 | 23741 70931 0 0 122290
Rewritten 20 0| 166871| 191596 0 501 | 108871
Rewrite Rate 0.00 0.00 0.48 0.09 0.00 0.00 0.05
Benchmark milc | cactusADM| soplex| GemsFDTD] libquantum lbm |
Writebacks || 947328 242377 | 732556 1251832 1161287| 2069208
Reread 0 16 1599 1905 0 0
Rewritten 0 55| 28593 13474 0 0
Rewrite Rate 0.00 0.00 0.04 0.01 0.00 0.00

| Benchmark || omnetpp| astar| wrf | vpr | twolf |

Writebacks 698896 | 612423 | 500963 | 299262 | 639582

Reread 21982 6012 746 | 12479 | 24230

Rewritten 73667 | 37075 2588 | 245645| 540604

Rewrite Rate 0.11 0.06 0.01 0.82 0.85

Table 8.6: Number of DRAM-aware writebacks generated,agi@ache lines and
rewritten cache lines, and rewrite rate

mechanism allows writebacks only for row-hit dirty linesisimare in the LRU po-

sition of their respective sets. Therefore, it reduces thmlmer of writebacks as
shown in Figure 8.9. In this way, it mitigates the performadegradation for these
two benchmarks as shown in Figure 8.7. Note that the dynarmechanism does
not change the benefits of DRAM-aware writeback for the oft@&benchmarks
since it adapts itself to the rewrite behavior of the appiarzs.

8.7.3 Multi-Core Results

We also evaluate the DRAM-aware writeback mechanism on+oaoite sys-
tems. Figures 8.10 and 8.11 show average system perfornaaiceus utilization
for the 4 and 8-core systems described in Section 8.5. In+ome systems, write-
caused interference is more severe since there is great@mntmn between reads
and writes from multiple cores in the DRAM system. Furtherejavrites can de-
lay critical reads of all cores. As such, reducing write-sedi interference is even
more important in multi-core systems. Our DRAM-aware widek mechanism
increases bus utilization by 16.5% and 18.1% for the 4 andr8-systems respec-

tively. This leads to an increase in weighted speedup (W8&hanmonic mean of

182

speedups (HS) by 11.8% and 12.8% for the 4-core system an®.0%land 14.4%
for the 8-core system. We conclude that DRAM-aware writ&haeffective for

multi-core systems.

26— 07— = 1.0
2.4 - L2 094 =idle
2.2 - 08 i T g = busy
O 20 = el
—] | > O — = TH
sl s =
£ 167 - £ o4l B n 0.6+
w 144 - S
5 5 o 05+
1.24 T o 0.3 -
D 404 . O - S 0.4+
== 2| e=mbase 0]
g 0.8 B c>cs T 0.3
0.64 - ==geager s
0.21
0.4 — = WIA
0.2 - | =DRAM-aware QD: 0.4
0.0 | [ooR=__ B 0.0-
(a) WS (b) HS (c) Bus utilization

Figure 8.10: Performance of DRAM-aware writeback on 4-gystem

3.5 0.4 = 1.0
2 0.9 =idle
3.0, © = bus
Q L 03l - N 0841 y
S 2.5] -5 'S 0.7H
Q 3} =
£ 50 £ o 0.6+
S D 0.2 - 9 0.5+
o 1.5] - ©]
= 3| ==base T 04
© 1.0] L @ — T 0.3]
S < —eager =
051 i = \WIA Z 0.2
' = DRAM-aware| 0.11
0.0. B 0.0 NN 0O (ol
(a) Ws (b) HS (c) Bus utilization

Figure 8.11: Performance of DRAM-aware writeback on 8-gy&tem

8.7.4 Effect on Systems with Prefetching

We evaluate DRAM-aware writeback when it is employed in adesys-
tem with the aggressive stream prefetcher described ind®e8t5. Figure 8.12

shows average system performance and bus utilization obé#seline with the

183

baseline with no prefetching, the baseline with prefetgheager writeback, Write-
caused Interference-Aware (WIA) replacement and DRAM+awaiteback for our
30 4-core workloads. All three mechanisms are employed enbtiseline with

prefetching.

3.0——m—— 07— g 1.0, :
e 0.6l = 0.9+ :It()jle
o o N 0.8+ usy
= = 0.51 = o074
..q_j 204 40—5 -5' 0.7
E E 0.4 (V)] 0.6
s B a 0.5
© 15 O| =base -g oy
o)) O a1
= 1.0 = pre =N
@© G| =eager T 0.3]
> oe > =WIA S oo
' =DRAM-aware o 0.1
0.0] oo Ml Ao,
(a) WS (b) HS (c) Bus utilization

Figure 8.12: Performance of DRAM-aware writeback on 4-ceystem with
prefetching

Prefetching increases write-caused interference sgvdtetfetch requests,
which are essentially reads, put more pressure on the DRASBY Prefetching
improves weighted speedup by 11.5% by utilizing idle DRAMs laycles while it
degrades harmonic speedup by 8.6% compared to the basetm@avprefetch-
ing. Eager writeback suffers performance degradation (\W$HS by 1.7% and
1.6%) compared to prefetching alone mainly due to its DRAMuwuareness. In
contrast, WIA improves WS and HS by 7.5% and 8.5% comparedédtefeh-
ing by reducing write-caused interference (increasing DRBus utilization by
9.3%). Using DRAM-aware writeback significantly improve&BM bus utiliza-
tion (by 19.4% compared to prefetching) by further reducige-caused interfer-
ence. The increased bus utilization turns into higher perémce. DRAM-aware
writeback performs best by improving WS and HS by 15.4% an8%?3 We con-
clude that DRAM-aware writeback is also effective in muaire systems that em-

ploy prefetching.

