Copyright
by
Muhammad Aater Suleman
2010

The Dissertation Committee for Muhammad Aater Suleman
certifies that this is the approved version of the followingsértation:

An Asymmetric Multi-core Architecture for Efficiently
Accelerating Critical Paths in Multithreaded Programs

Committee:

Yale Patt, Supervisor

Derek Chiou

Mattan Erez

Keshav Pingali

Eric Sprangle

An Asymmetric Multi-core Architecture for Efficiently
Accelerating Critical Paths in Multithreaded Programs

by

Muhammad Aater Suleman, B.S.E.E.; M.S.E.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
May 2010

Dedicated to my parents.

Acknowledgments

First and foremost, | thank my advisor Prof. Yale Patt. Mdstbat | know
today about computer architecture, technical writing, pabdlic speaking is what |
have learned from him. | also thank him for his advice and eom@n matters that
were not directly related to my education. What | have ledrdnem him will stay

with me for the rest of my life.

| am grateful to Eric Sprangle for giving me the opportuniytork at Intel
for four summer internships; and for teaching me processoulstors, the impor-
tance of first order insights, and the industrial perspeabir computer architecture.

Technical discussions with Eric have always enhanced maside

Special thanks to Moinuddin Qureshi and Onur Mutlu for beimgmentors
in graduate research. They have both been a source of itispieand excellent co-
authors. | especially thank Onur for listening to my newvediag rants and Moin
for his brotherly attitude.

Many people and organizations have contributed to thiediagon and my
life as a student. | thank them all for their contributiongspecially thank:

e Lori Magruder for teaching me how to conduct research.

e Kevin Lepak for supervising my first computer architectugsaarch project.

e Hyesoon Kim for working with me on 2D-Profiling.

e Derek Chiou and Mattan Erez for their helpful feedback os thesis.

¢ Jose Joao and Khubaib falwaysbeing there and for the technical discussions.

¢ Veynu Narasiman for answering random questions on Enghsimmar and for
letting me borrow his stuff.

e Eiman Ebrahimi and Chang Joo Lee for listening to my rants.

¢ Rustam Miftakhutdinov for his acute feedback.

e Anwar Rohillah, Danny Lynch, and Francis Tseng for provglieedback on
my ideas.

¢ Siddharth, Faisal, Owais, Amber, and Tauseef for beingfbkelp work and
otherwise.

¢ Intel Corporation for the Intel PhD Fellowship and UT for tAeestigious Grad-
uate Dean Fellowship.

| cannot express with words my indebtness to my parentskBié¢uham-
mad Suleman and Nusrat Suleman. They have always suppoytddaisions even
if it required them to change the course of their life. Theyewey first teachers. It
is from them | learned the value of education and hard workillljust thank them
by saying that any value you will find in this thesis is due terth

| also want to thank my brother Amer Suleman for being an rdjain, for
his advice, and for buying me my first electronic science ladb my first personal
computer; both these gifts helped me identify my career.padlso want to thank
my sister Sarwat Ajmal for being a caring sister, and for g me elementary
science. This acknowledgement is incomplete without thetioe of my relatives
Muhammad Ajmal, Mahvash Amer, Zaynah, Namrah, Areeba, /faral Abeera.

At the end, | deeply thank God as it is He who created the oppities for
me and brought me in contact with the right people. | now dtag thesis in the

name of God, the most Magnificent, the most Merciful.

Vi

An Asymmetric Multi-core Architecture for Efficiently
Accelerating Critical Paths in Multithreaded Programs

Muhammad Aater Suleman, Ph.D.
The University of Texas at Austin, 2010

Advisor: Yale Patt

Extracting high-performance from Chip MultiprocessordMes) requires that the
application be parallelized i.e., divided intfareadswhich execute concurrently on
multiple cores. To save programmer effort, difficult to pkeié&ze program portions
are often left as serial. We show that common serial portio@s non-parallel ker-
nels, critical sections, and limiter stages in a pipelinsgdme the critical path of
the program when the number of cores increases, therebyrgperformance and
scalability. We propose that instead of burdening the saréwrogrammers with
the task of shortening the serial portions, we can acceén&tserial portions using
hardware support. To this end, we propose Asymmetric Chip-Multiprocessor
(ACMP) paradigm which provides one (or few) fast core(s) for acetézl execu-
tion of the serial portions and multiple slow, small cores liggh throughput on
the parallel portions. We show a concrete example impleatiemt of the ACMP
which consists of one large, high-performance core and marall, power-efficient
cores. We develop hardware/software mechanisms to aatelbe execution of se-
rial portions using the ACMP, and further improve the ACMPgposing mech-
anisms to tackle common overheads incurred by the ACMP.

vii

Table of Contents

Acknowledgments %
Abstract Vil
List of Tables Xili
List of Figures XV
Chapter 1. Introduction 1

1.1 TheProblem 1

1.2 ThesisStatement. 3

1.3 Contributions 3

1.4 Dissertation Organization 4
Chapter 2. Serial Bottlenecks 5

2.1 Non-ParallelKernels. 5

211 Analysis 7

2.2 Critical Sections 8

221 Analysis 11

2.3 Limiterstageinapipeline o L. 18

23.1 Analysis 20
Chapter 3. Asymmetric Chip Multiprocessor 22

3.1 Current CMP Architectures 22

3.2 OurSolution e e 24

3.3 ACMP Architecture e 25

331 ISA . . 25

3.3.2 Interconnect 25

3.3.3 Caches 26

3.34 CacheCoherence 26

3.3.5 Largecore 26

3.3.6 Smallcore 26

3.4 Design Trade-offsinACMP 27

viii

Chapter 4. ACMP for Accelerating Non-Parallel Kernels 28

4.1 Architecture 28
4.2 Performance Trade-offsinANP 29
4.3 Evaluation Methodology 31
43.1 Workloads 31
4.4 Evaluation e 33
4.4.1 Performance with Number of Threads Set Equal to the-Num
ber of Available Thread Contexts 34
4.4.2 Scalability 36
4.4.3 ACMP with Best Numberof Threads 38
Chapter 5. ACMP for Accelerating Critical Sections 39
5.1 Architecture 39
5.1.1 ISASupport 39
5.1.2 Compiler/Library Support 40
5.1.3 Hardware Support 41
5.1.3.1 Modificationstothesmallcores 41
5.1.3.2 Critical Section Request Buffer 41
5.1.3.3 Modificationstothelargecore 43
5.1.3.4 Interconnect Extensions 43
5.1.4 Operating System Support, 43
5.1.5 Reducing False SerializationinACS 44
5.2 Performance Trade-offsinACS 45
5.3 Evaluation Methodology 47
5.3.1 Workloads 48
5.4 Evaluation e 49
5.4.1 Performance with the Optimal Number of Threads 5Q
5.4.1.1 Workloads with Coarse-Grained Locks 50
5.4.1.2 Workloads with Fine-Grained Locks 52
5.4.2 Performance with Number of Threads Set Equal to the-Num
ber of Available Thread Contexts 55
5.4.3 Application Scalability 57
5.4.4 Performance of ACS on Critical Section Non-Inten&each-
marks e e 5
5.5 Sensitivity of ACS to System Configuration 59
55.1 Effectof SEL. 59
5.5.2 Effect of using SMT onthe LargeCore 60

5.5.3 ACS on Symmetric CMPs: Effect of Only Data Locality . .61
5.5.4 Interaction of ACS with Hardware Prefetching62

Chapter 6. ACMP for Accelerating the Limiter Stage 63

6.1 Keylnsights 63
6.2 OVEIVIEW e e e e 64
6.3 Feedback-Driven Pipelining: Optimizing the pipeline. 64
6.3.1 Overview 64
6.3.2 Train 66
6.3.3 Performance-Optimization 67
6.3.4 Power-Optimization 68
6.3.5 Enforcementof Allocation 68
6.3.6 Programming InterfaceforFDP 69
6.3.7 Overheads 70
6.4 Accelerating the Limiter Stage 17
6.5 Performance Trade-offsinALS 72
6.6 Evaluation 72
6.6.1 Effectivenessof FDP 72
6.6.1.1 Evaluation Methodology 72
6.6.1.2 CaseStudies 74
6.6.1.3 Performance 79
6.6.1.4 Numberof ActiveCores 80
6.6.1.5 RobustnesstolnputSet. 81
6.6.1.6 Scalability to Larger Systems 82
6.6.2 Evaluationof ALS 84
6.6.2.1 Evaluation Methodology 84
6.6.2.2 Performance at One Core per Stage 84
6.6.2.3 Performance at Best Core-to-stage Allocation . . 86.
Chapter 7. Data Marshaling 89
7.1 TheProblem 89
7.2 Mechanism. 91
721 Keylnsight 92
7.2.2 Overview of the Architecture 93
7.2.3 Profiling Algorithm L. 94
7.2.4 ISASupport 95
7.2.5 Library Support 95
7.2.6 DataMarshalingUnit 96
7.2.7 Modifications to the On-Chip Interconnect 97
7.2.8 Handling Interrupts and Exceptions 79
7.29 Overhead 97
7.3 DM for Accelerated Critical Sections (ACS) 98

7.3.2 DataMarshalinginACS 99
7.3.3 Evaluation Methodology 99
7.3.4 Evaluation 101
7.3.4.1 Stability of the Generator-Set 101
7.3.4.2 Coverage, Accuracy, and Timelinessof DM 101
7.3.4.3 Cache Miss Reduction Inside Critical Sections . 04 1
7.3.4.4 Speedup in Critical Sections 104
7.3.45 Performance 105
7.3.4.6 Sensitivity to Interconnect Hop Latency 810
7.3.4.7 SensitivitytoL2 Cache Sizes. 108
7.3.4.8 Sensitivity to Size of the Marshal Buffer 910
7.4 DM for Pipeline Workloads 109
7.4.1 Inter-segment data in pipeline parallelism 110
742 DMinPipelines 110
7.4.3 Evaluation Methodology 111
7.4.4 Evaluation 111
7.4.4.1 Coverage, Accuracy, and Timeliness 112
7.4.4.2 Reduction in Inter-Segment Cache Misses 113
7.4.43 Performance, 114
7.4.4.4 Sensitivity to Interconnect Hop Latency 511
7.4.45 SensitivitytolL2 CacheSizes. 116
7.4.4.6 Sensitivity to size of Marshal Buffer 116
7.5 DMonOtherParadigms 116
Chapter 8. Related Work 118
8.1 Related Work in Accelerating Non-Parallel Kernels 118
8.2 Related Work in Reducing Critical Section Penalty 119
8.2.1 Related Work in Improving Locality of Shared Data amdks119
8.2.2 Related Work in Hiding the Latency of Critical Secgson . . 120
8.2.3 Other Related Work in Remote Function Calls 221
8.3 Related Work in Increasing Pipeline Throughput 123
8.4 Related Work in Data Marshaling 412
8.4.1 Hardware Prefetching 124
8.4.2 Reducing Cache Misses using Hardware/Compiler/@p&ti 25
8.4.3 OtherRelatedWork 126

7.3.1 Private Datain ACS 98

Xi

Chapter 9. Conclusion 127

9.1 Summary e 127

9.2 Limitationsand Future Work 128
Bibliography 130
Vita 140

Xii

4.1
4.2

5.1
5.2
5.3

5.4

5.5
5.6

5.7

6.1
6.2
6.3

6.4

6.5
6.6

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

List of Tables

Configuration of the simulated machines 32
Simulatedworkloads.o 33
Configuration of the simulated machines 48
Simulatedworkloads. oo 49

Benchmark Characteristics. Shared/Private is the ratishafred data
(cache lines that are transferred from other coreg)rieate data (cache
lines that hit in the private cache) accessed inside a a&risection. Con-
tention is the average number of threads waiting for clisestions when

the workload is executed with 4, 8, 16, and 32 threads on tHdfSC. . . 49
Area budget (in terms of small cores) required for ACS to ediprm an
equivalent-area ACMPand SCMP. 54
Average execution time normalized to area-equivalent ACMP. 55
Contention (see Table 3 for definition) at an area budget gN8@nber of

threads set equal to the number of thread contexts). 57
Best number of threads for each configuration. 58
System Configuration, 73
Workload characteristics., 47
Throughput of different stages as core allocation idarThrough-

put is measured as iterations/IMcycles. 6 7
Throughput of different stages as core allocation iseda(mea-

sured as iterations/IMcycles). oL 78
Configuration of the simulated machines. 85
Workload characteristics., 58
Configuration of the simulated machines. 100
Simulated workloads. Lo 100
Size and variance of Generator-Set. 101
Average number of cache lines marshaled per criticéicgec . . . 103
MPKI inside critical sections. 104
Sensitivityof DMtoL2 Cache Size. 910
Workload characteristics. oL 121

L2 Misses for Inter-Segment Data (MPKI). We show both @ame
and hmean because hmean is skewed ddettupE. Note: MPKI
of inter-segment datainidealisO. 114

Xiii

7.9 Sensitivity to Marshal Buffer size: Speedup over base($o). . . . 116

Xiv

2.1

2.2

2.3
2.4
2.5

2.6
2.7

2.8

3.1

4.1
4.2

4.3

4.4
4.5
4.6
4.7

4.8

5.1
5.2
5.3
5.4

List of Figures

Parallel and non-parallel part in a program (a) Code exarfipl&xecu-
tion timeline on the baselineCMP 6

Serial part, parallel part, and critical section in 15-daZa) Code exam-
ple (b) Execution timeline on the baseline CMP (c) Executioreline

with accelerated critical sections. 9
Example for analyzing update critical section limitgdtems 12
Example for analyzing multiple update critical secson. 13

A function fromPageM ne that counts the occurrence of each
ASCIlI characteronapageoftext. 15
Example for analyzing impact of critical sections 16

(&) The code of a loop, (b) Each iteration is split into Beﬂ]ne
stages: A, B, and C. Iteration i comprises Ai, Bi, Ci. (c) Seqjual
execution of 4 iterations. (d) Parallel execution of 6 ittenas using
pipeline parallelism on a three-core machine. Each stageut&s
ONONECOME. i i i e e e e e e e e e e 19

File compression algorithm executed using pipelinalpgdism . . . 20

CMP Architecture approaches. (a) Tile-Large (b) Tile-Sr(@lAsymmetric 22

Scheduling algorithm for accelerating non-parallehleds. 29
Performance vs. Degree of Parallelism at a fixed peak ptawe
baseline CMP architectures 30
Degree of parallelism needed in application for TileeBm@mpproach

to outperform ACMP approach vs. diearea. 30
Normalized execution time of ACMP at an area budget of 8 cores . . 35
Normalized execution time of ACMP at an area budget of 16xare . . 35
Normalized execution time of ACMP at an area budget of 32sare . . 36
Speedup over a single small core. Y-axis is the speedup ®negle small

core and X-axis is the chip area in terms of small cores.. 37
Normalized execution time of ACMP at Best Threads.. 38
ACS on ACMP with 1 large core and 12 smallcores. 40
Format and operation semantics of new ACS instructions. 40
Source code and its execution: (a) baseline (b) with ACS. 41
Critical Section Request Buffer (CSRB) 43

XV

5.5

5.6

5.7
5.8
5.9
5.10
5.11

6.1
6.2

6.3
6.4
6.5

6.6
6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Execution time of workloads with coarse-grained locking @S and

SCMP normalizedto ACMP, 51
Execution time of workloads with fine-grained locking on A@& SCMP
normalizedto ACMP 54
Speedup overasinglesmallcore 56
Impactof SEL.. e 60
Impactof SMT.. e 60
ACSonsymmetricCMP.., 61
Impact of prefetching. L. 62
Overviewof FDP. 65

Sample output from Train for a pipeline with three sta@@&3 S1,

S2) on a 3-core machine. Each entry is a 2-tuple: (the sunmaf ti
measurements, the number of time measurements) takendor ea
core-stage pair. Blank entries contain (0,0). 66

FDP library interface. 69
Modified worker loop (additions/modifications are shawbold) . 70
Overall throughput of onpr ess as FDP adjusts core-to-stage al-

location 76
Pipeline for matching a stream of strings with a givemgtr 77
Overall throughput and active coresr@nk as FDP adjusts core-
to-stage allocation o 79
Speedup with different core-to-stage allocation sa@em. 80
Average number of active cores for different core allmraschemes. 81
Robustness to variations ininputset. 82
FDP’s performance on 16-core Barcelona.83
FDP’s power on 16-core Barcelona. 4 8
Speedup at 1 Core Per Stage (not area-equivalent). 86
Speedup with FDP at an equal area budget of 32 small.cores . 87
Performance of ACMP fdyl ack at an area budget of 40. 88
(a) Source code, (b) code segments, and (c) their epadatSE. . 91
Concept of “generator of inter-segmentdata”. 92
The profiling algorithm. 94
Data MarshalingUnit. 97
(a) Coverage, (b) Accuracy, and (c) Timelinessof DM. 102
Increase in CS-IPCwithDM. 105
Speedup of DM with an area-budgetof16.. 06 1
Speedup of DM with an area-budgetof32.. 07 1

XVi

7.9 Speedup of DM with an area-budgetof64.. 07 1

7.10 Code exampleofapipeline. 110
7.11 (a) Coverage, (b) Accuracy, and (c) Timeliness of DM. 113
7.12 Speedupatl6Ccores. 114
7.13 Speedup at32cores. 115
8.1 ACSvs. TLRperformance.. oo 121

XVil

Chapter 1

Introduction

1.1 The Problem

It has become difficult to build large monolithic processbegause of ex-
cessive design complexity and high power requirements. s€qurently, industry
has shifted to Chip-Multiprocessor (CMP) architecturest tile multiple simpler
processor cores on a single chip [8,52, 54, 79]. Industrydseshow that the num-
ber of cores will increase every process generation [8, Fajwever, because of
power constraints, each core on a CMP is expected to becanmesiand power-
efficient, and will have lower performance. Therefore, tlegfprmance of single-
threaded applications may not increase with every processrgtion. To extract
high performance from such architectures, the applicatiust be divided into
multiple entities calledhreads Threads execute concurrently on multiple cores,

thereby increasing performance.

CMPs have the potential to provide speedups proportiondigéanumber
of cores on the chip if the program can be parallelized coteple However, not
all portions of a program are amenable to parallel executirogrammers either
invest the enormous effort required to parallelize thesgiqgus or save the effort

by leaving such portions as serial (single thread).

These serial portions become a major performance limiteightcore counts.
As the number of cores increases, the time inside the phpaifdons reduces while
the time spent inside the serial portions remains constaninfreases). Conse-
quently, with a large number of cores, a serial portion —n¢t@endaow small— can
form the critical path through the program. We identify #hraajor sources of seri-
alization in multi-threaded applicationson-parallel kernelscritical sections and

limiter pipeline stages

Non-Parallel Kernels: Kernels that are prohibitively difficult or impossible
to parallelize are left completely serial. We call such letsiNon-Parallel Kernels
Non-Parallel Kernels execute on a single core of the CMPenthié other cores re-
main idle. They limit the achievable speedup. Reducing Xee@tion time spent in
such kernels not only reduces overall execution time but misreases the achiev-
able speedup.

Critical Sections: Serialization can even occur in the parallelized portions
when threads contend for shared data. In shared memonnsysteultiple threads
are not allowed to update shared data concurrently, knowthemutual exclu-
sion principle [57]. Instead, accesses to shared data are anaggas in regions
of code guarded by synchronization primitives (e.g. locl&)ch guarded regions
of code are calledritical sections The semantics of a critical section dictate that
only one thread can execute it at a given time. Any other thibat requires ac-
cess to shared data must wait for the current thread to caenbie critical section.
Thus, when there is contention for shared data, executithredds gets serialized,
which reduces performance. As the number of threads inesedke contention
for critical sections also increases. Therefore, in appions that have significant
data synchronization (e.g. Mozilla Firefox, MySQL [2], aoderating system ker-
nels [83]), critical sections limit both performance (atigemn number of threads)
and scalability. Techniques to accelerate the executiamitéal sections can re-

duce serialization, thereby improving performance andesdity.

Limiter-stages: Pipeline parallelisms a popular software approach to split
the work in a loop among threads. In pipeline parallelisra,grogrammer/compiler
splits each iteration of a loop into multiple work-quantaesdaeach work-quantum
executes in a different pipeline stage. Each pipeline stagxecuted on one or
more cores. The performance of a pipeline is limited by thecakon rate of the
slowest stage. When the slowest stage does not scale, tradl @pegformance sat-

urates and more cores cannot increase performance. Thgledtiperformance

can be achieved only when the maximum possible resourceallacated for the

acceleration of the slowest stage.

1.2 Thesis Statement

Execution of serial bottlenecks can be accelerated usstgifaores in an

asymmetric chip multiprocessor.

1.3 Contributions

This dissertation makes the following contributions:

1. Itproposes an asymmetric multi-core paradigm which vildloaAsymmetric
Chip Multiprocessor (ACMR)ACMP can run parallel program portions at
high throughput and serial bottlenecks at an acceleratedution rate. We
provide an in-depth analysis of industry trends which maigvthe ACMP
paradigm and prove its feasibility using simple first-ordealytic models.
As a concrete example of the ACMP paradigm, this thesis desigCMP
with one fast, large core for accelerating the serial proggortions; and

many slow, small cores for speedily executing the paraliegam portions.

2. It proposes simple analytic models to show the importafitiee three major
sources of serialization in multi-threaded programs. Thesis describes in
detail the microarchitecture, OS, ISA, compiler, and Ifigraupport required
for the ACMP to accelerate these serial portions.

3. It proposesAccelerated Non-Parallel Kernels (ANPa thread scheduling

mechanism to accelerate the non-parallel kernels using@iépP.

4. It proposes théccelerated Critical Sections (AC8j)echanism to accelerate
critical sections, thereby reducing thread serializatidfe comprehensively
describe the instruction set architecture (ISA), comfileary, hardware,
and the operating system support needed to implement ACS.

5. It propose#ccelerated Limiter Stage (ALY mechanism to choose and ac-
celerate the limiter stages in pipeline (streaming) waakle We describe
the algorithm to identify the limiter stage and the opertsystem/library
support for ALS in detail.

6. We further show that ACMP’s performance is limited duei® tache misses
incurred in transferring a task from a small core to the large. We propose
Data Marshaling (DM)to overcome the overhead of transferring data among
the cores of the ACMP.

1.4 Dissertation Organization

This dissertation is divided into nine chapters. Chaptera¥ipes the back-
ground and motivation for the work. Chapter 3 presents tbp@sed ACMP archi-
tecture. Chapters 4, 5, and 6 describe how the ACMP can aateleon-parallel
kernels, critical sections, and limiter pipeline stagebafter 7 proposes the Data
Marshaling mechanism. Chapter 8 describes the related. \@rapter 9 concludes

the dissertation.

Chapter 2

Serial Bottlenecks

It has become difficult to build large monolithic processoesause of their
excessive design complexity and high power consumptioms€guently, indus-
try has shifted to Chip-Multiprocessors (CMPs) [54, 99,]163t provide multiple
processing cores on a single chip. While CMPs are powerndatticthey do not
improve performance of legacy applications written to runecsingle core. To ex-
tract performance from CMPs, programmers must split theiggams into multiple
entities calledhreads Threads operate on different portions of the same problem
concurrently, thereby improving performance. Howevaes difficult or impossible
to parallelize some program portions. Such portions aend#ft asserial. The se-
rial portions can form the critical path through the prograsthe number of cores
increases. The three most common sources of serializatamos-parallel kernels,

critical sections, and limiter pipeline stages.

2.1 Non-Parallel Kernels

Program portions which are difficult or impossible to pagh#le without
changing the algorithm are often left as serial to save uogner effort. Examples
of difficult to parallelize kernels include loops with deplemt iterations or loops
with early exit conditions. These are classic Amdahl batieks [10].

Figure 2.1(a) shows a simple program with two kernels K1 a@dIKernel
K1 computes the minimum of two arrays A and B by comparing edement in A
with the corresponding element in B and choosing their mimmK1's iterations
are independent, i.e., they operate on different data. é&8 is the code for 2-
tap averaging IIR filter K2 sets each elementin array A (A[i]) equal to the average

of the element itself (A[i]) and the previous element in A A]). Note that the
kernel requires the new value of Afi] to compute A[i+1] whictakes each iteration
dependent on the previous iteration.

Since its iterations are independent, K1 can be paralttkssily such that
each coré executes different iterations of the loop concurrently.cémtrast, K2
cannot be parallelized because each iteration requiresethét of the previous
iteration. This makes K2 a non-parallel kernel and only oo can execute it at
a given time. Note that it may be possible to parallelize Kéhé algorithm can
tolerate inaccuracy. However, such algorithmic assumgtiare domain-specific

and not always applicable.

LEGEND LEGEND
InitializeArrays(); A: Initialization parallel Kernel K1
SpawnThreads(); @ K1: Parallel Kernel —
K2: Non-Parallel Kernel p=8 () @ Non-Parallel Kernel K2
= —]
—Do

ini —

Ijer;:el c;)mputes mlnl(rjnum (;f two arrays —
*Threads execute independent iterations
in parallel*/ P @ | S G
- p=4 |—— c=na=D
ori=ii@ o — —1
Ali] = MIN(A[T], B}
p=2 | CED GRS GEN GH_— Y
| D GEED GEED G
] e P=1
* Kernel is an averaging filter*/ | | | | | | | | | |
/* Loop has Dependent Iterations so- t t t t t t t t t t t
difficult-to-parallelize */ @ 01 2 4 5 6 7 8 g 10
fori=1toN2 (b)
Ali] = (A[i] + Ali-1])/2
(@)

Figure 2.1:Parallel and non-parallel part in a program (a) Code exaripldExecution
timeline on the baseline CMP

Figure 2.1(b) shows a simplified execution timeline of thigltmthreaded
program as the number of coreB)(increases, assuming K1 requires eight units of
time for execution and K2 requires two units of time for exemo Since K1 can be
parallelized, its work can be distributed evenly acrosstipigl cores. Thus, wheR
is equal to 2, K1 executes on both cores and finishes in foas ohtime while K2
still requires two time units. Total execution time is 6 wniSimilarly at 4 cores, K1

executes in only 2 time units and the execution time of K1 a@dKcome equal.

We use cores and threads interchangeably.

Overall execution time reduces by only 33% to 4 units. If welldle the number
of cores to 8, K2 begins to dominate overall execution time #oe overall time
reduces by only 25%. With an infinite number of cores, K1 tatess time but K2
still takes 2 times units. Therefore, as the number of coreieases, increasing the

number of cores becomes less beneficial for performance.

Suppose the same program executes on a hypothetical atah&evhich
accelerates K2 by a factor of 2. The program’s execution twillereduce for 1,
2, 4, and 8 cores. At 8 cores, the program will finish in two tiométs compared
to the three time units in the baseline CMP. This shows theglecating the serial
bottleneck (which is only 20% of the program) by 2x reducesrall execution
time by 33%. Furthermore, the execution time with an infimtember of cores
is only one time unit instead of the two time units when K2 was accelerated.
This improvement from accelerating non-parallel kernalgtfer increases with the

number of cores.

2.1.1 Analysis

Amdabhl’s law [10] provides a simplified model to predict therfprmance
impact of non-parallel kernels. It assumes that as the nuoflpeocessors increase,
the time taken to execute the parallel portion reduces tindait the time taken to
execute the non-parallel portion remains unchanged. Lassisme thatpeedupy
is the speedup achieved by N processors over a single poycasd () is the
fraction of the application which is parallelized (amd- « is the fraction of the

application which is not parallelized). We can deffy&ecdupy using Equation 2.4.

1

¥+ (1-a) (2.1)

Speedupy =

Equation 2.4 shows the speedup as N approaches infinity.idtiis maxi-

mum possible speedup achievable by a program.

. 1
]&Enoo Speedupy = T o (2.2)

Note thatSpeedupy becomes a function abnly the length of the non-
parallel portion { — «). Thus, non-parallel kernels limit the achievable speedup

If we accelerate the execution of the non-parallel part bpaadr S, the
speedup will be:

1

Speedupy = ——— (2.3)
NT 5
When N approaches infinity, the speedup becomes:
lim Speedupy = & (2.4)

Thus, accelerating the non-parallel kernel can increadenpeance and the
achievable speedup.

2.2 Ciritical Sections

Accesses to shared data are encapsulated inside critatadrse Only one
thread can execute a particular critical section at anyrgtiree. Critical sections
are different from Amdahl’s serial bottleneck: during theeeution of a critical
section, other threads that do not need to execute the saialgection can make

progress. In contrast, no other thread exists in Amdabhtisisigottleneck.

Figure 2.2(a) shows the code for a multi-threaded kernetiwisblves the
15-puzzle problem [109]. In this kernel, each thread degqaeuwork quantum
from the priority queue (PQ) and attempts to solve it. If theetid cannot solve the
problem, it divides the problem into sub-problems and itssiirem into the priority
queue. While this example is from the worklopdzz| e, this is a very common
parallel implementation of many branch-and-bound algang [60]. The kernel
consists of three parts. The initial part A and the final padr& the non-parallel
Amdahl’s serial bottleneck since only one thread existhosé sections. Part B is

the parallel part, executed by multiple threads. It cos$tode that is both inside

the critical section (C1 and C2, both protected by lock X) antside the critical

section (D1 and D2).

InitPriorityQueue(PQ);
SpawnThreads();
ForEach Thread:

®

LEGEND

B: Parallel Portion
C1,C2: Critical Sections

A,E: Amdahl’s serial part

D: Outside critical section

while (problem not solved)

Lock (X)

SubProblem = PQ.remove(); @
Unlock(X);
Solve(SubProblem);

If(problem solved) break;

NewSubProblems = Partition(SubProblem);

Lock(X)

PQ.insert(NewSubProblems);
Unlock(X)

time

begin 0 1 2 3 4 5 6 end

TLC D2l D Dmmnnns -@@ O

T2 C o2 @ by X i@P

T3 C oy X d@C 2y > O

T4
t t t t t

t t
5 6

time

) t
begin 0 1 2 3

end

4
| (©)
Figure 2.2:Serial part, parallel part, and critical section in 15-dazfa) Code example
(b) Execution timeline on the baseline CMP (c) Executioretine with accelerated critical
sections.

