Feedback Driven Pipelining

M. Aater Suleman Moinuddin Qureshi Khubaib Yale N. Patt

High Performance Systems Group
Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, Texas 78712-0240

TR-HPS-2010-001
March 2010



This page is intentionally left blank.



Feedback-Directed Pipelining for Multi-threaded Workloads

Abstract

Extracting performance from Chip Multiprocessors reqgitkat the application be parallelized. A common
software technique to parallelize loopspgeline parallelismin which the programmer/compiler splits each
loop iteration into stages and each stage runs on a certaimler of cores. It is important to choose the
number of cores for each stage carefully because the cestalpe allocation determines performance and
power consumption. Finding the best core-to-stage aliocator an application is challenging because the
number of possible allocations is typically quite largedahe best allocation changes with the input set and
machine configuration.

This paper proposeBeedback-Directed Pipelining (FDR) software framework that chooses the core-to-
stage allocation at run-time. FDP first maximizes the pearfance of the workload and then saves power by
reducing the number of active cores, without impactinggenfince. Our evaluation of FDP on a real 8-core
SMP system (2x Core2Quad) shows that FDP provides an avemeglup of 4.2x which is significantly higher
than the 2.3x speedup obtained with a practical profile-deséocation. We also show that FDP is robust to
changes in machine configuration and input set variation.

1. Introduction

Modern processors tile multiple cores on a single chip torowe concurrency. As processor frequency
has slowed down, and the per-core performance is improwiagnauch slower pace than before, applications
will focus on exploiting parallelism for performance grdwtimproving performance of a single application
using such a multiprocessor system requires that the apigicbe divided into threads. Threads concurrently
execute different portions of the same problem, therebyravipg performance. As applications tend to spend
most of their time in executing loops (or recursive kernelgich can often be converted into loops), we focus
primarily on extracting parallelism within loops.

Pipeline parallelismis a popular software approach to split the work in a loop agribmeads. In pipeline
parallelism, the programmer/compiler splits each iteratof a loop into multiple work-quanta where each
work-quantum executes in a different pipeline stage. Riaesearch has shown that pipeline parallelism is ap-
plicable to many different types of workloads, e.g, streagyji’], recognition-mining-synthesis workloads [2],
compression/decompression [10], etc. In pipeline pdraltlarkloads, each stage is allocated one or more
workerthreads and aim-queuewhich stores the work quanta to be processed by the st@geiorker thread
pops a work quanta from the in-queue of the stage it is alkattd, processes the work, and pushes the work
on the in-queue of the next stage.

Figure 1(a) shows a loop which has N iterations. Each itendt splitinto 3 stages: A, B, and C. Figure 1(b)

shows a flow chart of the loop. The three stages ofthé@eration are labeled Ai, Bi, and Ci. Figure 1(c) shows

"We always execute one thread per core and therefore usearmigbreads interchangeably.

3



fori=1toN

... Il code in stage A

... Il code in stage B

bl

0’@@@@&@@@@@@@
f f f f f f f f f

} time

... Il code in stage C e ottty oty ot oty t, oty ottty t,
. J J
©
( N 0
0 | 0eEEIE)
P1 ‘80‘81‘82‘83‘84‘85‘

(o]

.

.

t t t t t t t time

(b) (d)
Figure 1. (a) The code of a loop, (b) Each iteration is split in to 3 pipeline stages: A, B, and C. Iteration i comprises Ai, Bi , Ci.
(c) Sequential execution of 4 iterations. (d) Parallel exec  ution of 6 iterations using pipeline parallelism on a three- core machine.

Each stage executes on one core.

how this loop gets executed sequentially on a single procedshe timet is the start of iteration 0 of the
loop. The timets is the end of iteration 0, and the start of iteration 1, andsokigure 1(d) shows how this
program gets executed using pipeline parallelism on threegssors. Each core works on a separate part of the
iteration (PO executes stage A, P1 executes stage B, anceBatex stage C), and the iteration gets completed
as it traverses from left to right, and top to bottom. Notet the show for simplicity that each stage has one
core but it is possible to allocate multiple cores per stagghare a core among stages. When multiple cores
are assigned to a stage, they all feed from the in-queuereskig the stage and execute different work-quanta
concurrently. In fact, a key design decision in developinde using pipeline parallelism is to determine the
total number of stages and the number of threads (coreshvanécallocated to each stage.

Pipeline parallelism can be implemented usin@yanmetric Pipelinein which each stage has an equal
number of cores. The key problem with a symmetric pipelinga& each stage can perform disparate parts of
the work, each with widely varying latency. If each stageemlifferent time to execute its work quanta, then
all stages other than the slowest one remain under-utilizbs problem can be solved by using&symmetric
Pipelinethat allocates a different number of cores to each stage. tmwdetermining the core allocation
per stage for optimal performance is a non-trivial task,teslatency per stage is a function of input set and
machine configuration and may change between differentgshafsa given program. Furthermore, given that
not all stages benefit equally from each extra core, the deation must be based not only on latency but
also on how well a stage utilizes execution resources. Atiag more cores to a stage than required to saturate
its performance wastes power and sometimes reduces parficen

The core-to-stage allocation can be done statically usiofii@information. However, profiling information



is typically dependent on input set and is applicable ontyaf@articular machine. When the input set or the
machine changes, the decisions based on profile informatannot be meaningful. Furthermore, searching
through all the combinations of core-to-stage allocatimay be impractical given that the number of possible
allocations increases combinatorially with the numberaks.

To overcome these limitations of pipeline parallelismstpaper proposeBeedback-Directed Pipelining
(FDP), a framework that can execute pipeline parallel workloada high performance and power-efficient
manner. For dynamic core-to-stage allocation, FDP leveséige key insight that the performance of a pipeline
is limited by the execution rate of the slowest stage. Thighdst performance can be achieved only when
maximum possible resources are allocated for the accielerat the slowest stage. FDP samples the execution
to measure latencies of each stage and uses a hill-climhgogthm to determine core-to-stage allocation.

Once the slowest stage has been accelerated to the maxinPrncdh slow down the other stages to save
resources. For example, allocating the same core to twerdiit stages which are utilizing their cores less then
50%. Combining stages frees up cores which are either usatprove performance of other stages or yielded
to the Operating system. The operating system can eithigmatbese cores to other programs or turn them off
to save power.

Previous researchers have also proposed mechanisms wedhenumber of threads per stage statically [15,
16, 13, 6] or dynamically [9]. The static mechanisms havesti@tcoming that they cannot take the input set,
machine configuration, or scalability of stages into ac¢ourhe previously proposed dynamic mechanisms
make simplistic assumptions about scalability of stagelsaae limited to workloads where stages are relatively
balanced and have similar characteristics. Unlike thesgipusly proposed techniques, FDP is a general
mechanism which makes no assumption about the stages’texetime or their scalability. FDP is a dynamic
mechanism which measures the run-time and infers the skglaib each stage via hill-climbing. Thus, FDP
can adapt to changes in input set and machine configuratwisaapplicable to all pipeline workloads, even
where stages are heavily imbalanced.