184

8.8 Summary

This chapter describes the problem of write-caused intemige in today’s
DRAM systems, and shows it has significant performance itripasodern proces-
sors. Write-caused interference will continue to be a perémce bottleneck in the
future because the memory system’s bus clock frequencyrnu@d to increase in
order to provide more memory bandwidth. To reduce writeseaLinterference, we
propose a new writeback policy for the last-level cachdeddDRAM-aware write-
back, which aggressively sends out writebacks for dirtgdithat can be quickly
written back to DRAM by exploiting row buffer locality. We denstrate that the
proposed mechanism and the previous best write buffer nesmenqt policy are syn-
ergistic in that they work together to reduce write-causedrierence by allowing
the DRAM controller to service many writes quickly togeth€his reduces the de-
lays incurred by read requests and therefore increasesrperhce significantly in
both single-core and multi-core systems. We also show tiggperformance bene-
fits of the mechanism increases in multi-core systems andrsgswith prefetching
where there is higher contention between reads and writdseilDRAM system.
We conclude that DRAM-aware writeback can be a simple swiub reduce write-

caused interference.

185

Chapter 9

Combining All DRAM-Aware Mechanisms

This chapter discusses and evaluates the performancegobptised DRAM-
aware mechanisms when they are employed together on sthgled 8-core sys-

tems.

9.1 DRAM-Aware Mechanisms Are Complementary

The Prefetch-Aware DRAM Controller (PADC) in Chapter 5 mges the
DRAM request buffers to maximize row buffer locality for dskprefetches and
demand requests. The BLP-aware request issue policiesdpt@h6é manage the
issue order to Miss Status/Information Holding Regist&4SKHRs) and to DRAM

requests buffers to maximize the BLP of each applicatiorc¢oe).

Onthe other hand, the DRAM-aware replacement policy in @®rapchanges
the mixture of memory read and write requests from the kagtllcache to improve
all three DRAM characteristics. It consists of Latency aadafelism-Aware Re-
placement (LPA) and Write-caused Interference-Aware (Wiéplacement poli-
cies. LPA evicts lines that would take advantage of row budfeality or BLP when
they are refetched later. WIA evicts dirty lines that can b#ten back quickly
by exploiting row buffer locality. The DRAM-aware writeblain Chapter 8 also
changes the mixture of write requests to further reduceswa@used interference in
the DRAM system.

Since each of the four mechanisms manages a different gnrsemory
structure/policy to improve DRAM performance, they arehogonal to one an-
other except for the WIA replacement and DRAM-aware writdbhaThe objec-

tives of these two mechanisms are identical, which is tocedurite-caused inter-

186

ference. In Chapter 8, we compared these two mechanismshameed that the
DRAM-aware writeback outperforms WIA by reducing more writaused inter-
ference. However, these two mechanisms are partially cemghtary when they
are combined. This is because WIA can be helpful for sendiagermow-hit writes

quickly. If a replacement occurs while the writebacks foroavrare sent out by
DRAM-aware writeback, it is likely that WIA will evict a diytline that is mapped
to the same row if found. As a result, writes can be sent ot falsan the DRAM-

aware writeback alone. Therefore the combined mechanisenevaluate in this
chapter include both the WIA replacement and DRAM-awardelack mecha-

nisms.

9.2 Methodology
9.2.1 System Model

Table 9.1 shows the baseline system configuration used fforpence
evaluations when all DRAM-aware mechanisms are combirgetier on the same
system. The DRAM timing constraints we modeled are idehtoctne DDR3-1600
constraints presented in Section 7.2.

9.2.2 Workloads

We use the same methodology for compiling and running theCSR&rk-
loads as in Section 5.3.3. We evaluated the 20 most mema@wysive or prefetch-
sensitive (either prefetch-friendly or prefetch-unfrily) SPEC 2000/2006 bench-
marks on the single-core system. To evaluate our mechams@iMP systems, we
formed new combinations of multiprogrammed workloads fralinthe 55 SPEC
2000/2006 benchmarks. We ran 30 and 20 pseudo-randomlgchaskload com-
binations for our 4 and 8-core CMP configurations respelgtivéd/e imposed the
requirement that each of the multiprogrammed workloadsabésast one memory

intensive application since these applications are mdestaat to our study.