Figure 2.2(b) shows the execution timeline of the kernewshan Fig-

ure 2.2(a) on a 4-core CMP. After the serial part A, four tlhieél'1, T2, T3, and
T4) are spawned, one on each core. Once part B is completsgetlad part E is
executed on a single core. We analyze the serializatiornecklogg the critical sec-
tion in steady state of part B. Between timgeandt,, all threads execute in parallel.
At time ¢, T2 starts executing the critical section while T1, T3, addcdntinue to
execute code independent of the critical section. At tigmd 2 finishes the critical
section and three threads (T1, T3, and T4) contend for thearsection — sup-
pose T3 wins and enters the critical section. Between tiyrandts, T3 executes
the critical section while T1 and T4 remain idle, waiting fo8 to exit the critical
section. Between timg andt,, T4 executes the critical section while T1 continues

to wait. T1 finally gets to execute the critical section beswéimet, andts.

This example shows that the time taken to execute a criteetian sig-
nificantly affects not only the thread that executes it babahe threads that are
waiting to enter the critical section. For example, betwgeandt; there are two
threads (T1 and T4) waiting for T3 to exit the critical seatiovithout performing
any useful work. Therefore, accelerating the executiorhefdritical section not
only improves the performance of T3 but also reduces thesgsetaiting time of
T1 and T4. Figure 2.2(c) shows the execution of the same kassaiming that
critical sections take half as long to execute. Halving timettaken to execute crit-
ical sections reduces thread serialization which sigmifigaeduces the time spent
in the parallel portion. Thus, accelerating critical secf can provide significant

performance improvement.

On average, the critical section shown in Figure 2.2(a) @te=c1.5K in-
structions. When inserting a node into the priority quebe, d¢ritical section ac-
cesses multiple nodes of the priority queue (implementeatzsap) to find a suit-
able place for insertion. Due to its lengthy execution, triical section incurs
high contention. Our evaluation shows that when the workisaexecuted with 8
threads, on average 4 threads wait for this critical sectidre average number of
waiting threads increases to 16 when the workload is exdouith 32 threads. In

10

contrast, when this critical section is accelerated, theraye number of waiting
threads reduces to 2 and 3, for 8 and 32-threaded execuspactvely.

Note that critical sections can be shortened if programnogisthe shared
data at a finer-granularity, e.g., using a different lock évery node in the data
structure. We show in Section 5.4.1.2 on page 52 that as timbauof cores in-
creases, even fine-grain critical sections begin to incaterttion, thereby reducing

performance.

2.2.1 Analysis

The effect of critical sections on overall performance ctso d&e demon-
strated using simple analytic models. We broadly clasgifycal sections in two
categoriesupdateandreductioncritical sections. Update critical sections protect
shared data which is continuously read and modified by naltipeads during the
execution of a kernel. In contrast, reduction critical gmtd protect data which is

modified by the threads only at the end of the execution of ader
Update Critical Sections:

Update critical sections occur in the midst of the paralkziiels. They pro-
tect shared data which multiple threads try to read-modifite duringthe kernel’'s
execution, instead of waiting till the end of the kernel'®eution. Their execution
can be overlapped with the execution of non-critical-sectode. For example,
critical sections C1 and C2 from the workloadizzl e (shown in Figure 2.2(a))
are update critical sections because they are executey ggeation of the loop
and their execution can be overlapped with the executionoofaritical section
code D1.

For simplicity, lets assume a kernel which has only oneaaitsection. Each
iteration of the loop spends one unit of time inside theeaitsection and three units
of time outside the critical section. Figure 2.3 demonsBdhe execution timeline
of this critical-section-intensive application. When agie thread executes, only
25% of execution time is spent executing the critical sectilf the same loop is

11

s SEEPEEEEPEEEET S =
i
p=g8 = P=4 and P=8 takes
B =y same time to execute
*+-88
B LEGEND
. == Parallel Part
P=4 - === Critical Section
P=2 e Waiting for CS
P=1 = = == = = = = =

0o 2 21 6 8 110 1}2 1}4 1}6 1}8 2}0 2}2 2}4 2}6 2}8 3}0 3}2
time

Figure 2.3: Example for analyzing update critical sectiomted systems

split across two threads, the execution time reduces by izxl&8ly, increasing the
number of threads to four further reduces execution timeth&scritical section is
always busy, the system becomes critical-section-limatedifurther increasing the
number of threads from four to eight does not reduce the di@cttime.

Note that the time decreases linearly with the number ofatfflseuntil the
loop becomes critical-section-limited, after which theeextion time does not de-
crease. Leflos be the time spent in the critical section ahg,cs be the time
to execute the non-critical-section part of the programt, (&) be the time to
execute the critical sections and the parallel part of tlg@m when there arg
threads. Assuming that all loop iterations run both theaaitsection and the non-
critical-section code, Equation 2.5 shows the executioe il’,, of a loop with NV

iterations using” processors.

Trocs + T,
T,= N x MAX (W,TCS) (2.5)

From the above equation, we conclude that a workload becanitésal-

section-limited when:

InocstIcs
Tes > 5

12

We comput€ Prs), i.€., the number of threads required to saturate the exe-
cution time, by solving the above inequality f6r

Tvo T
Pog > ileCs T 1cs (2.6)

Tes
Thus, when the number of threads is greater than or equil o critical
sections form a critical path through the program, domirgathe overall execution
time, and limiting scalability. Accelerating the executiof critical sections can
reclaim the performance lost due to critical sections.

Generalizing to multiple independent critical sectiofi& reduce the con-
tention for critical sections, many applications use défe locks to protect disjoint
data. Since these critical sections are protecting disgtata, they can execute con-
currently, thereby increasing throughput. For examplesater a loop with two
independent critical sections CS1 and CS2. Now assume Siheecutes 25% of
the execution time and CS2 executes 12.5% of the executian {The remaining

62.5% of time is spent executing the parallel portion.

[AR S
[PEEEEEEEEEEEEE
P=8 % P=4 and P=8 takes
——— same time to execute
LEGEND
—— . = parallel Part
P=4 === CS1 executing
_ o _ _ _ CS2 executing
pP=2 - =__— Waiting for CS
P=1 | S| | S

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
time

Figure 2.4: Example for analyzing multiple update critisattions

Figure 2.4 demonstrates the execution timeline of thisédeahl, 2, 4, and 8
threads. Note that the execution time decreases lineattythe number of threads

13

until the loop becomes limited by CS1, after which the exiecutime ceases to
reduce. Further note that there is no contention for CS2 eviém eight cores
because once the execution time stops reducing (due tontiitations caused by
CS1), the rate at which CS2 is called does not increase witle iiweads. The
reason CS1, not CS2, is the critical path is because CS1getdhan CS2. Thus,
in workloads with many critical sections, the longest catisection, which always

has the highest contention, is the performance limiter.

We analyze the impact of multiple critical sections on olleéeecution time
using an analytic model. L&t-s_, be the sum of time spent in all critical sections,
TCS10mges: D€ the time spent in the longest critical section, @hgcs be the time to
execute the parallel part of the program. L(&%) be the time to execute the critical
sections and the parallel part of the program when ther@dheeads. Equation 2.7

shows the execution timé},, of a loop with.V iterations using® processors.

2.7)

Tno T
Tp — N X MAX (NoCs + CS”’” ? T Slongest)

p

Thus, once the program becomes critical-section-limisedyechanism to
speedup the longest critical section by a facfowill provide an overall speedup
of S. Note that sometimes accelerating the longest criticai@es makes it faster
than the second longest critical section. This makes thaqusly-second-longest
critical section the longest critical section, making iettritical path. Therefore,
acceleration is most effective if it done carefully to balarthe execution rates of

critical sections.
Reduction Critical Sections:

Reduction critical sections occur at the end of kernels aadiaed to com-
bine the intermediate results computed by individual tisealhe key difference
between update and reduction critical sections is thatk@nlpdate critical sec-
tions, reduction critical sections occur at teed of a kernel and their execution
cannotbe overlapped with the execution of the non-critical-secitode. Since

14

every thread executes the critical section, the total tipgnsin executing the crit-
ical sections increases with the number of threads. Furtbe, as the number of
threads increase, the fraction of execution time spenterptirallelized portion of
the code reduces. Thus, as the number of threads increasmtdhtime spent in
the critical sections increases and the total time spersideicritical sections de-
creases. Consequently, critical sections begin to domithest execution time and

the overall execution time starts to increase.

(GetPageHistogram(Page *P)
Each thread
e

.
[* Parallel part*/
. UpdateLocalHistogram() |

4 N\
Critical Section:

Add local histogam

to global histogram

Barrier
Return global histogram

AN J/

Figure 2.5: A function fronPageM ne that counts the occurrence of each ASCII
character on a page of text

We first show a simple example where the time inside the atigections
increases linearly with the number of threads. Let us carsath example kernel.
Figure 2.5 shows a function frorRageM ne? that counts the number of times
each ASCII character occurs on a page of text. This functivides the work
across!’ threads, each of which gathers the histograms for its podicthe page
(PageSize/T) and adds it to the global histogram. Updates to the locabgiam

°The code forPageM ne is derived from the data mining benchmarkear chk [70]. This
kernel generates a histogram, which is used as a signattireta page similar to a query page.
This kernel is called iteratively until the distance betweabe signatures of the query page and a
page in the document is less than the threshold. In our expets, we assume a page-size of 5280
characters (66 lines of 80 characters each) and the histegransists of 128 integers, one for each
ASCII character.

15

can execute in parallel without requiring data-synchratian. On the other hand,
updates to the global histogram, which is a shared datatate) are guarded by
a critical section. Therefore, one and only one thread cataigpthe global his-
togram at a given time. As the number of threads increasdtdabgon of execution

time spent in gathering local histograms decreases beeamaethread has to pro-
cess a smaller fraction of the page. Whereas, the numberdaitep to the global
histogram increases, which increases the total time speanpdating the global

histogram.

Figure 2.6 shows the execution of a program which spends Z0f% exe-
cution time in the critical section and the remaining 80%ha parallel part. The

overall execution time with one thread is 10 units.

[SN

[S T

i TP PP [
P=8 iy —

e s [

b e e —————

- - e e .
pP=g e S LEGEND

i e s | = Parallel Portion
pP=> ST mmm Critical Section

Frnene — e Waiting for

P=1 S Critical Section

012 3456 7 8 9 1011 12 13 14 15 16
time

Figure 2.6: Example for analyzing impact of critical senso

When the program is executed with two threads, the time tédkexecute
the parallel part is reduced to four units while the totalaito execute the critical
section increases from two to four units. Therefore, thaltatecution time reduces
from 10 units to 8 units. However, overall execution timeuegs with additional
threads only when the benefit from reduction in the paraléet 5 more than the

increase in the critical section. For example, increashgriumber of threads to

16

four reduces the time for the parallel part from four to twatsibut increases the
time for the critical section from four to eight units. Théree, increasing the num-
ber of threads from two to four increases the overall executime from 8 units to

10 units. Similarly, increasing the number of threads tdwefgrther increases the

overall execution time to 17 units.

We can analyze the impact of critical sections on overalcaten time
using an analytical model. Léf-s be the time spent in the critical section and
Tnocs be the time to execute thearallel part of the program. Let(7p) be the
time to execute the critical sections and the parallel pttie® program when there
are P threads. Therl’» can be computed as:

Tno
Tp = NPCS +P-Teg (2.8)

The number of threadsP.5) required to minimize the execution time can

be obtained by differentiating Equation 2.8 with resped?tand equating it to zero.

d Tnocs
—Tp = — T 2.
qplF P2 +1cs (2.9)
Tno
Prg =] 228 (2.10)
Tcs

Equation 2.10 shows théP.¢) increases only as ttegjuare-rooof the ratio
of time outside the critical section to the time inside th&aal section. Therefore,
even if the critical section is small, the system can becontiea section limited
with just a few threads. For example, if the critical sectameounts for only 1% of
the overall execution time, the system becomes critical@@tmited with just 10
threads. Therefore, reducifig:s by accelerating critical sections will significantly

reduce overall execution time and increase scalability.

Note that the time inside the reduction critical sectionsginot always in-
creaselinearly with the number of threads, which was the case in our previous
example. Sometimes, the programmers are able to partiaitbilplize reduction by

17

splitting it into steps. For example, when the kernel frBageM ne is running on
four cores, the global histogram can be computed in two gi&egs | and Il). In
step |, thread 0 adds the local histograms computed by thi@add 1 in the parallel
program portion, and thread 2 adds the local histograms otediby threads 2 and
3 in the parallel program portion. In step Il, thread O addstdmporary histograms
computed by threads 0 and 2 in step |, thus computing the fiobbghistogram.
Notice that this does not eliminate the critical section dmiy shortens it: step Il
is still a critical section that only one thread can execui@ given time. As shown
previously, when the number of cores increases, even a shtical section can

begin to limit overall performance.

2.3 Limiter stage in a pipeline

Pipeline parallelisms a popular software approach to split the work in a
loop among threads. In pipeline parallelism, the programeoenpiler splits each
iteration of a loop into multiple work-quanta where each kvquantum executes
in a different pipeline stage. Recent research has showpixaine parallelism is
applicable to many different types of workloads, e.g, streg [100], recognition-
mining-synthesis workloads [15], compression/decongoed47], etc. In pipeline
parallel workloads, each stage is allocated one or naker threads and am-
gueuewhich stores the work quanta to be processed by the stage.rkemiread
pops a work quanta from the in-queue of the stage it is alkatad, processes the

work, and pushes the work on the in-queue of the next stage.

Figure 2.7(a) shows a loop which has N iterations. Eachtitaras split
into 3 stages: A, B, and C. Figure 2.7(b) shows a flow chart efidop. The three
stages of theth iteration are labeled Ai, Bi, and Ci. Figure 2.7(c) shovesvh
this loop gets executed sequentially on a single proce3dw.timet, is the start
of iteration O of the loop. The time; is the end of iteration 0, and the start of
iteration 1, and so on. Figure 2.7(d) shows how this prograts gxecuted using
pipeline parallelism on three processors. Each core wanks separate part of the

18

iteration (PO executes stage A, P1 executes stage B, andedtex stage C), and
the iteration gets completed as it traverses from left tbtrigind top to bottom.
Note that we show for simplicity that each stage has one cotré s possible to
allocate multiple cores per stage or share a core amongsstage

s N 7

fori=1toN
... Il code in stage A
(ao8o [co farer [c1 [az)[ez [c2 [as)es [cs
1 1 L I e e A A time

... Il code in stage B
... Il code in stage C tg ottty oty tg oty ottty t t t,

bl
o

(@) (©

P | (EEEEE)

p1 ‘80‘81‘32‘83‘84‘85‘

C

@3-

time

(b) (d)

Figure 2.7: (a) The code of a loop, (b) Each iteration is spta 3 pipeline stages:
A, B, and C. Iteration i comprises Ai, Bi, Ci. (c) Sequentiakeution of 4 itera-
tions. (d) Parallel execution of 6 iterations using pipelpgarallelism on a three-core
machine. Each stage executes on one core.

Consider a kernel from the workloabnpr ess. This kernel compresses
the data in an input file and writes it to an output file. Eachatien of this kernel
reads a block from the input file, compresses the block, angéswhe compressed
block to the output file. Figure 2.8 shows the pipeline of tkesnel. Stage S1
allocates the space to save the uncompressed and the ceatplesck. S2 reads
the input and S3 compresses the block. When multiple thfeads are allocated
to each stage, iterations in a pipeline can get out of ordarceSblocks must be
written to the file in-order, S4 re-orders the quanta andesrihem to the output
file. S5 deallocates the buffers allocated by S1. This keraelexecute on a 5-core
CMP such that each stage executes on one core. At any pointen ¢ores will
be busy executing different portions of five different itiwas, thereby increasing

19

performance. In reality, when the pipeline executes, cexesuting different stages
of a pipeline often wait on other cores and remain idle. Tinnsts concurrency and

reduces performance.

| ALLOCATE READ INPUT COMPRESS WRITE OUTPUT DEALLOCATE

Input Allocate buffers Q = QUEUEL.Pop() Q = QUEUE2.Pop() Q = QUEUES3.Pop() Q = QUEUEA4.Pop()
File QUEUEL Push(Bu) o Read file to Buf ° Compress Q Write oldest Q to File
QUEUE2.Push(Buf) QUEUE3.Push(Q) QUEUE4.Push(Q)

OUEUE1 OUEUE2 OUEUE3 OUEUE4

STAGE S1 H STAGE S2 H STAGE S3 ﬂ STAGE sS4 ﬂ STAGE S5

Deallocate Buffers

Figure 2.8: File compression algorithm executed usinglpipgarallelism

2.3.1 Analysis

We definethroughputof a pipeline stage as the number of iterations pro-
cessed in a given amount of time. Thus, the throughpat a pipeline stage can

be defined as:

Num Iterations Processed

(2.11)

T, = -
Time

The overall throughput;, of the whole pipeline is limited by the throughput

of the slowest stage of the pipeline. Therefore:

T =MIN(19,71,T2,-..) = Trnin (2.12)

Thus, for example, if the slowest stage of the pipeline fampoession
shown in Figure 2.8 is S3 (compress), then performance wikkdlely determined
by the throughput of S3. Let/ M IT E R be the stage with the lowest throughput.
Then stages other than the LIMITER will wait on the LIMITERage and their

cores will be under-utilized.

A common method used to increase the throughput of the LINR BEage
is to increase the number of cores allocated to it. Howeverentores help if

and only if the LIMITER stage scales with the number of colesréasing the

20

number of allocated cores increases its throughput). Wmbately, the throughput
of a stage does not always increase with the number of coeesodtontention for
shared data and resources (i.e. data-synchronizatiohgeaaherence). When a
stage does not scale, allocating more cores to the stage ditles not improve its
throughput or can in some scenarios reduce its throughgjt [$hus, once the
pipeline becomes limited by a non-scalable LIMITER, parfance saturates. The

only way to further improve its performance is by accelergtihe LIMITER stage.

Accelerating the LIMITER stage can increase the througlopuhe LIM-
ITER. This can either change the LIMITER or increase the aVéhroughput of

the pipeline as much as the speedup from acceleration.
Conclusions: Non-parallel kernels, critical sections, and limiter gipe

stages can form the critical path through the program as timeber of cores in-
creases. When performance is limited by a serial portiodirgdmore cores does
not improve overall performance. This creates the need daae the execution

time inside the serial portion.

21

Chapter 3

Asymmetric Chip Multiprocessor

3.1 Current CMP Architectures

Industry is using two common approaches when designing rchulbipro-

cessors.

Tile-Large Approach: The most popular approach is to tile a few large
cores(Figure 5.1(a)). This provides high single-threadigpsnance but low parallel
throughput. Examples of this approach are AMD Opteron j@gllCore2Duo [79],
and IBM Power5 [52]. They primarily target multiple singlereaded programs.

Tile-Small Approach: Sun Microsystem’s Niagara [54] and Intel’s
Larrabee [86] processor has taken a different approact(€&ig.1(b)). Since each
small core is more area-efficient than the large core, it il high parallel
throughput but low single thread performance. These chipslasigned for work-
loads with massive amount of parallelism, e.g., server aaghgcs workloads.

Neither of the two approaches will be best suited for futyppl@ations.
Since the motivation exists, programmers are likely to leiae some portions
of their programs which makes the Tile-Large approach l@sgrmance. Taking
advantage of Tile-Small requires the application to be detefy parallel. It is

unreasonable to expect that common programmers will be \abte massively

Small | Small | Small | Small Small | Small
Large Large Core || Core|| Core || Core Large Core || Core
Core Core Small | Small | Small | Small Core Small | Small
Core || Core || Core || Core Core || Core
Small Small Small | Small | Small | Small
Large Large Core Core Core|| Core Core
Core Core Small | Small | Small | Small Small | Small | Small | Small
Core || Core || Core || Core Core || Core || Core || Core
@) (b) (©
Figure 3.1:CMP Architecture approaches. (a) Tile-Large (b) Tile-Sr(@l Asymmetric

22

parallel programs like the sever and graphics programnidrsre are three reasons:
lack of domain specific knowledge, variations in targetfolahs, and time/financial

constratins. We demonstrate this with some examples atsl fac

e We describe a real-world example of the MySQL database. Tae-s
dard MySQL database engine is known to have poor scalalfitgyper-
formance saturates between 10-20 threads) [5,6]. Yet, beisg used
in large scale systems such as the social networking webS#eebook
(wwww.facebook.con) [87]. The reason is that Facebook Ipezialized
MySQL to their specific domain. They call is Facebook SQL (FQL].
FQL is different from MySQL in two ways. First, unlike MySQEQL no
longer guarantees that updates to the shared data (abaest asevisible to
all users immediately. For example, when a user changesehnipfofile on
Facebook, it is not guaranteed that the change will be \@gibhll Facebook
users instantaneously. Second, FQL does not assign a ulidqieeevery
entry in their database, a feature supported by the baskly®QL. Both
these changes eliminate major critical sections. Facehatiker replicates
their databases in data centers all over the world and usencpextensively,
which incurs a large cost. Thus, MySQL's scaling was only enpassible by

programmer effort and substantial financial support.

e Recall the kernel K2 in Figure 2.1(b). This kernel does ndtilex any par-
allelism as-is. Now suppose that we know that the kernel bellused to
smooth the pixels in a video frame. With the domain-specifiovidedge that
inaccuracies in pixel values are tolerable, we can re-fati® kernel where
each pixel can be computed as the weighted mean of the olésvaliuthe
last k pixels. This will break the inter-iteration dependgnthereby mak-
ing the kernel parallelizable. Such optimizations are angde possible by

domain-specific knowledge.

e Experts in graphics programming [7] shows that it is ofteneassary to em-
ploy hardware-specific and input-set-specific optimizatito extract paral-

23

lelism out of programs. This is because factors like cachessicommuni-
cation latencies, lock handling operations, all have higpact on parallel
program performance. General purpose programmers ara aftemiliar

with their target hardware platforms and input sets. Fomgxa, a video
player can be run on many different systems with a large tyadgkvideos as
the input. Thus, general purpose programmers are forcekédonservative
approaches and it is difficult for them to optimize the progsan the same

way other the game programmers can.

General purpose programmers are often under time and @soanstraints.
Discussions with IBM Blue Gene software team reveals thsttgptimizing
the performance of a functionally correct Blue Gene progcamtake several
man years. Unavailability of time and resources also resltice ability of

programmers to fully tune their code.

Despite the challenges, general-purpose programmerseang burdened
with the task of identifying parallelism. Further expegtiprogrammers to
fully optimize their code often leads to infeasible resufsr example, Mi-
rano et al. [66] show how attempts to shorten critical sexstibave led to
data-race bugs in common programs such as Mozilla Firefdxsameral Mi-
crosoft products.

We conclude that future workloads will require CMP architges which

can shorten serial portions, without requiring programeféart. Such mechanisms

can improve performance of existing programs, provide éigherformance for

sub-optimized code, and make parallel programming morgedola to the average

programmer.

3.2 Our Solution

For high-performance execution of multithreaded programespropose the

Asymmetric Chip Multiprocessor (ACMPBaradigm. ACMP paradigm offers two

24

types of cores: fast cores for speedy execution of the sgoidions and an array
of power-efficient, small cores for high-throughput on tteegllel portions. Note
that the central idea behind the ACMP paradigm is that the€éu€MPs shall pro-
vide asymmetric performance characteristics. This paréorce asymmetry can be
created in multiple ways, e.g., by making a core more agressi by increasing a
core’s frequency [24]. This thesis develops an exampleemgeitation where the
faster cores are implemented by making them larger and mponesrful compared
to the other small cores. To make the design pragmatic, weecbores similar to

current and past Intel cores.

3.3 ACMP Architecture

The Asymmetric Chip Multi-processor (ACMP) is a shared memand
homogeneous ISA CMP. It provides one or a few large cores ary/small cores.

3.3.1 ISA

All cores support all instructions and software is unablaistinguished
between a large core and a small core functionality-wisee IBA supports one
new instruction which can be used by software to query the fwhether small or
large) of the core it is running on. Similar instructions,iahprovide information
about the underlying microarchitecture, already exist odern ISAs, e.g., CPUID
instruction in x86 [46]. We envision that core-type can beadditional field in the
output of the CPUID instruction.

3.3.2 Interconnect

All cores, both small and large, share the same interconfagchigh
bandwidth, low-latency communication. Our example impatation uses a bi-
directional ring interconnect with seperate control anthdimes. The width of the
interconnect is 512 bits, which is exactly one cache line.

25

3.3.3 Caches

The cache hierarchy is the same as any symmetric CMP and chmén
multiple levels of private and/or shared caches. In our gdaneach core has its
private L1 and L2 caches. To further increase the large sqvetformance, the
large core is given a larger cache than the L2 cache of thelentaires (1MB for

the large core vs. 256KB each for the small cores). All coresesan L3 cache.

3.3.4 Cache Coherence

ACMP supports shared memory and any private caches muspihedeer-
ent using a hardware cache coherence protocol. In our ingi&ation, the private
L1s are write-through and L2s are kept coherent using a eoloerdirectory-based
MOESI protocol.

3.3.5 Large core

The large core’s purpose is to provide a high single-thré¥d. llit has the
characteristics of an aggressive state-of-the-art cdrbag a wide issue width, a
deep pipeline, out of order execution, several ALUs, a ptwdaranch predictor,
an aggressive prefetcher, a powerful indirect-branchipted etc. In our example
implementation, we use a 4-wide out-of-order machine simo each core in the
Intel Core2 Quad.

3.3.6 Small core

The small core’s purpose is to run code power-efficientlynds a shallow
in-order pipeline, a small branch predictor, a simpler etefier, and it does not
have a dedicated indirect branch predictor. In our impletatgmm, each small core
is similar to a Pentium core [44]. It is 2-wide with a 5-stagpgtine with a 4KB
GSHARE branch predictor.

26

3.4 Design Trade-offs in ACMP

There are two key trade-offs which impact the design and tideecACMP.

1. Areavs. Performance: The large core is less area-efficient: it takes the
same area as four small cores but provides a lower throughantfour small cores.
Thus, in serial regions of code, while the large core of thd/ikCexecutes faster, it
consumes more power compared to a small core. This incressedy is tolerable

if the increase in performance is substantial.

2. Hardware Cost vs. Software Cost: The ACMP requires two differ-
ent types of cores to be integrated on the same chip. This n@agdse design
costs. However, industry is already building chips witHetiént types of execution
units e.g. the IBM Cell Processor [40] and numerous systarskop designs. By
integrating the large core, the ACMP provides higher penfance in the serial bot-
tlenecks which makes overall performance more tolerartiédength of the serial
portion. Consequently, programmer effort can be saved ballptizing only the
easier to parallelize kernels. Thus, the hardware cost eaanworized.

The next four chapters describes mechanisms to identifaaoelerate non-
parallel kernels, critical sections, and limiter stagesgishe ACMP..

27

Chapter 4

ACMP for Accelerating Non-Parallel Kernels

Non-parallel kernels execute as single threads. Suchnmegibcode often
occur at the beginning of the program when no threads have §g@wvned or at
the end when all threads have finished their work. In somescasesh regions
are also interleaved with parallel kernels. We propose ahax@ism to accelerate
the execution of non-parallel kernels using the ACMP. Weit#ccelerated Non-
Parallel Kernels (ANP)

4.1 Architecture

Accelerating Non-Parallel kernels (ANP) requires a simgiange in the
thread scheduler: any time there is only one active threéadust execute on the
large core. The operating system uses the newly added CRidtRuction to iden-
tify the large core and stores this information. Figure favss the thread schedul-
ing algorithm. The list of active threads is initially empfiyhe master thread, which
is the first entry in the list, is spawned on the large core. Master thread spawns
additional worker threads and either waits for the workee#lals or executes a por-
tion of the work itself. The worker threads execute the pakakgion. As the
worker threads finish their work and exit, they remove thdmesefrom the list of
active threads. When the second last thread exits and tladlgdaegion finishes,
the single remaining thread, if not already on the large dsmnigrated to the large

core.

28

On creation of thread t:
Add thread t to thread |ist
If thread t is the only thread
Spawn it on the |arge core
El se
Spawn it on a free snall core

On exit of thread t:
Delete thread t fromthread |ist
If thread Iist has only only one thread
and that thread is not on the |large core
Move it to the large core

Figure 4.1: Scheduling algorithm for accelerating nonatiat kernels.

4.2 Performance Trade-offs in ANP

Accelerating the non-parallel kernels using the ACMP imegl three per-

formance trade-offs:

1. Peak Parallel Throughput vs. Serial Thread Performance: ACMP re-
places a few small cores with one large core. This reducdsyallel throughput.
However, this reduction in throughput is compensated byatoelerated execution
of the non-parallel region. Figure 4.2 shows how the ACMR-Bmall, and Tile-
Large compare as degree of parallelism increases. We asslarge core takes the
area of four small cores. Note that Tile-Small outperforrsACMP at higher par-
allelism while the ACMP outperforms both competing apptascfor a wide range
of parallelism. Moreover, the fraction of parallel throymgh lost due to the large
core reduces as the total number of cores increase. For éxameplacing four
small cores with one large core reduces throughput by 50% i8-eore CMP but
by only 6.25% in a 64-core CMP. Therefore, the ACMP approaatomes more
and more feasible as we are able to increase the number «f aortae chip.

Figure 4.2 plots the parallelism required for Tile-Small eatperform
ACMP as a function of chip area. The cut-off point moves hrginad higher as
chip area increases. We conclude that ACMP will become egiplié to more and

more workloads in the future.

2. Thread migration overhead vs. Accelerated Execution: When a thread

29

o
8 8 A —=—— Tile-Small
) .
=) Tile-Large
£ 6 1 —+— ACMP
(Y]
S
o 4]
g [
ks
Q 2 AF_**W.//
Q.
0
0 :

0 02 04 06 08
Degree of Parallelism

Figure 4.2: Performance vs. Degree of Parallelism at a fixeak power for base-
line CMP architectures

1.00 >~]
0.99

rallelism

(] 095 T T T T
a 24 25 26 27 28

No. of Tile-Small-like Cores

Figure 4.3: Degree of parallelism needed in applicatiorilite-Small approach to
outperform ACMP approach vs. die area.

is migrated from a small core to a large core or vice versaAG®IP incurs the
overhead of sending the register values, the program couame the stack pointer.
However, such data migrations are rare and only occur whanalel region begins
and ends. This overhead can get amortized due to the adeelereecution of the
serial bottleneck. ACMP can reduce performance if eithemtbn-parallel regions
are very small or the large core does not accelerate the sgaciVe find that not

to be case across our benchmarks.

3. Cache locality in the ACMP is similar to that of the baseline CMP. The
reason is that the data generated in the parallel regiomeadpevenly across cores.
In the baseline CMPs, when one of the regular cores execatsetal portion, it

gathers the required data from other cores. In the ACMP, tleaaio does not

30

change. The large core incurs the same number of cache nisgather the data
from the small cores. If a serial portion requires data frowva previous serial por-
tion, the ACMP performs exactly the same as the baseline.