We evaluate FDP on a real 8-core Core2Quad SMP using 9 wakki@xperimental methodology is shown
in Section 4). FDP provides an average speedup of 4.2x whiskgnificantly higher than the 2.3x speedup
obtained with a practical profile-based allocation. FDP atduces the average number of active cores by
12.5%. We also evaluate FDP on a 16-core Barcelona systeshaadthat FDP continues to provide significant
performance, while reducing the number of active coresthifeamore, we show that FDP is also applicable to
workloads parallelized using/ork Sharingan alternative programming paradigm.

FDP is a software technique and does not require any hardsteeges. It measures the execution time
using existing instructions to read the processor time ptapunter. We develop a software library which

contains routines that implement the FDP algorithm. Theaéimes measure the execution time, determine the



core-to-stage allocation, and enforce these allocatidhs. library abstracts the details and provides a simple

interface to reduce programmer intervention.
2. Motivation

As chip-multiprocessors become common, programmers @stbrt to multi-threading as means to improve
performance. Improving performance of loops using miiteading requires distributing the work among
threads. An effective approach to distributing work is pipe parallelism. Pipeline parallelism has been
shown to increase parallelism, improve cache locality,iantease power efficiency [7].

2.1. Pipeline Programming Model

Pipeline parallel workloads extract parallelism at twdetiént levels: within the same iteration of a loop and
between different iterations of a loop. To execute the lo®p @ipeline, the programmer/compiler divides an
iteration of a loop into distinct stages of work. All stagee acheduled such that they can run concurrently.
An iteration enters the pipeline and “flows” through the pipe stages as different stages operate on it. The
iteration is complete once it leaves the last stage in thelipig.

In a pipeline program, each stage is assigned a work-queliehwve call itsin-queueand one or more
worker threads. Each entry in the in-queue is the pointer to antitera An entry pointing to iteratior in
the work-queue for stage signifies that stage of iteration: is to be executed. Each worker thread can also
be assigned to multiple stages and it can process execetiprests from the in-queues of any of the stages it
is assigned to. The worker thread dequeues an iteration tihenm-queue of one of the stages it is assigned
to, processes the stage, and enqueues the iteration in-thueire of the next stage. For example, let a worker
threadw be assigned to stage Now suppose that when dequeues a request from the in-queue of stagte
finds iterationi. w will then run stages of iteration: and then add to the in-queue of stage+ 1.

1: while ('DONE)

Il GetNextStage(): Pick a stage to execute

Il A stage is chosen in round-robin fashion from

I the set of stages which satisfy two criteria:

/I -Stage must be assigned to the worker thread
/[ -Stage must have a non-empty in-queue

I/l The thread waits if all such stages have empty in-queues
stage = GetNextStage()

Pop an iteration i from stage’s in-queue

Run stage for iteration

Push the iteration to the in-queue of its next stage

Figure 2. The worker loop.

Figure 2 shows the source code of a generic worker thread afted in a pipeline. The worker thread runs
in a loop until the program is complete, i.e., all iteratidras’e been processed. In each iteration of the worker
thread loop, the thread picks the stage to run: stages asegho round-robin fashion from the set of stages

who are assigned to the worker thread and whose in-queuaniemty. If all the stages mapped to a worker



thread have an empty in-queue, the worker thread polls ogetirequeues until one of them is non-empty.
Once the worker thread has found a stage with a non-emptyénkg it dequeues an iteration from the queue,
executes the stage for the iteration, and then enqueuetgthtidn in the in-queue of the iteration’s next stage.

We now explain pipeline parallelism with an example appiaa

STAGE S1 STAGE S2 STAGE S3 STAGE S4 STAGE S5
ALLOCATE READ INPUT COMPRESS WRITE OUTPUT DEALLOCATE
Input Allocate buffers b Q = QUEUEL.Pop() b Q = QUEUE2.Pop() Q = QUEUE3.Pop() Q = QUEUE4.Pop()
File QUEUEL Push(Buf) E Read file to Buf E Compress Q E Write oldest Q to File E Deallocate Buffers
QUEUE2.Push(Buf) QUEUE3.Push(Q) QUEUE4.Push(Q)
OUEUE1 OUEUE2 OUEUE3 OUEUE4
Figure 3. File compression algorithm executed using pipeli ne parallelism

Consider a kernel from the workloanpr ess. This kernel compresses the data in an input file and writes
it to an output file. Each iteration of this kernel reads a klrom the input file, compresses the block, and
writes the compressed block to the output file. Figure 3 shivgipeline of this kernel. Stage S1 allocates
the space to save the uncompressed and the compressed Bl2dleads the input and S3 compresses the
block. When multiple threads/cores are allocated to eampestiterations in a pipeline can get out of order.
Since blocks must be written to the file in-order, S4 re-osdbe quanta and writes them to the output file. S5
deallocates the buffers allocated by S1. This kernel caoutgeon a 5-core CMP such that each stage executes
on one core. At any point in time, cores will be busy executlifeerent portions of five different iterations,
thereby increasing performance. In reality, when the [rijgekxecutes, cores executing different stages of a
pipeline often wait on other cores and remain idle. Thistngoncurrency and reduces performance. There
are two common sources of this inefficiency.

2.2. Variation in Throughput

We definethroughputof a pipeline stage as the number of iterations processedjivem amount of time.
Thus, the throughput; of a pipeline stageé can be defined as:

_ Num Iterations Processed

Ti = 1)

Time

The overall throughputy, of the whole pipeline is limited by the throughput of theveist stage of the
pipeline. Therefore:

T:MIN(TO,Tl,TQ,...) = Tmin (2)

Thus, for example, if the slowest stage of the pipeline fanpeession shown in Figure 3 is S3 (compress),
then performance will be solely determined by the througlyb$3. The variation in throughout among stages
also dictates the power efficiency of the pipeline. L&tV ITER be the stage with the lowest throughput.
Then stages other than the LIMITER will wait on the LIMITERage and their cores will be under-utilized.

7



Therefore, the more the variation in the execution latenofehe pipeline stages, the more is the under utiliza-
tion of cores, which leads to wasted on-chip power.

2.3. Limited Scalability

A common method used to increase the throughput of the LINRBEage is to increase the number of cores
allocated to it. However, more cores help if and only if the LTEMR stage scales with the number of cores
(increasing the number of allocated cores increases ibsigiput). Unfortunately, throughput of a stage does
not always increase with the number of cores due to conteritio shared data (i.e. data-synchronization,
cache-coherence) and contention for shared resourcexéelges and off-chip bandwidth). When a stage does
not scale, allocating more cores to the stage either doesmuoove its throughput or can in some scenarios
reduce its throughput [20]. Thus, once a stage becomestimibe additional cores dissipate on-chip power
without contributing to performance.

2.4. Need for Runtime Learning

The core-to-stage allocation can be done statically usiofii@information. However, profiling information
is typically dependent on the input set and is applicablg o a particular machine. When the input set or
the machine configuration changes, the decisions basedofitepnformation may no longer be meaningful.
Furthermore, searching through all the combinations oéorstage allocation may be impractical given that
the number of possible allocations increase combinatpnth cores. For a system with C cores, a pipeline

with S stages would have number of possible allocationagwgS > 2 andC > S):
51

[Tec-9

Num. Possible Allocations = Zle 3)

IT:
=1
For the above equation, we assume that each stage getstairieasore, all cores are allocated, and a core

is not shared between multiple stagieFable 1 shows the total number of combinations when the eumb

stages in a pipeline is varied from 2 to 8 for an 8-core, 1@&cand 32-core system.

