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Abstract

Indirect jump instructions are used to implement incregbircommon programming constructs such as virtual
function calls, switch-case statements, jump tables, ataiface calls. The performance impact of indirect jumps is
likely to increase because indirect jumps with multipleyts are difficult to predict even with specialized hardware

This paper proposes a new way of handling hard-to-predidir@ct jumps: dynamically predicating them. The
compiler (static or dynamic) identifies indirect jumps tlaa¢ suitable for predication along with their control-flow
merge (CFM) points. The hardware predicates the instrutibetween different targets of the jump and its CFM
point if the jump turns out to be hard-to-predict at run timéthe jump would actually have been mispredicted, its
dynamic predication eliminates a pipeline flush, therebgrowing performance.

Our evaluations show thadynamic Indirect jump Predication (DIhproves the performance of a set of object-
oriented applications including the Java DaCapo benchnsarike by 37.8% compared to a commonly-used branch
target buffer based predictor, while also reducing energgsumption by 24.8%. We compare DIP to three previously
proposed indirect jump predictors and find that it providies best performance and energy-efficiency.

1. Introduction

Indirect jumps are becoming more common as an increasingoaui programs is written in object-oriented
languages such as Java, C#, and C++. To support polymorpBjstinese languages include virtual function calls that
are implemented using indirect jump instructions in théringtion set architecture (ISA). Previous research hagaho
that modern object-oriented languages result in signifiganore indirect jumps than traditional languages [7]. In
addition to virtual function calls, indirect jumps are cominty used in the implementation of programming language
constructs such as switch-case statements, jump tabkkgterface calls [2].

Unfortunately, current pipelined processors are not gagaedicting the target address of an indirect jump if multi-
ple different targets are exercised at runtime. Such haspkedict indirect jumps not only limit processor perfomca
and cause wasted energy consumption but also contributdisamtly to the performance difference between tradi-
tional and object-oriented languages [44]. The goal of plaiger is to develop new architectural support to improve
the performance of programming language constructs imgihded using indirect jumps.

Figure 1 demonstrates the problem of indirect jumps in dbpeiented Java (DaCapo [5]) and C++ applications.
This figure shows the indirect and conditional jump mispeedns per 1000 retired instructions (MPKI) on a state-

of-the-art Intel Core2 Duo 6600 [22] processor. The dataoigected with hardware performance counters using



VTune [23]. Note that the Intel Core2 Duo processor includespecialized indirect jump predictor [16]. Despite
specialized hardware to predict indirect jump targets, 4ff%ll jump mispredictions in the examined applications
are due to indirect jumps. Hence, hard-to-predict indiresigps cause a large fraction of all mispredictions in object-
oriented Java and C++ applications. Therefore, more stghied architectural support than “target prediction” is

needed to reduce the negative impact of indirect jump milptiens on performance of object-oriented applications.
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Figure 1. Indirect and conditional jump mispredictions in o bject-oriented Java and C++ applications run using the Wind ows Vista
operating system on an Intel Core2 Duo 6600

Basic Idea: We propose a new way of handling hard-to-predict indireatgs: dynamically predicating them
By dynamically predicating an indirect jump, the procedscoreases the probability of the correct target path of the
jump to be fetched. Our technique stems from the observétiaiprogram control-flow paths starting from different
targets of some indirect jump instructions usually mergsoate point in the program, which we call the control-flow
merge (CFM) point. The static or dynamic comptl@entifies such indirect jump instructions along with th@FM
points and conveys them to the hardware through modificafiothe instruction set architecture. When the hardware
fetches such a jump, it estimates whether or not the jumprid fogpredict using a confidence estimator [25]. If the
jump is hard to predict, the processor predicates the ioitns between N targets of the indirect jump and the CFM
point. We evaluate performance/complexity for differentadd find N=2 is the best trade-off. When the processor
reaches the CFM point on all N different target paths, it itsseelectzops to reconcile the data values produced on
each path and continues execution on the control-indepepa¢h. When the indirect jump is resolved, the processor
stops dynamic predication and turns the instructions tbaespond to the incorrect target address(es) into NOPs as
their predicate values are false. The instructions -if ghgt correspond to the correct target address commit their
results. As such, if the jump would actually have been midipted, its dynamic predication eliminates a full pipeline

flush, thereby improving performance.

1in the rest of the paper, we use the term “compiler” to refegitber a static or dynamic compiler. Our scheme can be usedhijunction with both types of
compilers.



Our experimental evaluation shows thagnamic Indirect jump Predication (DIRmproves the performance of
a set of indirect-jump-intensive object-oriented Java @rd applications by 37.8% over a commonly-used branch
target buffer (BTB) based indirect jump predictor, whickeraployed by most current processors. We compare DIP to
three previously proposed indirect jump predictors [9,3(8,and find that it provides significantly better performanc
than all of them. Our results also show that DIP provides &ngdst improvements in energy-efficiency and energy-
delay product.

We analyze the hardware cost and complexity of DIP and shatiftdynamic predication is already implemented
to reduce the misprediction penalty due to conditional bines [31], DIP requires little extra hardware. Hence, DIP
can be a promising, energy-efficient way to reduce the perdioice penalty of indirect jumps without requiring large
specialized hardware structures for predicting indiraatps.

