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José A. Joao*‡ Onur Mutlu‡ Hyesoon Kim§ Rishi Agarwal†‡ Yale N. Patt*

* Department of ECE
Univ. of Texas at Austin
{joao, patt}@ece.utexas.edu

‡Comp. Architecture Group
Microsoft Research

onur@microsoft.com

§College of Computing
Georgia Inst. of Technology

hyesoon@cc.gatech.edu

†Department of CSE
IIT Kanpur

rishi@iitk.ac.in

Abstract
Indirect jump instructions are used to implement increasingly-common programming constructs such as virtual

function calls, switch-case statements, jump tables, and interface calls. The performance impact of indirect jumps is
likely to increase because indirect jumps with multiple targets are difficult to predict even with specialized hardware.

This paper proposes a new way of handling hard-to-predict indirect jumps: dynamically predicating them. The
compiler (static or dynamic) identifies indirect jumps thatare suitable for predication along with their control-flow
merge (CFM) points. The hardware predicates the instructions between different targets of the jump and its CFM
point if the jump turns out to be hard-to-predict at run time.If the jump would actually have been mispredicted, its
dynamic predication eliminates a pipeline flush, thereby improving performance.

Our evaluations show thatDynamic Indirect jump Predication (DIP)improves the performance of a set of object-
oriented applications including the Java DaCapo benchmarksuite by 37.8% compared to a commonly-used branch
target buffer based predictor, while also reducing energy consumption by 24.8%. We compare DIP to three previously
proposed indirect jump predictors and find that it provides the best performance and energy-efficiency.

1. Introduction

Indirect jumps are becoming more common as an increasing number of programs is written in object-oriented

languages such as Java, C#, and C++. To support polymorphism[8], these languages include virtual function calls that

are implemented using indirect jump instructions in the instruction set architecture (ISA). Previous research has shown

that modern object-oriented languages result in significantly more indirect jumps than traditional languages [7]. In

addition to virtual function calls, indirect jumps are commonly used in the implementation of programming language

constructs such as switch-case statements, jump tables, and interface calls [2].

Unfortunately, current pipelined processors are not good at predicting the target address of an indirect jump if multi-

ple different targets are exercised at runtime. Such hard-to-predict indirect jumps not only limit processor performance

and cause wasted energy consumption but also contribute significantly to the performance difference between tradi-

tional and object-oriented languages [44]. The goal of thispaper is to develop new architectural support to improve

the performance of programming language constructs implemented using indirect jumps.

Figure 1 demonstrates the problem of indirect jumps in object-oriented Java (DaCapo [5]) and C++ applications.

This figure shows the indirect and conditional jump mispredictions per 1000 retired instructions (MPKI) on a state-

of-the-art Intel Core2 Duo 6600 [22] processor. The data is collected with hardware performance counters using
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VTune [23]. Note that the Intel Core2 Duo processor includesa specialized indirect jump predictor [16]. Despite

specialized hardware to predict indirect jump targets, 41%of all jump mispredictions in the examined applications

are due to indirect jumps. Hence, hard-to-predict indirect jumps cause a large fraction of all mispredictions in object-

oriented Java and C++ applications. Therefore, more sophisticated architectural support than “target prediction” is

needed to reduce the negative impact of indirect jump mispredictions on performance of object-oriented applications.
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Figure 1. Indirect and conditional jump mispredictions in o bject-oriented Java and C++ applications run using the Wind ows Vista

operating system on an Intel Core2 Duo 6600

Basic Idea: We propose a new way of handling hard-to-predict indirect jumps: dynamically predicating them.

By dynamically predicating an indirect jump, the processorincreases the probability of the correct target path of the

jump to be fetched. Our technique stems from the observationthat program control-flow paths starting from different

targets of some indirect jump instructions usually merge atsome point in the program, which we call the control-flow

merge (CFM) point. The static or dynamic compiler1 identifies such indirect jump instructions along with theirCFM

points and conveys them to the hardware through modifications in the instruction set architecture. When the hardware

fetches such a jump, it estimates whether or not the jump is hard to predict using a confidence estimator [25]. If the

jump is hard to predict, the processor predicates the instructions between N targets of the indirect jump and the CFM

point. We evaluate performance/complexity for different N, and find N=2 is the best trade-off. When the processor

reaches the CFM point on all N different target paths, it inserts select-µops to reconcile the data values produced on

each path and continues execution on the control-independent path. When the indirect jump is resolved, the processor

stops dynamic predication and turns the instructions that correspond to the incorrect target address(es) into NOPs as

their predicate values are false. The instructions -if any-that correspond to the correct target address commit their

results. As such, if the jump would actually have been mispredicted, its dynamic predication eliminates a full pipeline

flush, thereby improving performance.

1In the rest of the paper, we use the term “compiler” to refer toeither a static or dynamic compiler. Our scheme can be used inconjunction with both types of
compilers.
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Our experimental evaluation shows thatDynamic Indirect jump Predication (DIP)improves the performance of

a set of indirect-jump-intensive object-oriented Java andC++ applications by 37.8% over a commonly-used branch

target buffer (BTB) based indirect jump predictor, which isemployed by most current processors. We compare DIP to

three previously proposed indirect jump predictors [9, 13,30] and find that it provides significantly better performance

than all of them. Our results also show that DIP provides the largest improvements in energy-efficiency and energy-

delay product.

We analyze the hardware cost and complexity of DIP and show that if dynamic predication is already implemented

to reduce the misprediction penalty due to conditional branches [31], DIP requires little extra hardware. Hence, DIP

can be a promising, energy-efficient way to reduce the performance penalty of indirect jumps without requiring large

specialized hardware structures for predicting indirect jumps.

Contributions. We make the following contributions:

1. We provide a new architectural approach to support indirect jumps, an important performance limiter in object-

oriented applications. To our knowledge, DIP is the first mechanism that enables the predication of indirect

jumps.

2. We extensively evaluate DIP in comparison to several previously-proposed indirect jump prediction schemes and

show that DIP provides the highest performance and energy improvements in modern object-oriented applications

written in Java and C++. Even when used in conjunction with sophisticated predictors, DIP significantly improves

performance and energy-efficiency.

3. We show that DIP can be implemented with little extra hardware if dynamic predication is already implemented

to reduce the misprediction penalty due to conditional branches. Hence, we propose using dynamic predication

as a general framework for reducing the performance penaltydue to unpredictability in program control-flow (be

it due to conditional branches or indirect jumps).

2. Background on Dynamic Predication of Conditional Branches

Compiler-based predication [1] has traditionally been used to eliminate conditional branches (hence conditional

branch mispredictions) by converting control dependencies to data dependencies, but it is not used for indirect jumps.

Dynamic predication was first proposed to eliminate the misprediction penalty due to simple hammock branches [34]

and later extended to handle a large set of complex control-flow graphs [31]. Dynamic predication has advantages

over static predication because (1) it does not require significant changes to the instruction set architecture, such as

predicated instructions and architectural predicate registers, (2) it can adapt to dynamic changes in branch behavior,
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and (3) it is applicable to a much wider range of control-flow graphs and therefore provides higher performance [31].

Unfortunately, none of these previous static or dynamic predication approaches were applicable to indirect jumps.

We first briefly review the previous dynamic predication mechanisms proposed for conditional branches [34, 31] to

provide sufficient background and the terminology used in this paper.
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Figure 2. Dynamic predication of a conditional branch: (a) s ource code (b) CFG (c) assembly code (d) dynamically predica ted instructions

after register renaming (pr: physical register)

Figure 2 shows the control-flow graph (CFG) of a conditional branch and the dynamically predicated instructions.