Table 1. Num. allocations for an S stage pipeline.
| Stages| 2| 3 ] 4 | 5 | 6 | 7 | 8 |
8-Core || 7 | 21 35 35 21 7 1

16-Core|| 15| 105 | 455 | 1365 | 3003 | 5005 | 6435
32-Core|| 31| 465 | 4495| 31K | 170K | 736K | 2.6M

Thus, the brute-force method of searching through theesaéiarch space becomes impractical, especially as
the number of cores continues to increase for future systdmsntelligent scheme that can learn the core-to-

stage allocation at runtime can obtain close to (or bettn)tistatic profile-based allocation and will be robust

2Note that there are far more combinations possible if the@lneentioned constraints are relaxed.



to input set and machine configuration. In the next secti@pmpose such a dynamic scheme.
3. Feedback-Directed Pipelining

The performance and power-efficiency of pipeline paraltalican be improved by making two key obser-
vations. First, the overall performance is dictated onlythy LIMITER stage, hence more resources must be
invested to improve the throughput of the LIMITER stage. @l since the overall performance is not lim-
ited by the stages other than the LIMITER stage, withdraveixcess resources from these stages can improve
power efficiency without impacting overall performance. Wée these insights to propoBeedback-Directed
Pipelining (FDP) a parallelization framework that can achieve both highHgrerance and low power.
3.1. Overview

FDP uses runtime information to choose core-to-stage atilma for best overall performance and power-

efficiency. Figure 4 shows an overview of the FDP framework.

INIT ‘
Mode=Optimize—Perf

TRAIN

OPTIMIZE y PERF ‘ OPTIMIZE y POWER

Try to increase throughpuj Try to combine two stages

of LIMITER stage with lowest utilization

If not possible
Mode = Optimize—Power

If already tried or not possible
Mode = Optimize—Perf

ENFORCE
I ]
ALLOCATION

Figure 4. Overview of FDP.

FDP operates in two modes: one that optimizes performafaei(ni ze- Per f ) and other that optimizes
power Opti m ze- Power). Initially, each stage in the pipeline is allocated oneecoFDP first tries to
achieve the highest performance, and then it tries to opépower. FDP is an iterative technique that contains
three phases: training, re-allocation of cores to stages,emforcement of the new allocation. The training
phase gathers runtime information for each stage of thdipgeand is helpful in determining the throughput
and core utilization of each stage. Based on this informatibe performance-optimization mode identifies
the LIMITER stage and tries to increase its throughput bgcaiting more cores to it. When it can no longer
improve performance (as there may be no spare cores or adoliag does not help improve performance) FDP

switches to power-optimization mode. In this mode, FDPstt@easssign the stages with lowest utilization to



|Stagesf PO | P1 | P2 [ Avg. ExecutionTime || Throughput |

SO0: | (3K,3) 1K 1/1K
S1: (12K, 3) 4K 1/4K
S2: (9K, 1) (21K,2) 10K 1/5K
Figure 5. Sample output from Train for a pipeline with three s tages (S0, S1, S2) on a 3-core machine. Each entry is a 2-tuple  : (the

sum of time measurements, the number of time measurements) t aken for each core-stage pair. Blank entries contain (0,0).

one core, as long as the combined stage does not become thEERWtage. The core thus saved can be used
to improve performance or turned off to save power. EvenetifDP chooses a new core-to-stage allocation,
it enforces the new allocation on the pipeline at the end efitdration. We now explain each part of FDP in
detail (the psuedo-code of the FDP library is shown in theexu}ix).

3.2. Train

The goal of the training phase is to gather runtime staistioout each stage. To measure execution time
of each stage, the processor’s cycle count register is retia deginning and end of each stage. Instructions
to read the cycle count register already exist in currentdS#g., the dt sc instruction in the x86 ISA. The
difference between the two readings at the start and endeo$tdge is the execution time of the stage. This
timing information is stored in a two-dimensional table #ganto the one shown in Figure 5. The rows in the
table represent stages (S0-S2) and columns represent(&@d22). Each entry in this table is a 2-tuple: the
sum and the number of time measurements taken for the condispy core-stage pair. For each measurement
taken, Train adds the measured time to the sum of measured tithe core-stage pair and increments the
corresponding number of measurements. For example, ihTreasures that executing SO on PO took 4K
cycles, then it will modify the entry corresponding to SO &flin Table 5 to (7K,4) i.e. (3K+4K, 3+1). Note
that if a stage is not assigned to a core, the entry correspgtaithe core-stage pair remains (0,0). For example,
since Sl is only assigned to P1 and not to PO and P2, its enteri®0 and P2 are 0. We limit the overhead of
measuring the timing information via sampling: we meastueomce every 128th work-quanta processed by the
stage.

3.3. Performance-Optimization

The goal of the performance-optimization mode is to chahgebre-to-stage allocation in order to improve
overall performance. When the mode of operation is perfoaeoptimization, one of the threads invokes this
phase once every 2K iterations or 100K processor cycleshehier is earliet. The phase takes as its input the
information collected during training, a table similar tigére 5. The phase first computes the average execution
time of all stages. The average execution time of a stageesisuim of all timing measurements recorded in

the table for that stage divided by the total number of mesments for that stage. For example, for the table

3We choose these values empirically.

10



shown in Figure 5, the average execution time of stage S2Ksc{@les computed as (9K+21K)/(1+2). The
phase next computes the throughput of each stage as the nafrdmges assigned to the stage divided by the
stage’s average execution time (e.g., throughput of SZ;hvhins on two cores, is 2/10K, i.e., 1/5K). The stage
with the lowest throughput is identified as the LIMITER (S2he LIMITER stage in our example). If there
are free cores in the system, FDP allocates one of them tolMETER. The cores assigned to the LIMITER
stage execute in parallel and feed from the in-queue as$igribe LIMITER stage.

To converge to the best decision, it is important that the¢orstage allocations, that have already been
tried, are not re-tried. FDP filters the allocations by maiiming the set of all allocations which have been tried.
A new allocation is only enforced if it has not been tried lrefexcept when FDP is reverting back to a previous
allocation that is known to perform similar to (or betternh#he current allocation, while using fewer cores.

FDP increases the number of cores of the LIMITER stage wittmgaticit assumption that more cores lead
to higher throughput. Unfortunately, this assumption isalways true; performance of a stage can saturate at
a certain number of cores and further increasing cores wast@er without improving performance. To avoid
allocating cores that do not improve performance, FDP abwvagasures and stores the performance of the pre-
vious allocation. Every time FDP assigns a new core to thelLBR stage, it compares the new performance
with the performance of the previous allocation. If the newfgrmance is higher than the performance with
the previous allocation, FDP allocates another core to tMdTER stage. However, if the new performance is
lower than the performance with the previous allocationPRBverts to the previous allocation and switches to
power-mode.