4.3 Evaluation Methodology

Table 4.1 shows the configuration of the simulated CMPs,gusir in-
house cycle-level x86 simulator. The large core occupiesséime area as four
smaller cores: the smaller cores are modeled after thePatelium processor [44],
which requires 3.3 million transistors, and the large carenbdeled after the Intel
Pentium-M core, which requires 14 million transistors [30je evaluate two differ-
ent CMP architectures: a symmetric CMP (SCMP) consistiradleinall cores; and
an asymmetric CMP (ACMP) with one large core with 2-way SM@ aamaining
small cores which accelerates the non-parallel kernel¢esdrspecified otherwise,
all comparisons are done at equal area budget. We specifyré¢ladbudget in terms

of number of small cores.

4.3.1 Workloads

Table 4.2 shows our benchmarks. We divide these workloadswo cat-
egories: workloads with coarse-grained locking and waall® with fine-grained
locking. All workloads were simulated to completion.

The database workloadad t p- 1, ol t p- 2, andsql i t e were compiled
with gcc 4.1 using -O3 flag. The number of threads were set bypgimg the num-
ber of clients in the input set. specjbb was compiled usingidc The number of
threads were set by changing the number of warehouses. bAdt etorkloads were
compiled with the Intel C Compiler [43] using the33 flag and were simulated to
completion. Foi s andep, we use the reference OpenMP implementation with
the input sets as shown. We acknowledge that these worktzamlse optimized by
investing more programmer effort. However, we use thensds-make a point that

ACMP is very effective at improving performance of sub-opi code.

31

Table 4.1:Configuration of the simulated machines
Small core 2-wide In-order, 2GHz, 5-stage. L1: 32KB
write-through. L2: 256KB write-back, 8
way, 6-cycle access

Large core 4-wide Out-of-order, 2GHz, 2-way SMT],
128-entry ROB, 12-stage, L1: 32KB write-
through. L2: 1-MB write-back, 16-way, 8
cycle

Interconnect | 64-bit wide bi-directional ring, all queuing
delays modeled, ring hop latency of 2 cycles
(latency between one cache to the next)
Coherence | MESI, On-chip distributed directory simila
to SGI Origin [59], cache-to-cache transfers.
of banks = # of cores, 8K entries/bank. We
the delay and contention of all transactions|to
and from the directory.

L3 Cache 8MB, shared, write-back, 20-cycle, 16-way
Memory 32 banks, bank conflicts and queuing delgys
modeled. Row buffer hit: 25ns, Row buffer
miss: 50ns, Row buffer conflict: 75ns
Memory bus | 4:1 cpu/bus ratio, 64-bit wide, split
transaction, pipelined bus

Area-equivalent CMPs where area is equal to
N small cores. We vary N from 1 to 32

SCMP N small cores, One small core runs serja
part, all N cores run parallel part, conven-
tional locking (Max. concurrent threads = N
ACMP 1 large core and N-4 small cores; large cdre
runs serial part, 2-way SMT on large core
and small cores run parallel part, conve
tional locking (Maximum number of concur
rent threads = N-2)

~

=]
T

We briefly describe the benchmarks whose source code is bbciyavail-
able.i pl ookup is an Internet Protocol (IP) packet routing algorithm [1L06ach
thread maintains a private copy of the routing table, eath aiseparate lock. On
a lookup, a thread locks and searches its own routing tablearQupdate, a thread
locks and updates all routing tables. Thus, the updatégyadh infrequent, cause

substantial serialization and disruption of data locality

puzzl e solves a 15-Puzzle problem [109] using a branch-and-bolgiad a
rithm. There are two shared data structures: a work-lisié@mented as a priority
heap and a memoization table to prevent threads from duipigc@omputation.
Priority in the work-list is based on the Manhattan distafioen the final solution.
The work-list (heap) is traversed every iteration, whichkesthe critical sections
long and highly contended for.

webcache implements a shared software cache used for caching “pages”

32

Table 4.2:Simulated workloads

Locks | Workload | Description Source Input set # of disjoint crit- | What is Pro-
ical sections tected by CS?
ep Random num-| NAS 262144 nums. | 3 reduction into
ber generator suite [13] global data
is Integer sort NAS n = 64K 1 buffer of keys to
Coarse suite [13] sort
pagemine| Data mining | MineBench [70, 10Kpages 1 global histogram
kernel
puzzle 15-Puzzle [109] 3x3 2 work-heap,
game memoization
table
gsort Quicksort OpenMP 20K elem. 1 global work
SCR [27] stack
sqlite sqlite3 [3] | SysBench [4] OLTP-simple | 5 database tables
database en-
gine
tsp Traveling sales-| [55] 11 cities 2 termination
man prob. cond., solution
iplookup | IP packet rout-| [105] 2.5K queries | # of threads routing tables
ing
Fine oltp-1 MySQL SysBench [4] OLTP-simple | 20 meta data, tableg
server [2]
oltp-2 MySQL SysBench [4] | OLTP-complex| 29 meta data, tableg
server [2]
specjpbb | JAVA business| [90] 5 seconds 39 counters, ware-|
benchmark house data
webcache| Cooperative [101] 100K queries | 33 replacement pol-
web cache icy

of files in a multi-threaded web server. Since, a cache aaz@ssnodify the con-

tents of the cache and the replacement policy, it is encafeiiin a critical section.
One lock is used for every file with at least one page in the €adhccesses to

different files can occur concurrently.

pagem ne is derived from the data mining benchmarkear chk [70].

Each thread gathers a local histogram for its data set ansliatiwthe global his-

togram inside a critical section.

4.4 Evaluation

off: it provides increased serial performance at the expenpeak parallel through-

put. Thus, ACMP improves performance if the benefit obtaimgdccelerating the

Recall that accelerating non-parallel kernels using th&#RCGnakes a trade-

non-parallel portion is more than the loss in throughput @ueplacing four small

cores with a single large core. ACMP’s benefit will be higher the workloads

33

with longer non-parallel portions. ACMP’s cost, the lospegk parallel through-
put, will be most noticeable for workloads which scale well i will matter less for
workloads with poor scalability. Furthermore, the loss @ak parallel throughput
will be lower as the area budget of the chip increases. Thusmall area bud-
gets, ACMP is expected to perform best for non-scalable lvads. At high area
budgets, ACMP should be effective for both scalable andstatable workloads.

4.4.1 Performance with Number of Threads Set Equal to the Nurber of

Available Thread Contexts

Figure 4.4 shows the execution time of the ACMP normalizeti¢édcSCMP,
both at an area-budget of 8 cores. The ACMP significantlycedexecution time
in workloads which have significant non-parallel kernelsr &le, ACMP im-
proves performance ofs by 2x because s spends 84% of its instructions in the
non-parallel portion of the program. Recall that the impéertation ofi s that we
use is the reference implementation, where minimal programeffort has been
invested in optimizing the code. Thus, ACMP is providing acimiigher perfor-
mance at lower programmer effort compared to the SCMP. Sityjlin programs
ep andgsor t , ACMP outperforms the SCMP by accelerating the long seoé b
tleneck. In contrast, ACMP reduces performancesiqri t e, t sp, i pl ookup,
nysql - 1, mysql - 2, webcache, andspecj bb. These workloads have scal-
able parallel portions and small serial portions. Mostcedbly, ACMP increases
the execution time af pl ookup by almost 2x compared to SCMP. This is because
ini pl ookup the serial part is practically non-existent (only 0.1% dfdgilnamic
instructions) and, as we show in Section 5.4.1.2, the pratide is very scalable
as it uses fine-grain locking. On average, ACMP and SCMP partamilar when

area budget is 8 cores.

Systems area-equivalent to 16 and 32 small coresAs the chip area
increases, ACMP’s cost reduces since the fractional remluch peak parallel
throughput due to the big core reduces. Furthermore, ACNdRisefit increases
since the parallel portion gets faster as it is split acrossger number number of

34

Exec. Time. Norm. to SCMP

Figure 4.4:Normalized execution time of ACMP at an area budget of 8 cores

cores, thereby making the serial portion a larger fractibtine execution time.

Figure 4.5 shows the execution time of ACMP normalized togueéarea
SCMP, both with an area budget of 16. ACMP begins to outperf8CMP in some
of the workloads where it performed worse than the SCMP wheratea budget
was 8. For example, ACMP increased the execution timegifi t e at an area
budget 8 but reduces its execution time at an area budget.of 46 is the only
workload where ACMP’s benefit reduces when the area budgetases. This is
not because of a property of the ACMP or SCMP but becagsetakes a different
path through the algorithm when more threads are availébk! other workloads,
having a larger area budget helps the ACMP.

140 141.9

Exec. Time. Norm. to SCMP

Figure 4.5:Normalized execution time of ACMP at an area budget of 16xore

Figure 4.6 shows the execution time of ACMP, normalized t&/&Cwhen
the area budget is 32. Increasing the area budget to 32 fumttreases the ACMP’s

35

benefit. For all workloads, the ACMP either reduces the ettectime or does not
impact it by more than 1%. Overall, when area is 32, ACMP reduexecution
time by 19% compared to the equal area SCMP.

We conclude that ACMP, when accelerating only the seriatigos, can
significantly improve performance of multi-threaded wardd for today’s CMP.
Furthermore, its benefit increases with the number of cores.

Exec. Time. Norm. to SCMP

Figure 4.6:Normalized execution time of ACMP at an area budget of 32<ore

4.4.2 Scalability

Figure 4.7 shows the speedup of SCMP and ACMP over a singl# cona
as the chip area increases. The performance benefit of ACM®ases as chip area
increases. Note that the peak performance with the ACMPKadlawith a filled dot)
is always higher or very similar to that of the SCMP. To explidie results, we split

our workloads into three categories:

(1) Workloads which are non-scalable and have long nonHpakernels,
e.g.,1 s, gqsort. ACMP consistently improves their performance as they do no
suffer from the loss in throughput due the ACMP but they bérfiefm the higher
serial thread performance provided by the ACMP.

(2) Workloads which are non-scalable but do not have long-pamallel
kernels, e.gep, pagem ne,sqglite,tsp,ol t p- 1,0l t p- 2. Such workloads
should remain unaffected by the ACMP as they do not suffertdube reduced

36

-{-SCMP

1c

#AC;MPi
A s e] R s e 0 I — R
8 16 24 32 8 16 24 32 8 16 24 32 8 16 24 32
(@) ep (b) is (c) pagemine (d) puzzle
8
. 7
7 6
6 5
5 4
4 3
S 2
S - (Y S S Y — 0 b
8 16 24 32 8 16 24 32 8 16 24 32 8 16 24 32
(e) gsort (f) sqlite (9) tsp (h) iplookup
6 7 9 Ja,
5 6 3
4 5 6
4 5
3
: : !
l l H H H H i H H H H H H H
0 R N T VI O T 5 R N Vi
(i) oltp-1 () oltp-2 (k) webcache () specjbb

Figure 4.7:Speedup over a single small core. Y-axis is the speedup osigée small
core and X-axis is the chip area in terms of small cores.
throughput (since they are non-scalable) and also do nefivéom the large cores

due to absence of non-parallel kernels.

(3) Workloads which are scalable with but do not have noralpelrkernels
(e.g.,i pl ookup, specj bb, webcache). ACMP reduces their performance as
ACMP’s benefit of having accelerated non-parallel kernglsnable to outweigh
ACMP’s cost of having fewer threads. In such workloads, ACMBenefit will
increase as the chip area increases.

In summary, ACMP is able to improve (or not impact) performanf most
workloads; and ACMP is expected to improve performance béoworkloads in
the future when chip area increases.

37

4.4.3 ACMP with Best Number of Threads

Unless otherwise specified, most systems set the numbeneaitth equal to
the number of available thread contexts. This is not alwgysral for performance
as having more threads than required can degrade perfoerj@&t Instead, the
number of threads must be chosen such that the executiongimimimized. Fig-
ure 4.8 shows the execution time of ACMP normalized to the £Qiere for each
configuration-workload pair, the number of threads is seh&onumber of threads
required to minimize the execution time for that configuwativorkload pair. We
choose the best threads for each workload-configuratiarbgaimulating all pos-
sible number of threads and choosing the number of threadsdiath execution
time is minimized. ACMP effectively reduces the executimne on all workloads
and on average the ACMP reduces execution time by 17%.

Exec. Time. Norm. to SCMP

Figure 4.8:Normalized execution time of ACMP at Best Threads.

38

Chapter 5

ACMP for Accelerating Critical Sections

To overcome the performance bottleneck of critical secjome propose
Accelerated Critical Sections (AC[97]. In ACS, both the critical sections and the
serial part of the program execute on a large core, whereagthaining parallel
parts execute on the small cores. Executing the criticai@®con a large core
reduces the execution latency of the critical section gbgrmproving performance
and scalability.

5.1 Architecture

Figure 5.1 shows an example ACS architecture implementexzhohCMP
consisting of one large core (P0O) and 12 small cores (P1-PACH executes the
serial part of the program on the large core PO and paralktlgiahe program on
the small cores P1-P12. When a small core encounters aatisection, it sends
a “critical section execution” request to PO. PO buffers tleiquest in a hardware
structure called th€ritical Section Request Buffer (CSRBJhen PO completes the
execution of the requested critical section, it sends aédsignal to the requesting
core. To support such accelerated execution of criticai@es, ACS requires sup-
port from the ISA (i.e., new instructions), from the compilend from the on-chip
interconnect. We describe these extensions in detail next.

5.1.1 ISA Support

ACS requires two new instruction€SCALLandCSRETCSCALL is sim-
ilar to a traditional CALL instruction, except it is used tgeeute critical section
code on a remote, large processor. When a small core exeg@&CALL in-

39

Critical Section Request Buffer (CSRB) CSCALL LOCK_ADDR, TARGET_PC CSRET LOCK_ADDR
On small core: On large core:
STACK_PTR <- SP Release lock at LOCK_ADDR
Send CSCALL Request to large core Send CSDONE to REQ_CORE
PL| P2 with Arguments: LOCK_ADDR
PO TARGET_PC, STACK_PTR, CORE_ID
P3| P4 Stall until CSDONE signal received
On large core: On small core:
Enqueue in CSRB Retire CSCALL
P5 P6 | P7 P8 Wait until HEAD ENTRY in CSRB
Acquire lock at LOCK_ADDR
P9 | P10| P11 | P12 SP <~ STACK_PTR
PC <- TARGET_PC

Figure 5.1: ACS on Figure 5.2:Format and operation semantics of new ACS
ACMP with 1 large coreinstructions
and 12 small cores

struction, it sends a request for the execution of critieadtion to PO and waits
until it receives a response. CSRET is similar to a traddldRET instruction, ex-
cept that it is used to return from a critical section exedwe a remote processor.
When PO executes CSRET, it sends a CSDONE signal to the somalko that it
can resume execution. Figure 5.2 shows the semantics of CE@Ad CSRET.
CSCALL takes two arguments: LOCKDDR and TARGETPC. LOCKADDR

is the memory address of the lock protecting the criticatisacand TARGETPC
is the address of the first instruction in the critical secti€SRET takes one argu-
ment, LOCKADDR corresponding to the CSCALL.

5.1.2 Compiler/Library Support

The CSCALL and CSRET instructions encapsulate a criticaltice.
CSCALL is inserted before the “lock acquire” and CSRET isemed after the
“lock release.” The compiler/library inserts these instrons automatically with-
out requiring any modification to the source code. The coenpriust also remove
any register dependencies between the code inside and®tihs critical section.
This avoids transferring register values from the smalédorthe large core and vice
versa before and after the execution of the critical sectimndo so, the compiler
performsfunction outlining111] for every critical section by encapsulating the crit-
ical section in a separate function and ensuring that alliapd output parameters

of the function are communicated via the stack. Several ®ffecompilers already

40

do function outlining for critical sections [20, 62, 85]. @ifefore, compiler modifi-
cations are limited to the insertion of CSCALL and CSRET nnstions. Figure 5.3
shows the code of a critical section executed on the bas@inend the modified
code executed on ACS (b).

Small Core Small Core Large Core

A = compute(); A = compute();

LOCK X PUSH A

result = CS(A): CSCALL X, TPC CSCALL Request

UNLOCK X send X, TPC, TPC: POP A

print result STACK_PTR, CORE_ID result = CS(A)

PUSH result
4/ CSRET X

PQP result CSDONE Response
print result

(a) (b)

Figure 5.3:Source code and its execution: (a) baseline (b) with ACS

5.1.3 Hardware Support
5.1.3.1 Modifications to the small cores

When a CSCALL is executed, the small core sends a CSCALL stque
along with the stack pointer (STACRTR) and its core ID (CORHED) to the large
core and stalls, waiting for the CSDONE response. The CSCHistruction is
retired when a CSDONE response is received. Such suppoeéauting certain
instructions remotely already exists in current architees: for example, all 8 cores
in Sun Niagara-1 [54] execute floating point (FP) operatiom& common remote
FP unit.

5.1.3.2 Critical Section Request Buffer

The Critical Section Request Buffer (CSRB), located at ttged core,
buffers the pending CSCALL requests sent by the small cofggure 5.4 shows
the structure of the CSRB. Each entry in the CSRB containslid &, the 1D
of the requesting core (REQORE), the parameters of the CSCALL instruction,
LOCK_ADDR and TARGETPC, and the stack pointer (STACRTR) of the re-
questing core. The number of entries in the CSRB is equaktaidximum possible

number of concurrent CSCALL instructions. Because eacHlso®e can execute

41

at most one CSCALL instruction at any time, the number ofieatrequired is
equal to the number of small cores in the system (Note thdatige core does not
send CSCALL requests to itself). For a system with 12 smakgahe CSRB has
12 entries, 25-bytéseach. Thus, the storage overhead of the CSRB is 300 bytes.

The circuit for CSRB includes the logic to insert/removerigst from the
CSRB in FIFO order and a state machine which works as folldMisen a CSCALL
request is received, the CSRB enqueues the incoming reqWiésen the large
core is idle, the CSRB supplies the oldest CSCALL requeshenluffer to the
core. When the large core completes the critical sectionBRB dequeues the
corresponding entry and sends a CSDONE signal to the raggestre. Due to the

simplicity of the logic, reading/writing from the buffer lRIFO takes a single cycle.

The CSRB has a single read/write port. Two entities can cahter this
port: the large core (to dequeue a request) or the interatifteeinsert a CSCALL
in the CSRB). When there is contention, we always give ggido the large core
because delaying the large core extends critical sectienutdon but delaying the
CSCALL insertion has no performance impact as the CSCALluestwould have
waited in the CSRB anyways. Note that this wastes a cycleeifGBRB is empty
and the large core is idle. However, wasting a cycle in thgeaoes not degrade
performance because if the CSRB is empty, there is low ctintefor the critical
sections and hence critical section performance is lesisalri Further note that
the likelihood that both an incoming CSCALL request and trgé core attempt
to access the CSRB concurrently is extremely low becausesaes to CSRB only
happen at the start and finish of critical sections, whichr@requent events (usu-

ally hundreds of cycles apart).

1Each CSRB entry has one valid bit, 4-bit RETDRE, 8 bytes each for LOCKDDR, TAR-
GET.PC, and STACKPTR.

42

CSRET from large core l ‘ CSDONE to requesting core

HEAD ENTRY | AN ENTRY IN CSRB
VALID ‘REQ_CORE ‘LOCK_ADDR ‘TARGET_PC ‘ STACK_PTR

T— CSCALL Requests from small cores
Figure 5.4:Critical Section Request Buffer (CSRB)

5.1.3.3 Modifications to the large core

When the large core receives an entry from the CSRB, it loasls i
stack pointer register with STACIRTR and acquires the lock corresponding to
LOCK_ADDR (as specified by program code). It then redirects thgiaim counter
to TARGET_PC and starts executing the critical section. When the ctines the
CSRET instruction, it releases the lock corresponding t€CKOADDR and re-
moves the HEAD ENTRY from the CSRB. Thus, ACS executes acatigection
similar to a conventional processor by acquiring the loglkegeiting the instructions,
and releasing the lock. However, it does so at a higher padace because of the
aggressive configuration of the large core.

5.1.3.4 Interconnect Extensions

ACS introduces two new transactions on the on-chip intanecti CSCALL
and CSDONE. The interconnect transfers the CSCALL reqadésh§ with its argu-
ments) from the smaller core to the CSRB and the CSDONE sigoralthe CSRB
to the smaller core. Similar transactions already exishedn-chip interconnects
of current processors. For example, Sun Niagara-1 [54] ssel transactions to

interface cores with the shared floating point unit.

5.1.4 Operating System Support

ACS requires modest support from the operating system (@8gn exe-
cuting on an ACS architecture, the OS allocates the large tma single appli-
cation and does not schedule any threads onto it. Additpgnidde OS sets the
control registers of the large core to the same values asntladl sores executing

the application. As a result, the program context (e.g. @seor status registers,

43

and TLB entries) of the application remains the coherentlioaaes, including the
large core. Note that ACS does not require any special matiifies because such
support already exists in current CMPs to execute parghiglieations [46].

5.1.5 Reducing False Serialization in ACS

Critical sections that are protected by different locks barexecuted con-
currently in a conventional CMP. However, in ACS, their extgan gets serialized
because they are all executed sequentially on the single lkeore. This “false
serialization” reduces concurrency and degrades perfocea We reduce false
serialization using two techniques. First, we make thedargre capable of ex-
ecuting multiple critical sections concurrerflyusing simultaneous multithread-
ing (SMT) [104]. Each SMT context can execute CSRB entrieth wifferent
LOCK_ADDR. Second, to reduce false serialization in workloadereha large
number of critical sections execute concurrently, we psg3elective Acceleration
of Critical Sections (SEL)The key idea of SEL is to estimate the occurrence of
false serialization and adaptively decide whether or neixecute a critical section
on the large core. If SEL estimates false serialization thigh, the critical section
is executed locally on the small core, which reduces coiteman the large core.

Implementing SEL requires two modifications: 1) a bit veebeach small
core that contains the ACBISABLE bits and 2) logic to estimate false serial-
ization. For the purpose of making our explanation simple,agsume that the
ACS_DISABLE bit vector contains one bit per critical section asdndexed us-
ing the LOCK ADDR (we later show how a practical design can use a very small
16-bit vector). When the smaller core encounters a CSCALErst checks the
corresponding ACPISABLE bit. If the bitis O (i.e., false serialization is Igya
CSCALL request is sent to the large core. Otherwise, the ASCaad the critical

section is executed locally.

2Another possible solution to reduce false serializatiotiadd additional large cores and dis-
tribute the critical sections across these cores. Howéwgher investigation of this solution is an
interesting research direction, but is beyond the scopkistlesis.

44

False serialization is estimated at the large core by augngethe CSRB
with a table of saturating counters, which track the falsgageation incurred by
each critical section. We quantify false serialization lopiating the number of
critical sections present in the CSRB for which the LOGKDR is different from
the LOCK.ADDR of the incoming request. If this count is greater than.4. (if
there are at least two independent critical sections in tBRE), the estimation
logic adds the count to the saturating counter correspgnidirihe LOCKADDR
of the incoming request. If the countis 1 (i.e. if there is@kaone critical section
in the CSRB), the corresponding saturating counter is deented. If the counter
reaches its maximum value, the ACBSABLE bit corresponding to that lock is
set by sending a message to all small cores. Since ACS isleisalirequently,
the overhead of this communication is negligible. To adapgthase changes, we
reset the ACDISABLE bits for all locks and halve the value of the saturgti
counters periodically (every 10 million cycles). We reddice hardware overhead
of SEL by hashing lock address into a small number of sets. i@plementation
of SEL hashes lock addresses into 16 sets and uses 6-biecsuihe total storage
overhead of SEL is 36 bytes: 16 counters of 6-bits each andZ&®BISABLE bits

for each of the 12 small cores.

5.2 Performance Trade-offs in ACS

There are three key performance trade-offs in ACS that deter overall

system performance:

1. Faster critical sectionsvs. Fewer threads: ACS executes selected critical
sections on a large core, the area dedicated to which cob&twise be used for
executing additional threads. ACS could improve perforoeaif the performance
gained by accelerating critical sections (and serial @ogportions) outweighs the
loss of throughput due to the unavailability of additiorakads.

ACS’s performance improvement becomes more likely whenntinaber
of cores on the chip increases. There are two reasons. ffiesmarginal loss in

45

parallel throughput due to the large core becomes relgtsmlall (for example, if

the large core replaces four small cores, then it reduces &0dte smaller cores
in a 8-core system but only 12.5% of cores in a 32-core systeaepnd, more

cores allow concurrent execution of more threads, whicheiages contention by
increasing the probability of each thread waiting to eniter ¢ritical section [83].

When contention is high, faster execution of a critical mecreduces not only
critical section execution time but also the contendingdlls’ waiting time.

2. CSCALL/CSDONE signalsvs. Lock acquire/release: To execute a crit-
ical section, ACS requires the communication of CSCALL ar@8DONE transac-
tions between a small core and a large core. This commuarcatier the on-chip
interconnect is an overhead of ACS, which the conventiooek lacquire/release
operations do not incur. On the other hand, a lock acquireatio& often incurs
cache misses [76] because the lock needs to be transfeomdoine cache to an-
other. Each cache-to-cache transfer requires two traisaobn the on-chip inter-
connect: a request for the cache line and the response, Whglsimilar latency
to the CSCALL and CSDONE transactions. ACS can reduce sutliee#-cache
transfers by keeping the lock at the large core, which canpssrsate for the over-
head of CSCALL and CSDONE. ACS actually has an advantageairthie latency
of CSCALL and CSDONE can be overlapped with the executiomoflzer instance
of the same critical section. On the other hand, in conveatitocking, a lock can
only be acquired after the critical section has been corag|etvhichalwaysadds a

delay before critical section execution.

3. Cache misses due to private data vs. cache misses due to shared data:
In ACS, private data that is referenced in the critical sectieeds to be transferred
from the cache of the small core to the cache of the large €waventional locking
does not incur this cache-to-cache transfer overhead beaaitical sections are
executed at the local core and private data is often preadheilocal cache. On
the other hand, conventional systems incur overheadsnsfgaing shared data: in
such systems, shared data “ping-pongs” between cachef$amsmlithreads execute
the critical section and reference the shared data. ACSredtes the transfers of

46

shared data by keeping it at the large corehich can offset the misses it causes
to transfer private data into the large core. In fact, ACS dacrease cache misses
if the critical section accesses more shared data thantpridata. Note that ACS
can improve performance even if there are equal or more sesds private data
than shared data because the large core can still 1) impevermance of other
instructions and 2) hide the latency of some cache misseg lasiency tolerance

techniques like out-of-order execution.

In summary, ACS can improve overall performance if its parfance ben-
efits (faster critical section execution, improved lockdbiy, and improved shared
data locality) outweigh its overheads (reduced parallsughput, CSCALL and
CSDONE overhead, and reduced private data locality).

5.3 Evaluation Methodology

Table 5.1 shows the configuration of the simulated CMPs,gusir in-
house cycle-accurate x86 simulator. We evaluate threerdiit CMP architec-
tures: a symmetric CMP (SCMP) consisting of all small coe@sasymmetric CMP
(ACMP) with one large core with 2-way SMT and remaining sntalfes; and an
ACMP augmented with support for the ACS mechanism (ACS).esslspecified
otherwise, all comparisons are done at equal area budgesp®dify the area bud-
get in terms of the number of small cores. Unless otherwisedf the number of
threads for each application is set equal to the number eftts that minimizes
the execution time for the particular configuration; e.gthi#é best performance of
an application is obtained on an 8-core SCMP when it runs ®ithreads, then
we report the performance with 3 threads. In both ACMP and 8Cddnventional
lock acquire/release operations are implemented usiniylth@tor/Mwait instruc-
tions, part of the SSE3 extensions to the x86 ISA [45]. In AlB&k acquire/release

3By keeping all shared data in the large core’s cache, ACScesithe cache space available to
shared data compared to conventional locking (where shdagdcan reside in any on-chip cache).
This can increase cache misses. However, we find that subk osisses are rare and do not degrade
performance because the private cache of the large congisdamough.

47

instructions are replace

d with CSCALL/CSRET instructions

Small
core

2-wide In-order, 2GHz, 5-stage. L1: 32KB write-throug
L2: 256KB write-back, 8-way, 6-cycle access

Large
core

16-way, 8-cycle

Interconne|

eled, ring hop latency of 2 cycles (latency between
cache to the next)

Coherencse

gin [59], cache-to-cache transfers. # of banks = # of co
8K entries/bank

L3 Cache

8MB, shared, write-back, 20-cycle, 16-way

Memory

conflict: 75ns

Memory
bus

4:1 cpu/bus ratio, 64-bit wide, split-transaction, pipet
bus.

[Area-equ

ivalent CMPs. Area = N small cores. N varies from 320 |

SCMP

N small cores, One small core runs serial part, all N cq
run parallel part, conventional locking (Max. concurre
threads = N)

ACMP

1 large core and N-4 small cores; large core runs se
part, 2-way SMT on large core and small cores run pa

current threads = N-2)

ACS

1 large core and N-4 small cores; (N-4)-entry CSRB

run the parallel part, 2-way SMT on large core runs criti
sections using ACS (Max. concurrent threads = N-4)

4-wide Out-of-order, 2GHz, 2-way SMT, 128-entry ROB,
12-stage, L1: 32KB write-through. L2: 1-MB write-back,

ct64-bit wide bi-directional ring, all queuing delays mog-

MESI, On-chip distributed directory similar to SGI Or}-

lel part, conventional locking (Maximum number of cop-

32 banks, bank conflicts and queuing delays modeled.
Row buffer hit: 25ns, Row buffer miss: 50ns, Row buffer

res
nt

rial
al-

on

the large core, large core runs the serial part, small cpres

al

Table 5.1:Configuration of the simulated machines

5.3.1 Workloads

Our main evaluation focuses on 12 critical-section-intemsvorkloads
shown in Table 5.2. We define a workload to be critical-seetidensive if at least
1% of the instructions in the parallel portion are executethiwv critical sections.
We divide these workloads into two categories: workloadthveioarse-grained
locking and workloads with fine-grained locking. We clagsaf workload as us-
ing coarse-grained locking if it has at most 10 critical setd. Based on this
classification, 7 out of 12 workloads use coarse-grain logland the remaining
5 use fine-grain locking. All workloads were simulated to qdetion. Refer to

Section 4.3 for a detailed description of simulated worlka

In the ensuing discussion, we refer to Table 5.3, which shbegharacter-

48

[Locks | Workload | Description | Source] Inputset |

ep Random number generatgr [13 262144 nums.
is Integer sort 13 n = 64K
Coarse| pagemine Data mining kernel [70] 10Kpages
puzzle 15-Puzzle game [109] 3x3
gsort Quicksort [27] 20K elem.
sqlite sqlite3 [3] database enging [4] OLTP-simple
tsp Traveling salesman prob] [55] 11 cities
iplookup IP packet routing [105] 2.5K queries
oltp-1 MySQL server [2] [4] OLTP-simple
Fine oltp-2 MySQL server [2] [4] OLTP-complex
specjbb | JAVA business benchmark [90] 5 seconds
webcache| Cooperative web cache | [101] 100K queries

Table 5.2:Simulated workloads

istics of each application, to provide insight into the periance results.