Contributions. We make the following contributions:

1. We provide a new architectural approach to support istljtenps, an important performance limiter in object-
oriented applications. To our knowledge, DIP is the first haadsm that enables the predication of indirect

jumps.

2. We extensively evaluate DIP in comparison to severalipusly-proposed indirect jump prediction schemes and
show that DIP provides the highest performance and enengsomements in modern object-oriented applications
written in Java and C++. Even when used in conjunction wighhssticated predictors, DIP significantly improves

performance and energy-efficiency.

3. We show that DIP can be implemented with little extra handwif dynamic predication is already implemented
to reduce the misprediction penalty due to conditional binis. Hence, we propose using dynamic predication
as a general framework for reducing the performance pedakyto unpredictability in program control-flow (be

it due to conditional branches or indirect jumps).

2. Background on Dynamic Predication of Conditional Brancles

Compiler-based predication [1] has traditionally beenduseeliminate conditional branches (hence conditional
branch mispredictions) by converting control dependenttiedata dependencies, but it is not used for indirect jumps.
Dynamic predication was first proposed to eliminate the neidigtion penalty due to simple hammock branches [34]
and later extended to handle a large set of complex contwl-graphs [31]. Dynamic predication has advantages
over static predication because (1) it does not requireifiignt changes to the instruction set architecture, such as

predicated instructions and architectural predicatestegs, (2) it can adapt to dynamic changes in branch behavior
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and (3) it is applicable to a much wider range of control-flaahs and therefore provides higher performance [31].
Unfortunately, none of these previous static or dynamicligagion approaches were applicable to indirect jumps.
We first briefly review the previous dynamic predication megisms proposed for conditional branches [34, 31] to

provide sufficient background and the terminology used s paper.
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Figure 2. Dynamic predication of a conditional branch: (a) s ource code (b) CFG (c) assembly code (d) dynamically predica  ted instructions
after register renaming (pr: physical register)

Figure 2 shows the control-flow graph (CFG) of a conditionmalnzh and the dynamically predicated instructions.
The candidate branches for dynamic predication are idedtidit runtime or marked by the compiler. When the
processor fetches a candidate branch, it estimates whathet the branch is hard to predict using a branch confidence
estimator [25]. If the branch prediction has low confideribe processor generates a predicate using the branch
condition and enterdynamic predication mode (dpred-modhgj this mode, the processor fetches both paths after the
candidate branch and dynamically predicates the instmstwith the corresponding predicate id. On each path, the
processor follows the outcomes of the branch predictor. Wthe processor reachesantrol-flow merge (CFM) point
on both paths, it inserts c-moves [29] or selgops [43], similar to thep-functions in the static single-assignment
(SSA) form [10], to reconcile the register data values prmtlion either side of the branch and continues fetching
from a single path. The processor exits dpred-mode eithenvitreaches a CFM point on both paths of the branch
or when the branch is resolved. When the branch is resolliedhriedicate value is also resolved. Instructions on the
wrong path (i.e. predicated-FALSE instructions) becomePd(Cand they do not update the architectural state. If the
candidate branch is actually mispredicted, the processes dot need to flush its pipeline and is able to make useful
progress on the correct path, which provides improved perdoce.

3. Dynamic Predication of Indirect Jumps (DIP)

Traditionally, only conditional branches can be predidadtecause predication assumes that there are exactly two
possible next instructions after a branch. This assumptimes not hold for indirect jumps. Figure 3a shows an
example virtual function call in the C++ language that is iempented as an indirect ca{ >ar ea() ). Depending

on the actual runtime type of the object pointed toshythe corresponding overridden version of tireea function
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will be called. There can be many different derived clasbkes dverride the function call and thus many different
targets of the call. Even though there could be many diffetagets, usually only a few of them are concurrently
used in each phase of the program. If the calls for differargdts are interleaved in a complex way, it is usually
difficult to predictexactly the correct targetf each instance of the call using existing indirect jumpdptors. In
contrast, we found that it is much easier to estimate the owthfee)most likely targetsi.e. a small set of targets that
includes the correct target with a high probability.

In DIP, if an indirect jump is found to be difficult to predidhe processor estimates thmst likely targets Us-
ing dynamic predication, the processor fetches and exeduen thesemost likely targetauntil the dynamically-
predicated paths eventually merge at the instruction #feecall, when the function returns (as shown in Figure 3b,c)
If one of the predicated targets is correct, the processoidava pipeline flush. The performance benefit of dy-
namically predicating the indirect jump can increase digantly if the control flow merging point is close to the
indirect jump (i.e., if the body of the function is small), 8wt the overhead of fetching the extra path(s) is not high.
Figure 3b,c illustrates conceptually the dynamic predicaprocess for the indirect call in Figure 3a, assuming that

circl e->area() andr ect angl e- >ar ea() are the most likely targets for an instance of she>ar ea() call.
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Figure 3. Dynamic predication of an indirect call: (a) sourc e code (b) CFG (c) predicated code