187

Execution Core

4.8 GHz, out of order, decode/retire up to 4 instructions,
issue/execute up to 8 microinstructions; 15 stages
256-entry reorder buffer;

Fetch up to 2 branches; 4K-entry BTB;

on-chip buffers

Front End 64-entry return address stack;
64K-entry gshare/PAs hybrid branch predictor
L1 I/D-cache: 32KB, 4-way, 2-cycle, 64B line size;
Shared last-level cache: 16-way, 8-bank, 15-cycle,
Caches and | 1 read/write port per bank, LRU replacement

writeback, 64B line size, 1, 2, 4MB for 1, 4 and 8-core systemsg
32-entry MSHRs per core & LLC access/miss/fill buffers,
for 1, 4 and 8-core systems

Prefetcher

Stream prefetcher per core: 32 stream entries,
prefetch degree of 4, prefetch distance of 64 [77, 73],
128-entry prefetch request buffer per core

DRAM and bus

1, 2, 2 channels (DRAM controllers) for 1, 4, 8-core systems;
800MHz DRAM bus cycle,

Double Data Rate (DDR3 1600MHZz) [49];

8B-wide data bus per channel, BL = 8;

1 rank, 8 banks per channel, 8KB row buffer per bank;

DRAM
controllers

On-chip, open-row, demand-first FR-FCFS scheduling pg66Y;
64-entry (8x 8 banks) DRAM read and write buffers per chann
drainwhenfull write buffer policy

©

Table 9.1: Baseline configuration for all combined DRAM-agvenechanisms

9.3 Experimental Evaluation

To show that our mechanisms are complementary, we first aielper-

formance when each mechanism is employed alone on the systeswn in Sec-

tion 9.2.1. Figure 9.1 shows the performance of no prefatgiprefetching, PADC,
BLP-aware issue policies (BAPI-BPMRI), DRAM-aware re@aeent (LPA-WIA),

and DRAM-Aware Writeback (DAW) on the single, 4, and 8-coystems. The
performance numbers are normalized to the baseline phafetc

As shown in Figures 9.1(a), (b), and (c), each of the mechanialone

significantly improves performance. Each mechanism imgsaall performance

metrics more than 6.0% on all systems.

Figure 9.2 shows the average performance and DRAM dataattdin of no

188

(VR
o
o
e
e
&}
N
S 0.6 = No-pref
= == pref
S 0.4-@ ==PADC |
= = BAPI
o 0.2l ==LPA-WIA |
o == DAW
0.0

IPC
(a) Single-core processor
1.2

=
N

e
Q@
x
iy
e

o
oo
)
o
@

|| == no-pref

== pref

H ==PADC

== BAPI-BPMRI
== LPA-WIA

= DAW

I ——
WS HS

(b) 4-core chip multiprocessor
1.2

o
@

o
N
1
o
o

o
i

[

Perf normalized to pref
o o
o o

Perf normalized to pref

0.0~

o
b~

=
@

o
@

|| == no-pref

== pref

H ==PADC
==BAPI-BPMRI
H ==LPA-WIA

= DAW

| —— T
WS HS

(c) 8-core chip multiprocessor

o
B

[
Perf normalized to pref
o o
o o

Perf normalized to pref

o
=)

Figure 9.1: Performance of individual DRAM-aware mecharg®n single, 4, and
8-core systems

189

w 14 c 1.0
[o =idle
g' 1.2 T gl = pref-useless
€ 1o o = pref-useful
e 5 =——demand
T 08 0 067
>
I 2
c_és 0.6 % 0.4
5 04 ©
c = 0.2
O 0.2 <
a [0
= 0.0 0 0.0

no pref pref DRAM-
pret b aware

(a) Single-core processor

1.4 1.4 c 10 _
% 5 o —=idle
= 1.21 = 1.21 = — _
: : Tos ret st
210 210 = 5 u . u
© 5 3 ——deman
g os g E
& 0.6] g G
b~ —_ 4('_5’
Q 0.4] o o
=
(2} n
= 0.24 T é
]] 0O 5ol
0000 pref pref DRAM- 0000 pref pref DRAM- 0000 pref pref DRAM-
aware aware aware

(b) 4-core chip multiprocessor

12

2

1.4 1.4 c 10 _
5 s o —=idle
= 1.2 = 1.2 = — _
s 5 S gl pref-useles
O 1nl P = === pref-useful
= 1.0 Q10 =
S o =1 = demand
@ 0
N 0.8 g 0.8 B
S 0.6 S 0.6- ©
£ £ =
2 0.4] S 0.4 i
=
n (%)
= 02 T 0.2] é
1 1 0O 5ol
0010 pref pref DRAM- 0010 pref pref DRAM- 0010 pref pref DRAM-
aware aware aware

(c) 8-core chip multiprocessor

Figure 9.2: Performance and DRAM bus utilization of combliri@dRAM-aware
mechanisms

190

prefetching, the baseline with prefetching, and all DRAMage polices combined
on the single, 4 and 8-core systems. The performance nurabersormalized to

the baseline systems with stream prefetching.