3.4. Power-Optimization

The goal of this mode is to reduce the number of active corbgewnaintaining similar performance. When
the mode of operation is power-optimization, this phasevusked once every 2K iterations or 100K processor
cycles whichever is earlier. This phase uses the informatidlected during training to compute the throughput
of each stage. To improve power-efficiency, the stages Wwithhighest throughput allocated to the two cores
can be combined to execute on a single core, as long as tHamgshroughput is not less than the throughput
of the LIMITER stage. This optimization frees up one coreahian be used by another stage for performance
improvement or turned off for saving power. This processjgeated until no more cores can be set free. At
this point, FDP reverts to performance mode.

3.5. Enforcement of Allocation

FDP changes the allocation of cores to stages dynamicatlyadilitate dynamic allocation we add a data
structure which stores for each core the list of stages allémtto it. The core processes the stages allocated to
it in a round-robin fashion. FDP can modify the allocatiorithiree ways. First, when a free core is allocated to

the LIMITER stage, the LIMITER stage is added to the list a&f ffree core. Second, when a stage is removed

11



from a core, it is deleted from the core’s list. Third, wheagsts on two different cores are combined on to a
single core, the list of one of the cores is merged with theoli®ther core and emptied.
3.6. Programming Interface for FDP

The FDP library itself handles the code for measuring andmding the execution time of each stage. It also
maintains sampling counters for each allocation to limgtinmentation overhead. It automatically invokes
performance-optimization or power-optimization phadesppropriate times without programmer intervention.

To interface with this library, the programmer must insarthie code the four library calls shown in Figure 6.

void FDP_Init (num_stages)

void FDP_BeginStage (stage_id)
void FDP_EndStage (stage_id)
int FDP_GetNextStage ()

Figure 6. FDP library interface.

TheFDP_I ni t routine initializes storage for FDP and sets the mode tawipé performance. The training
phase of FDP reads the processor’s cycle count registee atdéint and end of every stage. To facilitate this, a
call to FDP_Begi nSt age is inserted after the work-quanta is read from the respecfiveue and before it is
processed. Also, a call €DP_EndSt age is inserted after the processing of the quanta is completediare it
is pushed to the next stage. The arguments of both functitsmisahe stage id. Once a core completes a work-
guanta, it needs to know which stage it should process néxs.i3 done by calling thEDP_Get Next St age
function. FDP obtains the id of the core executing an FDPtfandy invoking a system call.

FDP only requires modifications to the code of the workerabrim a pipeline program, not the code which
does the actual computation for the stage. Thus, FDP candierimented in the infrastructures commonly used

as foundation for implementing pipeline programs, e.gellfthreading Building Blocks [10].

1: FDP_nit ()

2 while (IDONE)

3: stage_id = FDP_GetNextStage ()

4: Pop an iteration i from the stage’s in-queue

5: FDP_BeginStage (stage _id)

6 Run the the stage of that iteration

7 FDP_EndStage (stage -id)

8 Push the iteration to the in-queue of its next stage

Figure 7. Modified worker loop (additions/modifications are shown in bold)

Figure 7 shows how the code of the worker loop is modified terfiate with the FDP library. The four
function calls are inserted as follows:DP_I ni t is called before the worker loop begins. Inside the loop
the thread call$-DP_Get Next St age to get the ID of the next stage to process. The worker thread th
pops an entry from the in-queue of the chosen stage. Bef@eudrg the computation in stage, it calls the

instrumentation routinEDP_Begi nSt age. It then runs the computation and after the computationllé tae

12



instrumentation functiofrDP_EndSt age. It then pushes the iteration to the in-queue of the nexatiten.
3.7. Overheads

FDP is a pure software mechanism and does not re@uiyechanges to the hardware. FDP only incurs
minor latency and software storage overhead. The lateneyhead is incurred due to instrumentation and
execution of the optimization phases. These overheaddgniicantly reduced because we only instrument
0.7% (1/128) iterations. The software storage overheadptises the storage required for the current core-to-
stage allocation, the list of previously tried core-tog&tallocations, the table to store execution latencies of
each stage, and counters to support sampling. The totalge@verhead is less than 4KB in a system with
16 cores and 16 stages. Note that this storage is allocatbeé iglobal memory and does not require separate

hardware support.

4. Experimental Methodology
4.1. Configuration

We conduct our experiments on two real machines. Our basslistem is a Core2Quad SMP that contains
2 Xeon Chips of four cores each. To show scalability of ouhtegue, we also conduct experiments with
an AMD Barcelona SMP machine with four Quad-core chips (tedor this machine will be reported in
Section 6.4). Configuration details for both machines amsvshin Table 2. Each system has sufficient memory

to accommodate the working set of each of the workloads usedristudy.

Table 2. System Configuration

| Name | Core2Quad (Baseline) | Barcelona |
System 8-cores, 2 Intel Xeon Core2Quad packagesl6-cores, 4 AMD Barcelona packages
Frequency] 2 GHz 2.2GHz
L1 cache | 32 KB Private 32 KB Private
L2 cache | Shared; 6MB/2-cores Private; 512KB/core
L3 cache | None Shared; 8MB/4-cores
DRAM 8 GB 16 GB
oS Linux CentOS 5 Linux CentOS 5

4.2. Workloads

We use 9 workloads from various domains in our evaluationlditing 2 from PARSEC benchmark suite
[2]%). Table 3 describes each workload and its input B&ar | 0, BSchol es, nt wi st er, andpageni ne
were modified from original code to execute in pipeline fashi
4.3. Measurements

We run all benchmarks to completion and measure the overadiugion time of each workload using the
GNU time utility. To measure the fine-grained timings, sushspent inside a particular section of a program,
we use the read timestamp-counter instructiodt(sc). We compute the average number of active cores by

counting the number of cores that are active at a given tindeaagraging this value over the entire execution

“The remaining PARSEC workloads are data-parallel (notlisipd) and FDP does not increase or decrease their perfaenan

13



time. We run each experiment multiple times and use the gedrareduce the effect of OS interference.
Table 3. Workload characteristics.

| Workload | Description (No. of pipeline stages) | Input |
MCarlo MonteCarlo simulation of stock options [1{@&) N=400K
compress | File compression using bzip2 algorithm [1(3) 4MB text file
BScholes | BlackScholes Financial Kernel [17§) 1M opts
pagemine | Derived from rsearchk[14] and computes a histogfain 1M pages
image Coverts an RGB image to gray-scéfy 100M pixels
mtwister | Mersenne-Twister PRNG [171}) path=200M
rank Rank strings based on their similarity to an input str{8y 800K strings
ferret Content based similarity search from PARSEC suitéf?] simlarge
dedup Data stream compression using deduplication algorithm fRARSEC suite[2{7) simlarge

5. Case Studies

FDP optimizes performance as well as power for pipelineddoads at runtime. We now show the working
of FDP on both scalable and non-scalable workloads with ¢ ¢f in-depth case studies that provide insights
on how FDP optimizes execution. Detailed results and aisalgsall workloads will be provided in Section 6.
5.1. Scalable Workload: Compress

The workloadconpr ess implements a parallel pipelined bzip2 compression algorit It takes a file as
input, compresses it, and writes the output to a file. To im&eeconcurrency, it divides the input file into equal
size blocks and compresses them independently. It allotiagestorage for the compressed and uncompressed
data, reads a block from the file, compresses the block,der@ny work quanta which may have become out
of order, writes the compressed block to the output file, aalldcates the buffers. Figure 3 shows the pipeline
of conpr ess. Each iteration inconpr ess has 5 stages(S1-S5). Each stage can execute concurrently on
separate cores, thereby improving performance.