Our approach is inspired by the dynamic predication of chmial branches. However, there are two fundamental
differences between the dynamic predication of condifibr@nches and indirect jumps:

1. There are exactly two possible paths after a conditioraidh. In contrast, the number of possible paths after an
indirect jump depends on the number of possible targets;iwdan be very large. For example, an indirect call in the
Java DaCapo benchmagklipseexercises 101 dynamic targets. Predicating a larger nuofliarget paths increases
the likelihood that the correct path will be in the pipelinbem the jump is resolved, but it also requires more complex
hardware and increases the amount of wasted work due tocpt@mh since at most one path is correct. Therefore,
one important question ow to identify how many and which targets of a jump shouldrbdipated

2. The target of a conditional branch is always availableatmile time. On the other hand, all targets of an indirect

jump may not be available at compile-time due to technigikesdynamic linking and dynamic class loading. Hence,
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a static compiler might not be able to convey to hardware Wwhaecgets of an indirect jump can profit from dynamic
predication. Another important question, thereforeyio (the compiler -static or dynamic- or the hardware) shbul
determine the targets that should be dynamically preditat¥e explore both options: the compiler can determine
the targets to be predicated via profiling or the hardwaredesiarmine them at runtime. Note that the latter option can
adapt to runtime changes in frequently-executed targeds afdirect jump at the expense of higher hardware cost.
In this paper we explore answers to these questions and ggapoeffective and cost-efficient implementation of

DIP.

4. Why does DIP work?

We first examine code examples from Java applications tageamsights into why DIP can improve performance.

4.1. Virtual Function Call Example

Figure 4 shows a virtual function call inop, an output-independent print formatter Java applicatmruided in
the DaCapo suite. The functiamonput eVal ue is originally defined in the classengt h, and is overridden in
the derived classdsi near Conbi nat i onLengt h, M xedLengt h andPer cent Lengt h. This polymorphic
function is called from a single call site 32% of the time byealts of class.engt h, 34% of the time by objects of
classLi near Conbi nat i onLengt h, and 34% of the time by objects of cld8sr cent Lengt h. The benchmark
goes through two program phases. Only the first target is astt beginning of the program, and therefore the call
is easy to predict. In the second phase the targets friomear Conbi nat i onLengt h andPer cent Lengt h are
interleaved in a difficult to predict way. Dynamically prediing these two targets when the indirect call becomes hard
to predict can eliminate most target mispredictions at th& of executing useless instructions on one path. Since
the bodies of the functions are small, the number of waststrluictions with dynamic predication is smaller than the

number of wasted instructions on a pipeline flush due to ammibgtion.

public int nvalue() { // in Length class
if (!blsConputed)
conput eVal ue(); /1 call site

return mllipoints;

protected void conputeVal ue() {
/1 in LinearConbinationLength class, short conputation...

1
2
3
4
5.}
6:
7
8
9 set Conput edVal ue(resul t);

10: }

11:

12: protected void conputeValue() { // in MxedLength cl ass
13: /1 short conputation...

14: set Conput edVal ue( conput edVal ue, bAl | Conput ed) ;

15: }

17: protected void conputeValue() { // in PercentLength class
18: set Conput edVal ue((int)(factor *

19: (doubl e) | base. get BaseLength()));

20: }

Figure 4. A suitable indirect jump example from f op



4.2. Switch-Case Statement Example

Figure 5 shows a switch statement in the functipp St opStringLiteral Dia.0 of the class
JavaPar ser TokenManager from the DaCapo benchmagkrd. This class parses input tokens by implement-
ing a deterministic finite automaton. Even though the swateltement has 11 cases, cases 0, 1 and 2 are executed for
59%, 25%, and 12% of the dynamic instances, respectivelg. other 8 cases account for only 4% of the dynamic
instances. The control flow reconverges after the switdiestant. Dynamically predicating the first three target path
when the indirect jump is seen would eliminate almost allpresgictions at the cost of executing useless instructions.
Note, however, that the number of instructions is relayiahall (fewer than 30) in each target path, so the amount
of wasted work would be small compared to the amount of wastadk on a full pipeline/window flush due to a

misprediction.

1: switch (pos) { // indirect junp

2 case 0: // target 1

3 if ((activel & 0x40000000040000L) != OL)

4: r = 4;

5: elseif (...) ...

6 r = 28;

7 el se

8: r =-1;

9: br eak;

10: case 1: // target 2

11: /1 code similar to case O (setting r on every path)
12: case 2: // target 3

13: /1 code similar to case O (setting r on every path)
14: /1 ... 8 other sel dom executed cases

15: }

Figure 5. A suitable indirect jump example from pITd

5. Mechanism and Implementation

There are two critical issues in implementing DIP: (1) deti@ing which indirect jumps are candidates for dynamic
predication, (2) determining which targets of a candidatirect jump should be predicated. This section first exglai
how our mechanism addresses these issues. Then, we ddkerileguired hardware support, analyze its complexity,
and explain the support required from the ISA.
5.1. Indirect Jump and CFM Point Selection