The DRAM-aware mechanisms significantly increase DRAM hiilgza-
tion by 6.5% for the 20 memory intensive benchmarks on thglsinore system as
shown in Figure 9.2(a). This is because the DRAM-aware mashes allow the
DRAM controllers to increase row buffer locality and BLP wéhreducing write-
caused interference. They reduce bus utilization of usgbesfetches by 25.5%
compared to the baseline prefetching mainly due to Adarefetch Dropping
(APD) and BLP-Aware Prefetch Issue (BAPI). As discussed aydlers 5 and 6,
APD cancels prefetches and BAPI limits the issue of prefetathen the estimated
prefetch accuracy is low. The increased DRAM utilization deeful requests im-
proves performance by 19.4% compared to the baseline phafigt

The DRAM-aware mechanisms are also very effective on thed48acore
systems as shown in Figures 9.2(b) and (c). The mechanisyeshtr increase
DRAM utilization by 22.4% (from 59.1% to 72.4% utilizatiorf the peak band-
width) while reducing useless utilization by 29.9% compieethe baseline for the
30 4-core workloads. This in turn improves weighted speeathigbharmonic mean

of speedups by 22.6% and 23.0% respectively.

On the 8-core system, they improve WS and HS by 26.5% and 2By6%
increasing DRAM bus utilization by 27.1% (from 62.2% to 7&.Qtilization of the
peak bandwidth). This reduces useless utilization by 388%ell. The benefits

become larger as the number of cores increases.

We conclude that our DRAM-aware policies work synergisljcand sig-
nificantly improve system performance by better utilizitg tODRAM system for

useful requests on single, 4, and 8-core systems.

191

Chapter 10

Conclusion and Future Research Directions

10.1 Conclusion

DRAM performance is one of the most important contributiagtérs to
the overall performance of computer systems. However, DR#dvformance is
severely limited if a microprocessor’s on-chip memory systmanagement policies
do not take into account DRAM characteristics: row buffecdlty, bank-level

parallelism (BLP), and write-caused interference.

This dissertation identified conventional on-chip memorgtem manage-
ment policies that can limit DRAM performance, and proposed low-cost poli-
cies that allow higher performance of the DRAM system. Weppsed and evalu-
ated four low-cost DRAM characteristic-aware mechanissash of which works

on a different on-chip memory resource management policy.

To maximize DRAM row buffer locality for useful memory recgte and
minimize the negative effect of useless prefetches, tesaitation proposed Prefetch-
Aware DRAM Controllers (PADC). PADC treats likely-usefulgbetches and de-
mands equally so that the DRAM controller can exploit rowféutocality for
useful requests. It also delays and drops likely-uselestefwhes. We show in
Chapter 5 that PADC significantly outperforms the existiiggor DRAM schedul-
ing policies and requires low-cost hardware and designatpp

To maximize DRAM bank-level parallelism in the presence i@&fetching,
we proposed in Chapter 6 two BLP-aware memory request issligigs. They
determine the order in which memory requests are sent froenammchip buffer
to another. The BLP-aware prefetch issue policy sends foleds that can be ser-

viced in parallel with requests to other DRAM banks. The Bueserving memory

192

request issue policy does the actual loading of the DRAMestghuffers so that re-
guests from the same core can be serviced in parallel. Tthiges the serialization
of each core’s otherwise parallel requests. The propospekst issue policies in-
crease and preserve BLP, thereby significantly reducing ongstall time on both

single and multi-core systems.

To maximize row buffer locality and bank-level parallelisnd minimize
write-caused interference in the DRAM system, this disdem proposed a DRAM-
aware last-level cache replacement policy. The DRAM-awapacement pol-
icy replaces cache lines that would incur low-cost (sedigaickly or in paral-
lel) rather than high-cost (serviced slowly or serially)terms of refetching and
writeback due to the three DRAM characteristics. We showe@hapter 7 that
the DRAM-aware replacement policy significantly outpenisr DRAM-unaware
replacement policies.

To further reduce write-caused interference, this dissiert proposed an
aggressive DRAM-aware last-level cache writeback polioycontrast to the pro-
posed DRAM replacement policy that takes action only whesptacement is nec-
essary, DRAM-aware writeback proactively cleans dirtye8irthat can be written
back quickly to DRAM due to row buffer locality. We showed it&pter 8 that this
policy significantly reduces write-caused interferenceduse it allows more writes

to be written back quickly.

Each of the four mechanisms manages different on-chip mgnesources
to improve DRAM utilization. We showed in Chapter 9 that toeif mechanisms
work synergistically when employed together. They sigatfity increase DRAM
bus utilization for useful data and significantly improvefpemance beyond what
can be achieved by each one alone on both single and mudtisgstems. We con-
clude that DRAM-aware on-chip memory system design canfggntly improve
DRAM performance, enabling higher performance for therergystem.