Table 5.3:Benchmark Characteristics. Shared/Private is the ratishafeddata (cache
lines that are transferred from other coresptivate data (cache lines that hit in the private
cache) accessed inside a critical section. Contentioreiatbrage number of threads wait-
ing for critical sections when the workload is executed witl8, 16, and 32 threads on the
SCMP.

Workload % of Non- | % of parallel instr.| # of disjoint Avg. instr. in | Shared/ Contention
parallel instr. | in critical sections| critical sections| critical section| Private | 4 | 8 | 16 | 32
ep 13.3 14.6 3 620618.1 1.0 14|18|40]| 82
is 84.6 8.3 1 9975.0 1.1 23[143(81| 164
pagemine 0.4 5.7 1 531.0 1.7 2314382159
puzzle 2.4 69.2 2 926.9 11 22]143(83]|16.1
gsort 28.5 16.0 1 127.3 0.7 1.1|3.0]|9.6| 256
sqlite 0.2 17.0 5 933.1 24 14|22|37| 64
tsp 0.9 4.3 2 29.5 0.4 12|16|20| 3.6
iplookup 0.1 8.0 4 683.1 0.6 12|13|15] 19
oltp-1 2.3 13.3 20 277.6 0.8 12|12|15]| 22
oltp-2 11 12.1 29 309.6 0.9 11|12|14] 16
specjbb 1.2 0.3 39 1002.8 0.5 10|10 10]| 12
webcache 3.5 94.7 33 2257.0 1.1 11(11|11) 14

5.4 Evaluation
We make three comparisons between ACMP, SCMP, and ACS, Riest

compare their performance on systems where the numbereddbris set equal to
the optimal number of threads for each application undewargarea constraint.
Second, we compare their performance assuming the numbeeaids is set equal
to the number of cores in the system, a common practice eraglioymany existing
systems. Third, we analyze the impact of ACS on applicateatability i.e., the

number of threads over which performance does not increase.

49

5.4.1 Performance with the Optimal Number of Threads

Systems sometimes use profile or run-time information taskdhe num-
ber of threads that minimizes execution time [95]. We firsilgpe ACS with re-
spect to ACMP and SCMP when the optimal number of threads sed for each
application on each CMP configuratiéiWe found that doing so provides the best
baseline performance for ACMP and SCMP, and a performanog@anson results
in the lowest performance improvement of ACS. Hence, thifopmance compar-
ison penalizes ACS (as our evaluations in Section 5.4.2 thighsame number of
threads as the number of thread contexts will show). We slhesvperformance
comparison separately on workloads with coarse-grainekksland those with fine-
grained locks.

5.4.1.1 Workloads with Coarse-Grained Locks

Figure 5.5 shows the execution time of each application oMB@nd ACS
normalized to ACMP for three different area budgets: 8, 1] 32. Recall that
when area budget is equal to N, SCMP, ACMP, and ACS can exaputeN, N-2,
and N-4 parallel threads respectively.

Systems area-equivalent to 8 small coresWWhen area budget equals 8,
ACMP significantly outperforms SCMP for workloads with higarcentage of in-
structions in the serial part (85% irs and 29% inqsort as Table 5.3 shows).

In puzzl e, even though the serial part is small, ACMP improves pertoroe be-
cause it improves cache locality of shared data by exectrogf the six threads

on the large core, thereby reducing cache-to-cache tnasfeshared data. SCMP
outperforms ACMP fosql i t e andt sp because these applications spend a very
small fraction of their instructions in the serial part aratsficing two threads for

improved serial performance is not a good trade-off. SinGSAlevotes the two

“We determine the optimal number of threads for an appliodtipsimulating all possible num-
ber of threads and using the one that minimizes executioe.tiffhe interested reader can obtain
the optimal number of threads for each benchmark and eadigooation by examining the data in
Figure 6.11. Due to space constraints, we do not explicitlytg these thread counts.

50

Exec. Time
Norm. to ACMP

Exec. Time
Norm. to ACMP

(b) Area budget=16 small cores
0

15

Exec. Time
Norm. to ACMP

(c) Area budget=32 small cores

Figure 5.5:Execution time of workloads with coarse-grained lockingA®S and SCMP
normalized to ACMP

SMT contexts on the large core to accelerate critical sestid can execute only
four parallel threads (compared to 6 threads of ACMP andéiths of SCMP). De-
spite this disadvantage, ACS reduces the average exectumiety 22% compared
to SCMP and by 11% compared to ACMP. ACS improves performahége out

of seven workloads compared to ACMP. These five workloadg e common
characteristics: 1) they have high contention for the@aitsections, 2) they access
more shared data than private data in critical sections.tDti@gese characteristics,
ACS reduces the serialization caused by critical sectiowsiaproves locality of

shared data.

Why does ACS reduce performancegeort andt sp? The critical sec-
tion ingsort protects a stack that contains indices of the array to bedoithe
insert operation pushes two indices (private data) ontasstaek by changing the

stack pointer (shared data). Since indices are larger ti@stack pointer, there are

51

more accesses to private data than shared data. Furtheroatention for critical
sections is low. Thereforgsort can take advantage of additional threads in its
parallel portion and trading off several threads for fagteecution of critical sec-
tions lowers performance. The dominant critical section &p protects a FIFO
gueue where an insert operation reads the node to be ingpriedte data) and
adds it to the queue by changing only the head pointer (stdata]. Since private
data is larger than shared data, ACS reduces cache lodaligdition, contention

is low and the workload can effectively use additional thiea

Systems area-equivalent to 16 and 32 small coreRecall that as the area
budget increases, the overhead of ACS decreases. This te tlue reasons. First,
the parallel throughput reduction caused by devoting aelagye to execute crit-
ical sections becomes smaller, as explained in Section&e2ond, more threads
increases contention for critical sections because iemes the probability that
each thread is waiting to enter the critical section. Whendrea budget is 16,
ACS improves performance by 32% compared to SCMP and by 22#parced to
ACMP. When the area budget is 32, ACS improves performaneibfy compared
to SCMP and by 31% compared to ACMP. In fact, the two benchelgdwor t and
t sp) that lose performance with ACS when the area budget is 8resqe signif-
icant performance gains with ACS over both ACMP and SCMP foaiea budget
of 32. For example, ACS with an area budget of 32 provides 1i7&22% perfor-
mance improvement fagsort andt sp respectively over an equal-area ACMP.
With an area budget of at least 16, ACS improves the perfoceanhall applica-
tions with coarse-grained locks. We conclude that ACS isféetive approach
for workloads with coarse-grained locking even at smalbdsadgets. However,
ACS becomes even more attractive as the area budget in témmosnder of cores

increases.

5.4.1.2 Workloads with Fine-Grained Locks

Figure 5.6 shows the execution time of workloads with finakged lock-

ing for three different area budgets: 8, 16, and 32. Comp#oembarse-grained

52

locking, fine-grained locking reduces contention for catisections and hence the
serialization caused by them. As a result, critical sectiomtention is negligible at
low thread counts, and the workloads can take significandtdge of additional
threads executed in the parallel section. When the areagbigxl§, SCMP provides
the highest performance (as shown in Figure 5.6(a)) for allkleads because it
can execute the most number of threads in parallel. Sintealrsection con-
tention is very low, ACS essentially wastes half of the areddet by dedicating it
to a large core because it is unable to use the large coreeetiizi Therefore, ACS
increases execution time compared to ACMP for all worklaadsepti pl ookup.
Ini pl ookup, ACS reduces execution time by 20% compared to ACMP but in-
creases it by 37% compared to SCMP. The critical sectiomgpinookup access
more private data than shared data, which reduces the beh&f@S. Hence, the
faster critical section execution benefit of ACS is able terceme the loss of 2
threads (ACMP) but is unable to provide enough improveneatvercome the loss
of 4 threads (SCMP).

As the area budget increases, ACS starts providing perfocenanprove-
ment over SCMP and ACMP because the loss of parallel thrautgtiye to the
large core reduces. With an area budget of 16, ACS performsasly to SCMP
(within 2%) and outperforms ACMP (by 6%) on average. With asasbudget of
32, ACS’s performance improvement is the highest: 17% ow@B and 13%
over ACMP; in fact, ACS outperforms both SCMP and ACMP on abrkioads.
Hence, we conclude that ACS provides the best performanopared to the al-
ternative chip organizations, even for critical-sectiotensive workloads that use

fine-grained locking.

Depending on the scalability of the workload and the amo@inbatention
for critical sections, the area budget required for ACS tovpte performance im-
provement is different. Table 5.4 shows the area budgetnedjfor ACS to out-
perform an equivalent-area ACMP and SCMP. In general, tea budget ACS re-
quires to outperform SCMP is higher than the area budgegttires to outperform
ACMP. Howeverwebcache andgsor t have a high percentage of serial instruc-

53

Exec. Time
Norm. to ACMP

Exec. Time
Norm. to ACMP

Exec. Time
Norm. to ACMP

(c) Area budget=32 small cores

Figure 5.6: Execution time of workloads with fine-grained locking on A@8d SCMP
normalized to ACMP

tions; therefore ACMP becomes significantly more effecttven SCMP for large
area budgets. For all workloads with fine-grained lockihg, &rea budget ACS re-
quires to outperform an area-equivalent SCMP or ACMP istless or equal to 24
small cores. Since chips with 8 and 16 small cores are alrgmathe market [54],
and chips with 32 small cores are being built [86, 103], wadvel ACS can be
a feasible and effective option to improve the performancearkloads that use

fine-grained locking in near-future multi-core processors

=

)
£ = a5
Slelelel |Z]z|x|5|E

AREHEIRHREEEHE
o|2|o|a|Tc|a|l8||2|C|0|a|=

ACMP|| 66| 6|4|12| 6|10|l 6 [14[10|18|24

SCMP|(|6|4|6|4|8|6|18|/14|14|16|18|14

Table 5.4: Area budget (in terms of small cores) required for ACS to edtgrm an
equivalent-area ACMP and SCMP

54

Summary: Based on the observations and analyses we made above fdoaask
with coarse-grained and fine-grained locks, we concludeA@& provides signifi-

cantly higher performance than both SCMP and ACMP for bagbe$yof workloads,
except for workloads with fine-grained locks when the aredged is low. ACS’s

performance benefit increases as the area budget incréasetsire systems with a
large number of cores, ACS is likely to provide the best gysteganization among
the three choices we examined. For example, with an areahbofl2 small cores,
ACS outperforms SCMP by 34% and ACMP by 23% averaged acrbsgosk-

loads, including both fine-grained and coarse-graineddock

5.4.2 Performance with Number of Threads Set Equal to the Nurber of
Available Thread Contexts

In the previous section, we used the optimal number of tredad each
application-configuration pair. When an estimate of themogt number of threads
is not available, many current systems use as many thredithe@sare available
thread contexts [47, 73]. We now evaluate ACS assuming th&euof threads is
set equal to the number of available contexts. Figure 6.tilvslthe speedup curves
of ACMP, SCMP, and ACS over one small core as the area budgatied from 1
to 32. The curves for ACS and ACMP start at 4 because they neqileast one
large core which is area-equivalent to 4 small cores.

Number of threadf No. of max. thread contex{s Optimal
AreaBudget [[8 [16 [32 8 J16 [32
SCMP 0.93 |{1.04 [1.18 0.94 |1.05 [1.15
ACS 0.97 |0.77 |0.64 0.96 |0.83 [0.77

Table 5.5:Average execution time normalized to area-equivalent ACMP

Table 5.5 summarizes the data in Figure 6.11 by showing tbeage ex-
ecution time of ACS and SCMP normalized to ACMP for area btsigé 8, 16,
and 32. For comparison, we also show the data with optimalbeuraf threads.
With an area budget of 8, ACS outperforms both SCMP and ACMP ot of
12 benchmarks. ACS degrades average execution time cothfm8CMP by 3%
and outperforms ACMP by 3%. When the area budget is doubléé t&CS out-

55

Area (Small Cores)

e I I

83 8 84

= = =

E, £2 £3

0 " "

[' ' . 14 ' ' ' ' 4

> . > L >2

o —~SCMP; o e e [=%

21 ACMP. 3 N 3

g | VR 5 o 31

g | O-ACS | g g

N R R) B0 b B0 b

8 16 24 32 8 16 24 32 8 16 24 32

Area (Small Cores)

Area (Small Cores)

(c) pagemine

(a) ep

N

Speedup vs small core
O R, N WM U O

(b) is

< <4
84 85
T T
53 5
0 n 3
> 2 >
=3 =%
p=} p=}
=} 1 =}
] O 1
Q Q
Q. Q.

) i T) no T i T) no T i T)
8 16 24 32 8 16 24 32 8 16 24 32
Area (Small Cores) Area (Small Cores) Area (Small Cores)

(d) puzzle (e) gsort (f) sqlite

< <

§ g : e A. : § 7 : : :
T 7 e T 6

56 / 5s

05 04

> 4 >

=3 23

33 22

@ 2 @

21 21

"o no

Speedup vs small core

Area (Small Cores)

(9) tsp

8 16 24 32
Area (Small Cores)

(h) iplookup

8 16 24 32
Area (Small Cores)

(i) oltp-1

Area (Small Cores)

() oltp-2

Figure 5.7:Speedup over a single small core

[
o = o
e I} o
819 S 819
T 8 E 3 8
g ! 5 gl
¢ 5 Q wg
a4 2 a2
3 3 ° 3 3
o 2 Q o 2
1] @ Q
o 1 Q q 1

8 16 24 32
Area (Small Cores)

(K) specjbb

56

8716 24 32
Area (Small Cores)

(I) webcache

performs both SCMP and ACMP on 7 out of 12 benchmarks, reduauerage
execution time by 26% and 23%, respectively. With an aregéuaf 32, ACS out-
performs both SCMP and ACMP on all benchmarks, reducingaesexecution
time by 46% and 36%, respectively. Note that this perforneaingprovement is
significantly higher than the performance improvement AG%/es when the op-
timal number of threads is chosen for each configuration (8486 SCMP and 23%
over ACMP). Also note that when the area budget increase§, #t@rts to consis-
tently outperform both SCMP and ACMP. This is because AC&&abés contention
among threads better than SCMP and ACMP. Table 5.6 compae®htention of
SCMP, ACMP, and ACS at an area budget of 32. &pyon average more than 8
threads wait for each critical section in both SCMP and ACKES reduces the

waiting threads to less than 2, which improves performancd49o (at an area

budget of 32).

()]

= =3 al|G

§|12 e 2 % SRk §

o 5|8 |5|la22|8]8|0

Workload|| @ | @ | o |2 |oc|a |2 || 2|00 |n| =2
SCMP |[[8.2/16.4/15.9|16.1{25.6/6.4|3.6([1.9(/2.2{1.6[/1.2|1.4
ACMP (| 8.1|14.9/15.5/16.1|24.0/6.2|3.7(/1.9|/1.9|1.5/1.2|1.4
ACS 15/ 20(20|25|19|1.4(35(/1.8/1.4|/1.3/1.0/1.2

Table 5.6: Contention (see Table 3 for definition) at an area budget ofNa2Znber of
threads set equal to the number of thread contexts)

We conclude that, even if a developer is unable to deternfieeoptimal
number of threads for a given application-configuration paid chooses to set the
number of threads at a point beyond the saturation point, Z@&des significantly
higher performance than both ACMP and SCMP. In fact, ACStéopeance ben-
efit is even higher in systems where the number of threadd isggl to number
of thread contexts because ACS is able to tolerate contefaiocritical sections

significantly better than ACMP or SCMP.

5.4.3 Application Scalability
We examine the effect of ACS on the number of threads requaedini-

mize the execution time. Table 5.7 shows number of threaatgptiovides the best

57

performance for each application using ACMP, SCMP, and AUO®% best num-
ber of threads were chosen by executing each applicatidnadlipossible threads
from 1 to 32. For 7 of the 12 applicationsg, pagem ne, puzzl e, gsort,
sqglite,ol t p-1,andol t p- 2) ACS improves scalability: it increases the num-
ber of threads at which the execution time of the applicatiominimized. This

is because ACS reduces contention due to critical sectisrexplained in Sec-
tion 5.4.2 and Table 5.6. For the remaining applicationsSAfdes not change
scalability> We conclude that if thread contexts are available on the, &@Q® uses
them more effectively compared to ACMP and SCMP.

()]

£ =3 al|5

512 |c 2 % DAk §

o g2 |52 |2|2|8| e
Workload||o | 2 |a|a|oc|o |2 || 2|6 |6 |n| =2
SCMP [[4] 8|8 8[16| 8 |32][24(16]16|32(32
ACMP [[4| 8| 8| 8|16| 8 [32]/24|16(|16]32]32
ACS 4112(12|32[32(32|32][24(32[24|32|32

Table 5.7:Best number of threads for each configuration

5.4.4 Performance of ACS on Critical Section Non-Intensiv8enchmarks

We also evaluated all 16 benchmarks from the NAS [13] and SFHLAL10]
suites that are not critical-section-intensive. Thesecherarks contain regular
data-parallel loops and execute critical sections infeeqly (less than 1% of the
executed instructions). Detailed results of this analgsespresented in [94]. We
find that ACS does not significantly improve or degrade thégoerance of these
applications. When area budget is 32, ACS provides a modégtekformance im-
provement over ACMP and 2% performance reduction compar&CMP. As area
budget increases, ACS performs similar to (within 1% of) S€M/e conclude that
ACS will not significantly affect the performance of critlcgection non-intensive
workloads in future systems with large number of cores.

SNote that Figure 6.11 provides more detailed informationA@8’s effect on the scalability

of each application. However, unlike Table 7, the data showthe x-axis is area budget and not
number of threads.

58

5.5 Sensitivity of ACS to System Configuration
5.5.1 Effect of SEL

ACS uses the SEL mechanism (Section 5.1.5) to selectiveliaate crit-
ical sections to reduce false serialization of criticalteets. We evaluate the per-
formance impact of SEL. Since SEL does not affect the perdmice of workloads
that have negligible false serialization, we focus our exabn on the three work-
loads that experience false serializatigruzzl e, i pl ookup, andwebcache.
Figure 5.8 shows the normalized execution time of ACS witth erthout SEL for
the three workloads when the area budget is 32.i fdrookup andwebcache,
which has the highest amount of false serialization, usiBf Bnproves perfor-
mance by 11% and 5% respectively over the baseline. Therpgaface improve-
ment is due to acceleration ebmecritical sections which SEL allows to be sent
to the large core because they do not experience falseigatiah. Inwebcache,
multiple threads access pages of different files stored Iragesl cache. Pages from
each file are protected by a different lock. In a conventi@yatem, these critical
sections can execute in parallel, but ACS without SEL segalthe execution of
these critical sections by forcing them to execute on a sitagyge core. SEL dis-
ables the acceleration of 17 out of the 33 locks, which elaten false serialization
and reduces pressure on the large core.ghookup, multiple copies of the rout-
ing table (one for each thread) are protected by disjoirticali sections that get
serialized without SELpuzzl| e contains two critical sections protecting a heap
object (PQ) and a memoization table. Accesses to PQ are meapaeht than to the
memoization table, which results in false serializationtftie memoization table.
SEL detects this serialization and disables the acceberai the critical section
for the memoization table. On average, across all 12 woddpACS with SEL
outperforms ACS without SEL by 15%. We conclude that SEL aaccessfully
improve the performance benefit of ACS by eliminating falegadization without

affecting the performance of workloads that do not expesecialse serialization.

59

160 253

= ACS
= ACS w/o SEL

Exec. Time Norm. to ACMP

Figure 5.8:Impact of SEL.

5.5.2 Effect of using SMT on the Large Core

We have shown that ACS significantly improves performance SCMP
and ACMP when the large core provides support for SMT. TheedMT context
provides ACS with the opportunity to concurrently executgaal sections that are
protected by different locks on the high performance coreheWthe large core
does not support SMT, contention for the large core can asgend lead to false
serialization. Since SMT is not a requirement for ACS, weleae ACS on an
ACMP where the large core does not support SMT and executgae thread.
Figure 5.9 shows the execution time of ACS without SMT noireal to ACMP
without SMT when the area budget is 32. On average, ACS WitBMIT reduces
execution time by 22% whereas ACS with SMT by 26%. Thus, SMivigles 4%

performance benefit by reducing false serialization ofaaltsections.

MT

Exec. Time Norm. to ACMP w/o S

ri
11
11
11

Figure 5.9:Impact of SMT.

60

5.5.3 ACS on Symmetric CMPs: Effect of Only Data Locality

Part of the performance benefit of ACS is due to improved ibcaf shared
data and locks. This benefit can be realized even in the absdraclarge core. A
variant of ACS can be implemented on a symmetric CMP, whiclcalessymmACS
In symmACS, one of the small cores is dedicated to executiitigal sections.
This core is augmented with a CSRB and can execute the CSCadliests and
CSRET instructions. Figure 5.10 shows the execution timgynfmACS and ACS
normalized to SCMP when area budget is 32. SymmACS reduazigan time
by more than 5% compared to SCMPiis, puzzl e, sql i t e, andi pl ookup
because more shared data is accessed than private daticial sgctions. In ep,
pageni ne, gsort, andt sp, the overhead of CSCALL/CSRET messages and
transferring private data offsets the shared data/lockligcadvantage of ACS.
Thus, overall execution time increases. On average, synen#&g@uces execution
time by only 4% which is much lower than the 34% performanceeiie of ACS.
Since the performance gain due to improved locality aloneletively small, we
conclude that most of the performance improvement of ACSaftom accelerat-

ing critical section execution using the large core.

121

Exec. Time Norm. to SCMP
o
7

o ---1..

(4
@ & @ R RO
& SSRGS U BE
R e L L I REELLEEE
Q'ZrQ‘QQ‘ .\Q\ooegz,Q‘

Figure 5.10:ACS on symmetric CMP.

6Note that these numbers do not correspond to those shownbile a3 on page 49. The
Shared/Private ratio reported in Table 5.3 is collected®cating the workloads with 4 threads.
On the other hand, in this experiment, the workloads werewitin the optimal number of threads
for each configuration.

61

5.5.4 Interaction of ACS with Hardware Prefetching

Part of the performance benefit of ACS comes from improvingreth
data/lock locality, which can also be partially improved dgta prefetching [81,
102]. To study the effect of prefetching, we augment eack woth a L2 stream
prefetcher [99] (32 streams, up to 16 lines ahead).

Exec. Time Norm. to ACMP

& @
> a X & &

¢ K HE REE LTS
P> QL @

K
¥ & >

Figure 5.11:Impact of prefetching

Figure 5.11 shows the execution time of ACMP with a prefetCA&€S
(with and without a prefetcher), all normalized to an ACMRheut a prefetcher
(area budget is 32). On all benchmarks, prefetching immdhie performance
of both ACMP and ACS, and ACS with a prefetcher outperformsVARCwith
a prefetcher. However, ipuzzl e, gsort, t sp, andol t p- 2, ACMP bene-
fits more from prefetching than ACS because these workloadtat shared data
structures that lend themselves to prefetching. For examplt sp, one of the
critical sections protects an array. All elements of thapare read, and often up-
dated, inside the critical section which leads to cache esigs ACMP. The stream
prefetcher successfully prefetches this array, which ceduhe execution time of
the critical sections. As a result, ACMP with a prefetche2®% faster. Because
ACS already reduces the misses for the array by keeping fleatarge core, the
improvement from prefetching is modest compared to ACMP)(4@n average,
ACS with prefetching reduces execution time by 18% compaocdCMP with
prefetching and 10% compared to ACS without prefetchingusTtACS interacts
positively with a stream prefetcher and both schemes camipéoged together.

62

Chapter 6

ACMP for Accelerating the Limiter Stage

The overall throughput of a kernel with pipeline paralleliss dictated by
the pipeline stage which has the lowest throughput. We balthe LIMITER
stage. Itis desirable to run the LIMITER as fast as possible large core in the
ACMP can be used to accelerate the execution of the LIMITE&ghy increasing
its throughput. To this end, we propoBecelerated Limiter Stage (ALSJimilar
to the Accelerating Critical Sections (ACS) mechanism, AdlSo runs the non-
parallel part of the program on the large core.

6.1 Key Insights

We develop two key insights. First, the large core is lessgyesificient
than the small cores and thus it should never be assignecetadh-LIMITER,
non-critical, stages as it will waste power but not improegfprmance. Second,
the LIMITER stage —scalable or non-scalable— can alwaysfiidrom running at
the large core. For a scalable stage, having the large coreases the throughput
fractionally. For example, let us assume an ACMP with a gitayige core. Suppose
that each small core has an IPC of 1 and the large core’s IPClistdis consider
a LIMITER which scales up to 5 cores. With 5 small cores, it @ running at an
aggregate IPC of $(x 1). Whereas, with four small cores and one large core, it will
run at an aggregate IPC of & & 1 + 2). Thus, a 20% increase in throughput. For
non-scalable stages, having the large cores increase$NHEER'’s throughput by
as much as the speedup of the large core over a small corex&mpée, ACS can
increase the throughput of a non-scalable LIMITER by up to 2x

63

6.2 Overview

Implementing ALS on an ACMP does not require any hardwar@st@and
only requires modifications to the run-time library. We imaplent ALS in two steps.
First, we maximize the performance of the pipeline workloadhe small cores of
the ACMP by choosing the best core-to-stage allocation. eQueaformance has
been maximized on the small cores, we assign the large cahe tstage with the
lowest throughput.

To choose the best core-to-stage allocation, we propesdback-Driven
Pipelining (FDP) FDP identifies the limiter by choosing a core-to-stagecaitimn
at run-time such that execution time is minimized. Sectignd@scribes the support
required to accelerate the limiter stage using ACMP.

6.3 Feedback-Driven Pipelining: Optimizing the pipeline

Choosing the core-to-stage allocation which maximize$operance is a
well-known challenge. The programmer is often assigneddbk of choosing the
best core-to-stage allocation. This is infeasible as itlbns the programmers and
also leads to sub-optimal performance in case the LIMITERethanges at run-
time due a variation in input set or machine configurationminimize the effect of
this problem, we propose an automated mechanism to choeddNHTER stage.
We call it Feedback-Driven Pipelining (FDPBy choosing the best stage-to-core
allocation at run-time, FDP saves programmer effort, is en@bust to changes
in input set and machine configuration, and saves power byotong the stages
which are much faster than the LIMITER on a single core.

6.3.1 Overview

FDP uses runtime information to choose core-to-stage atiloc for best
overall performance and power-efficiency. Figure 6.1 shawoverview of the
FDP framework.

64

INIT ‘
Mode=Optimize-Perf

TRAIN

OPTIMIZE yPERF ‘ OPTIMIZE y POWER

~
Try to increase throughput Try to combine two stages
of LIMITER stage with lowest utilization
If not possible If already tried or not possible|
Mode = Optimize—Power Mode = Optimize-Perf
)

ENFORCE
e B —
ALLOCATION

Figure 6.1: Overview of FDP.

FDP operates in two modes: one that optimizes performance
(Opt i m ze- Per f) and other that optimizes powe®{t i m ze- Power). Ini-
tially, each stage in the pipeline is allocated one sma# cBDP first tries to achieve
the highest performance, and then it tries to optimize poW&P is an iterative
technique that contains three phases: training, re-dltotaf cores to stages, and
enforcement of the new allocation. The training phase gathumtime information
for each stage of the pipeline, and is helpful in determitiegthroughput and core
utilization of each stage. Based on this information, theégomance-optimization
mode identifies the LIMITER stage and tries to increase rsughput by allocating
more cores to it. When it can no longer improve performansedtiare may be no
spare cores or adding cores does not help improve perforp&igP switches to
power-optimization mode. In this mode, FDP tries to asdignstages with lowest
utilization to one core, as long as the combined stage doebeomme the LIM-
ITER stage. The core thus saved can be used to improve pethaeror turned off
to save power. Every time FDP chooses a new core-to-staggadtn, it enforces
the new allocation on the pipeline at the end of the iteration

65

[Stagesf PO | P1 | P2 || Avg. ExecutionTime || Throughput]

S0: | (3K,3) 1K 171K
S1: (12K, 3) 4K 1/4K
S2: (9K, 1) (21K,2) 10K 1/5K

Figure 6.2: Sample output from Train for a pipeline with #stages (S0, S1, S2)
on a 3-core machine. Each entry is a 2-tuple: (the sum of tirresarements, the
number of time measurements) taken for each core-stageBbank entries contain

(0,0).

6.3.2 Train

The goal of the training phase is to gather runtime statistimout each stage.
To measure execution time of each stage, the processois cgant register is
read at the beginning and end of each stage. Instructiorsatb the cycle count
register already exist in current ISAs, e.g., thdt sc instruction in the x86 ISA.
The difference between the two readings at the start and étitecstage is the
execution time of the stage. This timing information is stbin a two-dimensional
table similar to the one shown in Figure 6.2. The rows in thetaepresent stages
(S0-S2) and columns represent cores (P0-P2). Each entnysitable is a 2-tuple:
the sum and the number of time measurements taken for thespamding core-
stage pair. For each measurement taken, Train adds the reddsue to the sum
of measured times of the core-stage pair and incrementtinesponding number
of measurements. For example, if Train measures that ergc80 on PO took
4K cycles, then it will modify the entry corresponding to S@aP0 in Table 5 to
(7K,4) i.e. (3K+4K, 3+1). Note that if a stage is not assigted core, the entry
corresponding to the core-stage pair remains (0,0). Fampl& since S1 is only
assigned to P1 and not to PO and P2, its entries for PO and RR &ve limit the
overhead of measuring the timing information via sampling: measure it once

every 128th work-quanta processed by the stage.