The compiler selects indirect jump candidates for dynamégjzation using control-flow analysis and profiling.
Control-flow analysis finds the CFM point for each indireehjo. The CFM point for an indirect call is the instruction
after the call. The CFM point for an indirect jump implemegtia switch statement is usually the instruction after
the statement. The compiler profiles the application to attarize the indirect jumps. Highly mispredicted indirect
jumps are good candidates for DIP even if there is no CFM pmonmtmon to all the targets or if the CFM point is
so far from the jump that it is not reached until the indiraahp is resolved. In this case, DIP still could provide

performance benefit because it executes two possible pléngte jump, one of which might be the correct path.
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In other words, the benefit from DIP is similar to that of dpakh execution [17, 15] if a CFM point is not reached.
For the experiments in this paper the compiler selects dirdéct jumps that result in at least 0.1% of all jump
mispredictions in the profiling run on the baseline proce$so

An indirect jump selected for dynamic predication is markethe binary along with its CFM point. We call such

a jump aDIP-jump

5.1.1. Return CFM Points In some switch statements, one or moasesnight end with areturn instruction. For
an indirect jump implementing such a switch statement, tiseifistruction after the statement might not be the CFM
point. If all predicated paths after an indirect jump impbkting a switch statement reach a return instruction thds en
a case the CFM point is actually the instruction executed after tbturn instruction. Unfortunately, the address of
this CFM point is not known at code generation time becaugegends on the caller position. We introduce a special
type of CFM point calledeturn CFMto handle this case. When a DIP-jump is marked as having enr€f&M point,
the processor does not look for a particular address to erellelpode, but for the execution of a return instruction
at the same call depth as the DIP-jump. The processor endsrdgmpredication mode when all the predicated paths
reach return instructions.
5.2. Target Selection

DIP provides performance benefit only if the correct tardet ump is one of the predicated targets. Therefore, the
choice of which targets to predicate is an important denisiomake when dynamically predicating an indirect jump
since only a few targets can be predicated. This choice camdole by the compiler or the hardware. We first describe
how target selection can be done assuming two targets carebliegted. Section 5.2.3 describes the selection of more

than two targets, assuming the hardware can support thecptiea of all of them.

5.2.1. Compiler-based Target SelectiorEven though an indirect jump can have many dynamically-ased tar-
gets, we would expect the most frequently exercised tatgeascount for a significant fraction of the total dynamic
jump instances and mispredictions [30, 27]. This assumiggests using a simple mechanism for target selection:
the compiler profiles the program with a representative irget, determines the most frequently executed targets for
each DIP-jump, and annotates the executable binary wittatget information. Even though this mechanism requires
more ISA support to supply the targets with an indirect juihdpes not require extra hardware for target selection.
However, our results show that dynamic target selectionhaeisms that can adapt to runtime program behavior can

be much more effective at the cost of extra hardware (seédBettd).

2We have experimented with several other profiling and sieledeuristics based on compile-time cost-benefit amycluding the ones described in [33,
27]), but we found that our simple selection heuristic pdes the best performance.
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5.2.2. Hardware-based (Dynamic) Target Selectiormhe correct target of an indirect jump depends on the runtime
behavior of the application. Changes in the runtime inptit gigase behavior of the program, and the control-flow
path leading to the indirect jump affect the correct targetich is actually the reason why some indirect jumps are
hard to predict. As the compiler does not have access to snekgfain dynamic information, it is difficult for the
compiler to select a set of targets that includes the cotegget when the jump is predicated. In contrast, hardware
has access to dynamic program information and can adappid caanges in the behavior of indirect jumps. We

therefore develop a mechanism that selects targets basedtime information collected in hardware.

We use a hardware table call@édrget Selection Table (TST9r dynamic target selection. The purpose of the TST
is to track and provide the most frequently executed twoetardor a given DIP-jump. A TST entry is associated
with each DIP-jump. Conceptually, each entry in the TST ainrst M targets and M frequency counters. A frequency
counter is associated with each target and keeps track ofrhamy times the target was taken. When a fetched
DIP-jump is estimated to be hard-to-predict (low-confidEnthe processor accesses the TST entry for that jump and
selects the two most frequently executed target addreseedliie two target addresses with the highest frequency

counters) in the entry.

The TST is structured as a 4-way set-associative cache withst-recently-used (LRU) replacement policy. We
evaluated different indexing functions for the TST: usihg aiddress (i.e., program counter) of the DIP-jump alone
or the address of the DIP-jump XORed with the 16-bit globanah history register (GHR). We found that the
latter indexing function provides more accurate targe¢a@n because the correct target of a jump depends on the

control-flow path leading to the jump.

To reduce the storage requirements for the TST, we: (1) liitnumber of targets to the maximum number of
targets that can be predicated plus one; (2) implement #wriémcy counters as 2-bit saturating courite®) limit
the tag to 7 bits; (4) limit the size of the TST to 2K entries) gfore the targets associated with a DIP-jump in the
BTB (in different BTB entries), instead of storing them irethST itself. The last optimization allows TST to become
a low-cost indirection mechanism that stores only freqyeraunters to retrieve the most frequently executed target

of a branch, which are stored in the BTB.