Our proposals are not limited to DRAM-based main memorysyst Other
memory technologies in the future are also likely to emplaytiple banks and row

193

buffers (i.e., sense amplifiers which can serve as row jfferprovide high band-

width and low latency. They will also likely have large wrtaused interference
due to high bus clock frequency. As such, the key ideas ofribyggsed mechanisms
in this dissertation should be able to be seamlessly apgied-chip memory sys-

tems that employ other main memory technologies.

10.2 Future Research Directions

This dissertation introduced the notion of main memory eysaware de-
sign in on-chip microarchitectures. There are severaliptesfuture research di-

rections in improving main memory performance.

e As discussed above, the key ideas of the proposed mechainisnis disser-
tation are not limited to today’s DRAM-based systems. Othere scalable
main memory technologies in the future will likely preseihtacacteristics
similar to DRAM in order to provide high peak bandwidth. Feaeenple, a re-
cently developed technology, phase change memory [35,xdbies longer
latency of writes, which likely increases write-causeceifdrence. The key
ideas presented in this dissertation could be extendedtepsors that em-

ploy new main memory technologies.

e DRAM performance varies depending on the memory addrespimgjand
the applications’ memory behavior as well as on-chip mensgstem man-
agement policies. DRAM characteristic-aware memory allors, compil-
ers, and profilers can increase DRAM utilization efficiengydnanging ad-
dress mapping in a DRAM-aware manner and giving hints abowaipgplica-
tion’s memory behavior to the on-chip memory resource manamt poli-

cies.

e The concept of DRAM-awareness can also be applied to othehgmmem-
ory resources for many-core systems in the future. An exarngbn-chip

interconnect. A DRAM-aware interconnect could prioritieguests to better

194

exploit row buffer locality and bank-level parallelism dwat effective mem-

ory stall time could be minimized.

Last-level cache management that takes into account bwipal locality
and DRAM characteristics can further improve efficiency. &le is
to switch between temporal locality-aware replacement RRAAM-aware
policies based on runtime behavior of an application. Thikresult in both

cache and DRAM efficiency.

195

Bibliography

[1] J. Baer and T. Chen. An effective on-chip preloading sechéo reduce data

access penalty. IRroceedings of Supercomputing ;91991.

[2] D. Callahan, K. Kennedy, and A. Porterfield. Softwaref@tehing. InPro-
ceedings of the 4th International Conference on ArchitettBupport for Pro-

gramming Languages and Operating Systeh891.

[3] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, Eul/and, A. Davis,
C.-C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and Teyama. Im-
pulse: Building a smarter memory controller. Pnoceedings of the 5th Inter-
national Symposium on High Performance Computer ArchitediHPCA-5)
1999.

[4] M. Charney and T. Puzak. Prefetching and memory systemaer of the
SPEC95 benchmark suitéBM Journal of Research and Developme3it(3),
1997.

[5] M. Charney and A. Reeves. Generalized correlation basedware prefetch-
ing. Technical Report EE-CEG-95-1, Cornell UniversitypF&995.

[6] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture mpations for ex-
ploiting memory-level parallelism. IRroceedings of the 31st International
Symposium on Computer Architecture (ISCA;2004.

[7] J. Doweck. Inside Intel Core microarchitecture and dmma@mory access.
Intel Technical White PapeR006.

[8] J.Dundas and T. Mudge. Improving data cache performbpqee-executing
instructions under a cache miss. Mnoceedings of the 1997 International

Conference on Supercomputing (IC8997.

196

[9] J.D. Dundas.Improving Processor Performance by Dynamically Pre-Pgsoeg
the Instruction StreamPhD thesis, University of Michigan, 1998.

[10] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. Patt. Coordimatentrol of multiple
prefetchers in multi-core systems. Broceedings of the 42nd International
Symposium on Microarchitecture (MICRO-42p09.

[11] E. Ebrahimi, O. Mutlu, and Y. Patt. Techniques for baratefficient
prefetching of linked data structures in hybrid prefetchgsystems. IrPro-
ceedings of the 15th International Symposium on High Perémrce Computer
Architecture (HPCA-15)2009.

[12] S. Eyerman and L. Eeckhout. A memory-level parallelsnare fetch policy
for SMT processors. IRProceedings of the 13th International Symposium on
High Performance Computer Architecture (HPCA-13)07.

[13] S. Eyerman and L. Eeckhout. System-level performane&ios for multi-
program workloadsIEEE Micro, 28(3), 2008.

[14] J. D. Gindele. Buffer block prefetching methodBM Technical Disclosure
Bulletin, 20(2):696—697, July 1977.

[15] A. Glew. MLP yes! ILP no! InNASPLOS Wild and Crazy Idea Session, 98
Oct. 1998.

[16] E. G. Hallnor and S. K. Reinhardt. A compressed memogydichy using an

indirect index cache. IWVorkshop on Memory Performance Issu&304.

[17] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, Ak&ly and P. Rous-
sel. The microarchitecture of the Pentium 4 processdamtel Technology
Journal Feb. 2001. Q1 2001 Issue.

[18] I. Hur and C. Lin. Adaptive history-based memory schieduln Proceedings
of the 37th International Symposium on Microarchitectiv@@RO-37) 2004.