66

6.3.3 Performance-Optimization

The goal of the performance-optimization mode is to chamgecbre-to-
stage allocation in order to improve overall performancédeWwthe mode of opera-
tion is performance-optimization, one of the threads imsthis phase once every
2K iterations or 100K processor cycles, whichever is edtli@he phase takes as
its input the information collected during training, a kimilar to Figure 6.2. The
phase first computes the average execution time of all stajes average execu-
tion time of a stage is the sum of all timing measurementsrdszbin the table for
that stage divided by the total number of measurements &bistage. For example,
for the table shown in Figure 6.2, the average execution bingtage S2 is 10K
cycles computed as (9K+21K)/(1+2). The phase next comph&throughput of
each stage as the number of cores assigned to the stageddwyidiee stage’s aver-
age execution time (e.g., throughput of S2, which runs onderes, is 2/10K, i.e.,
1/5K). The stage with the lowest throughput is identifiedasltiIMITER (S2 is the
LIMITER stage in our example). If there are free small coreshie system, FDP
allocates one of them to the LIMITER. The cores assigneded tMITER stage

execute in parallel and feed from the in-queue assignecetbITER stage.

To converge to the best decision, it is important that the-¢orstage allo-
cations, that have already been tried, are not re-tried. Hi2¥s the allocations by
maintaining the set of all allocations which have been triddnew allocation is
only enforced if it has not been tried before except when FDRverting back to
a previous allocation that is known to perform similar to getter than) the current

allocation, while using fewer cores.

FDP increases the number of cores of the LIMITER stage withrgoticit
assumption that more cores lead to higher throughput. tinately, this assump-
tion is not always true; performance of a stage can satutaecartain number of
cores and further increasing cores wastes power withoutawpg performance.

To avoid allocating cores that do not improve performand2p always measures

We choose these values empirically.

67

and stores the performance of the previous allocation. yEtnere FDP assigns a
new core to the LIMITER stage, it compares the new perforraamith the perfor-
mance of the previous allocation. If the new performanceigbér than the per-
formance with the previous allocation, FDP allocates agiotbre to the LIMITER
stage. However, if the new performance is lower than theoperdnce with the
previous allocation, FDP reverts to the previous allocatiad switches to power-

mode.

6.3.4 Power-Optimization

The goal of this mode is to reduce the number of active coregdewnain-
taining similar performance. When the mode of operationa@gr-optimization,
this phase is invoked once every 2K iterations or 100K premesycles whichever
is earlier. This phase uses the information collected dutmaining to compute the
throughput of each stage. To improve power-efficiency, the stages with the
highest throughput that are each allocated to a separageceor be combined to
execute on a single core, as long as the resulting throughpuit less than the
throughput of the LIMITER stage. This optimization freesarnge core which can
be used by another stage for performance improvement oeduoff for saving
power. This process is repeated until no more cores can HeegetAt this point,

FDP reverts to performance mode.

6.3.5 Enforcement of Allocation

FDP changes the allocation of cores to stages dynamicatbyfadilitate
dynamic allocation we add a data structure which storesdcheore the list of
stages allocated to it. The core processes the stagestatldcat in a round-robin
fashion. FDP can modify the allocation in three ways. Fidien a free core is
allocated to the LIMITER stage, the LIMITER stage is addethtlist of the free
core. Second, when a stage is removed from a core, it is ddiet@ the core’s list.
Third, when stages on two different cores are combined orstogle core, the list

of one of the cores is merged with the list of other core andtesdp

68

6.3.6 Programming Interface for FDP

The FDP library contains the code for measuring and recgrthie execu-
tion time of each stage. It also maintains sampling couritegrsach allocation to
limit instrumentation overhead. It automatically involeesformance-optimization
or power-optimization phases at appropriate times withppagrammer interven-
tion. To interface with this library, the programmer mustent in the code the four

library calls shown in Figure 6.3.

void FDP_Init (num_stages)

void FDP _BeginStage (stage_id)
void FDP_EndStage (stage_id)
int FDP_GetNextStage ()

Figure 6.3: FDP library interface.

The FDP_I ni t routine initializes storage for FDP and sets the mode to
optimize performance. The training phase of FDP reads tbegssor's cycle
count register at the start and end of every stage. To faiglithis, a call to
FDP_Begi nSt age is inserted after the work-quanta is read from the respectiv
gueue and before it is processed. Also, a caFDF_EndSt age is inserted after
the processing of the quanta is complete but before it isguish the next stage.
The arguments of both function calls is the stage id. Onceea@ampletes a work-
guanta, it needs to know which stage it should process néixs.i3 done by calling
the FDP_Get Next St age function. FDP obtains the id of the core executing an
FDP function by invoking a system call.

FDP only requires modifications to the code of the worker dallréen a
pipeline program, not the code which does the actual conmipuatfor the stage.
Thus, FDP can be implemented in the infrastructures comyngs#d as foundation
for implementing pipeline programs, e.g., Intel Threadsglding Blocks [47].

Figure 6.4 shows how the code of the worker loop is modifiednto i
terface with the FDP library. The four function calls arearted as follows.

69

1: FDP.nit ()

2 while (IDONE)

3 stage_id = FDP_GetNextStage ()

4. Pop an iteration i from the stage’s in-queue

5: FDP_BeginStage (stage _id)

6: Run the the stage of that iteration

7 FDP_EndStage (stage _id)

8 Push the iteration to the in-queue of its next stage

Figure 6.4: Modified worker loop (additions/modifications ahown in bold)

FDP_I ni t is called before the worker loop begins. Inside the loop tiread
callsFDP_CGet Next St age to get the ID of the next stage to process. The worker
thread then pops an entry from the in-queue of the choser.sBegfore executing
the computation in stage, it calls the instrumentationine&DP_Begi nSt age.

It then runs the computation and after the computation Is¢hk instrumentation
function FDP_EndSt age. It then pushes the iteration to the in-queue of the next

iteration.

6.3.7 Overheads

FDP is a pure software mechanism and does not regugechanges to
the hardware. FDP only incurs minor latency and softwareagi overhead. The
latency overhead is incurred due to instrumentation andwian of the optimiza-
tion phases. These overheads are significantly reduced$eege only instrument
0.7% (1/128) iterations. The software storage overheadpcises the storage re-
quired for the current core-to-stage allocation, the lispviously tried core-to-
stage allocations, the table to store execution latendieach stage, and counters
to support sampling. The total storage overhead is less4K&hin a system with
16 cores and 16 stages. Note that this storage is allocatkd global memory and

does not require separate hardware support.

70

6.4 Accelerating the Limiter Stage

Once FDP has optimized the pipeline using the small core§ #édn accel-
erate the stage which is limiting performance by assignitiga large core. Recall
that performance with FDP saturates when either the LIMI'BER)e stops scaling
or FDP runs out of cores to assign. When accelerating withAtBEIP, these two

cases are handled differently.

1. LIMITER stops scalingSince the LIMITER’s throughput has saturated,
we know that increasing the number of cores assigned to thBTHER will only
waste power, without providing any performance benefit. sSTtlaur goal is to in-
crease its throughput without increasing the number ofgassigned to the LIM-
ITER. Thus, when we add the large core to the LIMITER to insesigs throughput,
we must remove a small core to keep the number of threads the. sa

When the LIMITER ceases to scale, ALS assigns the large odfestLIM-
ITER and removes one of the small cores from the LIMITER’secallocation.
ALS removes a small core because adding the large core, wtitleonoving the
small core, will increase the number of parallel threadsierLIMITER; this will
be wasteful because we know that the LIMITER cannot leveearyemore cores
(as its scalability has been saturated). We remove onlyglessmall core (and no
additional small cores) because our goal is to improve thITER throughput as

much as possible.

We further explain this with an example. Consider a LIMITERi@h can
scale up to three cores. Once three small cores have begned o this LIMITER,
ALS realizes that more cores cannot be assigned. At thid,p8rS adds the large
core to LIMITER’s allocation. Now, the LIMITER has four caassigned to it
(one large and three small) which is wasteful. To save thegpomithout reducing
performance, ALS removes one of the small cores from the IIBR'’s allocation
as soon as it assigns the large core to the LIMITER.

2. No more small cores to assigm case the LIMITER continues to scale
and FDP runs out of free small cores to assign, ALS assignktbe core to the

71

LIMITER but does not remove a small core from the LIMITER'se@ssignment.
Removing a small core is unnecessary in this case becauddNHEER is still
scalable and it can leverage the additional core.

How does ALS ldentify the large core? The initialization code of each
worker threads runs the CPUID instruction upfront and reptre type (small or
large) of the core it is running on to the run-time. When FDRidia stage which
deserves the large core, it queries the run-time for the-tbaé the large core and

assigns the identified stage to the large core.

6.5 Performance Trade-offs in ALS

The ACMP replaces four small cores with one large core whietkes its
peak throughput lower than that of the SCMP. If the LIMITERg# in a workload
is scalable then it can benefit more from the four small cafesn the one large
core. For such workloads, the ACMP can reduce performanogpaced to an
SCMP. However, this negative effect of the ACMP will redueéhie future as more

cores will become available on the chip.

6.6 Evaluation

We partition our evaluation into two parts. First, we show thorking of
FDP and evaluate its effectiveness at choosing the besttaatage allocation.
Second, we show how ACMP can improve performance by aceeigréne limiter
stage identified by FDP.

6.6.1 Effectiveness of FDP
6.6.1.1 Evaluation Methodology

We evaluate FDP using a very different approach than thefekts thesis.
This is because evaluating FDP requires extensive expetmimultiple thousand

runs of each workloads). Doing this many experiments on allsitar requires a

72

long time. Instead of using the simulator, we evaluate FDRPuioying the work-
loads on real Intel and AMD machines.

Configurations Our baseline system is a Core2Quad SMP that contains
2 Xeon Chips of four cores each. To show scalability of ouhtegue, we also
conduct experiments with an AMD Barcelona SMP machine wotir Quad-core
chips (results for this machine will be reported in Sectio.5.6). Configuration
details for both machines are shown in Table 7.1 on page 1@@h Bystem has

sufficient memory to accommodate the working set of each efatbrkloads used

in our study.
Table 6.1: System Configuration
[Name |Core2Quad (Baseline) | Barcelona |
System | 8-cores, 2 Intel Xeon Core2Quad packé-cores, 4 AMD Barcelona packages
ages
Frequenc? GHz 2.2 GHz
L1 cachg 32 KB Private 32 KB Private
L2 cachg Shared; 6MB/2-cores Private; 512KB/core
L3 cachg None Shared; 8MB/4-cores
DRAM |8GB 16 GB
oS Linux CentOS 5 Linux CentOS 5

Workloads: We use 9 workloads from various domains in our evaluation
(including 2 from PARSEC benchmark suite [1p]Table 7.7 describes each work-
load and its input setMCar | o, BSchol es, nt wi st er, andpagem ne were

modified from original code to execute in pipeline fashion.

Measurements: We run all benchmarks to completion and measure the
overall execution time of each workload using the GNU timktyut To measure the
fine-grained timings, such as, spent inside a particuldraeof a program, we use
the read timestamp-counter instructiord(sc). We compute the average number

of active cores by counting the number of cores that are aaiva given time

2The remaining PARSEC workloads are data-parallel (notlpipd) and FDP does not increase
or decrease their performance

73

and averaging this value over the entire execution time. WWeeach experiment

multiple times and use the average to reduce the effect oh@®erence.

Table 6.2: Workload characteristics.

| WorkloadiDescription (No. of pipeline stages) | Input |
MCarlo | MonteCarlo simulation of stock options [7¢8) N=400K
compresgFile compression using bzip2 algorithm [4(B) 4MB text file
BScholegBlackScholes Financial Kernel [746) 1M opts
pagemingDerived from rsearchk[70] and computes a histog(@n |1M pages
image |Coverts an RGB image to gray-scéte 100M pixels
mtwister| Mersenne-Twister PRNG [74b) path=200M

rank Rank strings based on their similarity to an input str{8y | 800K strings
ferret Content based similarity search from PARSEC suite[83]simlarge
dedup |Data stream compression using deduplication algonsimlarge
from PARSEC suite[15{7)

Evaluated Schemes:We evaluate FDP in terms of performance, power
consumption, and robustness. We evaluate three coreage-sillocation schemes.
First, theOne Core Per Stage (1CorePS)heme which allocates one core to each
stage. Second, theroportional Core Allocation (Propscheme which allocates
cores to stages based on their relative execution rateg rars the application
once with 1CorePS and calculates the throughput of eacbk.stdg cores are then
allocated in inverse proportion to the throughput of eaduyst thus giving more
cores to slower stages and vice versa. Third Riafile-Basedscheme which allo-
cates cores using static profiling. The Profile-Based schemethe program for
all possible allocations which assign ewmegernumber of cores to each stage and
chooses the allocation which minimizes execution time.eNbat while the abso-
lute best profile algorithm can try even non-integer allaoat by allowing stages to
share cores, the number of combinations with such an appopasckly approaches
into millions, which makes it impractical for us to quantitely evaluate such a

scheme.

6.6.1.2 Case Studies

FDP optimizes performance as well as power for pipelinedkioads at
runtime. We now show the working of FDP on both scalable anal-sualable

74

workloads with the help of in-depth case studies that pmundights on how FDP

optimizes execution.
Scalable Workload: Compress

The workloadconpr ess implements a parallel pipelined bzip2 compres-
sion algorithm. It takes a file as input, compresses it, antegsithe output to a
file. To increase concurrency, it divides the input file intjual size blocks and
compresses them independently. It allocates the storag&déocompressed and
uncompressed data, reads a block from the file, compressésadtk, re-order any
work quanta which may have become out of order, writes thepressed block
to the output file, and deallocates the buffers. Figure 2@vshthe pipeline of
conpr ess. Each iteration inconpr ess has 5 stages(S1-S5). Each stage can

execute concurrently on separate cores, thereby imprgeanigrmance.

Table 6.3 shows the throughput of each stage when each stafjedated
one core (the allocation 1-1-1-1-1). The throughput of 8t88, which compresses
the block, is significantly lower than the other stages. Thhe overall perfor-
mance is dominated by S3 (the LIMITER stage). Table 6.3 disws the through-
put when one of the stage receives four cores and all otherveeone core. For
example, with the 4-1-1-1-1 allocation S1 receives fouesand all other stages
get one core. Threads in S1 allocate buffers in the shargol & contend for the
memory allocator, thereby loosing concurrency, henceutinput of S1 improves
by only 2.4x with 4x the cores. Whereas, when 4 cores are dgive&tage S3, its
throughput improves almost linearly by 3.9x because S3 cesges independent

blocks without requiring any thread communication.

Table 6.3 also shows the overall execution time with difiém@ore alloca-
tions. As S3 is the LIMITER stage, increasing the number oésdor other stages
does not help reduce the overall execution time. Howeveenw®3 receives more
cores, the throughput of S3 increases by 3.9x and overatiugiom time reduces
form 55 seconds to 14 seconds (a speedup of 3.9x). Thereédoiraprove perfor-

mance more execution resources must be invested in the [HKI3tage.

75

Table 6.3: Throughput of different stages as core allocasovaried. Throughput
IS measured as iterations/1M cycles.

|Core Alloc.] S1| S2|S3] S4]| S5 |[[Exec. Timg
[1-1-1-1-1[284] 49]0.4] 34| 8K || 55 sec. |
4-1-1-1-1(698| 44 |0.4| 33 | 6K 55 sec.
1-4-1-1-1|294|172|0.4| 35| 7K 55 sec.
1-1-4-1-1 |304| 52 |1.5| 37 | 7K 14 sec.
1-1-1-4-1|279| 49 |0.4|135| 8K 55 sec.
1-1-1-1-4|282| 51 |0.4| 33 |31K 55 sec.

We modify the source code afonpr ess to include library calls to FDP.
FDP measures the throughput of each stage at runtime anthtegthe core-to-
stage allocation to maximize performance and power-effgyie Figure 6.5 shows

the overall throughput as FDP adjusts the core-to-stageatibn.

(Optimized Execution]

e aigaaas oS wnnn
. | |FDP gives more cores ‘ S3=6c0res-*" # Sateores END
to S3 in perf-mode 83:5cor<9.§"’

5
[oX
<
(o))
)
2
= 4 + ----o----o----o"‘ P
E e acore FDP gives free cores
3 to S3 in perf-mode
-~ 3 + -
(% ,+6 S3=3cores
B2+ RS FDP combines stages to
N 6 S3=2cores free cores in power—-mode
C_U 0‘
e 1 4 o
S S3=1core
Z
| } | | } | } | } | | | | }
0 1 2 3 4 5 6 7 8 9 10 11 12 121 122 time

Number of Iterations (x 2K)

Figure 6.5: Overall throughput @fonpr ess as FDP adjusts core-to-stage alloca-
tion

FDP initially allocates one core to each stage. As executtotinues, FDP
trains and identifies S3 to be the LIMITER stage. To improvégumance FDP
increases the number of cores allocated to S3, until it rwisobcores. For our
8-core system, this happens when S3 is allocated 4 corethaneimaining 4 cores
are allocated one each to S1, S2, S4, and S5. After it runsfaates, FDP begins

to operate in power-optimization mode. In the first invogatof this mode, the

76

COMPARE STR INSERT STR
Q = QUEUE1.Pop() Q = QUEUE2.Pop()

° Compare String Insert in Heap
QUEUE2.Push(Str) Delete tail on overflow

STAGE S1 ﬁ STAGE S2 ﬂ STAGE S3
L]

Input »| Read Next String
Strings

QUEUE1L.Push(Str)

OUEUE1 OUEUE2

Figure 6.6: Pipeline for matching a stream of strings withveeg string

stages with the highest throughput, S1 and S5, are comhinexktute on a single
core, thereby freeing one core. In the next invocation, FDRnes S1 and S5
with S2 which frees up another core. FDP continues this afitflour stages S1,
S2, S4, and S5 get combined to execute on a single core. Wibippartunity left
to reduce power, FDP switches back to performance optimizatode. FDP again
identifies S3 as the LIMITER and allocates the 3 free cores3toT®us, 7 out of
the 8 cores are allocated to S3, and a single core is sharedgaatiother stages.
FDP converges in 10 invocations and executes the worklo8d7iseconds, which
is much lower than with the static-best integer allocatibfl{4-1-1) that requires
14 seconds.

Non-Scalable Workload: Rank

Ther ank program ranks a list of strings based on their similarityriorgout
string. It returns the top N closest matches (N is 128 in opeexnents). Figure 6.6
shows the pipelined implementation foank. Each iteration is divided into 3
stages. The first stage (S1) reads the next string to be @@te¥he second stage
(S2) performs the string comparison, and the final stage i(&&)ts the similarity
metric in a sorted heap, and removes the smallest elemanttfie heap (except
when heap size is less than N). At the end of the executiorsdited heap contains

the top N closest matches.

Table 6.4 shows the throughput of system when each stagedstdd one
core (1-1-1). The throughput of S2, which performs the gtaomparison, is signif-
icantly lower than the other stages in the pipeline. As SBediMITER, allocating

more cores to S2 is likely to improve overall performancee Hext three rows in

77

the table shows the throughput when one of the stage rectéima®s and the other
stages get one core. With the increased core count, S1 anklo8B8asspeedup of
2.5x and 1.3x, respectively. However, as these stages arhe@d@IMITER, the

overall execution time does not decrease.

Table 6.4: Throughput of different stages as core alloocasoaried (measured as
iterations/1M cycles).

|Core Alloc|| S1 | S2| S3] Exec. Timd
[111 [1116/142[236] 17sec |
4-1-1 2523/118|258| 19 sec
1-4-1 1005|558|278| 13.2 sec
1-1-4 900 (117(290| 19.2 sec

1-4-2 930 [368|285| 14.6 sec
1-2-1 1028/ 274|268 13 sec

When S2 is allocated 4 cores, it shows a speedup of approadyrat. This
is because all cores in S2 work independently without reggiicommunication.
Unfortunately, the overall execution time reduces by onf§@ This is because
as S2 scales, its throughput surpasses the throughput dits8, S3 becomes the
LIMITER. Once S3 becomes the LIMITER, the overall executiore is dominated
by S3.

As S3 is the LIMITER, we expect to improve overall performariy in-
creasing cores allocated to S3. The table also shows theghpait when additional
cores are allocated to S3 (1-4-2). The access to the shatexrtlidata-structure in
S3is protected by a critical section, hence this stage iscadible and overall per-
formance reduces as the number of cores is increased duetention for shared
data. Thus, increasing core counts for S3 does not help vegrerformance while

consuming increased power.

We modify the source code ofank to include library calls to FDP. Figure
6.7 shows the overall throughput and active cores as FDRB@djue core-to-stage
allocation. With the information obtained during trainjiDP identifies S2 as the

LIMITER stage, and allocates it one extra core (1-2-1). k& miext invocation, it

78

identifies S3 as the LIMITER stage, and increases the coret@located to S3
(1-2-2). However, as S3 does not scale, FDP withdraws thra egte given to S3,
and switches to power-optimization mode. In power-optatian mode, FDP saves
power by executing S1 on one of the cores allocated to S2., Tineifinal allocation
is S1+S2 on one core, S2 on another core, and S3 on the thed A&fier this, there
are no opportunities left in the pipeline to save power orrovp performance,
and execution continues on 3 cores completing in 13 secaimdddr to best-static

allocation 1-2-1, but with fewer cores).

‘ S3 gives 1 core
(1-2-1)

- 14 4 S3 gets 1 core]
2 (1-2-2) T T e IR ST S
S O
S13+ . 4 O
2 i ’ " END o
= ettt N 1 < B
3 12 RCTVE CORES ‘ & 3 <
St Stage Combining , ;
£ . |s2gets1core ‘ 885%13 g%+82 £
Z10 prmmmmnans o (1-2-1) CORE?2: S3 13
THROUGHPUT
e e
0 1 3 4 5 184

2
Number of Iterations (x 2K)

Figure 6.7: Overall throughput and active coreg aihk as FDP adjusts core-to-
stage allocation

6.6.1.3 Performance

Figure 6.8 shows the speed-up when the workloads are exeuwiitie the
core-to-stage allocation using 1CorePS, Prop, FDP, arfdd?Based. The speedup
is relative to execution time with a single core systéniThe bar labeledtGmean
is the geometric mean over all workloads. The 1CorePS schEmades only
a marginal improvement, providing minor speedup increaséoar out of seven

workloads. On the contrary, a Profile-Based allocationificantly improves per-

3We run the sequential version without any overheads of stinféiading.

79

=] Core Per Stage

= Prop Assignment

= FDP
Profile-Based

1

Speedup wrt 1 Core
ORrNWAUION

MCarlo compress BScholes pagemine image mtwister rank ferret dedup Gmean

Figure 6.8: Speedup with different core-to-stage allasatichemes.

formance for all workloads, providing an average speedug.86x. However,
Profile-Based requires impractical searching through afisible integer alloca-
tions. Prop avoids this brute force searching and gets amowvement similar to
Profile-Based by providing an average speedup of 2.7x. FOPedoerms or is
similar to the comparative schemes on all workloalf€ar | o gets near optimal
speedup of 7x with FDP because it contains a scalable LIMISEge and FDP
combines all other stages. The workloadnk has a stage that is not scalable,
hence the limited performance improvement with all schentd3P provides an
average speedup of 4.3x. Note, that this significant impreard in performance
comes without any reliance on profile information which iguged for both Prop

and Profile-Based.

6.6.1.4 Number of Active Cores

FDP tries to increase performance by taking core resounwes faster
stages and reallocating it to slower stages. When the st@tagge no longer scales
with additional cores, the spare cores can be turned off ed dsr other applica-
tions. Figure 6.9 shows the average number of active coreagithe execution
of the program for 1CorePS, FDP, and Prop/Profile-Basedh Babp and Profile-
Based allocates all the cores in the system, therefore tieesteown with the same
bar. The bar labeleAmeandenotes the arithmetic mean over all the workloads.

The number of active cores with the 1CorePS is equal to thebeurof
pipeline stages, which has an average of 5.2 cores. The P efile-Based

80

L] 7
8 6* /
¢ 7
= 5
g 2
< 44 7
: %
£ 3. = 1 Core Per Stage
Z . - FDP
S = Prop/Profile-Bas
to © @& ¥ & ¢ N S &
o L o Ca © Q O e
W& P Q’?’& NP R R

Figure 6.9: Average number of active cores for differenecaltocation schemes.

schemes use 8 cores. Ragem ne andnt wi st er, the performance saturates at
7 cores, so FDP does not use one of the cores in the systenheRgotkload ank,
the non-scalable stage means that five out of the eight cargsecturned off. Thus,
FDP is not only a performance enhancing technique but alkis wath reducing
the power consumed by cores when it is not possible to imppevirmance with
more cores. On average, FDP consumes only 7 cores even thitduaghone and
a half times the speedup of the Profile-Based scheme. Thissrfeathe same
number of active cores, FDP consumes two-thirds the enexglgeaProfile-Based
scheme and has a much reduced energy-delay product.

6.6.1.5 Robustness to Input Set

The best core-to-stage allocation can vary with the input®eerefore, the
decisions based on profile information of one input set maypnavide improve-
ments on other input set. To explain this phenomenon, welwmdrekperiments for
theconpr ess workload with two additional input sets that are hard to coesp.
We call these workloadsonpr ess- 2 andconpr ess- 3. The LIMITER stage
S3 forconpr ess- 2 (80K cycles) and foconpr ess- 3 (140K cycles) is much
smaller than the one used in our studies (2.2M cycles). Thesgalable stage

that writes to the output file remains close to 80K cycles lrcases. Thus, the

81

conpr ess workload has limited scalability for the newly added inpetss

Figure 6.10 shows the speedup for the two workloads with &8y Prop,
FDP and Profile-Based. Both Prop and Profile-Based use thsialex made in
our originalconpr ess workload. These decisions in fact result in worse perfor-
mance than 1CorePS faonpr ess- 2, because they allocate more cores to the
non-scalable stage which results in increased conten&®®, on the other hand,
does not rely on any profile information and allocates onlg-ocore to the non-
scalable stage. It allocates two cores to SZfonpr ess- 2 and 3 cores to S3 for
conpr ess- 3. The runtime adaptation allows FDP to outperform all corapae

schemes on all the input sets.

o 14

8 12

— 1.0¢ —
£ 081 === 1 Core Per Stage

2 0.61 ——| === Prop.(Orig)

D 0.4 | m— FDP

8 0.21 Profile-Based(Orig
? 0.0 — |

compress-2 compress-3 Gmean

Figure 6.10: Robustness to variations in input set.

6.6.1.6 Scalability to Larger Systems

We use an 8-core machine as our baseline for evaluation$idrséction,
we analyze the robustness and scalability of FDP to largeesys, using a 16-core
AMD Barcelona machine. We do not show results for 1CoreP&@&gadre similar
to the 8-core system (all workloads have fewer than 8 stagesihermore, a 16-
core machine can be allocated to a 6-7 stage pipeline in aetreusand ways,
which makes evaluating Profile-Based impractical.

Figure 6.11 shows the speedup of Prop and FDP compared tgla sore
on the Barcelona machine. FDP improves performanadl aforkloads compared
to Prop. Most notably, im mage, FDP obtains almost twice the improvement of

Prop. The scalable part ofrage, which transforms blocks of the image from

82

13

e

L12 ;
8% 7% — Prop Assignment
— 9] = FDP
g 8
s 7 % /)
> 6l
g 4
()
3A
S 2 é
n 1
0;
O < - N Q
® \J > N g ¥ & N X 0
> Q N\ & > N S & O 4
NI S S

Figure 6.11: FDP’s performance on 16-core Barcelona.

colored to gray scale, continues to scale until 6 cores. Thergarts, reading and
writing from the file, do not scale. Prop allocates cores tthestage proportionally
assuming equal scaling. However, the cores allocated tesnalable parts do not
contribute to performance. FDP avoids such futile allawai On average, FDP

provides a speedup of 6.13x compared to 4.3x with Prop.

As the number of cores increases, the performance of sorhe @fdrkloads
starts to saturate. Under such scenarios, there is no roampt@ve performance
but there is a lot of potential to save power. Figure 6.12 shthe average number
of active cores during the workload execution with FDP armapPSince Prop allo-
cates all cores, the average for Prop is 16. When cores doontilaute to perfor-
mance FDP can deallocate them, thereby saving power. Fargggpagem ne
contains four stages in the pipeline that do not scale becatisritical sections.
FDP allocates 7 cores to the scalable stage, 1 core each nomhgcalable stages,
and 1 more core to the input stage. The remaining four comasireunallocated.
On average, FDP has 11.5 cores active, which means a core pedvestion of
more than 25%. Thus FDP not only improves overall perforreaggnificantly but

can also save power.

If all cores were active, then the energy consumed by FDP avbal30%

less compared to Prop (measured by relative execution ti@iggen that FDP uses

83

P B S

OFNWRUIO~NC0OORNWAUIO

Avg. Num. Active Cores

Figure 6.12: FDP’s power on 16-core Barcelona.

25% fewer cores than Prop, FDP consumes less than half thigyeoensumed
by Prop. Thus, FDP is an energy-efficient high-performanaméwork for imple-

menting pipelined programs.

6.6.2 Evaluation of ALS

We now evaluate how well ALS can accelerate the limiter stage

6.6.2.1 Evaluation Methodology

We simulate two configurations: Baseline (a baseline SCNRY an
ACMP. The parameters of each small core, the interconnaches, and the mem-

ory sub-system are shown in Table 6.5.

Table 6.6 shows the simulated workloads. We developed dipguemple-
mentation of the dedup decoder based on the sequential téeRSEC [15] and
call it dedupD.

6.6.2.2 Performance at One Core per Stage

We first compare SCMP and ACMP when only one core is assigneadio
stage. SCMP assigns a small core to each stage while the AGBigha the large
core to the limiter stage (the stage with the longest exendime) and a small core

84

Table 6.5: Configuration of the simulated machines.

Small core

2-wide, 2GHz, 5-stage, in-order

Large core

4-wide, 2GHz, 2-way SMT, 128-entry ROB, 12-stage, out+afen; 4x the area

of small core

Interconnect

64-byte wide bi-directional ring, all queuing delays maklminimum cache
to-cache latency of 5 cycles

Coherence

D

MESI on-chip distributed directory similar to SGI Origingh cache-to-cach
transfers, # of banks = # of cores, 8K entries/bank

Prefetcher

Aggressive stream prefetcher [99] with 32 stream buffees) stay 16-lines
ahead, prefetches into cores’ L2 caches

Caches

Private L1l and L1D: 32KB, write-through, 1-cycle, 4-wayivate L2: 256KB,
write-back, 6-cycle, 8-way (1MB, 8-cycle, 16-way for largere). Shared L3:
8MB, 20-cycle, 16-way

Memory

32 banks, bank conflicts and queuing delays modeled. Pghactivate, colf
umn access latencies are 25ns each

Memory bus

4:1 CPU/bus ratio, 64-bit wide, split-transaction

| Area-equivalent CMPs. Area is equal to N small cores. We tafsom 1 to 64. |

SCMP

N small cores. Core-to-stage allocation chosen using FDP.