Operation of TST: When a fetched DIP-jump is estimated to be hard-to-pretliettarget selection mechanism
starts an iterative process to retrieve the most frequerstlyl two targets from the BTB, one target per cyckigure 6

shows the basic structure of the TST and the logic requirea¢ess the BTB based on the information obtained from

3To dynamically select 3 to 5 targets, we use 3-bit saturdtimguency counters.
4The performance impact of the extra cycles spent to rett@sgets from the BTB is 2%, as we show in Section 7.7.



the TST® Algorithm 1 describes the target selection process. In @acitioniter, the control logic finds thposition

of the next frequency counter in descending order. If theee3acounters stored in the TSfositioncan take only
the values 1, 2 or 3. The value used to access the BTB to retadsarget is the same value used to index the TST
XORed with a randomized constant valbashvalue which is specific to eacposition® For example, iff 3 and

f 1 are the highest frequency counters, the targets will béexetd by accessing the BTB wittPC xor GHR xor
hash_val ue[ 3]) and(PC xor GHR xor hash_val ue[ 1]) in consecutive cycles. The iterative selection
process stops when it has the required number of targetsrtandigally predicate the jum@PRED.TARGETS or
after trying to retrieve as many targets as can be storedrferT&T entry MAX_ TARGETS PRED.TARGETSs 2

andMAX_TARGETSs 3 for 2-target selection. If enough targets are selet¢kedprocessor enters dpred-mode.

Tag f1 f2 3

PC xor GHR

position
Control
Target
L5 .

T hash_value

BTB_hit

Figure 6. Target Selection Table (TST) used for selecting 2t  argets to predicate. f1, f2, f3 denote the frequency counter s for the three
targets whose information is kept in TST.

Algorithm 1 TST target selection algorithm. Input8C, GHR
iter +— 1
num_targets <— 0
while ((iter < MAX TARGETS) and
(num_targets < PRED_TARGETS)) do
position «— position_descending_order (iter)
target «— accesBTB(PC zor GHR xor hash_value[position])
if (BT B_hit) then
next_target_to_predicate < target
num_targets < num_targets + 1
end if
iter++

end while

Update of TST: When a DIP-jump commits, it updates the TST regardless othldner not it was dynamically
predicated. The TST entry for the (PC, GHR) combination iseased and the corresponding targets are retrieved

from the BTB -one per cycle- and compared to the correct taajesn by the jump. If the correct target is already

SFigure 6 shows only the conceptual structure of the TST. ractual implementation, the BTB index used to retrieve getin an iteration is precomputed
in parallel with the TST access. Therefore, our proposabdu increase the critical path of BTB access.

6Note that the values used to access the BTB to store the T§@tsacan conflict with real jump/branch addresses in therprogincreasing aliasing and
contention in the BTB. Section 7.6.2 evaluates the impaotoimechanism on performance for different BTB sizes.
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stored in the BTB, the corresponding frequency countergseimented. Otherwise, the correct target is inserted in
any empty slot (i.e. for an iteration that misses in the BTB)eplacing the target with the smallest frequency counter
value. Note that the TST update is not on the critical pathxetation and can take multiple cycles as necessary.
The purpose of a TST entry is to provide a list of targets ayxipnately ordered by recent execution frequency. As

the saturating frequency counters are updated, if morettharcounters saturate at the maximum value, it becomes
impossible to distinguish the two most frequent targetsavaid this problem, we implement a simple aging mecha-
nism: if two of the frequency counters are found to be satarathen a TST entry is updated, all counters in the entry
are right shifted by one bit. In addition to avoiding the sation problem, this aging mechanism also demotes the

targets that have not been recently used, keeping the TS@rtanp to date for the current program phase.

5.2.3. Selecting More Than Two TargetsUnlike conditional branches, indirect jumps can have mbanttwo
targets that are frequently executed. When the likelihddtheing the correct target in a set of two targets is not high
enough, it might be profitable to predicate multiple target®n though the overhead of predication would be higher.
If we allow predication of more than two targets, we have tiecewhich targets and how many targets to use for
each low-confidence indirect jump. The TST holds one frequeounter for each of the targets that have been more
frequently used in the recent past. The aging mechanisnskibege counters representative of the current phase of
the program. Therefore, it is reasonable to select the tsrgigh higher frequency count.

To select multiple targets, the processor uses a greedyitalgo It starts with the two targets with the highest
frequency. Then, it chooses th¢h target in descending frequency order only if its frequestill adds significantly

to the sum of the frequencies of the targets already selettad happens when the following expression is satisfied:

i—1
Select Target; if Freq; xi >= Z Freg; Q)
j=1

5.2.4. Overriding the BTB-based Target PredictionThe TST has more information than a conventional BTB-
based indirect jump predictor for DIP-jumps, because: [jg) TST distinguishes between targets based on the dif-
ferent control-flow paths leading to a jump because it is xedewith PC and branch history, while a BTB-based
prediction simply provides the last seen target for the ju(@p each entry in the TST can hold multiple targets for
each combination of PC and branch history (i.e. multiplge#s per jump), while a BTB-based predictor can hold
only one target per jump; (3) the TST contains entries foy dimé DIP-jumps selected by the compiler, which reduces
contention, whereas a BTB contains one entry for every @adijump and taken conditional branch.