The candidate branches for dynamic predication are identified at runtime or marked by the compiler. When the

processor fetches a candidate branch, it estimates whetheror not the branch is hard to predict using a branch confidence

estimator [25]. If the branch prediction has low confidence,the processor generates a predicate using the branch

condition and entersdynamic predication mode (dpred-mode). In this mode, the processor fetches both paths after the

candidate branch and dynamically predicates the instructions with the corresponding predicate id. On each path, the

processor follows the outcomes of the branch predictor. When the processor reaches acontrol-flow merge (CFM) point

on both paths, it inserts c-moves [29] or select-µops [43], similar to theφ-functions in the static single-assignment

(SSA) form [10], to reconcile the register data values produced on either side of the branch and continues fetching

from a single path. The processor exits dpred-mode either when it reaches a CFM point on both paths of the branch

or when the branch is resolved. When the branch is resolved, the predicate value is also resolved. Instructions on the

wrong path (i.e. predicated-FALSE instructions) become NOPs, and they do not update the architectural state. If the

candidate branch is actually mispredicted, the processor does not need to flush its pipeline and is able to make useful

progress on the correct path, which provides improved performance.

3. Dynamic Predication of Indirect Jumps (DIP)

Traditionally, only conditional branches can be predicated because predication assumes that there are exactly two

possible next instructions after a branch. This assumptiondoes not hold for indirect jumps. Figure 3a shows an

example virtual function call in the C++ language that is implemented as an indirect call (s->area()). Depending

on the actual runtime type of the object pointed to bys, the corresponding overridden version of thearea function
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will be called. There can be many different derived classes that override the function call and thus many different

targets of the call. Even though there could be many different targets, usually only a few of them are concurrently

used in each phase of the program. If the calls for different targets are interleaved in a complex way, it is usually

difficult to predictexactly the correct targetof each instance of the call using existing indirect jump predictors. In

contrast, we found that it is much easier to estimate the two (or three)most likely targets, i.e. a small set of targets that

includes the correct target with a high probability.

In DIP, if an indirect jump is found to be difficult to predict,the processor estimates themost likely targets. Us-

ing dynamic predication, the processor fetches and executes from thesemost likely targetsuntil the dynamically-

predicated paths eventually merge at the instruction afterthe call, when the function returns (as shown in Figure 3b,c).

If one of the predicated targets is correct, the processor avoids a pipeline flush. The performance benefit of dy-

namically predicating the indirect jump can increase significantly if the control flow merging point is close to the

indirect jump (i.e., if the body of the function is small), sothat the overhead of fetching the extra path(s) is not high.

Figure 3b,c illustrates conceptually the dynamic predication process for the indirect call in Figure 3a, assuming that

circle->area() andrectangle->area() are the most likely targets for an instance of thes->area() call.

A

(a)

B

A

...

B

rectangle::area()circle::area()
      a = s−>area();

Shape *s = ...;

(b)

A

B

(c)

circle::area() p1

rectangle::area() p2

dynamic
target1

dynamic
target2

Figure 3. Dynamic predication of an indirect call: (a) sourc e code (b) CFG (c) predicated code

Our approach is inspired by the dynamic predication of conditional branches. However, there are two fundamental

differences between the dynamic predication of conditional branches and indirect jumps:

1. There are exactly two possible paths after a conditional branch. In contrast, the number of possible paths after an

indirect jump depends on the number of possible targets, which can be very large. For example, an indirect call in the

Java DaCapo benchmarkeclipseexercises 101 dynamic targets. Predicating a larger numberof target paths increases

the likelihood that the correct path will be in the pipeline when the jump is resolved, but it also requires more complex

hardware and increases the amount of wasted work due to predication since at most one path is correct. Therefore,

one important question ishow to identify how many and which targets of a jump should be predicated.

2. The target of a conditional branch is always available at compile time. On the other hand, all targets of an indirect

jump may not be available at compile-time due to techniques like dynamic linking and dynamic class loading. Hence,
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a static compiler might not be able to convey to hardware which targets of an indirect jump can profit from dynamic

predication. Another important question, therefore, iswho (the compiler -static or dynamic- or the hardware) should

determine the targets that should be dynamically predicated. We explore both options: the compiler can determine

the targets to be predicated via profiling or the hardware candetermine them at runtime. Note that the latter option can

adapt to runtime changes in frequently-executed targets ofan indirect jump at the expense of higher hardware cost.

In this paper we explore answers to these questions and propose an effective and cost-efficient implementation of

DIP.

4. Why does DIP work?

We first examine code examples from Java applications to provide insights into why DIP can improve performance.

4.1. Virtual Function Call Example

Figure 4 shows a virtual function call infop, an output-independent print formatter Java application included in

the DaCapo suite. The functioncomputeValue is originally defined in the classLength, and is overridden in

the derived classesLinearCombinationLength, MixedLength andPercentLength. This polymorphic

function is called from a single call site 32% of the time by objects of classLength, 34% of the time by objects of

classLinearCombinationLength, and 34% of the time by objects of classPercentLength. The benchmark

goes through two program phases. Only the first target is usedat the beginning of the program, and therefore the call

is easy to predict. In the second phase the targets fromLinearCombinationLength andPercentLength are

interleaved in a difficult to predict way. Dynamically predicating these two targets when the indirect call becomes hard

to predict can eliminate most target mispredictions at the cost of executing useless instructions on one path. Since

the bodies of the functions are small, the number of wasted instructions with dynamic predication is smaller than the

number of wasted instructions on a pipeline flush due to a misprediction.

1: public int mvalue() { // in Length class
2: if (!bIsComputed)
3: computeValue(); // call site
4: return millipoints;
5: }
6:
7: protected void computeValue() {
8: // in LinearCombinationLength class, short computation...
9: setComputedValue(result);
10: }
11:
12: protected void computeValue() { // in MixedLength class
13: // short computation...
14: setComputedValue(computedValue, bAllComputed);
15: }
16:
17: protected void computeValue() { // in PercentLength class
18: setComputedValue((int)(factor *
19: (double)lbase.getBaseLength()));
20: }

Figure 4. A suitable indirect jump example from fop
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4.2. Switch-Case Statement Example

Figure 5 shows a switch statement in the functionjjStopStringLiteralDfa 0 of the class

JavaParserTokenManager from the DaCapo benchmarkpmd. This class parses input tokens by implement-

ing a deterministic finite automaton. Even though the switchstatement has 11 cases, cases 0, 1 and 2 are executed for

59%, 25%, and 12% of the dynamic instances, respectively. The other 8 cases account for only 4% of the dynamic

instances. The control flow reconverges after the switch statement. Dynamically predicating the first three target paths

when the indirect jump is seen would eliminate almost all mispredictions at the cost of executing useless instructions.

Note, however, that the number of instructions is relatively small (fewer than 30) in each target path, so the amount

of wasted work would be small compared to the amount of wastedwork on a full pipeline/window flush due to a

misprediction.

1: switch (pos) { // indirect jump
2: case 0: // target 1
3: if ((active1 & 0x40000000040000L) != 0L)
4: r = 4;
5: else if (...) ...
6: r = 28;
7: else
8: r = -1;
9: break;
10: case 1: // target 2
11: // code similar to case 0 (setting r on every path)
12: case 2: // target 3
13: // code similar to case 0 (setting r on every path)
14: // ... 8 other seldom executed cases
15: }

Figure 5. A suitable indirect jump example from pmd

5. Mechanism and Implementation

There are two critical issues in implementing DIP: (1) determining which indirect jumps are candidates for dynamic

predication, (2) determining which targets of a candidate indirect jump should be predicated. This section first explains

how our mechanism addresses these issues. Then, we describethe required hardware support, analyze its complexity,

and explain the support required from the ISA.

5.1. Indirect Jump and CFM Point Selection

The compiler selects indirect jump candidates for dynamic predication using control-flow analysis and profiling.

Control-flow analysis finds the CFM point for each indirect jump. The CFM point for an indirect call is the instruction

after the call. The CFM point for an indirect jump implementing a switch statement is usually the instruction after

the statement. The compiler profiles the application to characterize the indirect jumps. Highly mispredicted indirect

jumps are good candidates for DIP even if there is no CFM pointcommon to all the targets or if the CFM point is

so far from the jump that it is not reached until the indirect jump is resolved. In this case, DIP still could provide

performance benefit because it executes two possible paths after the jump, one of which might be the correct path.
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In other words, the benefit from DIP is similar to that of dual-path execution [17, 15] if a CFM point is not reached.