ACMP

1 large core and N-4 small cores; Core-to-stage allocatimsen using FDR;
large core runs the limiter stage

Table 6.6: Workload characteristics.

Workload

Input

Description (No. of pipeline
stages)

Major steps of computa-
tion

black

BlackScholes Financial Ke|

nel [74](6)

rCcompute each option

call/put value

4 M opts

compress

File compression using bzifg
algorithm(5)

Read file, compress, r
order, write

4 MB text file

dedupE

De-duplication (Encoding) [15
)

Read, find anchors, chun
compress, write

lsimlarge

dedupD

De-duplication (Decoding) [15
)

Read, decompress, che
cache, reassemble/write

aimlarge

ferret

Content based search [1(&)

Load, segment, extraq
vector, rank, out

simlarge

image

Image conversion from RGB 1
gray-scalg5)

d&ead file, convert, re-orde
write

A 00M pixels

mtwist

Mersenne-Twister PRNG [74Read

(5)

seeds,
PRNs, box-muller

generapath=200M

rank

Rank string similarity with anRead string, compare, raf

input string(3)

nBOOK strings

sign

Compute the signature of
page of tex(7)

Read page and compd
signature

teM pages

to each of the remaining stages. Figure 6.13 shows the egadirne of ACMP
(with ALS) normalized to the execution time of SCMP. Notetthas is not an

equal-area comparison as the ACMP’s large core occupieartgeof four small

cores.

ACMP significantly reduces the execution time of all worldeaexcept

85

100 —_—

o]
o

o]
o

N
o
|

N
o
|

Exec. Time Norm. to Baseline

o
|

2
9
N- @
PN
S

4
bQQ &,\Q‘/\' ,OQQ' @\6

L
S
R ¥ @ & N <

Figure 6.13: Speedup at 1 Core Per Stage (not area-equtivalen

ntw st where ACMP’s improvement is only marginaht wi st contains two
stages, S3 and S4, which have almost the same average erdaue (within 3%
of each other) . ALS accelerates only S3 which makes S4 theelistage and the
overall performance stays similar to the baseline. In dleotworkloads, ACMP
reduces execution time significantly. For example, ACMPuosd the execution
time of bl ack by 44% because the limiter stagebhack consists of a regular
loop with large amounts of memory level parallelism (MLP)h#vibl ack’ s lim-
iters runs at the large core, the large core is able to ex{fi@tMLP (due to its out
of orderness) and accelerate the stage significantly. Tamskates into very high
overall performance for ACMP.

6.6.2.3 Performance at Best Core-to-stage Allocation

We now compare ACMP and SCMP where FDP was used to choosedhe be
core-to-stage allocation for each application-configarapair. The comparisons
are done at an equal-area budget of 32-cores.

Figure 6.14 shows the execution time of ACMP normalized &etkecution
time of SCMP. ACMP significantly reduces the execution tirheaven out of the
nine workloads. For example, i gn, ACMP reduces execution time by 20%.
si gn consists of four stages of computation: a stage to allocamony (S1),
a stage to compute signatures of input pages of text (S2age b process the

86

100+ —_—

o]
o
|

o]
o
|

N
o
|

N
o
|

Exec. Time Norm. to Baseline

o
|

2]
\Q’% e}QQQ/
6@

ok

L
‘Q\fb bQ;éoQ

XN < .
&) ©
s SRS R

Figure 6.14: Speedup with FDP at an equal area budget of 3 cones.

signatures (S3), and a stage to deallocate memory reso@2as compute-bound
while S3 is dominated by a critical section which inhibits @bility to scale with
the number of cores. At one core per stage, S2 has the longasiten time and is
thus the limiter. As the the number of cores increase, FDRjassnore and more
cores to S2. When S2 has been assigned four cores, S3 bedwiesiter. Since
S3 does not scale, SCMP’s performance saturates. Howev&CMP, FDP then
assigns S3 to the large core. Accelerating S3 again makekeSPiter which
allows the workload to leverage another small core, theirbyeasing the overall
performance by 20%.

Why does ACMP not benefitbl ack and nt wi st ? The dominant stages
in bl ack andnt wi st scale with the number of cores. Since the limiter stages
scale, they only marginally benefit from the large core in #&MP. To provide
more insights, we further analyzdd ack. bl ack has six stages (S0-S6). SO
and S5 perform memory allocation and deallocation respalgti S1-S4 perform
different steps of computation and are very scalable. FD®immoes to assign more
and more cores to the scalable stages. For the 32-core SAMPaBsigns SO0-S5
one, two, eight, nine, eight, and four cores respectivelg.af§o find that the stages
S0, S2, and S3 have approximately the same throughput. &baslerating any
one of them using the large cores does not improve performawe find that as
the area budget increases, more cores are assigned to thblscdiages S2 and
S3 which makes SO the limiter stage, thereby providing ofppaty for ACMP to

87

improve performance via accelerating SO.

100+

80

60 e Baseline-32

40

Exec. Time Norm. to Baseline-32

Figure 6.15: Performance of ACMP foit ack at an area budget of 40.

To analyze this effect, we also comparéack’ s performance on an
ACMP and SCMP at an area budget of 40. Figure 6.15 shows e@adiine
of black on four configurations: the baseline SCMP with aradradget of 32
(baseline-32), the baseline SCMP with an area budget of @€e(ine-40), ACMP
with an area budget of 32 (ACMP-32), and ACMP with an area btidg 40
(ACMP-40). Note that the execution times of Baseline-32 Badeline-40 are
nearly equal. However, ACMP-40 is 20% faster than both SG24Rnd SCMP-40
and 15% faster than the ACMP-32. We conclude that ACMP irs@gaerformance
as well as scalability. Furthermore, its benefit will funtivecrease as the chip area

increases, and pipeline programs becomes limited by nalaisie stages.

88

Chapter 7

Data Marshaling

7.1 The Problem

Taking advantage of the ACMP requires shipping work to thigdacore
whenever it is beneficial to run it at the large core. Howewdren a work-quanta
executes at the large core, itincurs cache misses in fefasimorking set from the
small core. This lowers the IPC of the large core, therebyced) the benefit of
sending the work to the large core. To this end, we pro@esa Marshaling (DM)
which identifies the data needed by the large core and pvahctransfers it to the
cache of the large core from the cache of the small core. DNk laeneficial for
pipeline parallelism where each stage runs on a differerg and the input data for

the stage has to be transferred from the core executing éveopis stage.

We first explain a general implementation of DM and then exptae
specifics which make it applicable to the ACMP. To design aegarDM, we first

generalize the problem by introducing an abstraction lagdedstaged execution

Staged ExecutionThe central idea of Staged Execution (SE) is to split a
program into codesegmentand execute each segment where it runs the best. If
more than one cores are equally suited for a segment, diffénstances of the
segment can run on any one of those cores. Thuddhee coreof an instance of a
segment is the core where that particular instance execlitescriteria commonly
used to choose a segment’s home core include performanicaldy, functionality,
and data requirements, e.g. critical sections which areherctitical path of the
program are best run at the fastest core. Other mechanisthetse the home core
are beyond the scope of this thesis and are discussed inwthkeon SE [18, 21,
32,96].

89

Implementation: Each core is assigned a work-queue, which can be imple-
mented as a hardware or a software structure. The work-cgteues the execution
requests to be processed by the corresponding core. Eaghirettie queue con-
tains an identifier of the segment to be processed. The faerdan be a segment
ID, the address of the first instruction in the segment, or iatpoto a function
object. Each core continuously runs in a loop, processiggeats from its work-
gueue. Every time the core completes a segment, it dequsaiasxt entry from the
work-queue and processes the segment referenced by thatléthe work-queue

iIs empty, the core waits until a request is enqueued or thgrano finishes.

The program is divided intesegmentswhere each segment is best suited
for a different core. Each segment, except the first, hasesious-segmerithe
segment that executed before it) andext-segmen(the segment that will execute
after it).

At the end of each segment is guitiation routinefor its next-segment. The
initiation routine performs two tasks. First, it chooses the home core of thé nex
segment from one of the cores assigned to the nest-segmexdnd it enqueues
a request for execution of the next-segment at the chosem lcone. We call the
core that runs the initiation routine to request a segmexésution the segment’s
requesting core

We now explain SE using an example. Figure 7.1a shows a calam&
that computes the values of X, Y, and Z. The code can be divitledthree seg-
ments: A, B, and C (shown in Figure 7.1b). Segment A is SegB&nprevious-
segment and Segment C is Segment B’s next-segment. At thefédehment A
is Segment B’s initiation routine and at the end of Segmerg Bagment C’s ini-
tiation routine. Figure 7.1c shows the execution of thisecod a CMP with three
cores (P0-P2) with the assumption that the home cores of &agm\, B and C
are PO, P1, and P2 respectively. After completing SegmemRCAruns Segment
B’s initiation routine, which inserts a request for the exi@an of Segment B in

P1's work-queue. Thus, PO is Segment B’s requesting coreéeBaeues the entry,

90

executes segment B, and enqueues a request for Segment G wdPR-queue.
Processing at P2 is similar to the processing at PO and P1.

PO Pl Pz
Segment A:
aza+1l a=a+l
X=a+2 X=a+2
Segment B:
b=b+2 b=b+2
Y=X+b Y=X+b
c=c-1 Segment C:
c=c-1
Z=Y+c Z=Y+c
() (b) (c)

Figure 7.1: (a) Source code, (b) code segments, and (c)akeaution in SE.

We define thdnter-Segment Dataof a segment athe data the segment
requires from its previous segmeifor example, Segment B in Figure 7.1 requires
the variable X to compute Y. Thus, X is Segment B’s inter-segtata. Locality
of inter-segment data is very high in models where conseewegments run on
the same core: the first segment generates the data whichameayr in the local
cache until the next segment can use it. However, in SE, sesde inter-segment
data incur cache misses and the data is transferred fronethuesting core to the
home core via the cache coherence mechanism. For examgtegure 7.1c, P1
incurs a cache miss to transfer X from PQ’s cache. Simil&&jincurs a cache miss
for Y, which is Segment C’s inter-segment data. These cadssa® limit SE’s

performance.

7.2 Mechanism

Data Marshaling (DM)aims to reduce cache misses to inter-segment data.
In DM, the requesting core identifies the inter-segment dathmarshals it to the
home core when it ships a segment to the home core. We firs #imakey insight
that forms the basis for DM.

91

7.2.1 Key Insight

We first define new terminology. We call the last instructibattmodifies
the inter-segment data in a segmegeaerator For example, consider the code in
Figure 7.2 with two segments: S1 and S2. In this case, A isiB@&ssegment data:
itis written by an instruction in S1, thi8TORE on line 2, and read by an instruction
in S2, the LOAD on line 4. Thus, theTOREoN line 2 is A's generator since there
are no other stores to A between this STORE and the initiai@@egment S2. The
LOAD on line 1 isnota generator because it does not modify A and the STORE on
line O isnota generator since there is a later STORE (the one on line 2) WeA
generalize our definition of generators to cache lines bgfirthg a generator as
the last instruction that modifies a cache line containingirsegment data before
the next segment begins.

Segment S1: ; Previous-segment of S2
0: STOREA
1: LOAD A
2: STORE A ; A's generator
3: CALL Initiation(S2)
Segment S2: ; Currently executing segment
: LOAD A ; Inter-segment data access

4
5. .
6: CALL Initiation(S3)

Figure 7.2: Concept of “generator of inter-segment data”.

We call the set of all generator instructions, i.e. genegatdf all the
cache lines containing inter-segment data,gbeerator-setWe observed that the
generator-set of a program is often small and does not vaigglthe execution of
the program and across input sets (See Section 7.3.4.1tllg)eThis implies that
any instruction that has once been identified as a genetatgs a generator. Thus,
a cache line written by a generator is very likely to be irdegment data required
by the following segment, hence, a good candidate for datahmbng. Based on
this observation, we assume tleatery cache line written by an instruction in the

generator-set is inter-segment data and will be neededhiekecution of the next

92

segmentWe call the set of inter-segment data cache lines genebgtedsegment
its marshal-set DM adds all cache lines written by generators to the marséal
When a core finishes the initiation routine of the next segmahcache lines that
belong to the marshal-set are transferred to the next-segg®me core.

We only marshal data between consecutive segments for agons: 1) it
achieves most of the potential benefit since we measure 8%td the data re-
quired by a segment is written by the immediately precedegreent, and 2) in
most execution paradigms, the requesting core only knoveseviine next segment
will run, but not where the subsequent segments will run. sTmoarshaling data
to non-consecutive segments requires a substantially kocaigd mechanism. Effi-
cient mechanisms for marshaling data to non-consecutyasets is a part of our

future work.

7.2.2 Overview of the Architecture
The functionality of DM can be partitioned into three distiparts:

Identifying the generator-set: DM identifies the generator-set at compile-
time using profiling. We define tHast-writer of a cache line to be the last instruc-
tion that modified a cache line. ThusJine is inter-segment data if it is accessed
inside a segment but its last-writer is a previous segmestruction Since the
generator-set is stable, we assume that last-writers ahtf-segment data are
generators. Thus, every time DM detects an inter-segmeitecne, it adds the
cache line’s last-writer to the generator-set (unlessatrisady in the generator-set).
The compiler conveys the identified generator-set to thevaare using new ISA

semantics.

Recording of inter-segment data: Every time an instruction in the
generator-set is executed, its destination cache lineedigtied to be inter-segment
data and added to the marshal-set.

Marshaling of inter-segment data: All elements of the marshal-set are
transferred, i.e. marshaled, to the home core of the nextisat as soon as the

93

On every memory access:
If cache-line not present in segment’s accessed lines abeider is from previous segment
Add last-writer to generator-set

On every store:
Save address of store in current-last-writer

At the end of segment:
Deallocate previous-last-writer
current-last-writer becomes previous-last-writer
Allocate and initialize current-last-writer

Figure 7.3: The profiling algorithm.

execution request is sent to the next-segment’s home core.

For example, DM for the code shown in Figure 7.2 works as wdloDM
detects A to be inter-segment data, identifies the STOREnandito be As last-
writer, and adds it to the generator-set. When the STOREn@diexecutes again,
DM realizes that it is a generator and adds the cache linedlifies to the marshal-
set. When the core runs the initiation routine for S2, DM rhatrs all cache lines
in the marshal-set to S2’'s home core. Consequently, whex&2utes at its home

core, it (very likely) will incur a cache hit for A.

7.2.3 Profiling Algorithm

Our profiling algorithm runs the application as a single #t-@nd instru-
ments all memory instruction's The instrumentation code takes as input the PC-
address of the instrumented instruction and the addredseafdche line accessed
by that instruction. Figure 7.3 shows the profiling algamth The algorithm re-
quires three data structures: 1)g&nerator-sethat stores the identified generators,
2) A current-last-writertable that stores the last-writer of each cache line modified
in the current segment, and 3)pkevious-last-writetable that stores the last-writer
of each cache line modified in the previous segment.

We also evaluated a thread-aware version of our profilinghaeism but its results did not
differ from the single-threaded version.

94

For every memory access, the algorithm checks whether dhedine was
modified in the previous segment by querying the previoss\aiter table. If the
line was not modified in the previous segment, the line is igdo If the cache
line was modified in the previous segment, the last-writghefline (an instruction
in the previous segment) is added to the generator-set. \&hé@mstruction modi-
fies a cache line, the profiling algorithm records the ingtancas the last-writer of
the destination cache line in the current-last-writer éabAt the end of each seg-
ment, the lookup table of the previous segment is discarthedcurrent segment
lookup table becomes the previous segment lookup tableaarelv current seg-
ment lookup table is initialized. After the program finishds generator-set data

structure contains all generators.

7.2.4 ISA Support

DM adds two features to the ISA: a GENERATOR prefix and a MAREHA
instruction. The compiler marks all generator instructidny prepending them with
the GENERATOR prefix. The purpose of the MARSHAL instructierio inform
the hardware that a new segment is being initiated and peaviel hardware with
the ID of the home core of the next segment. The instructikes@ahe home core
ID of the next-segment as its only argument. When the MARSHdtruction
executes, the hardware begins to marshal all cache lingeimarshal-set to the
core specified by HOME-CORE-ID. We discuss the overheadeaddlthanges in
Section 7.2.9.

7.2.5 Library Support

DM requires the initiation routines to executdARSHAL instruction with
the ID of the core to which the segment is being shipped. Simtation routines
are commonly a part of the library or run-time engine, thedilg or the run-time
that decides which core to ship a task to is modified to exeti#&ARSHAL in-
struction with the correct HOME-CORE-ID.

95

7.2.6 Data Marshaling Unit

Each core is augmented with a Data Marshaling Unit (DMU),clihs in-
charge of tracking and marshaling the inter-segment dathgdome core. Fig-
ure 7.4(a) shows how the core and the DMU are integrated r&igd(b) shows the
microarchitecture of the DMU. Its main component idarshal Bufferto record
the addresses of all cache lines to be marshaled. Figure) 8lddws the operation
of the DMU. When the core retires an instruction with the GEMEOR prefix, it
sends the physical cache line address written by the ingirut the DMU. The
DMU enqueues the address in the Marshal Buffer. The Marst#ié€Bis combin-
ing, i.e. multiple accesses to the same cache line are cechlnito a single entry,
and circular, i.e. if it becomes full its oldest entry is repdd with the incoming
entry.

When the core executes the MARSHAL instruction, it assénessMAR-

SHAL signal and sends the HOME-CORE-ID to the DMU. The DMUtstanar-
shaling data to the home core. For each line address in thehdiaBuffer, the
DMU accesses the local L2 cache to read the coherence sthigaém If the line
is in shared state or if a cache miss occurs, the DMU skipditiatlf the line is in
exclusive or modified state, the DMU puts the line in a temposéate that makes it
inaccessible (similar to [68]) and send®M Transaction(see Section 7.2.7) con-
taining the cache line to the home core. The home core isgtal marshaled line
in its fill buffer and responds with an ACK, signaling the regting core to invali-
date the cache line. If the fill buffer is full, the home corepends with a NACK,
signaling the requesting core to restore the original sihthe cache line.

Note that we marshal the cache lines to the private L2 cachlieeohome
core. Marshaling the cache lines into the L2, instead of Lds the advantage
that DM does not contend with the home core for cache bantiwidoreover,
since L2 is bigger than L1, cache pollution is less likely. wéoer, marshaling
into L2 implies that the core will incur an L1 miss for inteegiment data cache

lines. We found that the benefit of marshaling into the L2 @ighs the overhead

96

(Destination of] (.) (Requesting DMU Home)
Generator Inst. & ggité?g%?r}r?ét Core Core
MARSHAL signal from core ' Cache Line
— .
Time Execution
Data MARSHAL signal Marshal | Request
: from core Buffer MARSHAL | =
Marshalling Signal Q.
Unit (DMU)
Marshaled
] Addresses of cache lines Cache
To on—chip to be marshaled Lines
interconnect
\ J \ J \ J
(a) DMU integration (b) DMU architecture (c) DMU Functionality

Figure 7.4: Data Marshaling Unit.

of marshaling into the L1.

7.2.7 Modifications to the On-Chip Interconnect

The interconnect supports one n®&M transaction which is sent by the
DMU to a remote core. Each DM transaction is a regular panpdint message
containing the address and data of a marshaled cache ling, iflhequires exactly
the same interconnect support (wires, routing logic, eitg cache line fill during
a cache-to-cache transfer, which is supported by existM§ &

7.2.8 Handling Interrupts and Exceptions

The virtual-to-physical address mapping can change on t@nrupt or an
exception such as a page fault or expiration of the operatystem time quantum.
In such a case, the contents of the Marshal Buffer may becovaéid. Since DM
is used solely for performance and not for correctness, wgldly the design by
flushing the contents of the Marshal Buffer every time anrmig or exception

OcCcurs.

7.2.9 Overhead

DM has the potential to improve performance significantly regucing

inter-segment cache misses. However, it also incurs soexead:

97

e DM adds a GENERATOR prefix to all generator instructions. sThas the
potential to increase I-cache footprint. However, we findtttihe generator-
set of each application is small: 55 instructions on averageis, adding the
GENERATOR prefixes increases the I-cache footprint onlygimealy.

e DM adds a MARSHAL instruction at the end of each segment. Nezlead
of the MARSHAL instruction is low as it does not read/writeyasiata. The
overhead is further amortized as it executes only once ggneet, which often
consists of thousands of instructions.

e The DMU can contend with the core on L2 cache accesses. Howing
overhead is no different from the baseline, where the casteache transfer
requests for the inter-segment data contend for the L2 cache

e DM augments each core with a Marshal Buffer. The storagehaaat of this
buffer is small: only 96 bytes/core (16 entries of 6-byteshet® store the phys-
ical address of a cache line). We discuss the sensitivitedbpmance to Mar-

shal Buffer size in Section 7.3.4.8.

In summary, DM’s overhead is low, and is outweighed by itsdfigs. We

now discuss how DM can be used by different execution panaslig

7.3 DM for Accelerated Critical Sections (ACS)

Data Marshaling is beneficial in any execution paradigm tisas the basic
principle of Staged Execution. In this section we descirifeeapplication of DM to

significantly improve Accelerated Critical Sections (ACS)

7.3.1 Private Data in ACS

By executing all critical sections at the same core, ACS &dbp shared
data (protected by the critical sections) and the lock s (protecting the critical
section) at the large core, thereby improving locality oaigdl data. However,
every time the critical section accesses data generateitdeuhe critical section
(i.e. thread-private data), the large core must incur caeisses to transfer this data

98

from the small core. Since this data is generated in the mibicad-section segment
and accessed in the critical-section segment, we clagsify inter-segment data.
Marshaling this data from the small core to the large corerednce cache misses at
the large core. Note that marshaling the inter-segmentgiatarated by the critical-
section segment and used by the non-critical-section segamy speeds up the
non-critical section code, which is not critical for ovdrperformance. We thus
study marshaling private data from the small core to thedagre. Since private

data and inter-segment data are synonymous in ACS, we useniterchangeably.

7.3.2 Data Marshaling in ACS

Employing DM in ACS requires two changes. First, the compitest iden-
tify the generator instructions by running the profiling @lighm in Section 7.2.3,
treating critical sections and the code outside criticaltisas as two segments.
Once the generator-set is known, the compiler prependsedhergtor instructions
with the GENERATOR prefix. Second, the compiler/library minsert the MAR-
SHAL instruction into the initiation routine of every cigl-section segment, right
before the CSCALL instruction. The argument to the MARSHAItruction, the
core to marshal the data to, is set to the ID of the large core.

7.3.3 Evaluation Methodology

Table 7.1 shows the configuration of the simulated CMPs,gusimr in-
house cycle-level x86 simulator. All cores, both large amal, include a state-of-

the-art hardware prefetcher, similar to the one in [99].

Unless specified otherwise: 1) all comparisons are donetsatl egiea bud-
get, equivalent to 16 small cores, 2) the number of threadedoh application is

set to the number of available contexts.

Workloads: Our evaluation focuses on 12 critical-section-intensioekwy
loads shown in Table 7.2. We define a workload to be critieakisn-intensive if
at least 1% of the instructions in the parallel portion arecexed within critical

99

Table 7.1: Configuration of the simulated machines.

Small core

2-wide, 2GHz, 5-stage, in-order

Large core

4-wide, 2GHz, 2-way SMT, 128-entry ROB, 12-stage,
out-of-order; 4x the area of small core

Interconnect

64-byte wide bi-directional ring, all queuing delays mod-
eled, minimum cache-to-cache latency of 5 cycles

Coherence

MESI on-chip distributed directory similar to SGI Ori-
gin [59], cache-to-cache transfers, # of banks = # of
cores, 8K entries/bank

Prefetcher

Aggressive stream prefetcher [99] with 32 stream
buffers, can stay 16-lines ahead, prefetches into cores’
L2 caches

Caches

Private L1l and L1D: 32KB, write-through, 1-cycle, 4-
way. Private L2: 256KB, write-back, 6-cycle, 8-way
(1MB, 8-cycle, 16-way for large core). Shared L3: 8MB,
20-cycle, 16-way

Memory

32 banks, bank conflicts and queuing delays modeled.
Precharge, activate, column access latencies are 25ns
each

Memory bus

4:1 CPU/bus ratio, 64-bit wide, split-transaction

[Area-equivalent CMPs. Area is equal to N small cores. We dafyom 1 to 64.

ACMP 1 large core and N-4 small cores; large core runs serial
part, 2-way SMT on large core and small cores run paral-
lel part, conventional locking (Maximum number of con-
current threads = N-2)
ACS 1 large core and N-4 small cores; (N-4)-entry CSRB at
the large core, large core runs the serial part, small cores
run the parallel part, 2-way SMT on large core runs criti-
cal sections using ACS (Max. concurrent threads = N-4)
IdealACS | Same as ACS except all cache misses to private data on
the large core arieleally turned into cache hits. Note that
this is anunrealisticupper bound on DM.
DM Same as ACS with support for Data Marshaling
Table 7.2: Simulated workloads.
Workload Description Source Input set # of disjoint What is Protected by CS?
critical sectiong
is Integer sort NAS suite [13] n = 64K 1 buffer of keys to sort
pageming Data mining kernel | MineBench [70] 10Kpages 1 global histogram
puzzle 15-Puzzle game [109] 3x3 2 work-heap, memoization tab
gsort Quicksort [27] 20K elem. 1 global work stack
sqlite Database [3] SysBench [4] | OLTP-simple 5 database tables
tsp Traveling salesman prob. [55] 11 cities 2 termination cond., solution
maze 3D-maze solver 512x512 maze 2 Visited nodes
nqueen N-queens problem [48] 40x40 board 534 Task queue
iplookup IP packet routing [105] 2.5K queries | # of threads routing tables
mysql-1 MySQL server [2] SysBench [4] | OLTP-simple 20 meta data, tables
mysql-2 MySQL server [2] SysBench [4] | OLTP-complex 29 meta data, tables
webcache Cooperative web cache [101] 100K queries 33 replacement policy

0]

sections. The benchmarkaze solves a 3-D puzzle using a branch-and-bound al-

gorithm. Threads take different routes through the mazsrimew possible routes

in a shared queue and update a global structure to indicatéwdutes have already

been visited.

100

7.3.4 Evaluation

We evaluate DM on several metrics. First, we show that thegear-set
stays stable throughout execution, Second, we show theagpeeaccuracy, and
timeliness of DM followed by an analysis of DM’s effect on Laahe miss rate
inside critical sections. Third, we show the effect of DM twe tPC of the critical
program paths. Fourth, we compare the performance of DMabdhthe baseline

ACS and idealACS (ACS with no misses for private data) ateddht number of
cores.

7.3.4.1 Stability of the Generator-Set

DM assumes that the generator-set, the set of instructidmshvwgenerate
private data, is small and stays stable throughout exetuflo test this assump-
tion, we measure the stability and size of the generatoifséie 7.3 shows the size
and variance of the generator-set in 12 workloads. Varigsmtiee average number
of differences between intermediate generator-sets (octedpevery 5M instruc-
tions) and the overall generator-set divided by the genesat’s size. In all cases,
variance is less than 6% indicating that the generatorssstable during execution.
We also evaluated the stability of the generator-set oedifft input sets and found
that the generator-set is constant across input sets.

Table 7.3: Size and variance of Generator-Set.

= 2

R o

E|w 0| B 212|128 g
Q N = N (0] 2 [} O o (8] b
2IN|glald |2 (5|22 |2|8|

Workload | 2 |a|la|c |l | E|lc || 2E|E| 2| &

Size 3110(24(23(34(49|111|23|27|114|277| 7 ||58.5
Variance (%) 0.1/0.1{0.1/0.9|3.0|2.2| 4.9/4.2/4.3|6.4| 6.3|1.2|| -

7.3.4.2 Coverage, Accuracy, and Timeliness of DM

We measure DM’s effectiveness in reducing private dataesissing three

metrics: coverage, accuracy, and timelingssverageis the percentage of private

101

data cache lines identified by DMccuracy is the percentage of the marshaled
lines that are actually used at the large cdrienelinessis the percentage of useful
marshaled cache lines that reach the large core before thayeeded. Note that
a marshaled cache line that is in transit when it is requesyethe large core is
not considered timely according to this definition, but ihgaovide performance

benefit by reducing L2 miss latency.

Figure 7.5a shows the coverage of DM. DM is likely to detetpalate
lines because it optimistically assumes that every instbadhat once generates
private data always generates private data. We find that Di#red®9% of L2
cache misses to private data in all workloads exteppt The private data im s is
117 cache lines, which fills up the Marshal Buffer, and thuesa private lines are
not marshalled (See Section 7.3.4.8).

Coverage(%)

S 30 [|

S 40 i1l | i1

3

s 2ot HHHEH

< 0
d d
c C QNS -
=L+ 009 L LtOg
25N FRSEEFFa 2
#8380 E3580258¢

(b)

< 100

% “so H

7 WK rinli

¢ I ERRRNNN]

s 50 0K EENRNNN]

el 1 1 iiinnnn|
d d
c C NS -
=P 0oLt Q
S¥5588einzis
= U),,(Q ST RN E
D3 ETHO >>2
go_ c E-EE%)'C

Figure 7.5: (a) Coverage, (b) Accuracy, and (c) Timelind43Md.

102

Figure 7.5b shows the accuracy of DM. Recall our assumptiah évery
cache line written by any of the generator instructions isgte data. This as-
sumption is optimistic since a generator’s destinatiorhedme may or may not be
used by a critical section depending on control-flow inslukedritical section. For
example, the critical sections in the irregular databased@adsnysql - 1 and
nmysql - 2 have a larger amount of data-dependent control flow ingtmstwhich
leads to a lower accuracy of DM. Despite our optimistic agstion, we find that
a majority (on average 62%) of the cache lines marshaled seilu Moreover,
note that marshaling non-useful lines can cause cachetjoolland/or interconnect
contention, but only if the number of marshaled cache lisdsigh. We find this
not to be the case. Table 7.4 shows the number of cache linshabad per critical
section for every workload. In general, we found that trangfig only an average
of 5 cache lines, 62% of which are useful on average, causasimat amount of
cache pollution and/or interconnect contention.