Our main purpose for designing the TST is to use it as a meshato select two or more targets for dynamic
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predication. However, we also found that if a TST entry cargainly one target or if the most frequent target in
the entry is significantly more frequérthan the other targets, dynamic predication provides les&fit than simply
predicting the most frequent target as the target of the juiperefore, if one of these conditions holds when a
DIP-jump is fetched, the processor, instead of enteringadyin predication mode, simply overrides the BTB-based
prediction for the indirect jump and uses the single predami target specified by the TST as the predicted target for

the jump.

5.2.5. Dynamic Target Selection vs. Target PredictiorDynamic target selection using the TST is conceptually
different from dynamic target prediction. A TST selects mtnan one target to predicate for an indirect jump. In
contrast, an indirect jump predictor choosesingle targetind uses that as the prediction for the fetched indirect jump
DIP increases the probability of having the correct targahie processor by selecting extra targets and dynamically
predicating multiple paths. Nevertheless, the proposeduayc target selection mechanism can be viewed as both a
target selectormandtarget predictorespecially since we sometimes use it to override targetigieds as described

in the previous section. As such, we envision future indifemp predictors designed to work directly with DIP,
selecting either a single target for speculative executtomultiple targets for dynamic predication.

5.3. Hardware Support for Predicated Execution

Once the targets to be predicated are selected, the dynaadiication process in DIP is similar to that in dynamic
predication of conditional branches, which was descrilréflly in Section 2 and in detail by Kim et al. [31]. Here we
describe the additional support required for DIP. If twa@ytgs are predicated in DIP, the additional support requged
only in 1) the generation of the predicate values, 2) the liagdf a possible pipeline flush when the predicate values
are resolved.

When a low-confidence DIP-jump is fetched, the processa@rerdpred-mode. Figure 7 shows an example of
indirect jJump predication with two targets. First, the pgesor assigns a predicate id to each path to be predicated (i.
each selected target). Unlike in conditional branch praitio in which a single predicate value (and its complement)
is generated based on the branch direction, there are teyttipdicate values based on the addresses of the predicated
targets in DIP. The predicate value for a path is generatecbhbyparing the predicated target address to the correct
target address. The processor inserts compare microtopesduops) to generate predicate values for each path as
shown in Figure 7b.

Unlike in conditional branch predication where one of thedicated paths is always correct, both of the predicated

paths might be incorrect in DIP. As a result, the processstdflush the whole pipeline when none of the predicated

"We found that a difference of at least 2 units in the 2-bit frericy counters is significant.
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target addresses is the correct target. To this end, theepsoc generates a flugtop. The flushuop checks the
predicate values and triggers a pipeline flush if none of tieelipate values turns out to B&UE (i.e., if the correct
target was not predicated). If any of the predicateSRUE, the flushpop functions as a NOP. In the example of
Figure 7b, the processor inserts a flystp to check whether or not any of the predicated targets (TERGor
TARGET2) is correct.

All instructions fetched during dpred-mode carry a pretiidd just like in dynamic predication for a conditional
branch. Since selegtops are executed only if either TARGET1 or TARGET?2 is the eortarget, the selegtops
can be controlled by just one of the two predicates. Notetth@implementation of the selegbps is the same as
in dynamic predication for conditional branches. We refer teader to [34, 31] for details on the generation and

implementation of selegtops.

prll = MEM [pr21]
pl=cmp prll, TARGET1

r1 = MEM[r2] p2 = cmp pr1l, TARGET2
callrl flush (p1 NOR p2)

L N call TARGET1L (1)
TARGET1: TARGET2: add prl2 <- prll, #1 (p1)
add rl <-rl, #1 add rl <-r2, #2 add prl3 <- pr21, #-1p1l)
add rl <-r2, #41 return return (p1)
return call TARGET2 (p2)
add prl4 <- pr21, #2 (p2)

return (p2)

select-uop prl5 <- pl? prl3: pt

‘ add pr16 <- prl5, #1 ‘
(@) (b)

Figure 7. An example of how the instruction stream is dynamic ally predicated (a) control flow graph (b) dynamically predi cated instruc-

tions after register renaming

5.3.1. Supporting More Than Two Targets As we found that the predication of more than two targets duxts
provide significant benefits (shown and explained in Sectigh, we only very briefly touch on hardware support
for it solely for completeness. Each predicated path reguits own context: PC (program counter), GHR (global
history register), RAS (return address stack), and RATi¢tegalias table). Since each path follows the outcomes of
the branch predictor and does not fork more paths, i.e. thegssor cannot be in dpred-mode for two or more nested
indirect jumps at the same time, the complexity of predigatinore than two targets is significantly less than the
complexity of multi-path (i.e. eager) execution [37, 35helpredication of more than two targets requires 1) storage
of more frequency counters in the TST and additional contlmnal logic for target selection, 2) generation of more
than two predicates using more than two compare instrugti®minor changes to the flugiop semantics to handle

multiple paths, and 4) extension of the selgop generation mechanism to handle the reconvergence of tinane
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two paths.