Table 4 shows the throughput of each stage when each staggcetad one core (the allocation 1-1-1-1-1).
The throughput of stage S3, which compresses the blockgisfigiantly lower than the other stages. Thus,
the overall performance is dominated by S3 (the LIMITER gjagrable 4 also shows the throughput when
one of the stage receives four cores and all other receiveame For example, with the 4-1-1-1-1 allocation
S1 receives four cores and all other stages get one coread$ire S1 allocate buffers in the shared heap and
contend for the memory allocator, thereby loosing concwyghence throughput of S1 improves by only 2.4x
with 4x the cores. Whereas, when 4 cores are given to Stagi#s3Broughput improves almost linearly by

3.9x because S3 compresses independent blocks withourtingoany thread communication.

Table 4. Throughput of different stages as core allocation i s varied. Throughput is measured as iterations/1M cycles.
| CoreAlloc. | S1 [ S2 [ S3| S4 | S5 | Exec. Time]
| 1-1-1-1-1 [ 284] 49 [ 0.4] 34 | 8K || 55sec. |
4-1-1-1-1 | 698 | 44 | 04| 33 6K 55 sec.
1-4-1-1-1 | 294 | 172 | 04| 35 7K 55 sec.
1-1-4-1-1 | 304 | 52 | 15| 37 7K 14 sec.
1-1-1-4-1 | 279 | 49 | 04| 135 | 8K 55 sec.
1-1-1-1-4 | 282 | 51 | 04| 33 | 31K 55 sec.

14



Table 4 also shows the overall execution time with differame allocations. As S3 is the LIMITER stage,
increasing the number of cores for other stages does notélge the overall execution time. However, when
S3 receives more cores, the throughput of S3 increases lyaB® overall execution time reduces form 55
seconds to 14 seconds (a speedup of 3.9x). Therefore, tovaperformance more execution resources must
be invested in the LIMITER stage.

We modify the source code afonpr ess to include library calls to FDP. FDP measures the throughput
each stage at runtime and regulates the core-to-staga@tindo maximize performance and power-efficiency.

Figure 8 shows the overall throughput as FDP adjusts thetoestage allocation.

7

[Optimized Execution ]

"3'3"?"""%"'"""

N _ e =/cores

FDP gives more cores S3=6cores END
to S3 in perf-mode s3=5con§."

6 -

5 +

4 + ..............." [

¢
,+* S3=4core:
6 S3=3cores

. FDP combines stages to
. S3=2cores free cores in power—-mode

FDP gives free cores
to S3in perf-mode

Normalized System Throughput
w

—+ .0’
S3=1core

f f f f f f f f f f f f f f
0 1 2 3 4 5 6 7 8 9 10 11 12 121 122  time
Number of lterations (x 2K)

Figure 8. Overall throughput of  COITPI €SS as FDP adjusts core-to-stage allocation

FDP initially allocates one core to each stage. As executa@rttinues, FDP trains and identifies S3 to be
the LIMITER stage. To improve performance FDP increasesitiieber of cores allocated to S3, until it runs
out of cores. For our 8-core system, this happens when SBsatdd 4 cores, and the remaining 4 cores are
allocated one each to S1, S2, S4, and S5. After it runs outreb¢c&DP begins to operate in power-optimization
mode. In the first invocation of this mode, the stages withhilghest throughput, S1 and S5, are combined to
execute on a single core, thereby freeing one core. In theimexcation, FDP combines S1 and S5 with S2
which frees up another core. FDP continues this until alf &tages S1, S2, S4, and S5 get combined to execute
on a single core. With no opportunity left to reduce powerPF&witches back to performance optimization
mode. FDP again identifies S3 as the LIMITER and allocates3three cores to S3. Thus, 7 out of the 8
cores are allocated to S3, and a single core is shared amlasthed stages. FDP converges in 10 invocations
and executes the workload in 9.7 seconds, which is much Itwaer with the static-best integer allocation
(1-1-4-1-1) that requires 14 seconds.
5.2. Non-Scalable Workload: Rank

Ther ank program ranks a list of strings based on their similarity toigput string. It returns the top N
closest matches (N is 128 in our experiments). Figure 9 shibevpipelined implementation farank. Each
iteration is divided into 3 stages. The first stage (S1) reéhdsext string to be processed. The second stage

(S2) performs the string comparison, and the final stage i(§88)ts the similarity metric in a sorted heap, and

15



COMPARE STR INSERT STR
Q = QUEUE1.Pop() Q = QUEUE2.Pop()

° Compare String Insert in Heap
QUEUE2.Push(Str) Delete tail on overflow

STAGE S1 ﬁ STAGE S2 ﬂ STAGE S3
L]

Input .
Strings

Read Next String

QUEUE1.Push(Str)

OUEUE1 OUEUE2
Figure 9. Pipeline for matching a stream of strings with a giv~ en string
removes the smallest element from the heap (except whensieajs less than N). At the end of the execution,
the sorted heap contains the top N closest matches.

Table 5 shows the throughput of system when each stage tatdlb one core (1-1-1). The throughput of
S2, which performs the string comparison, is significandhyeér than the other stages in the pipeline. As S2 is
the LIMITER, allocating more cores to S2 is likely to improveerall performance. The next three rows in the
table shows the throughput when one of the stage receivesed aad the other stages get one core. With the
increased core count, S1 and S3 show a speedup of 2.5x anddspectively. However, as these stages are

not the LIMITER, the overall execution time does not deceeas

Table 5. Throughput of different stages as core allocation i s varied (measured as iterations/1M cycles).

| CoreAlloc. | S1 | S2 | S3 | Exec. Time]
[ 111 [ 1116] 142] 236]] 17sec |
4-1-1 2523 | 118 | 258 19 sec

1-4-1 1005 | 558 | 278 13.2 sec
1-1-4 900 | 117 | 290 19.2 sec

1-4-2 930 | 368 | 285 14.6 sec
1-2-1 1028 | 274 | 268 13 sec

When S2 is allocated 4 cores, it shows the speedup of appateiyndx. This is because all cores in S2
work independently without requiring communication. Uniémately, the overall execution time reduces only
by 27%. This is because as S2 scales, its throughput sugpttesehroughput of S3. Thus, S3 becomes
the LIMITER. Once S3 becomes the LIMITER, the overall exgmutime is dominated by S3, making the
improvements of S2 ineffective on the overall speedup.

As S3 is the LIMITER, we expect to improve overall performanuy increasing cores allocated to S3.
The table also shows the throughput when additional coresabmcated to S3 (1-4-2). The access to the
shared linked data-structure in S3 is protected by a clitieation, hence this stage is not scalable and overall
performance reduces as the number of cores is increasea cdwatention for shared data. Thus, increasing
core counts for S3 does not help improve performance whikseming increased power.