For the experiments in this paper the compiler selects all indirect jumps that result in at least 0.1% of all jump

mispredictions in the profiling run on the baseline processor.2

An indirect jump selected for dynamic predication is markedin the binary along with its CFM point. We call such

a jump aDIP-jump.

5.1.1. Return CFM Points In some switch statements, one or morecasesmight end with areturn instruction. For

an indirect jump implementing such a switch statement, the first instruction after the statement might not be the CFM

point. If all predicated paths after an indirect jump implementing a switch statement reach a return instruction that ends

a case, the CFM point is actually the instruction executed after the return instruction. Unfortunately, the address of

this CFM point is not known at code generation time because itdepends on the caller position. We introduce a special

type of CFM point calledreturn CFMto handle this case. When a DIP-jump is marked as having a return CFM point,

the processor does not look for a particular address to end dpred-mode, but for the execution of a return instruction

at the same call depth as the DIP-jump. The processor ends dynamic predication mode when all the predicated paths

reach return instructions.

5.2. Target Selection

DIP provides performance benefit only if the correct target of a jump is one of the predicated targets. Therefore, the

choice of which targets to predicate is an important decision to make when dynamically predicating an indirect jump

since only a few targets can be predicated. This choice can bemade by the compiler or the hardware. We first describe

how target selection can be done assuming two targets can be predicated. Section 5.2.3 describes the selection of more

than two targets, assuming the hardware can support the predication of all of them.

5.2.1. Compiler-based Target SelectionEven though an indirect jump can have many dynamically-exercised tar-

gets, we would expect the most frequently exercised targetsto account for a significant fraction of the total dynamic

jump instances and mispredictions [30, 27]. This assumption suggests using a simple mechanism for target selection:

the compiler profiles the program with a representative input set, determines the most frequently executed targets for

each DIP-jump, and annotates the executable binary with thetarget information. Even though this mechanism requires

more ISA support to supply the targets with an indirect jump,it does not require extra hardware for target selection.

However, our results show that dynamic target selection mechanisms that can adapt to runtime program behavior can

be much more effective at the cost of extra hardware (see Section 7.4).

2We have experimented with several other profiling and selection heuristics based on compile-time cost-benefit analyses (including the ones described in [33,
27]), but we found that our simple selection heuristic provides the best performance.
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5.2.2. Hardware-based (Dynamic) Target SelectionThe correct target of an indirect jump depends on the runtime

behavior of the application. Changes in the runtime input set, phase behavior of the program, and the control-flow

path leading to the indirect jump affect the correct target,which is actually the reason why some indirect jumps are

hard to predict. As the compiler does not have access to such fine-grain dynamic information, it is difficult for the

compiler to select a set of targets that includes the correcttarget when the jump is predicated. In contrast, hardware

has access to dynamic program information and can adapt to rapid changes in the behavior of indirect jumps. We

therefore develop a mechanism that selects targets based onruntime information collected in hardware.

We use a hardware table calledTarget Selection Table (TST)for dynamic target selection. The purpose of the TST

is to track and provide the most frequently executed two targets for a given DIP-jump. A TST entry is associated

with each DIP-jump. Conceptually, each entry in the TST contains M targets and M frequency counters. A frequency

counter is associated with each target and keeps track of howmany times the target was taken. When a fetched

DIP-jump is estimated to be hard-to-predict (low-confidence), the processor accesses the TST entry for that jump and

selects the two most frequently executed target addresses (i.e. the two target addresses with the highest frequency

counters) in the entry.

The TST is structured as a 4-way set-associative cache with aleast-recently-used (LRU) replacement policy. We

evaluated different indexing functions for the TST: using the address (i.e., program counter) of the DIP-jump alone

or the address of the DIP-jump XORed with the 16-bit global branch history register (GHR). We found that the

latter indexing function provides more accurate target selection because the correct target of a jump depends on the

control-flow path leading to the jump.

To reduce the storage requirements for the TST, we: (1) limitthe number of targets to the maximum number of

targets that can be predicated plus one; (2) implement the frequency counters as 2-bit saturating counters3; (3) limit

the tag to 7 bits; (4) limit the size of the TST to 2K entries; (5) store the targets associated with a DIP-jump in the

BTB (in different BTB entries), instead of storing them in the TST itself. The last optimization allows TST to become

a low-cost indirection mechanism that stores only frequency-counters to retrieve the most frequently executed targets

of a branch, which are stored in the BTB.

Operation of TST: When a fetched DIP-jump is estimated to be hard-to-predict,the target selection mechanism

starts an iterative process to retrieve the most frequentlyused two targets from the BTB, one target per cycle.4 Figure 6

shows the basic structure of the TST and the logic required toaccess the BTB based on the information obtained from

3To dynamically select 3 to 5 targets, we use 3-bit saturatingfrequency counters.
4The performance impact of the extra cycles spent to retrievetargets from the BTB is 2%, as we show in Section 7.7.
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the TST.5 Algorithm 1 describes the target selection process. In eachiterationiter, the control logic finds theposition

of the next frequency counter in descending order. If there are 3 counters stored in the TST,positioncan take only

the values 1, 2 or 3. The value used to access the BTB to retrieve a target is the same value used to index the TST

XORed with a randomized constant valuehashvalue, which is specific to eachposition.6 For example, iff3 and

f1 are the highest frequency counters, the targets will be retrieved by accessing the BTB with(PC xor GHR xor

hash value[3]) and(PC xor GHR xor hash value[1]) in consecutive cycles. The iterative selection

process stops when it has the required number of targets to dynamically predicate the jump (PREDTARGETS), or

after trying to retrieve as many targets as can be stored for one TST entry (MAX TARGETS). PREDTARGETSis 2

andMAX TARGETSis 3 for 2-target selection. If enough targets are selected,the processor enters dpred-mode.

f1 f2 f3

Target

PC xor GHR

Control

BTB_hit

position

Tag

hash_value

TST BTB

Figure 6. Target Selection Table (TST) used for selecting 2 t argets to predicate. f1, f2, f3 denote the frequency counter s for the three

targets whose information is kept in TST.

Algorithm 1 TST target selection algorithm. Inputs:PC, GHR

iter ← 1
num targets← 0
while ((iter ≤MAX TARGETS) and

(num targets < PRED TARGETS)) do
position← position descending order(iter)
target← accessBTB(PC xor GHR xor hash value[position])
if (BTB hit) then

next target to predicate← target

num targets← num targets + 1
end if
iter++

end while

Update of TST: When a DIP-jump commits, it updates the TST regardless of whether or not it was dynamically

predicated. The TST entry for the (PC, GHR) combination is accessed and the corresponding targets are retrieved

from the BTB -one per cycle- and compared to the correct target taken by the jump. If the correct target is already

5Figure 6 shows only the conceptual structure of the TST. In our actual implementation, the BTB index used to retrieve a target in an iteration is precomputed
in parallel with the TST access. Therefore, our proposal does not increase the critical path of BTB access.

6Note that the values used to access the BTB to store the TST targets can conflict with real jump/branch addresses in the program, increasing aliasing and
contention in the BTB. Section 7.6.2 evaluates the impact ofour mechanism on performance for different BTB sizes.
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stored in the BTB, the corresponding frequency counter is incremented. Otherwise, the correct target is inserted in

any empty slot (i.e. for an iteration that misses in the BTB) or replacing the target with the smallest frequency counter

value. Note that the TST update is not on the critical path of execution and can take multiple cycles as necessary.

The purpose of a TST entry is to provide a list of targets approximately ordered by recent execution frequency. As

the saturating frequency counters are updated, if more thantwo counters saturate at the maximum value, it becomes

impossible to distinguish the two most frequent targets. Toavoid this problem, we implement a simple aging mecha-

nism: if two of the frequency counters are found to be saturated when a TST entry is updated, all counters in the entry

are right shifted by one bit. In addition to avoiding the saturation problem, this aging mechanism also demotes the

targets that have not been recently used, keeping the TST content up to date for the current program phase.