5.3.2. Nested Indirect Jumpslif the processor fetches another low-confidence DIP-jummduwpred-mode, it has
two options: it can follow the low-confidence predicted &rgr it can exit dpred-mode for the earlier jump and
reenter dpred-mode for the later jump. If the jumps are medtee overhead of predicating the later DIP-jump is
usually smaller than the overhead of predicating the egdmp. Also, if the processor decides to continue in dpred-
mode for the earlier jump and the later jump is mispredictegiotentially significant part of the benefit of predication
can be lost when the pipeline is flushed. Therefore, our pdtelledreentry policy is to exit dpred-mode for the
earlier jump andeenter dpred-modfor the later DIP-jump. Our experimental results show thé thoice provides

significantly higher performance benefits (see Section 7.3)

5.3.3. Other Implementation IssuesWe briefly discuss other important issues in implementing.Mlote that the
same issues exist in architectures that implement statlgrmmic predication for conditional branches [36, 34, 31].
Stores and LoadsA dynamically predicated store is not sent to the memoryesgaunless its predicate is known
to be TRUE. The basic rule for the forwarding logic is that a store canvBrd to any younger load except for stores
guarded by an unresolved predicate register, which canfoniard to younger loads with the same predicate id.
Interrupts and ExceptionsNo special support is needed to handle interrupts and éecepbecause dynamic
predication state is speculative and is flushed before @agrthe interrupt or exception. Predicate registers do not
have to be saved and restored because they are not part &Ahnktructions withFALSE predicate values do not

cause exceptions.
5.4. Hardware Cost and Complexity

The hardware required to dynamically predicate indireatgs is very similar to that of the diverge-merge processor
(DMP) [31, 32], which dynamically predicates conditionabibches. The hardware support needed for dynamic
predication (including the predicate registers, fetchfte/rename/retirement support, and seleajts) and its cost
are already described in detail by previous work [31]. Weuass DIP would be cost-efficiently implemented on a
baseline processor that already supports dynamic préaficétr conditional branches, which was shown to provide
very large performance and energy benefits [31, 32]. DIPireguhe following hardware modifications in addition
to the required support for dynamic predication:

1. Target Selection Table (TST, Section 5.2.2): a 2K-emrway set associative table with 3 2-bit saturating
counters per entry, i.e. a 1.5 KB data store and a 2.1 KB tag &tiging 7-bit tags and a valid bit per entry, plus 2 bits

per set for pseudo-LRU replacement).
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2. A simple finite state machine to implement accessing amdtiy the targets in the BTB (block labeled as
Control in Figure 6).

3. A 3-entry table with 32-bit constants (hagalue in Figure 6).

4. Modified predicate generation logic and flystps (Section 5.3).

5. Optionally, support for more than 2 targets (see Secti8rih
Hardware Cost: If dynamic predication hardware is already implemented:forditional branches, the cost of adding
dynamic predication of indirect jumps with dynamic 2-targelection -our most efficient result- is 3.6KB of stordge
and simple extra logic. We believe that it is not cost-effecto implement dynamic predicaticonly for indirect
jumps On the contrary, dynamic predication hardware is a sutestreat should be used for both conditional and
indirect jumps.
5.5. ISA Support

The indirect jJumps selected for dynamic predication aratfified in the executable binary with a different opcode
for each flavor of DIP-jump (jumps or calls). The instructimmmat uses one bit to indicate whether or not the jump
has a return CFM point. The instruction format also incluithesCFM point encoded in 16-bit 2's complement relative
to the DIP-jump, which we determined is enough to encodéhall@FM points we found in our set of benchmarks.
When we use static target selection, the selected 32-gitsmfollow the instruction in the binary. Even though these
special instructions increase the code size and the peessuthe instruction cache, their impact is not significant
because the number of static jumps selected for dynamiégatémh in our benchmarks is small (fewer than 100, as

shown in Table 2).

6. Experimental Methodology
6.1. Simulation Methodology

We use an iDNA-based [3] cycle-accurate x86 simulator tduata dynamic indirect jump predication. Table 1
shows our baseline processor’s parameters. The basebseautK-entry BTB to predict indirect jumps [40, 18]. The
simulator includes a Wattch-based power model [6] usinght®Bchnology at 4GHz, that faithfully accounts for the
power consumption of all the additional structures needed|Ip.

We evaluate DIP using benchmarks over multiple platformesif the experiments are run using the 11 DaCapo
benchmarks [5] (Java), Matlab R2006a (C), M5 simulator {##+), and the interpreters perlomk (C) and perlbench
(C) from the SPEC CPU 2000/2006 suites. We also show resuita et of 5 SPEC CPU2000 INT benchmarks
written in C, 3 SPEC CPU2006 INT benchmarks written in C, al®PEC CPU2006 FP benchmark written in C++.