197

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

I. Hur and C. Lin. Memory prefetching using adaptiveestm detection.
In Proceedings of the 39th International Symposium on Miabiecture
(MICRO-39) 2006.

E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana. Selftoizing memory
controllers: A reinforcement learning approach. Rroceedings of the 35th
International Symposium on Computer Architecture (ISG)-2008.

A. Jaleel, K. Theobald, S. C. S. Jr, and J. Emer. Highgerance cache
replacement using re-reference interval prediction (RRIR Proceedings of
the 37th International Symposium on Computer Architedi8€A-37) 2010.

JEDEC. JEDEC Standard: DDR3 SDRAM STANDARD (JESD79-3D)
http://www.jedec.org/standards-documents/docs/EsGd.

J. Jeong and M. Dubois. Optimal replacements in caclitbstwo miss costs.
In Proceedings of the eleventh annual ACM symposium on Phaddlerithms
and architectures1999.

J. Jeong and M. Dubois. Cost-sensitive cache replageaigorithms. In
Proceedings of the 9th International Symposium on Highdpaerince Com-
puter Architecture (HPCA-9R003.

D. A. Jiménez and C. Lin. Dynamic branch predictiontwiterceptrons. In
Proceedings of the 7th International Symposium on Highdeerdnce Com-
puter Architecture (HPCA-7R001.

D. Joseph and D. Grunwald. Prefetching using Markowjuters. In
Proceedings of the 24th International Symposium on Comgrthitecture
(ISCA-24) 1997.

N. P. Jouppi. Improving direct-mapped cache perforogahy the addition
of a small fully-associative cache and prefetch buffersPioceedings of the

17th International Symposium on Computer Architectur€fSsL7) 1990.

198

[28] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 chiy dual-core
multithreaded processolEEE Micro, 24(2):40, 2004.

[29] S. Kim. Area-efficient error protection for caches. Rroceedings of Design,
Automation and Test in Europe (DATER)D06.

[30] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: scalable and
high-performance scheduling algorithm for multiple megnoontrollers. In
Proceedings of the 16th International Symposium on HiglioPerance Com-
puter Architecture (HPCA-16p010.

[31] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-BalterThread clus-
ter memory scheduling: Exploiting differences in memorgess behavior.
In Proceedings of the 43rd International Symposium on Miab#ecture
(MICRO-43) 2010.

[32] A. C. Klaiber and H. M. Levy. An architecture for softweacontrolled data
prefetching. InProceedings of the 18th International Symposium on Com-
puter Architecture (ISCA-181991.

[33] D. Kroft. Lockup-free instruction fetch/prefetch de organization. In
Proceedings of the 8th International Symposium on CompAitehitecture
(ISCA-8) 1981.

[34] H. Q. Le, W. J. Starke, J. S. Fields, F. P. O’Connell, D.Nguyen, B. J.
Ronchetti, W. M. Sauer, E. M. Schwarz, and M. T. Vaden. |IBM pdiv
microarchitectureIBM Journal of Research and Developmgsit, 2007.

[35] B.C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architectipgase change mem-
ory as a scalable DRAM alternative. Rroceedings of the 36th International

Symposium on Computer Architecture (ISCA;28)09.

[36] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prdiesgvare DRAM
controllers. InProceedings of the 41st International Symposium on Microar
chitecture (MICRO-41)2008.

199

[37] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prdiedgvare DRAM
controllers. Technical Report TR-HPS-2008-002, Uniugrsif Texas at
Autin, 2008.

[38] C.J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and Y. [dttP DRAM-aware
last-level cache writeback: Reducing write-caused ieterice in memory
systems. Technical Report TR-HPS-2010-002, The UniyeditTexas at
Autin, Apr. 2010.

[39] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt. Impraymemory bank-
level parallelism in the presence of prefetching. Poceedings of the 42nd
International Symposium on Microarchitecture (MICRO-42)09.

[40] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens. Eager wetdd a technique
for improving bandwidth utilization. IiProceedings of the 33rd International
Symposium on Microarchitecture (MICRO-33P00.

[41] L. Li, V. Degalahal, N. Vijaykrishnan, M. Kandemir, arM. J. Irwin. Soft
error and energy consumption interactions: A data cachsppetive. InPro-
ceedings of International Symposium on Low Power Eleatgand Design
(ISLPED) 2004.

[42] W.-F. Lin, S. K. Reinhardt, and D. Burger. Reducing DRAd¥encies with an
integrated memory hierarchy design. Pnoceedings of the 7th International

Symposium on High Performance Computer Architecture (HPL2001.

[43] K. Luo,J. Gummaraju, and M. Franklin. Balancing thrbpgt and fairnessin
SMT processors. IRroceedings of International Symposium on Performance
Analysis of Systems and Software (ISPA3&)1.

[44] S. McFarling. Combining branch predictors. TechniBalport TN-36, Digi-
tal Western Research Laboratory, June 1993.

200

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

S. A. McKee. Hardware support for dynamic access omderPerformance
of some design options. Technical Report CS-93-08, Uniyeo$ Virginia,
Aug. 1993.