5.2.3. Selecting More Than Two TargetsUnlike conditional branches, indirect jumps can have more than two

targets that are frequently executed. When the likelihood of having the correct target in a set of two targets is not high

enough, it might be profitable to predicate multiple targets, even though the overhead of predication would be higher.

If we allow predication of more than two targets, we have to select which targets and how many targets to use for

each low-confidence indirect jump. The TST holds one frequency counter for each of the targets that have been more

frequently used in the recent past. The aging mechanism keeps these counters representative of the current phase of

the program. Therefore, it is reasonable to select the targets with higher frequency count.

To select multiple targets, the processor uses a greedy algorithm. It starts with the two targets with the highest

frequency. Then, it chooses thei-th target in descending frequency order only if its frequency still adds significantly

to the sum of the frequencies of the targets already selected. This happens when the following expression is satisfied:

Select Targeti if F reqi ∗ i >=

i−1
X

j=1

Freqj (1)

5.2.4. Overriding the BTB-based Target PredictionThe TST has more information than a conventional BTB-

based indirect jump predictor for DIP-jumps, because: (1) the TST distinguishes between targets based on the dif-

ferent control-flow paths leading to a jump because it is indexed with PC and branch history, while a BTB-based

prediction simply provides the last seen target for the jump; (2) each entry in the TST can hold multiple targets for

each combination of PC and branch history (i.e. multiple targets per jump), while a BTB-based predictor can hold

only one target per jump; (3) the TST contains entries for only the DIP-jumps selected by the compiler, which reduces

contention, whereas a BTB contains one entry for every indirect jump and taken conditional branch.

Our main purpose for designing the TST is to use it as a mechanism to select two or more targets for dynamic
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predication. However, we also found that if a TST entry contains only one target or if the most frequent target in

the entry is significantly more frequent7 than the other targets, dynamic predication provides less benefit than simply

predicting the most frequent target as the target of the jump. Therefore, if one of these conditions holds when a

DIP-jump is fetched, the processor, instead of entering dynamic predication mode, simply overrides the BTB-based

prediction for the indirect jump and uses the single predominant target specified by the TST as the predicted target for

the jump.

5.2.5. Dynamic Target Selection vs. Target PredictionDynamic target selection using the TST is conceptually

different from dynamic target prediction. A TST selects more than one target to predicate for an indirect jump. In

contrast, an indirect jump predictor choosesa single targetand uses that as the prediction for the fetched indirect jump.

DIP increases the probability of having the correct target in the processor by selecting extra targets and dynamically

predicating multiple paths. Nevertheless, the proposed dynamic target selection mechanism can be viewed as both a

target selectorand target predictorespecially since we sometimes use it to override target predictions as described

in the previous section. As such, we envision future indirect jump predictors designed to work directly with DIP,

selecting either a single target for speculative execution, or multiple targets for dynamic predication.

5.3. Hardware Support for Predicated Execution

Once the targets to be predicated are selected, the dynamic predication process in DIP is similar to that in dynamic

predication of conditional branches, which was described briefly in Section 2 and in detail by Kim et al. [31]. Here we

describe the additional support required for DIP. If two targets are predicated in DIP, the additional support requiredis

only in 1) the generation of the predicate values, 2) the handling of a possible pipeline flush when the predicate values

are resolved.

When a low-confidence DIP-jump is fetched, the processor enters dpred-mode. Figure 7 shows an example of

indirect jump predication with two targets. First, the processor assigns a predicate id to each path to be predicated (i.e.

each selected target). Unlike in conditional branch predication in which a single predicate value (and its complement)

is generated based on the branch direction, there are multiple predicate values based on the addresses of the predicated

targets in DIP. The predicate value for a path is generated bycomparing the predicated target address to the correct

target address. The processor inserts compare micro-operations (µops) to generate predicate values for each path as

shown in Figure 7b.

Unlike in conditional branch predication where one of the predicated paths is always correct, both of the predicated

paths might be incorrect in DIP. As a result, the processor has to flush the whole pipeline when none of the predicated

7We found that a difference of at least 2 units in the 2-bit frequency counters is significant.
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target addresses is the correct target. To this end, the processor generates a flushµop. The flushµop checks the

predicate values and triggers a pipeline flush if none of the predicate values turns out to beTRUE (i.e., if the correct

target was not predicated). If any of the predicates isTRUE, the flushµop functions as a NOP. In the example of

Figure 7b, the processor inserts a flushµop to check whether or not any of the predicated targets (TARGET1 or

TARGET2) is correct.

All instructions fetched during dpred-mode carry a predicate id just like in dynamic predication for a conditional

branch. Since select-µops are executed only if either TARGET1 or TARGET2 is the correct target, the select-µops

can be controlled by just one of the two predicates. Note thatthe implementation of the select-µops is the same as

in dynamic predication for conditional branches. We refer the reader to [34, 31] for details on the generation and

implementation of select-µops.

pr11  = MEM [pr21]

return

r1 = MEM[r2]
call r1 flush (p1 NOR p2) 

add r1 <− r2, #2

return

add r1 <− r1, #1

add r1 <− r2, #−1

return

add r1 <− r1, #1

add pr12 <− pr11, #1

add pr13 <− pr21, #−1

add pr14 <− pr21, #2

return

(p1)

(p1)

(p1)

(p1)

(p2)

(p2)

(p2)

TARGET1: TARGET2:

p1 = cmp pr11, TARGET1
p2 = cmp pr11, TARGET2

call TARGET1

call TARGET2

select−uop pr15 <− p1? pr13 : pr14

add pr16 <− pr15, #1

(a) (b)

Figure 7. An example of how the instruction stream is dynamic ally predicated (a) control flow graph (b) dynamically predi cated instruc-

tions after register renaming

5.3.1. Supporting More Than Two Targets As we found that the predication of more than two targets doesnot

provide significant benefits (shown and explained in Section7.4), we only very briefly touch on hardware support

for it solely for completeness. Each predicated path requires its own context: PC (program counter), GHR (global

history register), RAS (return address stack), and RAT (register alias table). Since each path follows the outcomes of

the branch predictor and does not fork more paths, i.e. the processor cannot be in dpred-mode for two or more nested

indirect jumps at the same time, the complexity of predicating more than two targets is significantly less than the

complexity of multi-path (i.e. eager) execution [37, 35]. The predication of more than two targets requires 1) storage

of more frequency counters in the TST and additional combinational logic for target selection, 2) generation of more

than two predicates using more than two compare instructions, 3) minor changes to the flushµop semantics to handle

multiple paths, and 4) extension of the select-µop generation mechanism to handle the reconvergence of morethan
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two paths.

5.3.2. Nested Indirect JumpsIf the processor fetches another low-confidence DIP-jump during dpred-mode, it has

two options: it can follow the low-confidence predicted target or it can exit dpred-mode for the earlier jump and

reenter dpred-mode for the later jump. If the jumps are nested, the overhead of predicating the later DIP-jump is

usually smaller than the overhead of predicating the earlier jump. Also, if the processor decides to continue in dpred-

mode for the earlier jump and the later jump is mispredicted,a potentially significant part of the benefit of predication

can be lost when the pipeline is flushed. Therefore, our policy (calledreentry policy) is to exit dpred-mode for the

earlier jump andreenter dpred-modefor the later DIP-jump. Our experimental results show that this choice provides

significantly higher performance benefits (see Section 7.3).

5.3.3. Other Implementation IssuesWe briefly discuss other important issues in implementing DIP. Note that the

same issues exist in architectures that implement static ordynamic predication for conditional branches [36, 34, 31].

Stores and Loads: A dynamically predicated store is not sent to the memory system unless its predicate is known

to beTRUE. The basic rule for the forwarding logic is that a store can forward to any younger load except for stores

guarded by an unresolved predicate register, which can onlyforward to younger loads with the same predicate id.

Interrupts and Exceptions: No special support is needed to handle interrupts and exceptions because dynamic

predication state is speculative and is flushed before servicing the interrupt or exception. Predicate registers do not

have to be saved and restored because they are not part of the ISA. Instructions withFALSE predicate values do not

cause exceptions.