We modify the source code ofank to include library calls to FDP. Figure 10 shows the ovetaibtighput
and active cores as FDP adjusts the core-to-stage allacdiith the information obtained during training, FDP
identifies S2 as the LIMITER stage, and allocates it one edra (1-2-1). In the next invocation, it identifies

S3 as the LIMITER stage, and increases the core count adid¢atS3 (1-2-2). However, as S3 does not scale,

16



FDP withdraws the extra core given to S3, and switches to powtmization mode. In power-optimization
mode, FDP saves power by executing S1 on one of the coreattbto S2. Thus, the final allocation is S1+S2
on one core, S2 on another core, and S3 on the third core. #igrthere are no opportunities left in the
pipeline to save power or improve performance, and execwimtinues on 3 cores completing in 13 seconds

(similar to best-static allocation 1-2-1, but with feweres).

15

2
5 o
D13+ ——— 2 O
g i ¢
F R Se— 0 3 8
8 ACTIVE CORES ?_:
St Stage Combining ) g
% " [S2 gets 1 core 88358 §%+82 2
210 premeuseen o (1-2-1) CORE?2: S3 13
THROUGHPUT
| | | | | | | | | | q |
T T T T T T T T T T ( T

0 1 2 3 4 5 184
Number of Iterations (x 2K)

Figure 10. Overall throughput and active cores of r ank as Fbp adjusts core-to-stage allocation

6. Results

We evaluate FDP in terms of performance, power consumpiot yobustness. We compare FDP with three
core-to-stage allocation schemes. First, @ee Core Per Stage (1CoreP§)heme which allocates one core
to each stage. Second, tReoportional Core Allocation (Propycheme which allocates cores to stages based
on their relative execution rates. Prop runs the applicatioce with 1CorePS and calculates the throughput
of each stage. The cores are then allocated in inverse gropado the throughput of each stage, thus giving
more cores to slower stages and vice versa. ThirdPtioéile-Basedscheme which allocates cores using static
profiling. The Profile-Based scheme runs the program for adisible allocations which assign arteger
number of cores to each stage and chooses the allocatiom wiiidmizes execution time. Note that while
the absolute best profile algorithm can try even non-intedjecations by allowing stages to share cores, the
number of combinations with such an approach quickly apgrea into millions, which makes it impractical
for us to quantitatively evaluate such a scheme for this pape

6.1. Performance

Figure 11 shows the speed-up when the workloads are exeuwttedhe core-to-stage allocation using
1CorePS, Prop, FDP, and Profile-Based. The speedup is/estatexecution time with a single core systém
The bar labeledsmeanis the geometric mean over all workloads. The 1CorePS schmmédes only a
marginal improvement, providing minor speedup increaséoon out of seven workloads. On the contrary, a
Profile-Based allocation significantly improves performaifor all workloads, providing an average speedup

of 2.86x. However, Profile-Based requires impractical sleiaig through all possible integer allocations. Prop

*We run the sequential version without any overheads of rtiuliading.

17



= 1 Core Per Stag

= Prop Assignmen

= FDP
Profile-Based

1%

=i

1

Speedup wrt 1 Core
ORrNWAUION

MCarlo compress BScholes pagemine image mtwister rank ferret dedup Gmean

Figure 11. Speedup with different core-to-stage allocatio n schemes.

avoids this brute force searching and gets an improvemanitasito Profile-Based by providing an average
speedup of 2.7x. FDP outperforms or is similar to the contperachemes on all workload$ACar | o gets
near optimal speedup of 7x with FDP because it contains alsledlLIMITER stage and FDP combines all other
stages. The workloadank has a stage that is not scalable, hence the limited perfarniamprovement with
all schemes. FDP provides an average speedup of 4.3x. Natdhts significant improvement in performance
comes without any reliance on profile information which iguied for both Prop and Profile-Based.
6.2. Number of Active Cores

FDP tries to increase performance by taking core resouroes faster stages and reallocating it to slower
stages. When the slowest stage no longer scales with attlitores, the spare cores can be turned off or used
for other applications. Figure 12 shows the average numitetive cores during the execution of the program
for 1CorePS, FDP, and Prop/Profile-Based. Both Prop andi&®ésed allocates all the cores in the system,
therefore they are shown with the same bar. The bar lab&hedandenotes the arithmetic mean over all the

workloads.

- Prop/ProfiIe-Bas

. W

Y <
&

W

NNNNNNNNNNNNNNNNNNNNNN

Figure 12. Average number of active cores for different core allocation schemes.

The number of active cores with the 1CorePS is equal to theberumf pipeline stages, which has an av-
erage of 5.2 cores. The Prop and Profile-Based schemes uses8 ¢dmrPageni ne andnt wi st er, the
performance saturates at 7 cores, so FDP does not use oreaufrtéfs in the system. For the workloaank,
the non-scalable stage means that five out of the eight carebecturned off. Thus, FDP is not only a perfor-
mance enhancing technique but also helps with reducingdiveipconsumed by cores when it is not possible

to improve performance with more cores. On average, FDPwbas only 7 cores even though it has one and

18



a half times the speedup of the Profile-Based scheme. Thiasrieathe same number of active cores, FDP

consumes two-thirds the energy as the Profile-Based schedneaes a much reduced energy-delay product.
6.3. Robustness to Input Set

The best core-to-stage allocation can vary with the inptit Skerefore, the decisions based on profile in-
formation of one input set may not provide improvements drepinput set. To explain this phenomenon, we
conduct experiments for theonpr ess workload with two additional input sets that are hard to coesp. We
call these workloadsonpr ess- 2 andconpr ess- 3. The LIMITER stage S3 foconpr ess- 2 (80K cy-
cles) and foconpr ess- 3 (140K cycles) is much smaller than the one used in our stdi@M cycles). The
non-scalable stage that writes to the output file remairsedo 80K cycles in all cases. Thus, t@rpr ess
workload has limited scalability for the newly added inpettss

Figure 13 shows the speedup for the two workloads with 1C8y&®op, FDP and Profile-Based. Both Prop
and Profile-Based use the decisions made in our originabr ess workload. These decisions in fact result
in worse performance than 1CorePS tmnpr ess- 2, because they allocate more cores to the non-scalable
stage which results in increased contention. FDP, on ther dthind, does not rely on any profile information
and allocates only one-core to the non-scalable stagelottadés two cores to S3 faronpr ess-2 and 3
cores to S3 foconpr ess- 3. The runtime adaptation allows FDP to outperform all compiae schemes on

all the input sets.

== ] Core Per Stage
=== Prop.(Orig)

— FDP
Profile-Based(Orig

Speedup wrt 1 Core

T

compress-2 compress-3 Gmean
Figure 13. Robustness to variations in input set.
6.4. Scalability to Larger Systems

We use an 8-core machine as our baseline for evaluationshidrséction, we analyze the robustness and
scalability of FDP to larger systems, using a 16-core AMDd@&yna machine. We do not show results for
1CorePS as they are similar to the 8-core system (all wodddwave fewer than 8 stages). Furthermore, a
16-core machine can be allocated to a 6-7 stage pipelineveralethousand ways, which makes evaluating
Profile-Based impractical.