S. A. McKee, R. H. Klenke, A. J. Schwab, W. A. Wulf, S. A. Y&, J. H.
Aylor, and C. Y. Hitchcock. Experimental implementationdyinamic access
ordering. Technical Report CS-93-42, University of VinginAug. 1993.

S. A. McKee, R. H. Klenke, A. J. Schwab, W. A. Wulf, S. A. W&, C. Y.
Hitchcock, and J. H. Aylor. Experimental implementatiordghamic access
ordering. InProceedings of IEEE 27th Hawaii International Conference o
Systems Sciences (HICSS;20994.

S. A. McKee, W. A. Wulf, J. H. Aylor, R. H. Klenke, M. H. Sahs, S. I.
Hong, and D. A. Weikle. Dynamic access ordering for streac@uputa-
tions. IEEE Transactions on Compute#9, Nov. 2000.

Micron. 2Gb DDR3 SDRAM, MT41J512M4 - 64 Meg X 4 X 8 bai2k®?2.

http://download.micron.com/pdf/datasheets/dram/ddr3

T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluatid a compiler
algorithm for prefetching. IrfProceedings of the 5th International Confer-
ence on Architectural Support for Programming Languaged @perating
Systems1992.

O. Mutlu, H. Kim, D. N. Armstrong, and Y. N. Patt. Usinge&Hirst-level
caches as filters to reduce the pollution caused by speceilakemory refer-

ences.International Journal of Parallel Programmin@3(5), October 2005.

O. Mutlu, H. Kim, and Y. N. Patt. Techniques for efficiggrocessing in runa-
head execution engines. roceedings of the 32nd International Symposium
on Computer Architecture (ISCA-32005.

201

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

O. Mutlu and T. Moscibroda. Stall-time fair memory assescheduling for
chip multiprocessors. IRroceedings of the 40th International Symposium on
Microarchitecture (MICRO-4Q)2007.

O. Mutlu and T. Moscibroda. Parallelism-aware batdhestuling: Enhancing
both performance and fairness of shared DRAM system®rdeeedings of
the 35th International Symposium on Computer Architei8€A-35) 2008.

O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runatheaecution: An
alternative to very large instruction windows for out-afder processors. In
Proceedings of the 9th International Symposium on Highdeerdnce Com-
puter Architecture (HPCA-92003.

O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runathexecution: An
effective alternative to large instruction window&EE Micro, 23(6), 2003.

C. Natarajan, B. Christenson, and F. Briggs. A study eff@rmance im-
pact of memory controller features in multi-processor seenvironment. In

Workshop on Memory Performance Issug304.

K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith.r Gaeuing memory
systems. IProceedings of the 39th International Symposium on Miaroiar
tecture (MICRO-39)2006.

K. J. Nesbit, A. S. Dhodapkar, J. Laudon, and J. E. SmitAC/DC: An
adaptive data cache prefetcher.Aroceedings of the 13th International Con-

ference on Parallel Architectures and Compilation Teclhieis2004.

V. S. Paiand S. Adve. Code transformations to improvenms parallelism.
In Proceedings of the 32nd International Symposium on Miaioigecture
(MICRO-32) 1999.

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and Ardganidhi. Pin-
pointing representative portions of large Intel Itaniurogmams with dynamic

202

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

instrumentation. IrProceedings of the 37th International Symposium on Mi-
croarchitecture (MICRO-37)2004.

M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and theE Adaptive
insertion policies for high-performance caching. Rroceedings of the 34th
International Symposium on Computer Architecture (IS@)\-3007.

M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A cafee mip-aware
cache replacement. Iroceedings of the 33rd International Symposium on
Computer Architecture (ISCA-33)006.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalahigh performance
main memory system using phase-change memory technolaglroteed-
ings of the 36th International Symposium on Computer Aechitre (ISCA-
36), 2009.

S. Rixner. Memory controller optimizations for web gers. InProceedings
of the 37th International Symposium on Microarchitectif@@RO-37) 2004.

S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and JOens. Memory
access scheduling. Aroceedings of the 27th International Symposium on
Computer Architecture (ISCA-273000.

Samsung. Application Note: tWR (Write Recovery Time2002.
http://www.samsung.com/global/business/semicond{prtmducts/dram/.

J. Shao and B. T. Davis. A burst scheduling access reloglenechanism.
In Proceedings of the 13th International Symposium on HigHdpPerance
Computer Architecture (HPCA-132007.

A. J. Smith. Cache memorie€omputing Surveyd4(4), 1982.

W. E. Smith. Various optimizers for single stage proilut. Naval Research
Logistics Quarterly 3, 1956.

203

[71] A. Snavely and D. M. Tullsen. Symbiotic job scheduliry & simultaneous
multithreading processor. IRAroceedings of the 9th International Conference
on Architectural Support for Programming Languages and@peg Systems
(ASPLOS-9)2000.