5.4. Hardware Cost and Complexity

The hardware required to dynamically predicate indirect jumps is very similar to that of the diverge-merge processor

(DMP) [31, 32], which dynamically predicates conditional branches. The hardware support needed for dynamic

predication (including the predicate registers, fetch/decode/rename/retirement support, and select-µops) and its cost

are already described in detail by previous work [31]. We assume DIP would be cost-efficiently implemented on a

baseline processor that already supports dynamic predication for conditional branches, which was shown to provide

very large performance and energy benefits [31, 32]. DIP requires the following hardware modifications in addition

to the required support for dynamic predication:

1. Target Selection Table (TST, Section 5.2.2): a 2K-entry,4-way set associative table with 3 2-bit saturating

counters per entry, i.e. a 1.5 KB data store and a 2.1 KB tag store (using 7-bit tags and a valid bit per entry, plus 2 bits

per set for pseudo-LRU replacement).
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2. A simple finite state machine to implement accessing and updating the targets in the BTB (block labeled as

Control in Figure 6).

3. A 3-entry table with 32-bit constants (hashvalue in Figure 6).

4. Modified predicate generation logic and flushµops (Section 5.3).

5. Optionally, support for more than 2 targets (see Section 5.3.1).

Hardware Cost: If dynamic predication hardware is already implemented forconditional branches, the cost of adding

dynamic predication of indirect jumps with dynamic 2-target selection -our most efficient result- is 3.6KB of storage8

and simple extra logic. We believe that it is not cost-effective to implement dynamic predicationonly for indirect

jumps. On the contrary, dynamic predication hardware is a substrate that should be used for both conditional and

indirect jumps.

5.5. ISA Support

The indirect jumps selected for dynamic predication are identified in the executable binary with a different opcode

for each flavor of DIP-jump (jumps or calls). The instructionformat uses one bit to indicate whether or not the jump

has a return CFM point. The instruction format also includesthe CFM point encoded in 16-bit 2’s complement relative

to the DIP-jump, which we determined is enough to encode all the CFM points we found in our set of benchmarks.

When we use static target selection, the selected 32-bit targets follow the instruction in the binary. Even though these

special instructions increase the code size and the pressure on the instruction cache, their impact is not significant

because the number of static jumps selected for dynamic predication in our benchmarks is small (fewer than 100, as

shown in Table 2).

6. Experimental Methodology
6.1. Simulation Methodology

We use an iDNA-based [3] cycle-accurate x86 simulator to evaluate dynamic indirect jump predication. Table 1

shows our baseline processor’s parameters. The baseline uses a 4K-entry BTB to predict indirect jumps [40, 18]. The

simulator includes a Wattch-based power model [6] using 100nm technology at 4GHz, that faithfully accounts for the

power consumption of all the additional structures needed by DIP.

We evaluate DIP using benchmarks over multiple platforms. Most of the experiments are run using the 11 DaCapo

benchmarks [5] (Java), Matlab R2006a (C), M5 simulator [4] (C++), and the interpreters perlbmk (C) and perlbench

(C) from the SPEC CPU 2000/2006 suites. We also show results for a set of 5 SPEC CPU2000 INT benchmarks

written in C, 3 SPEC CPU2006 INT benchmarks written in C, and 1SPEC CPU2006 FP benchmark written in C++.

8Extra storage can be further reduced to 1.5KB with an alternative design that stores a frequency counter and athere-is-next-targetbit directly in each BTB
entry, thus eliminating the need for a separate TST. To keep the implementation conceptually simple, we do not describe this option.
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Table 1. Baseline processor configuration
64KB, 2-way, 2-cycle I-cache; fetch ends at the first predicted-takenFront End
branch; fetch up to 3 conditional branches or 1 indirect branch
64KB (64-bit history, 1021-entry) perceptron branch predictor [26];Branch
4K-entry, 4-way BTB with pseudo-LRU replacement;Predictors
64-entry return address stack; min. branch mispred. penalty is 30 cycles
8-wide fetch/issue/execute/retire; 512-entry ROB; 384 physical registers;Execution
128-entry LD-ST queue; 4-cycle pipelined wake-up and selection logic;Core
scheduling window is partitioned into 8 sub-windows of 64 entries each

On-chip L1 D-cache: 64KB, 4-way, 2-cycle, 2 ld/st ports; L2 unified cache: 1MB,
Caches 8-way, 8 banks, 10-cycle latency; All caches: LRU repl. and 64B lines
Buses and 300-cycle minimum memory latency; 32 DRAM banks;
Memory 32B-wide core-to-memory bus at 4:1 frequency ratio
Prefetcher Stream prefetcher [42] (32 streams and 16 cacheline prefetch distance)
Dyn. pred. 2KB (12-bit history, threshold 14) enhanced JRS confidence
support estimator [25], 32 predicate registers, 1 CFM register

We use those benchmarks in SPEC 2000 INT and 2006 INT/C++ suites that gain at least 5% performance with a

perfect indirect jump predictor. Each benchmark is run for 200 million x86 instructions with the reference input set

(SPEC CPU), small input set (DaCapo) or a custom input set (Matlab and M5)9.

The DaCapo benchmarks are run with Sun J2SE 1.4.215 JRE on Windows Vista.10 Matlab is run on Windows

Vista. M5 is compiled with its default options using gcc 3.4.4, and run on Cygwin 1.5.24 on Windows Vista. All SPEC

binaries are compiled with Intel’s production compiler (ICC) [21] using -O3 optimizations and run on Linux Fedora

Core 5. Table 2 shows the characteristics of the simulated portions of our main set of benchmarks on the baseline

processor.

Table 2. Characteristics of the evaluated benchmarks
antlr bloat chart eclipse fop hsqldb jython luindex lusearch pmd xalan m5 matlab perlbenchperlbmk AVG

Baseline IPC 0.97 0.90 0.76 1.18 0.77 1.19 1.17 1.13 1.10 0.99 0.75 1.49 1.20 0.81 1.11 1.00
Dynamic indirect jumps (K) 4917 5390 4834 3523 7112 3054 3565 3744 4054 4557 6923 2501 2163 3614 3024 -

Indirect jump MPKI 12.50 12.40 11.60 8.50 19.70 8.30 8.60 9.10 9.80 11.40 19.20 5.60 5.70 15.40 11.30 11.27
Avg. number of dynamic targets37.3 37.6 45.9 41.1 37.6 30.3 41.0 40.6 39.9 39.8 39.8 46.3 74.0 52.1 40.1 42.9

Table 3. DIP-related statistics for the evaluated benchmar ks (CT/IT:correct/incorrect target in dpred-mode; CP/IP:correctly/incorrectly predicted)
Metric antlr bloat chart eclipse fop hsqldbjython luindex lusearch pmd xalan m5 matlabperlbenchperlbmk AVG

1 ind. jumps selected for 2T DP 79 80 96 78 89 67 78 79 81 78 86 22 91 4 8 -
2 % DP instances (CT, IP) 89.0 88.7 89.6 92.1 88.4 93.1 91.6 91.7 93.5 91.3 80.1 84.8 83.0 97.6 96.1 90.0
3 % DP instances (IT, IP) 5.8 5.7 6.0 4.1 7.7 2.9 4.4 4.4 3.2 4.6 13.5 10.4 12.2 1.7 2.3 5.9
4 % DP instances (CT, CP) 4.0 4.3 3.1 2.9 2.6 3.2 3.0 2.9 2.6 3.0 3.9 3.3 2.7 0.6 1.4 2.9
5 % DP instances (IT, CP) 1.2 1.4 1.3 0.9 1.3 0.8 1.0 1.1 0.7 1.2 2.6 1.5 2.0 0.0 0.3 1.2
6 avg select-µops per DP 4.2 4.5 3.6 3.8 3.8 3.8 3.9 3.7 3.9 3.8 3.5 4.9 3.9 5.7 6.6 4.2
7 avg wrong-path instr. per DP 54.9 56.5 57.7 59.7 69.7 54.3 56.7 60.2 59.3 63.1 62.2 81.5 62.6 114.5 194.8 73.9
8 ∆ pipeline flushes (%) -47.82-45.71-37.74-44.98-46.84-53.92-43.86 -43.51 -49.88 -45.12-29.06-38.91-22.20 -89.07 -83.73 -47.07
9 ∆ fetched instr. (%) -39.87-41.20-39.85-34.28-40.22-41.46-34.25 -34.40 -39.54 -37.16-26.07-27.20-16.89 -62.97 -58.30 -39.32
10 ∆ executed instr. (%) -8.12 -9.46 -8.73 -5.40 -10.53 -6.31 -5.46 -5.63 -6.60 -7.18 -6.43 -2.80 -2.82 -21.64 -17.06 -8.91
11 ∆ energy (%) -26.99-27.08-25.32-20.69-28.62-23.63-20.15 -20.50 -24.61 -23.05-16.02-14.92 -5.50 -42.12 -40.18 -24.81
12 ∆ energy-delay product (%)-49.96-49.33-45.36-40.17-51.46-44.76-39.14 -39.56 -46.23 -43.17-30.97-31.33-11.35 -66.30 -66.11 -45.54