Table 7.4: Average number of cache lines marshaled pecairgiection

= 2
= o
E | o S 2 = & & c
o | N | E el o o | § | T | T O @
2N |S|o|R|2|=2|e|2]2 8¢
Workload (2| 8 |3 | & |2 | |28 | F|2|E| E | 2| =
Lines Marshaledi16| 8.95/5.64] 1.78/ 3.62| 1.82(2.78| 8.51| 2.89| 9.83| 15.39 1.83|[4.99

Figure 7.5¢c shows DM’s timeliness. We find that 84% of the wisediche
lines marshaled by DM are timely. Since coverage is closeO@/d, timeliness
directly corresponds to the reduction in private data cacieses. DM reduces
99% of the cache misses for private datgpmgem ne where timeliness is the
highest. Inpagem ne, the main critical section performs reduction of a tempprar
local histogram (private data) into a persistent globaldgsam (shared data). The
private data is 8 cache lines: 128 buckets of 4-bytes eacdlee3he critical section
is long (212 cycles on the large core) and contention at tigeeleore is high, DM
gets enough time to marshal all the needed cache lines bitieyeare needed by
the large core. DM’s timeliness is more than 75% in all wogkls. We show in

Section 7.3.4.7 that timeliness increases with largereades.

103

7.3.4.3 Cache Miss Reduction Inside Critical Sections

Table 7.5 shows the L2 cache misses per kilo-instructiok@éeritical sec-
tions (CS-MPKI) for ACS and DM. When DM is employed, the amigtic mean of
CS-MPKI reduces bp2% (from 8.92 to 0.78). The reduction is only 52%:iis
because s has low coverage. We conclude that DM (almost) eliminatesdche
misses inside critical sections.

Table 7.5: MPKI inside critical sections.

2 2
E | o & S22 18s|s
() N = o o} o | S| T o 3] @ ©
21y 9 o | ® = 2|22 %238 g g
Workload| .2 o a o | @ S =3 7| 2| E e 2 < <
ACS |3.02/15.60/4.72|25.53 0.79|22.51 16.94 0.75|0.96| 4.97| 10.86| 0.85|| 8.92(| 1.59
DM 1.43| 0.22]0.48| 0.23]0.89| 2.15| 1.33|0.35/0.41|0.47| 1.18|0.13|/0.78|/0.42

7.3.4.4 Speedup in Critical Sections

DM'’s goal is to accelerate critical section execution byuadg cache
misses to private data. Figure 7.6 shows the retired cliieation-instructions per-
cycle (CS-IPC) of DM normalized to CS-IPC of baseline ACSwbrkloads where
CS-MPKI is low or where L2 misses can be serviced in paraDdll's improve-
ment in CS-IPC is not proportional to the reduction in CS-MPRor example, in
webcache, DM reduces CS-MPKI by almost 6x but the increase in CS-IPC is
only 5%. This is because CS-MPKI ekbcache is only 0.85. Recall that these
misses to private data are on-chip cache misses that alieesthy cache-to-cache
transfers. Thus, an MPKI of 0.85, which would be significdittwere for off-chip
misses, is less significant for these lower-latency on-afigses.

In workloads where CS-MPKI is higher, such agiagem ne, puzzl e,
gsort,andnqueen, DM speeds up critical section execution by more than 10%.
Most notablyhqueen’ s critical sections execute 48% faster with DM. Note that
in none of the workloads do critical sections execute slomi#y DM than in ACS.

On average, critical sections execute 11% faster with DMpaned to ACS. Thus,

104

in benchmarks where there is high contention for criticatisms, DM will provide
a high overall speedup, as we show next.

130- 148

CS-speedup over ACS
=
|

puzzle
gsort
tsp
maze
nqueen
sqlite
iplookup
mysql-1
bcache
hmean

()
=

°§
o
@
a

s mysql-2
5 we

3
@)
)
<

Figure 7.6: Increase in CS-

7.3.4.5 Performance

DM increases the IPC of critical sections, thereby redutirggtime spent
inside critical sections. For highly-contended criticatgons, reducing the time
spent inside the critical section substantially increasesall performance. More-
over, as the number of available cores on a chip increasest{whan increase the
number of concurrent threads), contention for criticakisers further increases and
DM is expected to become more beneficial. We compare ACMP,, 88 DM at
area budgets of 16, 32 and 64 small cores.

Area budget of 16: Figure 7.7 shows the speedup of ACMP, DM, and Ide-
alACS compared to the baseline ACS. DM outperforms ACS owatkloads, by
8.5% on average. Most prominently, ragem ne, puzzl e, andgsort, DM
outperforms ACS by more than 10% due to large increases itRCS4n other
benchmarks such asp andnqueen, DM performs 1-5% better than ACS. Note
that DM’s performance improvement strongly tracks the@ase in critical section
IPC shown in Figure 7.6. There is one exceptiogueen, where the main critical
section updates a FIFO work-queue that uses very fine-goakirlg. Thus, con-

105

Speedup over ACS

[[[|] |

-----ﬂ
-----1

Q - N c
S5 8§
8 2235 ¢
2 EEQ<C
Figure 7.7: Speedup of DM with an area-budget of 16.

tention for the critical sections is low and, even though Dpéeds up the critical
sections by 48%, overall performance improvement is only B%@all other work-
loads, faster critical sections lead to higher overall perfance as expected. DM’s
performance is within 1% of the IdealACS for all workloadshuB,DM achieves
almost all the performance benefit available from elimingtcache misses to pri-

vate data

It is worth mentioning that DM is accelerating executiorooty oneof the
cores (the large core) by 11% (as shown in Figure 7.6) andigiray an overall
performance improvement of 8.5% (as shown in Figure 7. fjc&critical sections
are usually on the critical path of the program, DM’s accaien ofjustthe critical
path by an amount provides almost-proportional overaledpg without requiring

acceleration of all threads.

Larger area budgets (32 and 64): As the number of cores increases,
so does the contention for critical sections, which inceea&CS'’s benefit. Fig-
ure 7.8 shows that DM’s average performance improvement AGS increases
to 9.8% at area budget 32 versus the 8.5% at area budget 16 pktosinently,
in pagem ne DM’s improvement over ACS increases from 30% to 68%. This
is becausgpagem ne is completely critical-section-limited and any accelenat
of critical sections greatly improves overall speedup. Biérformance is again
within 1% of that of IdealACS, showing that DM achieves altredspotential ben-

106

efit.
168 170

Speedup over ACS

iplookup

Figure 7.8: Speedup of DM with an area-budget of 32.

As the chip area further increases to 64, DM’s improvemept &S con-
tinues to increase (Figure 7.9). On average, DM provide4%3erformance im-
provement over ACS and is within 2% of its upper-bound (I4€8). We conclude
that DM’s benefits are likely to increase as systems scakrgef number of cores.

245 251

Speedup over ACS
e (| | [| [[][[|
e————EEEEEEE.

PAYEMINE |ptuttn | | | | | |

iplookup
mysql-1
mysql-2

webcache

Figure 7.9: Speedup of DM with an area-budget of 64.

At best-threads: The best-threads of a workload is the minimum of the

number of threads that minimizes its execution time and timalver of processor

107

contexts. Determining the best-threads requires oradtenmation because this
number depends on input data, which is only available atimentWe also evaluated
DM’s speedup with best-threads normalized to ACS with Iletads for an area
budget of 16. Our results show that even if we use oracle mmdébion to pick the

best number of threads, which penalizes DM since DM perfdyatiter at a higher

thread count, DM provides 5.3% performance over the bas@@S.

7.3.4.6 Sensitivity to Interconnect Hop Latency

DM'’s performance improvement over ACS can change with theraon-
nect hop latency between caches for two reasons. Firsgasuorg the hop latency
increases the cost of each on-chip cache miss, increasmgtformance impact of
misses to private data and making DM more beneficial. Sednaasasing the hop
latency increases the time to marshal a cache line, whichedhuce DM’s timeli-
ness, reducing its benefit. We evaluate ACS and DM using hepdees of 2, 5,
and 10 cycles. On average, the speed up of DM over ACS insdasa 5.2% to
8.5% to 12.7% as hop latency increases from 2 to 5 to 10. Welwdachat DM
is even more effective in systems with longer hop laten@eas, higher frequency
CMPs or SMPs.

7.3.4.7 Sensitivity to L2 Cache Sizes

Private data misses are communication misses. Such miase®tcbe
avoided by increasing cache capacity. Thus, DM, which redwommunication
misses, stays equally beneficial when L2 cache size ingedsdact, DM’s ben-
efit might increase with larger caches due to three reasgnsnlarging the cache
reduces capacity and conflict misses, increasing thevelpgrformance impact of
communication misses and techniques that reduce suchsnBsecreasing the
L2 size of the large core increases the likelihood that a hedesl cache line will
not be evicted before it is used, which increases DM’s caeand timeliness; 3)
increasing the small core’s L2 capacity increases the amaofuprivate data that

stays resident at the small cores’ L2 caches and thus can tshahed, which can

108

increase DM'’s coverage.

Table 7.6: Sensitivity of DM to L2 Cache Size.

L2 Cache Size (KB) [128]256] 512[1024] 2048
ACS vs. ACS 256KB (%) -5.4 [0.0 2.1| 2.9 | 3.1
DM vs. ACS 256KB (%)[-11.4{ 8.5[10.6| 11.3] 12.0

Table 7.6 shows the average speedup across all benchmark€®and
DM for L2 cache sizes from 128KB to 2048KB. Note that the camfttbe large core
is always 4x larger than the cache of a small core. The pedooa benefit of DM
over ACS slightly increases as cache size increases froiliR 5%2048KB. In fact,
DM with a 256KB L2 cache outperforms ACS with a 2MB L2 cache.wdwer,
with a 128KB L2 cache, DM performs worse than ACS. This is beeanarshaling
private data into a small L2 cache at the large core causé® gaatlution, evicting
shared data or marshaled data of other critical sectiongai@xecuted, and leading
to longer-latency L2 cache misses, serviced by the L3. Welode that DM’s
performance benefit either increases or stays constant eadt® size increases.

7.3.4.8 Sensitivity to Size of the Marshal Buffer

The number of entries in the Marshal Buffer limits the numb&rcache
lines DM can marshal for a critical section segment. We drpanted with dif-
ferent Marshal Buffer sizes and found that 16 entries (whiehuse in our main
evaluation) suffice for all workloads exceps. Sincei s requires the marshaling
of 117 cache lines on average, when we use a 128-entry Madsiffer, CS-MPKI
ini s is reduced by 22% and performance increases by 3.8% compaed6-
entry Marshal Buffer.

7.4 DM for Pipeline Workloads

Pipeline parallelism is another instance of SE: each itmmadf a loop is
split into multiple code segments where each segment is qpa&dime stage. Fur-

thermore, segments run on different cores. As in SE, eadh ltas a work-queue

109

Pipeline Stage S1.: Pipeline Stage S1.:
1. 1. ;Compute X
2: store X 2: GENERATOR store X
3: Enqueue a request at S2's home ¢8reEnqueue a request at S2's home ¢g82’s initiation
4: MARSHAL <S2's home core-

Pipeline Stage S2: Pipeline Stage S2:
4:Y=..X.. 5Y=.X.. ;Compute Y
(a) Code of a pipeline. (b) Modified code with DM.

Figure 7.10: Code example of a pipeline.

and processes execution requests. Each pipeline stageofingtietes its computa-
tion and then executes the initiation routine for the nexgst

7.4.1 Inter-segment data in pipeline parallelism

Figure 7.10(a) shows a code example of two pipeline stagésand S2,
running on cores P1 and P2, respectively. S1 computes aresdtee value of a
variable X (line 1-2) and then enqueues a request to run S&atR2 (line 3). Note
that X is used by S2 (line 4). P2 may process the computati®2 immediately or

later, depending on the entries in its work-queue.

7.4.2 DM in Pipelines

Processing of a pipeline stage often requires data that wasrgted in
the previous pipeline stage. Since each stage executesitier@rt core, such
inter-segment or inter-stage data must be transferred éanato core as the work-
guantum is processed by successive pipeline stages. Fopéxan the pipeline
code in Figure 7.10(a), variable X is inter-segment dataiaggenerated in S1 (line
2) and used by S2 (line 4). When S2 runs on P2, P2 incurs a cassdaarfetch X
from P1.

DM requires two code changes. First, the compiler must ifletite gen-
erator instructions and prepend them with a GENERATOR preftecond, the
compiler/library must insert a MARSHAL instruction in theifiation routine. Fig-
ure 7.10(b) shows the same code with modifications for DMc&IK is inter-

110

segment data, the compiler identifies via profiling the stostruction on line 2
as a generator and prepends it with the GENERATOR prefix. heumore, the
MARSHAL instruction is inserted in the initiation routingr(e 4).

When P1 (the core assigned to S1) runs the store on line 2,attasvhre
inserts the physical address of the cache line being modifiedP1’'s Marshal
Buffer. When the MARSHAL instruction on line 5 executes, ibata Marshaling
Unit (DMU) marshals the cache line containing X to P2’s L2ltacWhen S2 runs

on P2, itincurs a cache hit for X, which likely reduces exemutime.

7.4.3 Evaluation Methodology

We simulate three different configurations: Baseline (aebhias ACMP
without DM), Ideal (an idealistic but impractical ACMP wieeall inter-segment
misses are turned into hits), and DM (an ACMP with supportidf). The param-
eters of each core, the interconnect, caches, and the mesuloryystem are shown
in Table 7.1. The Ideal scheme, which unrealistically efiates all inter-segment

misses, is an upper bound of DM’s performance.

Table 7.7 shows the simulated workloads. We developed dipgoemple-
mentation of the dedup decoder based on the sequential tdeRSEC [15] and
call it dedupD. A MARSHAL instruction was inserted in the initiation roog of
each workload. Unless otherwise specialized, all compassre at equal-area and

equal-number-of-threads. Results are for a 16-core CMEssgrdtherwise stated.

7.4.4 Evaluation

We evaluate DM’s coverage, accuracy and timeliness, antinpsct on
the MPKI of inter-segment data, and overall performance. alge show DM’s
sensitivity to relevant architectural parameters. We aédmlated that the generator-
sets are stable during execution and across input setgdelime workloads, but we

do not show the results due to space constraints.

111

Table 7.7: Workload characteristics.

Workload | Description (No. of pipeline| Major steps of computation |Input

stages)

black BlackScholes Financial Kernel [7dCompute each option/4M opts
(6) call/put value

compress|File compression using bzip2 algdread file, compress, re-ordetMB text file
rithm (5) write

dedupE |De-duplication (Encoding) [15]7) |Read, find anchors, churllsimlarge
compress, write
dedupD |De-duplication (Decoding) [15]7) |Read, decompress, chgdimlarge
cache, reassemble/write

ferret Content based search [1() Load, segment, extract, vectpgimlarge
rank, out
image Image conversion from RGB t{d&read file, convert, re-ordeilOOM pixels
gray-scalg5b) write
mtwist Mersenne-Twister PRNG [74p) |Read seeds, generate PRN&th=200M
box-muller
rank Rank string similarity with an inpytRead string, compare, rank |800K strings
string(3)
sign Compute the signature of a page Bead page and compute sighéM pages
text(7) ture

7.4.4.1 Coverage, Accuracy, and Timeliness

Figure 7.11a shows DM’s coverage, i.e., the percentagetef-gegment
data cache lines identified by DM. Coverage is over 90% in allkloads except
dedupD,i mage, andnt wi st . In these workloads the inter-segment data needed
per segment often exceeds the size of the Marshal Buffer @iife DM marshals
only the cache lines in the Marshal Buffer, not all inter+segt data is marshaled.

Figure 7.11b shows the accuracy of DM, i.e., the percentageaoshaled
lines that are actually used by the home core. DM’s accurabyw, between 40%
and 50%, because stages contain control flow. However, thedse in interconnect
transactions/cache pollution for DM is negligible becatiigenumber of cache lines
marshaled per segment is small: the average is 6.8 and thennaxds 16 (the size
of the Marshal Buffer).

Figure 7.11c shows DM’s timeliness, i.e., the percentagaseful cache
lines identified by DM that reach the remote home core befw# tise. Timeliness

is high, more than 80% in all cases, for two reasons: (1) setgr&ten wait in

112

Coverage(%)

Accuracy(%)

Timeliness(%)

Figure 7.11: (a) Coverage, (b) Accuracy, and (c) Timelirefd3M.

the home core’s work-queue before their processing, gildiv enough time to
marshal the lines, (2) transferring the few lines that aresmaed per segment

requires a small number of cycles.

7.4.4.2 Reduction in Inter-Segment Cache Misses

Table 7.8 shows the L2 MPKI of inter-segment data in the h@seind
DM. DM significantly reduces the MPKI in all cases. The modiceable issi gn
where DM reduces the MPKI from 30.3 to 0.9i gn computes the signature of
an input page for indexing. The main inter-segment dataiign is the page’s
signature, a 256-character array (4 cache lines). SincesOpvifiling algorithm
marks the instruction that stores all array elements as arg&r, DM saves all
cache misses for the array. Similarly, DM completely eliates inter-segment data
misses irf er r et anddedupE. DM reduces the harmonic mean of MPKI by 81%
and the arithmetic mean by 69%.

113

Table 7.8: L2 Misses for Inter-Segment Data (MPKI). We shathbamean and
hmean because hmean is skewed dudgdupE. Note: MPKI of inter-segment
data in Ideal is O.

Workload| black| compressdedupD dedupH ferret| image| mtwist| rank| sign| amearn hmean

baseline| 14.2 7.7 47.5 0.4 44 | 55.6| 51.4 | 4.1|30.3| 23.95| 2.76
DM 2.8 1.7 33.0 0.0 01| 204| 74 |03|09]| 740 | 0.53

7.4.4.3 Performance

Execution time of a pipelined program is always dictated tsysiowest
stage. Thus, DM’s impact on overall performance dependsoanrhuch it speeds
up the slowest stage. Figure 7.12 shows the speedup of @&l over the base-
line at 16 cores. On average, DM provides a 14% speedup cyéeatbeline, which
is 96% of the potential. DM improves performance in all woddls. DM’s im-
provement is highest ibl ack (34% speedup) because DM reduces inter-segment
misses by 81% and as a result speeds up the slowest stagcaighy. DM is
within 5% of the Ideal speedup inl ack because accesses to inter-segment data
are in the first few instructions of each stage and consetyutiet marshaled cache
lines are not always timely. DM’s speedup is lowerdiaedupE andf err et be-
cause these workloads only incur a small number of intemseg misses and DM’s

potential is low (Ideal speedup is only 5% for ferret).

1.43 1.42

Speedup over pipeline

Figure 7.12: Speedup at 16 cores.

32-core results: Figure 7.13 shows the speedup of Ideal and DM over the

baseline with 32 cores. DM’s speedup increased for all veaits compared to 16

114

Speedup over pipeline

Figure 7.13: Speedup at 32 cores.

cores. Most significant is the changedonpr ess, from 1% to 18%, because
the slowest stage ioonpr ess changes between 16 and 32 cores. At 16 threads,
conpr ess’s slowest stage is the stage that compresses chunks ofdapautThis
stage is compute-bound and does not offer a high potenti@kb. However, the
compression stage is scalable, i.e., its throughput isee®vith more cores. At 32
cores, the compression stage’s throughput is more thandhescalable re-order
stage (the stage which re-orders chunks of compressed efaiiee lwriting them to
the output file). Unlike the compression stage which is camymound, the re-order
stage is bounded by cache misses for inter-segment date agnggher potential for
DM and thus the higher benefit. On average, at 32 cores, DMawggrperformance
by 16%, which is higher than its speedup at 16 cores (14%urnmsary, DM is an
effective technique that successfully improves perforoeaof pipelined workloads,

with increasing benefit as the number of cores increases.

7.4.4.4 Sensitivity to Interconnect Hop Latency

We find that the speedup of DM increases with hop latency r(tef&ec-
tion 7.3.4.6 for reasons). We evaluated DM with hop latenofe2, 5, and 10 cycles
and find that it provides speedups of 12.4%, 14%, and 15.1%tbedaseline, re-
spectively.

115

7.4.4.5 Sensitivity to L2 Cache Sizes

DM’s benefit increases with cache size for pipeline workkbad well (see
Section 7.3.4.7 for reasons). DM’s speedup over the basifh.6%, 14%, 14.8%,
15.3%, and 15.4% for cache sizes of 128KB, 256KB, 512KB, 1] 2MB,

respectively.

7.4.4.6 Sensitivity to size of Marshal Buffer

We find that a 16-entry Marshal Buffer is sufficient for all whyads except
dedupD, i mage, andnt wi st. The number of inter-segment cache lines per
segment in these workloads is greater than 16. For exantpdeprimary inter-
segment data structure in image, an array of 150 32-bit RQ&gispans 32-cache
lines. Table 7.9 shows the performance of DM with varying 8hea Buffer sizes in
these three workloads. In each case, performance sataateshere are enough
entries to fit all inter-segment cache lines (32, 32, and d28¢édupD, image, and
mtwist respectively). In summary, while there are a few vioakls that benefit from
a larger Marshal Buffer, a 16-entry buffer suffices for mostikioads.

Table 7.9: Sensitivity to Marshal Buffer size: Speedup daseline (%).
|# of entrieg| 16] 32| 64] 128] 256
dedupD ||26{40{40| 40| 40

image ||17|24|24| 24 | 24
mtwist || 14(18|21| 22 | 22

7.5 DM on Other Paradigms

We have shown two concrete examples of how DM can be applied-to
ferent execution models: ACS and pipeline parallelism. Cavi be applied to any

paradigm that resembles SE, for example:

e Task-parallelism models such as Cilk [17], Intel TBB [47Hafpple’s Grand
Central Dispatch [12]. Any time a new task is scheduled ane@ote core, DM
can marshal the input arguments of the task to the core tHhexécute the

116

task.

e Computation Spreading [21], which improves locality by ajs running the
operating system code on the same set of cores. DM can mahnghdata to
and from the cores dedicated for OS code.

e Thread Motion [80] migrates threads among cores to improeeves-
performance efficiency. DM can be extended to reduce cackbsawidue to
thread migration.

e The CoreTime OS scheduler [18] assigns data objects to saiek migrates
threads to the cache containing the majority of the data #oegss. DM can
marshal any extra data required by the thread (e.g., partwdits stack).

e Remote special-purpose cores, e.g., encryption or videoddng engines, are
often used to accelerate code segments. DM can be used toahdasa to such

accelerators.

DM not only improves the existing paradigms, but can alscbeEnaew
paradigms that follow SE. By significantly reducing the datigration cost as-
sociated with shipping a segment to a remote core, DM canlenaby fine-grain
segments, which could allow more opportunity for core sgiezation. In summary,
DM is applicable to widely-used current paradigms, makexppsed paradigms

more effective, and can potentially enable new paradigms.

117

Chapter 8

Related Work

8.1 Related Work in Accelerating Non-Parallel Kernels

Morad et al. [69] used analytic models to show that an asymaeonatchi-
tecture with one large core and multiple small cores can mmparallel kernels
quickly, thereby improving overall performance and scaigb \We showed in [93]
that an ACMP can be built using off-the-shelf cores and cgorave performance
of real workloads. Hill at al. [38] build on our ACMP model aptesent an analytic
analysis which shows that ACMP can improve performance ofparallel kernels.
The work presented in this thesis is different from the woykMtorad et. al. and
Hill et. al. for four reasons: (1) we show a practical arctitee for the ACMP,
not just analytic models; (2) we propose an actual algoritbnaccelerating non-
parallel kernels; (3) we evaluate ACMP by simulating reatkimads; and (4) we
also show that the ACMP can also accelerate critical sexthma limiter stages in

addition to the non-parallel kernels.

Kumar et al. [56] propose heterogeneous cores to reduceramalencrease
throughput of a system running multiple single-threadeddeads. Their mecha-
nism chooses the best core to run each application on. Inasinve use the ACMP
to reduce the execution time and improve scalability of gleimulti-threaded pro-
gram by accelerating the common critical paths in the pnogra

Annavaram et al. [11] propose that an ACMP can also be cresed)
frequency throttling: they increase the frequency of theedbat is executing the
non-parallel kernel. However, they only deal with non-plai&kernels and do not
accelerate critical sections or limiter pipeline stageBiclv are central to our pro-
posal. The mechanisms we propose are general and can leie@adCMP they

118

create via frequency throttling.

The IBM Cell processor [40] provides a PowerPC core in addito the
parallel processing engines on the chip. It is differentfrihe ACMP because the
cores have different ISAs and the PowerPC core is used phymarrun legacy

code.

Previous research [49, 53, 65, 98, 112] also shows that pheisimall cores
can be fused to form a powerful core at runtime when non-fgiretrnels are ex-
ecuted. If such a chip can be built, our techniques can betedidp work with
their architecture: multiple execution engines can be dastto form a powerful

execution engine to accelerate the serial bottlenecks.

8.2 Related Work in Reducing Critical Section Penalty
8.2.1 Related Work in Improving Locality of Shared Data and Locks

Sridharan et al. [89] propose a thread scheduling algoriitm&EMP ma-
chines to increase shared data locality in critical sestiothen a thread encoun-
ters a critical section, the operating system migratesttheat to the processor that
has the shared data. This scheme increases cache localgm@d data but incurs
the substantial operating system overhead of migratingobet® thread state on ev-
ery critical section. Accelerated Critical Sections (ACG)es not migrate thread
contexts and therefore does not need OS intervention.ddsiesends a CSCALL
request with minimal data to the core executing the critgmdtions. Moreover,
ACS accelerates critical section execution, a benefit ufala in [89]. Trancoso
et al. [102] and Ranganathan et al. [81] improve localitynitical sections using
software prefetching. These techniques can be combinddAGS for improved

performance.

Several primitives like Test&Set, Test&Test&Set, Comgbavap,
fetch&add are commonly used to efficiently implement atooperations such as
increments, lock acquire, and lock release operations.efRe®search has also
studied hardware and software techniques to reduce théeagrof atomic op-

119

erations [9, 39, 61]. The Niagara-2 processor improves edgbality of atomic
operations by executing the instructions [33] remotelyhat¢ache bank where the
data is resident. However, none of these techniques iretbasspeed/locality of
general critical sections which read-modify-write muléiglata, a feature provided
by our mechanisms. As shown in Table 5.3 on page 49, many waxikl contain
critical sections which are hundreds of instructions lond these mechanisms are

unable to shoten such critical sections.

8.2.2 Related Work in Hiding the Latency of Critical Sectiors

Several proposals try to hide the latency of a critical secthy execut-
ing it speculatively with other instances of the same ailtisectionas long as
they do not have data conflicts with each oth&xamples include transactional
memory (TM) [37], speculative lock elision (SLE) [76], trgactional lock removal
(TLR) [77], and speculative synchronization (SS) [67]. SisEa hardware tech-
nique that allows multiple threads to execute the critieati®ns speculatively with-
out acquiring the lock. If a data conflict is detected, onlg dread is allowed to
complete the critical section while the remaining threaalt ack to the begin-
ning of the critical section and try again. TLR improves u®IrE by providing a
timestamp-based conflict resolution scheme that enalt&ditee execution. ACS

is orthogonal to these approaches due to three major reasons

1. TLR/SLE/SS/TM improve performance when the concurseettecuted in-
stances of the critical sections do not have data confli¢tse@ch other. In contrast,
ACS improves performance even for critical section insesnihat have data con-
flicts. If data conflicts are frequent, TLR/SLE/SS/TM can ietp performance by
rolling back the speculative execution of all but one ins&ato the beginning of the
critical section. In contrast, ACS’s performance is noeaféd by data conflicts in
critical sections.

2. TLR/SLE/SS/TM amortize critical section latency by camently executing
non-conflicting critical sections, but they do not reduce lditency of each critical

section. In contrast, ACS reduces the execution latencyitidal sections.

120

Exec. Time Norm. to ACMP
-----l

Figure 8.1:ACS vs. TLR performance.

3. TLR/SLE/SS/TM do not improve locality of lock and sharestal In contrast,
ACS improves locality of lock and shared data by keeping themsingle cache.

We compare the performance of ACS and TLR. Figure 8.1 shoe/®xh
ecution time of an ACMP augmented with TERnd the execution time of ACS
normalized to ACMP (area budget is 32 and number of threatd® e optimal
number for each system). TLR reduces average executionyn®o while ACS
reduces it by 23%. In applications where critical sectioftsroaccess disjoint data
(e.g.,puzzl e, where the critical section protects a heap to which aceease
disjoint), TLR provides large performance improvementewdver, in workloads
where critical sections conflict with each other (eig, where each instance of the
critical section updates all elements of a shared arrayly @iegrades performance.
ACS outperforms TLR on all benchmarks, and by 18% on averagis.is because
ACS accelerates many critical sections regardless of venethnot they have data
conflicts, thereby reducing serialization.

As such, our approach is complementary to SLE, SS, TLR, andThdse
other approaches amortize critical section latency bynatig concurrent execution
of critical sections but they do not improve the executiondispent in a critical

section. In contrast, our work reduces the execution time @ftical section. Our

ITLR was implemented as described in [77]. We added a 128-buffer to each small core to
handle speculative memory updates.

121

approach can be combined with SLE/SS/TM to further redueg@#rformance loss
due to critical sections. For example, some “speculativical sections” (as in
SLE/SS) or transactions can be executed on the large carg(g) our mechanism.
This allows not only faster but also concurrent executiometances of a critical

section and constitutes part of our future work.

8.2.3 Other Related Work in Remote Function Calls

The idea of executing critical sections remotely on a défgrprocessor
resembles th&emote Procedure Call (RP)6] mechanism used in network pro-
gramming to ease the construction of distributed, cli@amtar based applications.
RPC is used to execute (client) subroutines on remote (9aromputers. In ACS,
the small cores are analogous to the “client,” and the lagge is analogous to the
“server” where the critical sections are remotely execuf&gdS has two major dif-
ferences from RPC. First, ACS executes “remote” criticaltiom calls within the
same address space and the same chip as the callee, theabliygetihe accelerated
execution of shared-memory multi-threaded programs. $cACS’s purpose is
to accelerate shared-memory parallel programs, where@ssRRrpose is to ease

network programming.

Active messages [28] have been proposed to by Eicken et alllaw for
low overhead communication in large-scale systems. Thrersimilarities between
Active Messages and ACS’s treatment of critical sectiortgh lget sent as a mes-
sage to another core for execution. However, Active Message proposed for
very large-scale message passing systems while ACS is &sedhmemory ma-
chines. Furthermore, they did not accelerate the execusomg a faster core, a key
feature of ACS. Similarto the CSCALL instruction in ACS, thieT J-machine [25]
also provided instructions to send an execution requesteémate core. However,
the J-machine was a symmetric system and did not accelertalgpaths using a

high-performance engine.