Figure 14 shows the speedup of Prop and FDP compared to & siogd on the Barcelona machine. FDP
improves performance @il workloads compared to Prop. Most notablyj image, FDP obtains almost twice
the improvement of Prop. The scalable part ofage, which transforms blocks of the image from colored to
gray scale, continues to scale until 6 cores. The other pasling and writing from the file, do not scale.

Prop allocates cores to each stage proportionally assuegjugl scaling. However, the cores allocated to non-

19



= Prop Assignmen

NONNNNNNNNNNNNNNNNNNN

Figure 14. FDP’s performance on 16-core Barcelona.

scalable parts do not contribute to performance. FDP awidhk futile allocations. On average, FDP provides
a speedup of 6.13x compared to 4.3x with Prop.

As the number of cores increases, the performance of sonteafidrkloads starts to saturate. Under such
scenarios, there is no room to improve performance but ikeréot of potential to save power. Figure 15 shows
the average number of active cores during the workload dixecwith FDP and Prop. Since Prop allocates
all cores, the average for Prop is 16. When cores do not conérito performance FDP can deallocate them,
thereby saving power. For examppggemn ne contains four stages in the pipeline that do not scale begafus
critical sections. FDP allocates 7 cores to the scalabtgstacore each to the non-scalable stages, and 1 more
core to the input stage. The remaining four cores remainlaeeted. On average, FDP has 11.5 cores active,
which means a core power reduction of more than 25%. Thus FR2Pmy improves overall performance

significantly but can also save power.

,_\
>

ol

e

Ol—‘l\)w-bU'ICD\‘ICO@OI—\I\)wh

minill
NNNNNNNNN
T

03
TS
>

‘\\\\\VU
I

Avg. Num. Active Cores

7
.
Z
-
?
Z

N

Figure 15. FDP’s power on 16-core Barcelona.

If all cores were active, then the energy consumed by FDP dvoell30% less compared to Prop (measured
by relative execution time). Given that FDP uses 25% feweexthan Prop, FDP consumes less than half the
energy consumed by Prop. Thus, FDP is an energy-efficiethtpégformance framework for implementing
pipelined programs.

7. FDP in Workloads with Work Sharing
Some parallel applications are implemented usingWhek Sharingmodel instead of the pipeline model.

Unlike the pipeline model, which sub-divides the work intages, work sharing treats each iteration of the

20



work as a single unit of execution. In fact, work sharing camstbe viewed as a special case of pipelining,
consisting of only one pipeline stage where all worker theeare assigned to that stage to execute identical
pieces of execution. FDP can also be used to improve therpeafece of workloads implemented with the
work sharing model. In such workloads, FDP treats the exacats consisting of a single stage, and chooses

the number of threads which leads to maximum performande tivé minimum number of cores.

~

0}
S 64 = Work Sharing (8)
O = Work Sharing (FDP|
— 57 Work Sharing (Best |
=4 |
23] -
D 21 R
8
@) A ]
O, -
P & ¥ & e & X S
’bs > ‘(\o Q;QQ tb.o.) \(O (&' \Q/ 6\} ()
@O oo@Q Q;@Q 5 & 6\.& & \Q} R O&

Figure 16. Comparison of FDP with work sharing.

A pipelined workload can be converted to a work sharing waekl by forcing all stages of each iteration
to run on the same core. Using this methodology, we conveéniethenchmarks used in our study to use work
sharing and analyze the effectiveness of FDP for workloagidemented in work sharing.

Figure 16 shows the speedup with Work Sharing (with 8 thrgatlsrk Sharing with FDP, and Work Sharing
(Best). Work Sharing (Best) is an optimal scheme which tegossible number of threads from 1-8 and picks
the best performing configuration for each workload. In soatable workloads, where increasing the number
of threads does not increase performance, Work Sharing)Bas significantly higher (13-50%) performance
than Work Sharing (8). For example, the worklogageni ne has a long critical section. Performance of
pagem ne saturates at fours threads. Assigning it more than fouatiséncreases critical section contention,
which reduces performance and wastes power. Work Shariest)Bhooses four threads foageni ne which
leads to higher performance. Note that Work Sharing (FDFpp®as the same as Work Sharing (Best). In fact,
Work Sharing (FDP) is within 1% of Work Sharing (Best) in albiloads. Thus, FDP can effectively choose
the best number of threads for work sharing workloads. FRRides a speedup of 3.04x which is significantly
higher than the 2.72x speedup of work sharing without FDP.

8. Related Work

With CMPs becoming the de-facto general purpose architectite emphasis on writing efficient and robust
parallel programs has increased significantly. Severalis$y8, 5, 2] have discussed the importance of using
pipelined parallelism on CMP platforms. FDP provides awtmruntime tuning of core-to-stage allocation
for this important paradigm and obtains improved perforogaand power-efficiency.

Recently Hormati et al. proposed the Flextream compilatiamework [9] which can dynamically recom-

21



pile pipelined applications to adapt to the changes in tleeatxon environment, e.g., changes in the number of
cores assigned to an application. While FDP can also adabtaioges in the execution environment, its main
goal is to maximize the performance of a single applicatieiaxtream and FDP fundamentally differ for three
reasons. First, unlike FDP, Flextream assumes that akkstage scalable and thus allocates cores based on the
relative demands of each stage. This can reduce perfornzemtceaste power when a stage does not scale (see
Section 5.2). Second, Flextream requires dynamic recatiqil which restricts it to languages which support
that feature, e.g., JAVA and C-sharp. In contrast, FDP ibrafiy which can be used with any language. Third,
Flextream cannot be used to choose the number of threadsrinshiaring programs because it will assume
that the workload scales and allocate it all available cdf&P, on the other hand, chooses the best number of
threads taking scalability into account (see Section 7).

Other proposals in the operating system and web server agsrhaive implemented feedback directed cores-
to-work allocation [21, 19]. However, they make several dowspecific assumptions which makes their
scheme applicable only to those domains, and less genaraFDP.

The core-to-stage allocation can also be done staticalhguysrofile information. The brute force search
for finding the best mapping can be avoided by using analyicalels. Recently Navarro et al. [15, 16, 13,
6] proposed an analytic model for understanding and opitngiparallel pipelines. While such models can
help programmers design a pipeline, they are static and t@chapt to changes in input set and machine
configuration. In contrast, FDP relieves the programmemfabtaining representative profile information for
each input set and machine configuration and does automatitgtusing runtime information.

Languages and languages extensions [7, 4, 10, 11] can hisiwiplifying the development of pipelined
programs. Raman et al. [18] propose to automatically ifepipeline parallelism in a program using intelligent
compiler and programming techniques. Our work is orthogjtméheir work in that our proposal optimizes at
run-time an already written pipelined program.

Pipeline parallelism is also used in databases [1] wherk database transaction is split into stages which
can be run on multiple cores. Their work can also use FDP toshthe best core-to-stage allocation.

Although FDP primarily targets programs written in pipeéthmodel, it can also improve performance and
power of non-pipelined programs such as those amenable o-staring. Several schemes [3, 20, 12] tune
thread-to-core mapping of data-parallel workloads impated using work-sharing paradigm. However, these
proposals are not applicable to pipelined programs. To &3¢ &f our knowledge, FDP is the only comprehen-
sive framework that improves performance and power-efiijeof both pipelined workloads as well as data

parallel workloads.