9Matlab performs convolution on two images; M5 simulates theperformance of gcc using its complex out-of-order processor model.
10At the time of this writing, iDNA [3] worked for only 7 of the 11DaCapo benchmarks running on Sun Java SE 6 (version 1.6.001). The average indirect

jump MPKI for these benchmarks on Java 6 is 37%higher than on Java 1.4, but since we cannot use the full suite, we report the results for Java 1.4. We expect
DIP would perform better on Java 6.
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6.2. Compilation and Profiling Methodology

Our methodology targets an adaptive JIT compiler that is able to use recent profiling information to recompile

the hot methods to improve performance. For the experimentsin this paper, we developed a dynamic profiling tool

that collects edge profiling information and computes the CFM points during the 200M instructions preceding the

simulation points for each application. The algorithms to find the CFM points are similar to those algorithms described

in [33]. After profiling, our tool applies the jump selectionalgorithm described in Section 5.1.11

7. Results
7.1. Dynamic Target Distribution

Table 2 shows that the average number of dynamic targets for an indirect jump in the simulated benchmarks is 42.9.

We found that in our set of object-oriented benchmarks 61% ofall dynamic indirect jumps have 16 or more targets,

which is significantly higher than what was reported in previous work for SPEC CPU C/C++ applications [30]. Even

though indirect jumps have many targets, the most frequently executed targets (over the whole run of the program)

are taken by a significant fraction of all dynamic indirect jumps, as we show in Figure 8. On average, the two most

frequent targets cover 59.9% of the dynamic indirect jumps,but only 39.5% of the indirect jump mispredictions. The

contribution of less frequently executed targets steadilydrops. This data shows that statically selecting two targets for

dynamic predication would likely not be very successful in these object-oriented applications where indirect jumps

have a very large number of targets.
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Figure 8. Fraction of dynamic indirect jumps taking the most frequently executed N targets

7.2. Performance of DIP

The first set of bars in Figure 9 shows the performance improvement of DIP over the baseline, using dynamic

2-target selection with a 3.6KB TST and all the techniques described in Section 5. The average IPC improvement of

DIP is 37.8% and is analyzed in Section 7.3.

We also include five idealized experiments in Figure 9 to showthe potential of DIP. The IPC improvement increases

11For the static target selection experiments, our dynamic profiling tool also applies the target selection algorithm described in Section 5.2.1.
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to 51% if an unrealistically large TST is used (64K-entry TSTwith local storage for 255 targets and 32-bit frequency

counters, which has a total data storage size of 128MB). If the 128MB TST always ideally provides the correct target

for predication among the 2 selected targets (2T perfect target), the performance improves only by 0.2%. This means

that the principles of the TST are adequate for selecting thecorrect target among the two that are predicated. If

the DIP mechanism were used ideally only when the DIP-jump isactually mispredicted (2T perfect confidence) IPC

improves by an additional 2%. The combination of perfect confidence estimation and perfect target selection (2T

perfect targ./conf.) adds only an extra 0.5%, showing that the maximum potential performance benefit of 2-target

DIP is 53.8%. Perfect indirect jump prediction (perfect IJP) provides 72.2% performance improvement over baseline,

which is significantly higher than the maximum potential of DIP, because it does not have the overhead of dynamic

predication. Our realistic implementation achieves 52% ofthe potential with perfect indirect jump prediction and

70% of the potential with the ideal 2-target DIP (2T perfect targ./conf.). Xalan and matlab do not get as much of the

potential as the other benchmarks because the TST miss rate is significantly high (43% for both).
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Figure 9. DIP performance and potential

7.3. Analysis of the Performance Improvement

The performance improvement of DIP comes from avoiding the full pipeline flushes caused by indirect jump mis-

predictions. DIP can improve performance only if it selectsthe correct target as one of the targets to predicate.

Therefore, most of our design effort for DIP is focused on mechanisms to improve target selection. On average, DIP

eliminates 47% of the pipeline flushes that occur with a BTB-based predictor (as shown in Table 3, row 8). Further-

more, the overhead of executing the extra path is low: the average number of dynamically predicated wrong-path

instructions is only 73.9 (Table 3, row 7), which is significantly smaller than the instruction window size of the pro-

cessor. Hence, in the steady state, dynamic predication of a mispredicted jump would result in only 73.9 instruction

slots to be wasted whereas the misprediction itself would have resulted in all instruction slots in the window plus those

in the front-end pipeline stages to be wasted.
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The benefit of DIP depends on the combination of target selection and confidence estimation. We classify dynamic

predication instances into four cases based on whether or not the correct target is predicated and whether or not the

jump was actually mispredicted:

1. Useful: A dynamic predication instance is useful (i.e. successfully avoids a pipeline flush) if it predicates the

correct target and the jump was originally mispredicted. Onaverage, this happens for 90% of the dynamic predication

instances (Table 3, row 2).

2. Neutral: If the jump was mispredicted but DIP does not predicate the correct target, DIP has no impact on

performance. This case is no different from a mispredictionbecause the pipeline is flushed, but it would have been

flushed anyway because the jump is mispredicted. This case accounts for 5.9% of the dynamic predication instances

(row 3).

3. Moderately harmful: If DIP decides to predicate a jump that was correctly predicted, there is performance

degradation. If the correct target is one of the predicated targets, the degradation is less severe (it is only due to the

overhead of executing the extra predicated path). This happens for 2.9% of the dynamic predication instances (row 4).

4. Harmful: The worst case is dynamically predicating a correctly-predicted jump without predicating the correct

target, which introduces a new pipeline flush that would not have happened without dynamic predication. However,

this worst case occurs only in 1.2% of the dynamic predication instances (row 5).

Figure 10 shows the outcomes of all executed indirect jumps with DIP: 46.8% were correctly predicted by the BTB,

39.9% were dynamically predicated and fall into one of the four cases described above, and 14.3% were mispredicted

but not predicated by DIP. Hence, DIP is effective at eliminating most of the indirect jump mispredictions.
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Figure 10. Breakdown of all executed indirect jumps

Effect of Different DIP Mechanisms Figure 11 shows the performance improvement due to the cumulative applica-

tion of the different mechanisms included in DIP for dynamic2-target selection. Basic DIP using only regular CFM

points provides 12.5% average performance improvement. Including return CFM points slightly increases the IPC
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improvement to 13.9%. The reentry policy for nested indirect jumps (Section 5.3.2) significantly increases the benefit

to 29% because it enables the benefit of DIP for the innermost low-confidence jumps, which are more likely to have

merging control flow without being disrupted by further mispredictions than the outermost jumps. Finally, overriding

the indirect jump prediction when there is one dominant target in the TST increases the average IPC improvement to

37.8% because it reduces the overhead of DIP. The last set of bars show that overriding alone, i.e. using the TST as

an indirect jump predictor, provides about 70% of the benefitof full DIP.
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Figure 11. Performance improvement of different DIP mechan isms

7.4. Effect of Target Selection Policies

Static selection:Figure 12 shows the performance improvement of DIP over the baseline for different number of

predicated targets and target selection techniques. The average IPC improvement with two statically selected targets

is 6.6%. Increasing the number of static targets improves performance by up to 14.1% (for 5 targets). The 2 most

frequently executed targets account for 59.9% of the executed indirect jumps (Figure 8) but only 39.5% of the indirect

jump mispredictions. Even though 5 static targets cover 77%of the executions and 64% of the mispredictions, this

is still not high enough to prevent most of the mispredictions. Additionally, the benefit of having the correct target is

offset by the overhead ofalwayspredicating the extra paths. Therefore, static target selection does not provide high

performance.