122

8.3 Related Work in Increasing Pipeline Throughput

Several studies [15, 29, 34] have discussed the importdnusseng pipelined
parallelism on CMP platforms. Our mechanism to Accelerdte timiter
Stages (ALS) provides automatic runtime tuning and actietraf this important
paradigm and obtains improved performance and power-efifogi. To the best of
our knowledge, ALS is the first scheme to improve pipelin@tighput via asym-
metric CMPs. However, there have been several schemes whmbse the best
core-to-stage allocation, attempting to speed up the dingtage by assigning it
more cores. Such schemes are more specifically related tptR®mMechanism we
proposed for choosing the best core-to-stage allocation.

Recently Hormati et al. proposed the Flextream compilati@me-
work [41] which can dynamically recompile pipelined applions to adapt to the
changes in the execution environment, e.g., changes inuheer of cores as-
signed to an application. While FDP can also adapt to chaimgtdse execution
environment, its main goal is to maximize the performanca single application.
Flextream and FDP fundamentally differ for four reasonstst-iFlextream does
not consider the use of asymmetric cores. Second, unlike FIeftream assumes
that all stages are scalable and thus allocates cores bagéé celative demands
of each stage. This can reduce performance and waste povesr &vBtage does
not scale (see Section 6.6.1.2). Third, Flextream requy@smmic recompilation
which restricts it to languages which support that featarg,, JAVA and C-sharp.
In contrast, FDP is done via a library which can be used withlanguage. Fourth,
Flextream cannot be used to choose the number of threadsrishkaring pro-
grams because it will assume that the workload scales aodadd! it all available
cores. FDP, on the other hand, chooses the best number afittaking scalability

into account.

Other proposals in the operating system and web server asnhave im-
plemented feedback directed cores-to-work allocation, 196]. However, they

do not use asymmetric cores and make several domain-spessficnptions which

123

makes their scheme applicable only to those domains.

Others have also tried to optimize pipelines through staire-to-stage al-
location using profile information. The brute force searehfinding the best map-
ping can be avoided by using analytical models. Other rebeas have![31, 63, 71,
72] proposed analytic models for understanding and opingiparallel pipelines.
They do not account for asymmetry and while such models chngregrammers
design a pipeline, they are static and do not adapt to changeput set and ma-
chine configuration. In contrast, FDP relieves the programimom obtaining rep-
resentative profile information for each input set and maeldonfiguration and

does automatic tuning using runtime information.

Languages and languages extensions [26, 47, 58, 100] gamviiblsimpli-
fying the development of pipelined programs. Raman et &) propose to auto-
matically identify pipeline parallelism in a program usimgelligent compiler and
programming techniques. Our work is orthogonal to theirknarthat our proposal

optimizes at run-time an already written pipelined program

Pipeline parallelism is also used in databases [36] whech éatabase
transaction is split into stages which can be run on mulitples. Their work can
also use FDP to choose the best core-to-stage allocatibersiave also proposed
accelerating massively parallel computations in a kerseigispecial purpose ac-
celerators such as GPUs [64, 74]. The focus of this thesiimprove scalability

by accelerating the serial bottlenecks, not the parallgspa

8.4 Related Work in Data Marshaling

Data Marshaling (DM) has related work in the areas of hardvpmefetch-
ing, cache coherence, and OS/compiler techniques to irepomality.

8.4.1 Hardware Prefetching

Hardware prefetchers can be broadly classified as prefest¢hat can han-

dle regular (stride/stream) memory access patterns (&48./75,99]) and those

124

that can handle irregular memory access patterns (e.g.5(284, 88,107, 108]).
Prefetchers that handle only regular data cannot captussasifor inter-segment
data because inter-segment cache lines do not follow aaegtream/stride pat-
tern and are scattered in memory. Prefetchers that hamd@guiar data [50, 84, 88,
107](as well as stride/stream based prefetchers) are alssurted for prefetching
inter-segment data because the number of cache missegekfuri training such
prefetchers is often more than all of the inter-segment @ataverage of 5in ACS
and 6.8 in pipeline workloads). Thus, by the time prefetgtbegins, a majority of

the cache misses have already been incurred.

DM does not face any of these disadvantages. DM requiregmalnbn-
chip storage, can marshal any arbitrary sequence of ieggment cache lines, and
starts marshaling as soon as the next code segment is shippsdhome core,
without requiring any training. Thus, the likelihood of DM\ering misses in a
timely fashion is substantially higher than that of prefféng. Note that we already
used an aggressive stream prefetcher [99] in our baselthéh@improvements we
report with DM are ortop of this aggressive prefetcher.

8.4.2 Reducing Cache Misses using Hardware/Compiler/OS $port

Hossain et al. [42] propose DDCache, where the produceestbe shar-
ers of every cache line and when one of the consumers reqaesishe line, the
producer sends it not only to the requester, but also to@liémaining sharers. DD-
Cache is orthogonal to DM in that it improves locality of ordlgared data, while
DM also improves locality of thread-private data. ThreadiCality Predictors [14]
have been proposed to improve cache locality in task-sig#i7], another exam-
ple of Staged Execution (SE) paradigm. They schedule tasksaikimize cache

locality and DM can further help by eliminating the remaigicache misses.

Several proposals reduce cache misses for shared data bhsing
ware/compiler support. Sridharan et al. [89] improve sHatata locality by mi-

grating threads wanting to execute a critical section tanglsicore. This increases

125

misses for private (inter-segment) data, the limitatiodradsed by DM. Other pro-
posals improve shared data locality by inserting softwaeggpch instructions be-
fore the critical section [81,102]. Such a scheme cannokvar inter-segment
data because prefetch instructions must be executed abthe bore, i.e. as part
of the next code segment and very close to the actual use ofatiae making the
prefetches untimely. Recent cache hierarchy designs B12ig to provide fast
access to both shared and private data and can further b&oefiDM to mini-

mize cache-to-cache transfers. Proposals that accetérated migration [19, 92]

are orthogonal and can be combined with DM.

The Tempest and Typhoon framework [82] provides a mechawisich al-
lows software to push cache lines from one core to the othata harshaling is
different from their work for three reasons. First, trangfeg cache lines in their
system requires invocation of send and receive handlefseatdurce and destina-
tion cores. Thus, their transfers interrupt normal threadcation. We perform
our marshaling in hardware and do not interrupt the exeautaun any handlers.
Second, they require that the data must be packetized bi¢fsreansferred. We
have no such restrictions. Third, they require that the denpnust be able to
“fully analyze a program’s communication pattern.” We posp a simple profiling

mechanism which does not require any complex compiler amaly

8.4.3 Other Related Work

In the Remote Procedure Call (RP@)6] mechanism used in networking,
the programmer identifies the data that must be “marshaléti’ttve RPC request.
This is similar to DM, which marshals inter-segment datah® home core of the
next code segment. However, unlike RPC, marshaling in DMl for perfor-
mance, does not require programmer input, and is appli¢altestances of SE that

do not resemble procedure calls.

126

Chapter 9

Conclusion

9.1 Summary

Performance and scalability of multi-threaded progranseigerely limited
due to program portions which are not parallelized. Majaurses of serializa-
tion include non-parallel kernels, critical sections, dimditer stages in pipeline
workloads. We show that all three reduce performance and thre number of
threads at which performance saturates. To overcome thitation, we propose
the Asymmetric Chip Multiprocessor (ACMP) paradigm and heeusms to iden-

tify and accelerate the serial bottlenecks using the ACMP.

To accelerate the non-parallel kernels, we propose a thselagduling al-
gorithm which migrates the thread running a serial portothe large core. This
technique requires minimal hardware/software overheads@nificantly reduces
execution time byl 7%over an area-equivalent symmetric CMP.

To accelerate the critical sections, we propose a combinadi-h
ware/software mechanism which accelerates critical sestby executing them at
the large core of the ACMP. This mechanism significantly caguexecution time

by 34% over an area-equivalent symmetric CMP.

To accelerate the limiter stages in pipeline workloads, m@gpse a software
library to identify and accelerate the limiter stage usimg ACMP’s large core. The
proposed mechanism significantly reduces execution tim2d8 over an area-

equivalent symmetric CMP.

We further identify a major performance limitation of ACMEe cache
misses at the large core for transferring data from the scoadls. We proposeata
Marshaling (DM)to improve the reduced locality of private data in Acceledat

127

Critical Section (ACS) mechanism and inter-segment dafaipeline workloads.
We find that DM’s performance is within 1% of an ideal mechanikat eliminates
all private data misses using oracle information, showirad DM achieves almost

all of its upper-bound performance potential.

We conclude that serial program portions can be efficierdbekerated us-
ing faster cores in an asymmetric chip multiprocessor,eberimproving perfor-

mance and increasing scalability.

9.2 Limitations and Future Work

This thesis has proposed several brand new concepts whidiecaxtended

by future research. We envision future work in seven areas:

¢ Analytic Models;We proposed analytic models to analyze the effect of accel-
erating the serial bottlenecks. Since the intent was to shewmportance of
serial bottlenecks in the simplest possible manner, we rsades simplifying
assumptions. Future work can extend these models suchhéatake more
run-time parameters into account.

e Exploring the ACMP design spac&Ve proposed an ACMP architecture with
one large core and many small cores. There are others wayptement asym-
metry among cores on a chip, e.g., by frequency scaling orageoh memory
scheduling. Future research can explore such options &becreew asymmetric
architectures, and/or increase or reduce the degree ofrasymin the ACMP
architecture we proposed. Note that the concepts we pragesapplicable to
any ACMP implementation.

e Generalizing the ACMPThis thesis analyzed an ACMP with a single large
core running a single application in isolation. Future ezsh can explore ways
of leveraging multiple large cores. Future research cao elkplore different
options for the small and large cores, e.g., use GPUs as thk cmes.

e Other bottlenecks:This thesis showed how the ACMP can improve perfor-
mance of three major bottlenecks. Future research canaeveéchanisms

128

to identify and accelerate other bottlenecks, e.g., Reéoluat Google MapRe-
duce.

Alternate implementations of AC8Ve show a combined hardware/software
implementation of ACS. ACS can also be implemented purelyardware or
purely in software. Future research can explore thesetres

New software algorithmsACS allows longer critical sections which can enable
new parallel algorithms that were previously considerddanible due to their
data synchronization overhead. For example, priorityugdleased worklists,
although known to be more work conserving, are not usedysbketause they
introduce long critical sections. ACS makes their use fidssthereby enabling
new software algorithms.

Alternate implementation of DMA/e show a combined hardware/software im-
plementation of DM. Rigorous compiler algorithms to impeothe accuracy
of DM or alternate hardware-only implementations of DM isagren research
topic.

Segment-to-core schedulinkCS and ALS show two examples of code seg-
ments which run “better” on a large core. There may be othdecegments
which could leverage the large core or a brand new type of. ddiechanisms
to identify the best core for each segment is a wide open topic

129

Bibliography

[1] Api - facebook developer wiki. http://developers.facek.com/.

[2]
[3]
[4]

[5]

[6]

[7]

MySQL database engine 5.0.1. http://www.mysqgl.conQ&0
SQLite database engine version 3.5.8. http:/www.egiitg, 2008.

SysBench: a system performance benchmark version.0.4.8
http://sysbench.sourceforge.net, 2008.

Opening Tables scalability in MySQL. MySQL Performarigleg, 2006.
http://www.mysqlperformanceblog.com/2006/11/21/apgn tables-
scalability.

Mysql internals locking overview, 2008.
http://forge.mysqgl.com/wiki/MySQLnternalsLocking Overview.

Michael Abrash. Michael Abrash’s Graphics Programming Black Book
Coriolis Group, 1997.

[8] Advanced Micro Devices, Inc. White Paper: Multi-CoreoPessors — The

[9]

[10]

[11]

[12]
[13]

next evolution in computing. 2005.

S. Adve et al. Replacing locks by higher-level primitsveTechnical Report
TR94-237, Rice University, 1994.

Gene M. Amdahl. Validity of the single processor apmiod@o achieving
large scale computing capabilities. American Federation of Information
Processing Societie$967.

Murali Annavaram, Ed Grochowski, and John Shen. Miiiggaamdahl's
law through EPI throttling. IfProceedings of the 32nd Annual International
Symposium on Computer Architectu?@05.

Apple. Grand Central Dispatch - A better way to do mute, 2009.

D. H. Bailey et al. NAS parallel benchmarks. Technicalp@rt Tech. Rep.
RNR-94-007, NASA Ames Research Center, 1994.

130

[14] Abhishek Bhattacharjee and Margaret Martonosi. Tdreaticality pre-

[15]

dictors for dynamic performance, power, and resource mamagt in chip
multiprocessors. IfProceedings of the Annual International Symposium on
Computer Architecture2009.

Christian Bienia et al. The PARSEC benchmark suiteratiarization and
architectural implications. IfProceedings of the International Conference
on Parallel Architectures and Compilation Techniqu2808.

[16] Andrew D. Birrell and Bruce Jay Nelson. Implementingwee procedure

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

calls. ACM Transactions on Computer Syste(d):39-59, 1984.

Robert Blumofe et al. Cilk: an efficient multithreadathtime system. In
Proceedings of the 7th ACM Sigplan Symposium on Principidsaactice
of Parallel Programming1995.

Silas Boyd-Wickizer, Robert Morris, and M. Frans Kaashk. Reinventing
scheduling for multicore systems. HotOS-XI| 2009.

Jeffery A. Brown and Dean M. Tullsen. The shared-threadtiprocessor.
In Proceedings of the International Conference on Supercaoimgp2008.

Christian Brunschen et al. OdinMP/CCp - a portable iempéntation of
OpenMP for C.Concurrency: Prac. and Expl2(12), 2000.

Koushik Chakraborty, Philip M. Wells, and Gurindar it Computation
spreading: Employing hardware migration to specialize GddRes on-the-
fly. In Proceedings of the International Conference on ArchitedtBupport
for Programming Languages and Operating Syste2066.

Jichuan Chang and Gurindar S. Sohi. Cooperative cgcfinchip mul-
tiprocessors. IrProceedings of the Annual International Symposium on
Computer Architecture2006.

Robert Cooksey, Stephan Jourdan, and Dirk Grunwaldtafekess, content-
directed data prefetching mechanism. Hroceedings of the International
Conference on Architectural Support for Programming Laexggs and Op-

erating System<002.

Intel Corporation. Intel turbo boost technology inehtore microarchitec-
ture (nehalem) based processors. Whitepaper, 2008.

131

[25] William Dally et al. Architecture of a message-driveropessor. InPro-
ceedings of the Annual International Symposium on Comprhitecture
1998.

[26] Abhishek Das et al. Compiling for stream processing. Phoceedings
of the International Conference on Parallel Architectusesd Compilation
Techniques2006.

[27] Antonio J. Dorta et al. The OpenMP source code repogitbr Euromicrq
2005.

[28] Thorsten Von Eicken et al. Active messages: a mechafisrmtegrated
communication and computation. Froceedings of the Annual Interna-
tional Symposium on Computer Architectut892.

[29] J. Giacomoni et al. Toward a toolchain for pipelinepi@tgprogramming on
cmps. Workshop on Software Tools for Multi-Core SysteR@7.

[30] Simha Gochman et al. The Intel Pentium M processor: déochitecture
and performancelntel Technology Journal7(2):21-36, May 2003.

[31] D. Gonzalez et al. Towards the automatic optimal maguif pipeline algo-
rithms. Parallel Comput.2003.

[32] Michael I. Gorden et al. Exploiting coarse-grainedktagata, and pipeline
parallelism in stream programs. Rroceedings of the International Confer-
ence on Architectural Support for Programming Languages @perating
Systems2006.

[33] Greg Grohoski. Distinguished Engineer, Sun Microsyss. Personal com-
munication, November 2007.

[34] Jayanth Gummaraju et al. Streamware: programmingrgéperpose mul-
ticore processors using strean®GARCH Comput. Archit. New2008.

[35] Zvika Guz et al. Utilizing shared data in chip multipessors with the
nahalal architecture. IACM Symposium on Parallelism in Algorithms and
Architectures2008.

[36] Stavros Harizopoulos and Anastassia Ailamaki. A casesfaged database
systems. InBiennial Conference on Innovative Data Systems Resgarch
2003.

132

[37] Maurice Herlihy and J. Eliot B. Moss. Transactional n@wn architectural
support for lock-free data structures. Pmoceedings of the Annual Interna-
tional Symposium on Computer Architectut893.

[38] Mark Hill and Michael Marty. Amdahl’s law in the multice era. IEEE
Computer41(7), 2008.

[39] Ralf Hoffmann et al. Using hardware operations to regthe synchroniza-
tion overhead of task poolsinternational Conference on Parallel Process-
ing, 2004.

[40] H. Peter Hofstee. Power efficient processor architecaind the cell proces-
sor. InProceedings of the IEEE International Symposium on Higtideer
mance Computer Architectyrpages 258-262, 2005.

[41] AmirH. Hormati et al. Flextream: Adaptive compilatiofstreaming appli-
cations for heterogeneous architecturesPtaceedings of the International
Conference on Parallel Architectures and Compilation Tegbes 2009.

[42] Hemayet Hossain, Sandhya Dwarkadas, and Michael CngiuBDCache:
Decoupled and delegable cache data and metadat&robeedings of the
International Conference on Parallel Architectures andn@wlation Tech-
niques 20009.

[43] Intel. ICC 9.1 for Linux.http://ww. i ntel.com cd/ software/
product s/ asno- na/ eng/ conpi | er s/ 284264. %t m

[44] Intel. Pentium Processor User's Manual Volume 1: Pentium Proad3ata
Book 1993.

[45] Intel. Prescott New Instructions Software Developt@nide, 2004.
[46] Intel. 1A-32 Intel Architecture Software Dev. GuideQ@8.

[47] Intel. Source code for Intel threading building blocR908.
http://threadingbuildingblocks.org.

[48] Intel. Getting Started with Intel Par. Studio, 2009.

[49] Engin Ipek et al. Core fusion: accommodating softwaikeiity in chip
multiprocessors. IfProceedings of the Annual International Symposium on
Computer Architecture2007.

133

[50] Doug Joseph and Dirk Grunwald. Prefetching using Mankcedictors. In
Proceedings of the Annual International Symposium on Coengrchitec-
ture, 1997.

[51] Norman P. Jouppi. Improving direct-mapped cache perémce by the ad-
dition of a small fully-associative cache and prefetch éxdf InProceedings
of the Annual International Symposium on Computer Architec1990.

[52] Ron Kalla, Balaram Sinharoy, and Joel M. Tendler. IBMM@db Chip: A
Dual-Core Multithreaded ProcessdEEE Micro, 24(2):40-47, 2004.

[53] Changkyu Kim et al. Composable lightweight processdrsProceedings
of the Annual ACM/IEEE International Symposium on Micrbatecture
2007.

[54] Poonacha Kongetira et al. Niagara: A 32-Way Multitlted SPARC Pro-
cessor.lEEE Micro, 25(2):21-29, 2005.

[55] Heinz Kredel. Source code for traveling salesman mob{tsp).
http://krum.rz.uni-mannheim.de/ba-pp-2007/java/mtanl.

[56] Rakesh Kumar, Dean M. Tullsen, Norman P. Jouppi, anthRBsarathy Ran-
ganathan. Heterogeneous chip multiprocessdESE£EE Computer38(11),
2005.

[57] L. Lamport. A new solution of Dijkstra’s concurrent gm@amming problem.
CACM, 17(8):453-455, August 1974.

[58] James R. Larus and Michael Parkes. Using cohort-sdimgdio enhance
server performance. IATEC '02: Proceedings of the General Track of the
annual conference on USENIX Annual Technical Conferer@@2. 2

[59] James Laudon and Daniel Lenoski. The SGI Origin: A ccNAJMighly
Scalable Server. IRroceedings of the Annual International Symposium on
Computer Architecturgpages 241-251, 1997.

[60] E. L. Lawler and D. E. Wood. Branch-and-bound methodsufvey. Op-
erations Researgii4(4):699-719, 1966.

[61] Ulana Legedza and William E. Weihl. Reducing synchration overhead
in parallel simulation. InNMorkshop on Parallel and Distributed Simulation
1996.

134

[62] Chunhua Liao et al. OpenUH: an optimizing, portable @& compiler.
Concurr. Comput. : Pract. Exper19(18):2317-2332, 2007.

[63] Wei-Keng Liao. Performance evaluation of a parallgdgline computa-
tional model for space-time adaptive processidgurnal of Supercomput-
ing, 2005.

[64] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: expng paral-
lelism on heterogeneous multiprocessors with adaptivepmap InMICRO
42: Proceedings of the 42nd Annual IEEE/ACM Internationghosium
on Microarchitecturepages 45-55, New York, NY, USA, 2009. ACM.

[65] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William allyDand
Mark Horowitz. Smart memories: a modular reconfigurabléhdecture.
SIGARCH Comput. Archit. New88(2):161-171, 2000.

[66] Daniel Marino et al. Literace: effective sampling faghtweight data-race

detection. InProceedings of the Conference on Programming Language

Design and Implementatio2009.

[67] José F. Martinez and Josep Torrellas. Speculatimelspnization: applying
thread-level speculation to explicitly parallel applicais. InProceedings
of the International Conference on Architectural SupportProgramming
Languages and Operating Syster2@02.

[68] Michael R. Marty. Cache coherence techniques for multicore processors
PhD thesis, 2008.

[69] Tomer Morad et al. Performance, power efficiency andadubty of asym-
metric cluster chip multiprocessor§€omp Arch Lttrs2006.

[70] R. Narayanan etal. MineBench: A Benchmark Suite forddMining Work-
loads. InIEEE International Symposium on Workload Characterizatio
2006.

[71] Angeles Navarro et al. Analytical modeling of pipeliparallelism. In
Proceedings of the International Conference on Parallethtectures and
Compilation Technique2009.

[72] Angeles Navarro et al. Load balancing using work-stegfor pipeline
parallelism in emerging applications. Rroceedings of the International
Conference on Supercomputjr&09.

135

[73]

[74]
[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Yasunori Nishitani et al. Implementation and evalaatof OpenMP for
Hitachi SR8000. Irinternational Symposium on High Performance Com-
puting 2000.

Nvidia. CUDA SDK Code Samples, 2007.

Subbarao Palacharla and R. E. Kessler. Evaluatingrstiauffers as a sec-
ondary cache replacement. Pmoceedings of the Annual International Sym-
posium on Computer Architectyr&994.

R. Rajwar and J. Goodman. Speculative lock elision:lding highly con-
current multithreaded execution. Rroceedings of the Annual ACM/IEEE
International Symposium on Microarchitectyg901.

Ravi Rajwar and James R. Goodman. Transactional loek-éxecution of
lock-based programs. IRroceedings of the International Conference on
Architectural Support for Programming Languages and OperaSystems
2002.

Easwaran Raman. Parallel-stage decoupled softwpsdiping. Ininterna-
tional Symposium on Code Generation and Optimiza@@08.

R. M. Ramanathan. Intel multi-core processors: Makimgmove to quad-
core and beyondTechnology@Intel Magazind(1):2—4, December 2006.

Krishna K. Rangan, Gu-Yeon Wei, and David Brooks. Threwtion: Fine-
grained power management for multi-core systems.Pioceedings of the
Annual International Symposium on Computer Architectlé®9.

Parthasarathy Ranganathan et al. The interaction fbivage prefetching
with ILP processors in shared-memory systems Pioceedings of the An-
nual International Symposium on Computer Architectd@97.

S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest gptdon: user-
level shared memory.SIGARCH Comput. Archit. Newg2(2):325-336,
1994.

Christopher Rossbach et al. TxLinux: using and manmggiawrdware trans-
actional memory in an operating system. Sgmposium on Operating Sys-
tems Principles2007.

Amir Roth and Gurindar S. Sohi. Effective jump-poingaefetching for
linked data structures. IRroceedings of the Annual International Sympo-
sium on Computer Architectur&999.

136

[85] Mitsuhisa Sato et al. Design of OpenMP compiler for anFStluster. In
European Workshop on OpenM®Beptember 1999.

[86] Larry Seiler et al. Larrabee: a many-core x86 architeetfor visual com-
puting. ACM Trans. Graph.2008.

[87] Jason Sobel. The facebook blog: Keeping up.
http://blog.facebook.com/blog.php?post=7899307130.

[88] Stephen Somogyi et al. Spatio-temporal memory stragnfProceedings of
the Annual International Symposium on Computer Architec20009.

[89] S. Sridharan et al. Thread migration to improve synaiwation perfor-
mance. In Workshop on OS Interference in High Performangaiégtions,
2006.

[90] The Standard Performance Evaluation CorporatioW/elcome to SPEC
http://www.specbench.org/.

[91] David C. Steere et al. A feedback-driven proportioroeditor for real-rate
scheduling. INUSENIX Symposium on Operating Systems Design and Im-
plementation

[92] Richard Strong et al. Fast switching of threads betweenes. SIGOPS
Oper. Syst. Rev43(2), 2009.

[93] M. Suleman et al. ACMP: Balancing Hardware Efficiencyl &rogrammer
Efficiency. Technical report, HPS, February 2007.

[94] M. Suleman et al. An Asymmetric Multi-core Architeceufor Accelerating
Critical Sections. Technical Report TR-HPS-2008-003,8200

[95] M. Suleman et al. Feedback-driven threading: powgcieht and high-
performance execution of multi-threaded workloads on CMRsProceed-
ings of the International Conference on Architectural Sopior Program-
ming Languages and Operating Syste2G08.

[96] M. Aater Suleman et al. Accelerating Critical SectiaxeEution with Asym-
metric Multi-Core Architectures. IfProceedings of the International Con-
ference on Architectural Support for Programming Langusaged Operat-
ing System<2009.

137

[97] M. Aater Suleman, Onur Mutlu, Moinuddin Qureshi, ander&att. An
Asymmetric Multi-core Architecture for Accelerating daal Sections. In
Proceedings of the International Conference on Architedt@upport for
Programming Languages and Operating Systez069.

[98] David Tarjan, Michael Boyer, and Kevin Skadron. Fetiera repurposing
scalar cores for out-of-order instruction issue. OAC '08: Proceedings of
the 45th annual Design Automation Confereriz@08.

[99] Joel M. Tendler et al. POWER4 system microarchitectuBM Journal of
Research and Developmed6(1):5-26, 2002.

[100] William Thies et al. Streamit: A language for streamiapplications. In
11th Intl. Conference on Compiler Constructj@902.

[101] Tornado Web Server. Source code. http://tornadecgdarge.net/.

[102] Pedro Trancoso and Josep Torrellas. The impact ofdspgeup critical
sections with data prefetching and forwarding. International Conference
on Parallel Processingl996.

[103] Mark Tremblay etal. A Third-Generation 65nm 16-Co&Bnread Plus 32-
Scout-Thread CMT SPARC Processor.lhternational Solid-State Circuits
Conference2008.

[104] Dean M. Tullsen et al. Simultaneous multithreadingaxuinizing on-chip
parallelism. InProceedings of the Annual International Symposium on Com-
puter Architecture1995.

[105] Marcel Waldvogel, George Varghese, Jon Turner, ancthiged Plattner.
Scalable high speed ip routing lookups. Special Interest Group on Data
Communications (SIGCOMM}997.

[106] Matt Welsh et al. Seda: An architecture for well-cdimahed, scalable in-
ternet services. IProceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP’01)

[107] Thomas F. Wenischlemporal memory streamindhD thesis, 2007.

[108] Thomas F. Wenisch et al. Temporal streaming of sharechany. InPro-
ceedings of the Annual International Symposium on Comprtgritecture
2005.

[109] Wikipedia. Fifteen puzzle. http://en.wikipediagbwiki/Fifteenpuzzle.

138

[110] S. C. Woo et al. The SPLASH-2 programs: Charactearasind method-
ological considerations. IRroceedings of the Annual International Sympo-
sium on Computer Architectur&995.

[111] Peng Zhao and José Nelson Amaral. Ablego: a functiliring and partial
inlining framework. Software — Practice and Experiencg/(5):465-491,
2007.

[112] Hongtao Zhong, Steven A. Lieberman, and Scott A. MahlkExtending
multicore architectures to exploit hybrid parallelism ingle-thread applica-
tions. INHPCA '07: Proceedings of the 2007 IEEE 13th InternationahSy
posium on High Performance Computer Architecfypages 25-36, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

139

Vita

M. Aater Suleman was born in Lahore, Pakistan on January&3,18e son
of Sheikh and Nusrat Suleman. He attended the Crescent Nagleér Secondary
School in Lahore, Pakistan until 2000. He migrated to theéthbtates and started
his Bachelors in Electrical and Computer Engineering fromvarsity of Texas at
Austin in 2000. He graduated in 2003. The following semeséejoined graduate
school, also at Texas. He received his Masters in 2005. Hiedtaorking on his
PhD with Prof. Yale Patt in 2004.

During his undergraduate years, Suleman worked for the Uiit&eor
Space Research as a part of NASAs ICESat mission. He playeitiGal role in
the development of the timing verification system. The safenhe developed is in
use by NASA at the White Sands Missile Range in New Mexico. Haiphed in
the Journal of Measurement Science and Technology. Heralsimed at National
Instruments. He was the Vice-President of Eta Kappa Nu isdmsor year. He re-
ceived a Distinguished Scholar medal, a medal for gradgatith highest honors,
a TXTEC scholarship, and two College Scholar awards.

While in graduate school, Suleman served as a teachingassier five
semesters at The University of Texas at Austin. He did seweriships: four at
Intel, two at AMD, and one at Oasis. He has published papdrgenational Sym-
posium on Computer Architecture (ISCA), International @sance on Architec-
tural Support for Programming Languages (ASPLOS), Intéonal Symposium on
High-Performance Computer Architecture (HPCA), Inteimaal Symposium on
Code Generation and Optimization (CGO), and IEEE Micro Ta$ His honors
include a paper in IEEE Micro Top Picks, Intel PhD fellowshapd the Prestigious
UT Graduate Dean Fellowship. He also served as the PresitiPakistani Student
Support Group in 2007.

Permanent address: 11932 Rosethorn Dr.,
Austin, Texas 78758

This dissertation was typeset witifX ' by the author.

fIATEX is a document preparation system developed by Leslie Langsoa special version of
Donald Knuth’s EX Program.

140