22



9. Conclusion

Pipeline parallelism is a common technique to improve peroce of a single application using multiple
cores. The potential of pipelining is not fully utilized wsk all the stages are balanced in terms of execution
rate, which can be controlled by adjusting the core-toestaldpcation. Unfortunately, it is challenging for
the programmer to decide the core-to-stage allocationusectéhe best allocation depends on the input set
and machine configuration. Furthermore, a brute-forcecbetor the best configuration is impractical and
can require up to a million runs. A dynamic mechanism thatleam the best core-to-stage allocation using
runtime information can overcome these limitations. Tlapgr proposeBeedback-Directed Pipelining (FDP)

a framework to choose the best core-to-stage allocatiomditme and makes the following contributions:

1. It proposes a practical framework to monitor executiometiof each stage at runtime in a cost-effective

manner. This information can be used to identify the slowtsgje and the fastest stage in the pipeline.

2. The proposed FDP framework uses the runtime informatioledrn the best core-to-stage allocation,
using a hill-climbing algorithm. The slowest stage is givesources until either there are no more spare

cores or the performance of the stage saturates.

3. When performance saturates, FDP tries to free cores byiodmg the faster stages to run on one core.

The core thus freed can be used to improve performance onpsaver.

We evaluate FDP on an 8-core Core2Quad SMP, using 9 muttatted workloads. FDP provides an average
speedup of 4.3x (compared to 2.8x with profile based allonativhile at the same time reducing the number of
active cores by 12.5%. We also evaluate FDP on a 16-core Baecsystem and show that FDP continues to
provide significant performance and power benefits. FDP rsspgle interface with only four function calls,
and requires minimal programmer intervention. We intenchetke the FDP library available for public use.
10. Future Work

FDP is a runtime mechanism which can detect performancégisof an application, and then invest avail-
able resources to accelerate the limiters. We envision eDfa¢e a major role in future systems: FDP can be
used in systems with heterogeneous cores. In systems whre® differ in performance or functionality, FDP
can choose for each stage the core best suited to run it. FD&®@be extended to other execution paradigms
such as using FDP for task-scheduling in task-parallel \oauds.

References

[1] S. Anastassia and A. Ailamaki. Stageddb: Designinglokga servers for modern hardwareliiEEE Datg 2005.

[2] C. Bienia et al. The parsec benchmark suite: charaeteéoiz and architectural implications. RACT 2008

[3] M. F. Curtis-Maury.Improving the Efficiency of Parallel Applications on Muitiéaded and Multicore Systeni#hD
thesis.

[4] A.Das et al. Compiling for stream processing.RACT '0G 2006.

[5] J. Giacomoni et al. Toward a toolchain for pipelinepeigbrogramming on cmpaMorkshop on Software Tools for
Multi-Core System<007.

23



[6]
[7]

(8]
[9]

[10]
[11]

[12]
[13]

D. Gonzlez et al. Towards the automatic optimal mapping of pigetifyorithmsParallel Comput. 2003.

M. I. Gorden et al. Exploiting coarse-grained task, datiad pipeline parallelism in stream programsA8PLOS-
XIl, 2006.

J. Gummaraju et al. Streamware: programming genergdqme multicore processors using strea®E5ARCH
Comput. Archit. News2008.

A. H. Hormati et al. Flextream: Adaptive compilation dfesaming applications for heterogeneous architectures. |
PACT '09 2009.

Intel. Source code for Intel threading building block#tp://www.threadingbuildingblocks.org/, 2009.

J. R. Larus and M. Parkes. Using cohort-scheduling ttaene server performance. ATEC '02: Proceedings of
the General Track of the annual conference on USENIX Anrectifical Conference, 2002

J. Li etal. Dynamic power-performance adaptation affial computation on chip multiprocessors HIPCA 2006.
W.-K. Liao. Performance evaluation of a parallel pipelcomputational model for space-time adaptive procgssin
J. Supercomput2005.

R. Narayanan et al. MineBench: A Benchmark Suite foralDdtning Workloads. INISWC 2006.

A. Navarro et al. Analytical modeling of pipeline paelism. InPACT’09 2009.

A. Navarro et al. Load balancing using work-stealingggeline parallelism in emerging applications @i, 2009.
Nvidia. CUDA SDK Code Samples. http://developer.dtwen.nvidia.com/compute/cuda/-
sdk/website/samples.html, 2007.

E. Raman. Parallel-stage decoupled software pipelinin CGO '08 2008.

D. C. Steere et al. A feedback-driven proportion altocdor real-rate scheduling. I®SDI'99,

M. Suleman et al. Feedback-driven threading: powécieht and high-performance execution of multi-threaded
workloads on CMPs. IASPLOS Xl1] 2008.

M. Welsh et al. Seda: An architecture for well-conditém, scalable internet services.Pmoceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP’01)

Appendix: Pseudo-code for FDP

Global variables

mode // power or performance mode
LastTp // Last throughput of pipeline
CurrAlloc // Current core-to-stage allocation
LastAlloc // Previous allocation

TStart // Time at start of training

PAllocSet // Previously tried allocations set

FDP_EndStage(staged):
coreid = cpuid.register
if(128th call of FDREndStage)
Tnow = cyclecountregister
TE = Tnow - start time of cored, stageid
Update TMeasured[stagd,coreid]
with TE

performance-mode:

/[Local variables

NewAlloc //The new allocation
LIMITER /I the ID of the LIMITER stage

Compute throughput of all stages
LIMITER = stage with minimum throughput

TMeasured // 2D table like Figure 5

ICount // Iterations processed during Train

FDP_GetNextStage: if(spare cores are available)
Choose a stage in round-robin fashion from  New Allocation = CurrentAllocation

FDP_Init: set of stages with non-empty in-queues with one additional core for LIMITER
mode = performance-mode else
LastTp = 0 FDP: mode = power-mode
CurrAlloc = 1 core-per-stage NewTp //Local: New pipeline throughput
LastAlloc = 1 core-per-stage TElapsed //Local: Cycles in last train power-mode:
TStart = cyclecountregister TElapsed = cyclecountregister - TStart Compute throughput of all stages
PAllocSet = empty NewTp = TElapsed/ICount S1,S2 = two stages with least thoughput
TMeasured =  Allvalues equal 0 if(NewTp < LastTp) NewAlloc = CurrentAlloc with two changes:
ICount = 0 Exchange(CurrAlloc, LastAlloc) Assign S2 to S1's core

Toggle mode De-allocate S2'sallocation

FDP_BeginStage(staged):
coreid = cpuidregister
if(stageid is 0)

else
Call power- or performance-mode
If NewAlloc belongs to PAllocSet

ICount++
if(128th call of FDRPBeginStage)
Tnow = cyclecountregister
Record Tnow as start time of card, stageid
if(ICount is 2000 or (Tnow - TStart} 100K)
Call FDP

Toggle mode

else
LastAlloc = CurrAlloc
CurrAlloc = NewAlloc

PAllocSet.insert(CurrAlloc)
LastTp = NewTp
ICount=0

TStart = cyclecountregister
TMeasured.reset()

24