Dynamic selection:Dynamic 2-target selection with a 3.6KB Target Selection Table improves IPC much more

significantly (by 37.8%) than static 2-target selection because the TST (1) keeps the most likely targets for the current

phase and context of the program thereby increasing the probability of predicating the correct target and (2) avoids

the overhead of predication when one target is dominant by overriding the jump prediction (Section 5.2.4). Increasing

the maximum number of targets that can be predicated (using the dynamic target selection algorithm of Section 5.2.3)

improves IPC by more than 2% only forchart. In the other benchmarks, there is almost no effect on IPC or there

is performance degradation due to the overhead of the extra paths. Thetwo most frequent targets in the recent past
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provide most of the benefit, as already shown by the experiment with perfect targets in Section 7.2.We conclude that

the most efficient implementation of DIP is with dynamic 2-target selectionand use this implementation in the rest of

our evaluations.
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Figure 12. Performance of DIP with different target selecti on policies

7.5. DIP versus Indirect Jump Predictors

Figure 13(top) compares the performance of DIP with the tagged target cache (TTC) predictor [9]. Our TTC is

4-way set associative and uses full tags, but its size is computed assuming only 2-byte tags and 4-byte targets per

entry, plus pseudo-LRU and valid bits. Since an entry in the TTC is created only when the BTB mispredicts, the

monomorphic or easy-to-predict indirect jumps do not contend for TTC space, unlike previous work [9]. On average,

DIP with a 3.6KB TST performs 6.2% better than a 12.4KB TTC andwithin 1.8% of a 24.8KB TTC. For four of the

benchmarks, DIP performs better than a 24.8KB TTC. Figure 13(bottom) shows the IPC improvement of DIPon a

baseline with a TTC of the indicated size. DIP improves IPC for every TTC size, from 18.6% on a processor with a

3.1KB TTC to 3.8% on a processor with a very large, 24.8KB TTC.

Figure 13(top) also shows (in the fourth bars from the left) that DIP performs 12.2% better than the recently

proposed VPC predictor [30], configured to perform up to 12 prediction iterations. If VPC is used in the baseline to

predict indirect jumps, DIP still improves IPC by 6.6% (Figure 13(bottom)).

Figure 13(top) also compares (in the rightmost two bars) theperformance of DIP with a 3-stage cascaded predic-

tor [13].12 On average, DIP performs 4.5% better than an 11.3KB cascadedpredictor and within 2.4% of a 22.6KB

cascaded predictor. Figure 13(bottom) shows that DIP can improve performance significantly even on baseline pro-

cessors with very large cascaded predictors.

Summary: Our comparisons of DIP with three of the best previously-proposed indirect jump predictors show

that: 1) DIP can provide significantly higher performance than that provided by predictors with larger storage cost, 2)

12The size of the cascaded predictor is the sum of the sizes of the data store and tag store tables, assuming 2-byte tags and 4-byte targets, although we simulate
full tags. An 11.3KB cascaded predictor performs 1.2% better than a 12.4KB TTC.
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Figure 13. Performance of DIP vs. Indirect Jump Predictors

DIP can significantly improve performance even when used in conjunction with a large indirect jump predictor, and

3) DIP is very effective in reducing the performance impact of indirect jumps that are difficult to predict even with

sophisticated indirect jump predictors. As such,we conclude that DIP is an effective indirect jump handling technique

that can replace or be used in conjunction with previously-proposed indirect jump predictors.

7.6. Sensitivity to Microarchitectural Parameters

7.6.1. Less Aggressive Baseline ProcessorFigure 14 shows the performance of DIP along with TTC, VPC and

3-stage cascaded predictors on a less aggressive processorwith 4-wide fetch/issue/retire rate, 20-stage pipeline, 128-

entry instruction window, 16KB perceptron branch predictor and 200-cycle memory latency. Improving indirect

jump handling on a less aggressive processor provides a smaller performance improvement due to the reduced jump

misprediction penalty. However, DIP (with a 3.6KB TST) stillimproves performance by 25.2%, very close to the

performance with a 24.8KB TTC predictor or a 22.6KB cascadedpredictor.

7.6.2. BTB SizesTable 4 shows average results for DIP with different BTB sizes from 1K to 16K entries. The

performance improvement of DIP increases with BTB size because contention due to storing extra targets in the BTB

for target selection becomes less of a problem. However, DIP’s performance improvement is still significant (18.1%)

with a small 1K-entry BTB. Our baseline 4K-entry BTB -similar to the one in Pentium 4 [18]- allows most of the
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Figure 14. Performance of DIP on a less aggressive processor

benefit of DIP that can be obtained with larger BTBs.

Table 4. Effect of different BTB sizes
Baseline DIP 2-target

BTB entries cond. br. indi. cond. br.
(size) BTB miss% MPKI

IPC
BTB miss%

IPC IPC∆

1K (6.4 KB) 4.57% 11.68 0.95 5.89% 1.12 18.1%
2K (12.9 KB) 1.86% 11.40 0.98 2.53% 1.29 30.7%
4K (25.8 KB) 0.74% 11.27 1.00 1.14% 1.37 37.8%
8K (51.5 KB) 0.23% 11.20 1.00 0.45% 1.41 41.5%
16K (103 KB) 0.07% 11.19 1.00 0.15% 1.41 41.2%

7.7. Effect of Dynamic Target Selection Hardware
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Figure 15. Effect of TST hardware budget on DIP performance

Figure 15 shows the effect of the design parameters of the Target Selection Table (TST) for dynamic 2-target

selection. We start from an unrealistic TST that achieves most of the potential for perfect target selection, as discussed

in Section 7.2. The rest of the experiments introduce realistic limits on the TST. Reducing the size of the counters to

2-bit saturating counters actually helps in most of the benchmarks because the aging mechanism improves the ability

to track the current phase behavior. The realistic constraints that reduce the IPC improvement most significantly are:

(1) storing the targets in the BTB instead of in the TST (because this creates contention for BTB entries); and (2)

reducing the number of TST entries to 2K (because the TST hit rate drops from 97% to 87%). The effects of these
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two performance limiters mostly overlap because both the TST and the BTB use the LRU replacement policy. Since

we cannot add extra ports to the BTB to access all the targets in one cycle, we model one access to the BTB per cycle,

which reduces the IPC improvement by 2%. The results show that a realistic 3.6KB TST performs only 13% below

the unrealistic 128MB TST. We conclude that our TST design isefficient and effective for our purposes.

Figure 16 shows the performance improvement for different TST configurations (number of entries and associativ-

ity). Our 3.6KB configuration (2K entries, 4-way set associative) is a good trade-off because it provides most of the

performance of a larger TST.
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Figure 16. Performance of DIP with different TST configurati ons

7.8. Performance on SPEC Integer Benchmarks

Figure 17 shows the performance of DIP on the subset of SPEC CPU 2000 and 2006 benchmarks described in

Section 6. Even though the SPEC benchmarks are not as indirect jump intensive as the object-oriented Java DaCapo

benchmarks, DIP still increases performance by 26% on average, more than the VPC predictor and very close to a

12.4KB TTC predictor or a 22.6KB cascaded predictor.
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Figure 17. DIP performance on SPEC CPU integer benchmarks
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7.9. Effect on Energy and Power Consumption

DIP reduces energy consumption by 24.8% (Table 3, row 11) andenergy-delay product by 45.5% on average (row

12). The significant decrease in energy reduction is becauseof the large reduction in fetched instructions (39.3%, row

9) and executed instructions13 (8.9%, row 10). The reduction in fetched/executed instructions is due to the elimination

of pipeline flushes. When DIP eliminates a flush by predicating the correct target for an otherwise mispredicted jump,

it eliminates 1) the waste of all pipeline and instruction window slots for the execution of wrong-path instructions and

2) the need to re-fetch and re-execute instructions on the control-independent path after a predicated indirect jump.