[72] L. Spracklen and S. G. Abraham. Chip multithreadingpaunities and
challenges. IrProceedings of the 11th International Symposium on High
Performance Computer Architecture (HPCA-11)

[73] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedbacledied prefetching:
Improving the performance and bandwidth-efficiency of maark prefetchers.
In Proceedings of the 13th International Symposium on HigHdpPerance
Computer Architecture (HPCA-133007.

[74] V. Srinivasan, G. S. Tyson, and E. S. Davidson. A stalierffor reducing
prefetch traffic. Technical Report CSE-TR-400-99, Uniitgref Michigan
Technical Report, 1999.

[75] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, andL.John. The virtual
write queue: coordinating DRAM and last-level cache pebci InProceed-
ings of the 37th International Symposium on Computer Aechitre (ISCA-
37), 2010.

[76] Sun Microsystems, Inc. OpenSPARE™) T1 Microarchitecture Specifica-
tion.

[77] J. Tendler, S. Dodson, S. Fields, H. Le, and B. SinharBPWER4 system
microarchitecturelBM Technical White Pape©Oct. 2001.

[78] R. M. Tomasulo. An efficient algorithm for exploiting rtiple arithmetic
units. IBM Journal of Research and Developmetit, Jan. 1967.

[79] J. Tuck, L. Ceze, and J. Torrellas. Scalable cache masslling for high
memory-level parallelism. I®Proceedings of the 39th International Sympo-
sium on Microarchitecture (MICRO-392006.

204

[80] O. Wechsler. Inside Intel Core microarchitecturdntel Technical White
Paper, 2006.

[81] M. V. Wilkes. Slave memories and dynamic storage alioca IEEE Trans-
actions on Electronic Computer$4(2), 1965.

[82] T.-Y. Yeh and Y. N. Patt. Two-level adaptive branch potidn. In Proceed-
ings of the 24th International Symposium on Microarchiteet{MICRO-24)
1991.

[83] T.-Y. Yeh and Y. N. Patt. Alternative implementationsteo-level adaptive
branch prediction. IrProceedings of the 19th International Symposium on
Computer Architecture (ISCA-19992.

[84] D. H. Yoon and M. Erez. Memory mapped ECC: low-cost epartection
for last level caches. IRroceedings of the 36th International Symposium on
Computer Architecture (ISCA-363009.

[85] G. L. Yuan, A. Bakhoda, and T. M. Aamodt. Complexity etige memory
access scheduling for many-core accelerator architextureProceedings of
the 42nd International Symposium on Microarchitecture @RD-42) 20009.

[86] C. Zhang and S. A. McKee. Hardware-only stream prefetgland dynamic
access ordering. IfProceedings of the 2000 International Conference on
Supercomputing (ICS-142000.

[87] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based patgrieaving
scheme to reduce row-buffer conflicts and exploit data itcaln Proceed-
ings of the 27th International Symposium on Computer Aechitre (ISCA-
27), 2000.

[88] H. Zhou and T. M. Conte. Enhancing memory level paraialvia recovery-
free value prediction. liProceedings of the 17th International Conference on
Supercomputing (ICS-1,72003.

205

[89]

[90]

[91]

[92]

Z.Zhu and Z. Zhang. A performance comparison of DRAM roeyrsystem
optimizations for SMT processors. Proceedings of the 11th International

Symposium on High Performance Computer Architecture (HRC)A2005.

X. Zhuang and H.-H. S. Lee. A hardware-based cache patiuiltering
mechanism for aggressive prefetches. Pioceedings of the 32nd Interna-

tional Conference on Parallel ProcessiiZp03.

X. Zhuang and H.-H. S. Lee. Reducing cache pollution dyaamic data
prefetch filtering.IEEE Transactions on Computest(1), Jan. 2007.

W. Zuravleff and T. Robinson. Controller for a synchous DRAM that max-
imizes throughput by allowing memory requests and commémée issued
out of order. U.S. Patent Number 5,630,096, 1997.

206

Vita

Chang Joo Lee was born in Seoul, South Korea on 12 Septembgr He
finished Seoul High School, Seoul, Korea in February 1994cadtepleted his B.S.
degree in Electrical Engineering in February 2001 at Seaatiddal University,
Seoul, Korea. He earned his M.S. degree in Electrical andpiten Engineering
from the University of Texas at Austin, Texas, USA in May 2004

Chang Joo was a recipient of the scholarship from Ministrinérmation
and Communication in Korea during 2002-2006, the IBM Phibweship in 2007,
and the IBM scholarship in 2008. He served as a teachingtassi®r EE382N
Microarchitecture in Spring 2006, EE360N Computer Arctiitee in Spring 2007,
and EE306 Introduction to Computing in Fall 2008. Chang Jotked as a summer
intern at Freescale Semiconductor in 2004 and 2005, and IBMVatson Research
in 2006 and 2007.

Permanent address: 622-13 Yeoksam-Dong Kangnam-Gu, Seoul
135-080, Republic of Korea

This dissertation was typeset witifX by the author.

fIATEX is a document preparation system developed by Leslie Langsoa special version of
Donald Knuth's EX Program.

207