Table 5 shows a power/energy comparison of DIP and indirect jump predictors that perform close to it. DIP

reduces energy consumption and energy-delay product significantly more than any of the indirect jump predictors.

DIP increases maximum power slightly more than the predictors due to the hardware required for dynamic predi-

cation. However, note that this hardware can also be used to dynamically predicate conditional branches to further

increase performance and reduce energy consumption. If dynamic predication is already implemented for conditional

branches [31], additional structures required for DIP would increase maximum power consumption by only 1.3%.We

conclude that DIP is the most energy-efficient mechanism forhandling indirect jumps.

Table 5. Performance, power, energy comparison of DIP and in direct jump predictors
DIP TTC 12.4KB VPC Casc. 11.3KB

IPC∆ 37.8% 33.8% 26.0% 34.8%
Max power∆ 2.27% 1.06% 0.87% 1.09%

Energy∆ -24.8% -21.0% -19.6% -21.7%
Energy× Delay∆ -45.5% -38.9% -40.8% -39.9%

8. Related Work

We have already discussed related work on compiler-based predication and dynamic predication of conditional

branches in Sections 2 and 3. Previously proposed static or dynamic predication approaches were not applicable to

indirect jumps.

Most current processors use the BTB [40, 18] to predict the target addresses of indirect jumps. A BTB predicts

the last taken target of the indirect jump as the current target and is therefore inaccurate at predicting “polymorphic”

indirect jumps that frequently switch between different targets. Specialized indirect jump predictors [9, 12, 28, 39]

were proposed to predict the target addresses of indirect jumps that switch between different target addresses in a

predictable manner. Recently, VPC prediction [30] was proposed to use the existing conditional branch prediction

hardware to predict indirect jump targets. These previous approaches work well if the target is predictable based on

13The number of executed instructions includes all instructions andµops introduced by the DIP mechanism: predicate definitions,flushµops and select-µops.
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past history. In contrast, DIP can reduce the performance impact of an indirect jump even if the jump is difficult

to predict. We have provided extensive comparisons to indirect jump predictors. Evaluations in Section 7.5 show

that DIP provides larger performance and energy improvements than indirect jump predictors that use much larger

hardware storage budgets.

Dependence-based pre-computation [38] improves indirectcall prediction by pre-computing targets for future vir-

tual function calls as soon as an object reference is created, avoiding a misprediction if the result of the computation

is correct and ready to be used in time. In contrast, DIP does not require any pre-computation logic, and is applicable

to any indirect jump.

Pure software approaches to mitigate the performance penalty of virtual function calls include the method cache

in Smalltalk-80 [11], polymorphic inline caches [19] and type feedback/devirtualization [20, 24]. Devirtualization

converts an indirect jump into multiple conditional branches based on extensive program analysis or accurate profiling.

The benefit of devirtualization is limited by its lack of adaptivity (as shown in [30]), very much like our static target

selection mechanism. Therefore, most state-of-the-art compilers either do not use devirtualization or implement a

limited form of it [41]. Code replication and superinstructions [14] were proposed to improve indirect jump prediction

accuracy on virtual machine interpreters. Our approach is not specific to any platform and can be used for any indirect

jump.

9. Conclusion

This paper proposed the dynamic predication of indirect jumps (DIP) as a new architectural approach to improve

the performance of programming language constructs implemented using indirect jumps. DIP is a cooperative hard-

ware/software (architecture/compiler) technique that combines the strengths of both. The key idea of DIP is that the

processor follows multiple target paths of a hard-to-predict indirect jump by dynamically predicating them instead

of predicting only one target for the jump. This significantly improves the likelihood that the correct target path is

in the processor and therefore reduces the likelihood of a full pipeline flush due to an indirect jump with multiple

dynamically-exercised targets. We showed that the hardware cost of DIP is very small if dynamic predication is al-

ready implemented for conditional branches. Therefore, webelieve that dynamic predication is a substrate that should

be used for both conditional and indirect jumps.

We evaluated DIP on modern object-oriented applications, including the full set of Java DaCapo benchmarks. Our

results show that DIP improves performance by 37.8% over a commonly-used BTB-based indirect jump predictor,

while also reducing energy consumption by 24.8%. We also evaluated DIP in comparison with three previously

proposed indirect jump predictors and found that DIP provides better performance and better energy efficiency, while
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requiring smaller hardware storage cost. As such, DIP couldbe an enabler that improves the performance of modular

object-oriented applications that heavily make use of indirect jumps. We believe the importance of DIP will increase

in the future as more programs will likely be written in object-oriented styles to reduce software development costs

and to improve ease of programming.
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[26] D. Jiménez and C. Lin. Dynamic branch prediction with perceptrons. In HPCA, 2001.
[27] J. A. Joao, O. Mutlu, H. Kim, and Y. N. Patt. Dynamic predication of indirect jumps.IEEE Computer Architecture Letters,

May 2007.
[28] J. Kalamatianos and D. R. Kaeli. Predicting indirect branches via data compression. InMICRO-31.
[29] R. E. Kessler. The Alpha 21264 microprocessor.IEEE Micro, 19(2):24–36, 1999.

27



[30] H. Kim, J. A. Joao, O. Mutlu, C. J. Lee, Y. N. Patt, and R. S.Cohn. VPC Prediction: Reducing the cost of indirect branches
via hardware-based dynamic devirtualization. InISCA-34, 2007.

[31] H. Kim, J. A. Joao, O. Mutlu, and Y. N. Patt. Diverge-merge processor (DMP): Dynamic predicated execution of complex
control-flow graphs based on frequently executed paths. InMICRO-39, 2006.

[32] H. Kim, J. A. Joao, O. Mutlu, and Y. N. Patt. Diverge-merge processor: Generalized and energy-efficient dynamic predica-
tion. IEEE Micro, 27(1):94–104, 2007.

[33] H. Kim, J. A. Joao, O. Mutlu, and Y. N. Patt. Profile-assisted compiler support for dynamic predication in diverge-merge
processors. InCGO-5, 2007.

[34] A. Klauser, T. Austin, D. Grunwald, and B. Calder. Dynamic hammock predication for non-predicated instruction set
architectures. InPACT, 1998.

[35] A. Klauser, A. Paithankar, and D. Grunwald. Selective eager execution on the polypath architecture. InISCA-25, 1998.
[36] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle. The Cydra 5 departmental supercomputer.IEEE Computer, 22:12–35,

Jan. 1989.
[37] E. M. Riseman and C. C. Foster. The inhibition of potential parallelism by conditional jumps.IEEE Transactions on Com-

puters, C-21(12):1405–1411, 1972.
[38] A. Roth, A. Moshovos, and G. S. Sohi. Improving virtual function call target prediction via dependence-based pre-

computation. InICS-13, 1999.
[39] A. Seznec and P. Michaud. A case for (partially) TAgged GEometric history length branch prediction.JILP, Feb. 2006.
[40] E. H. Sussenguth.Instruction Control Sequence. U.S. Patent 3559183, Jan. 26, 1971.
[41] D. Tarditi, July 2007. Personal communication.
[42] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy.POWER4 system microarchitecture.IBM Technical White Paper,

Oct. 2001.
[43] P. H. Wang, H. Wang, R. M. Kling, K. Ramakrishnan, and J. P. Shen. Register renaming and scheduling for dynamic

execution of predicated code. InHPCA-7, 2001.
[44] M. Wolczko. Benchmarking Java with the Richards benchmark. http://research.sun.com/people/mario/

java_benchmarking/richards/richards.html.

28