8Extra storage can be further reduced to 1.5KB with an altemaesign that stores a frequency counter atiiese-is-next-targebit directly in each BTB
entry, thus eliminating the need for a separate TST. To keefntplementation conceptually simple, we do not deschizedption.
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Table 1. Baseline processor configuration
64KB, 2-way, 2-cycle I-cache; fetch ends at the first predigaken
branch; fetch up to 3 conditional branches or 1 indirect bhan
64KB (64-bit history, 1021-entry) perceptron branch pegati [26];
4K-entry, 4-way BTB with pseudo-LRU replacement;
64-entry return address stack; min. branch mispred. peisaB0 cycles
8-wide fetch/issue/execute/retire; 512-entry ROB; 38¥sjtal registers;
128-entry LD-ST queue; 4-cycle pipelined wake-up and sieledogic;
scheduling window is partitioned into 8 sub-windows of 64ries each
On-chip | L1 D-cache: 64KB, 4-way, 2-cycle, 2 |d/st ports; L2 unifiectlca: 1MB,
Caches 8-way, 8 banks, 10-cycle latency; All caches: LRU repl. an8 ines
Buses and| 300-cycle minimum memory latency; 32 DRAM banks;
Memory | 32B-wide core-to-memory bus at 4:1 frequency ratio
Prefetcher| Stream prefetcher [42] (32 streams and 16 cacheline pretéstance)
Dyn. pred.| 2KB (12-bit history, threshold 14) enhanced JRS confidence
support estimator [25], 32 predicate registers, 1 CFM register

Front End

Branch
Predictors

Execution
Core

We use those benchmarks in SPEC 2000 INT and 2006 INT/C+essthiat gain at least 5% performance with a
perfect indirect jump predictor. Each benchmark is run 0@ 2nillion x86 instructions with the reference input set
(SPEC CPU), small input set (DaCapo) or a custom input seti@ldland M5.

The DaCapo benchmarks are run with Sun J2SE 118.2RE on Windows Vist&? Matlab is run on Windows
Vista. M5 is compiled with its default options using gcc d,4and run on Cygwin 1.5.24 on Windows Vista. All SPEC
binaries are compiled with Intel's production compiler @§[21] using -O3 optimizations and run on Linux Fedora

Core 5. Table 2 shows the characteristics of the simulatetiops of our main set of benchmarks on the baseline

processor.
Table 2. Characteristics of the evaluated benchmarks
| [ antir] bloat] chart|eclipsd fop [hsgldH jython]luindex]lusearch pmd[xalan| m5 [matlalperlbenchperlbmk] AVG |
Baseline IPC 0.97(0.90(0.76| 1.18 |0.77| 1.19| 1.17| 1.13 1.10 [ 0.99(0.75|1.49| 1.20 0.81 1.11 1.00
Dynamic indirect jumps (K) || 4917| 5390| 4834| 3523 | 7112| 3054 | 3565| 3744 | 4054 |4557|6923|2501 2163 | 3614 3024 -
Indirect jump MPKI 12.5012.4011.60 8.50 {19.70 8.30 | 8.60| 9.10 9.80 (11.4019.205.60( 5.70 15.40 11.30 ||11.27
Avg. number of dynamic targets37.3| 37.6| 45.9| 41.1 | 37.6| 30.3 | 41.0 | 40.6 39.9 | 39.8|39.8(46.3| 74.0 52.1 40.1 || 42.9

Table 3. DIP-related statistics for the evaluated benchmar ks (CT/IT:correct/incorrect target in dpred-mode; CP/IRrectly/incorrectly predicted)
I Metric [ antlr [ bloat] chart|eclips¢ fop [hsqldBjythonfluindeXlusearch pmd [xalan] m5 [matlaljperlbenciperlbmK] AVG |
ind. jumps selected for2TOP 79 | 80 | 96 78 89 67 78 79 81 78 | 86 | 22 91 4 8 -
% DP instances (CT, IP) || 89.0| 88.7| 89.6| 92.1 | 88.4| 93.1| 91.6| 91.7 | 93,5 | 91.3|80.1| 84.8| 83.0| 97.6 96.1 || 90.0
% DP instances (IT, IP) 58| 57| 60| 41| 77| 29| 44 4.4 3.2 4.6 | 135 10.4| 12.2 1.7 2.3 5.9
% DP instances (CT,CP)|| 40 | 43 | 31| 29 | 26 | 3.2 | 3.0 2.9 2.6 30| 39| 33| 27 0.6 14 2.9
% DP instances (IT,CP) || 1.2 | 1.4 | 1.3 | 0.9 13| 08| 1.0 1.1 0.7 1.2 | 26| 15| 20 0.0 0.3 1.2
avg selectzops per DP 42 | 45| 36| 38 | 3.8 | 3.8 | 3.9 3.7 3.9 38| 35| 49| 39 5.7 6.6 4.2
avg wrong-path instr. per D 54.9 | 56.5| 57.7 | 59.7 | 69.7 | 54.3 | 56.7| 60.2 | 59.3 | 63.1| 62.2| 81.5| 62.6 | 114.5 | 194.8| 73.9
A pipeline flushes (%) ||-47.84-45.71-37.74-44.98-46.84-53.92-43.84 -43.51| -49.88(-45.12-29.06-38.91-22.20 -89.07 | -83.73][-47.07

A fetched instr. (%) -39.87-41.2(-39.89-34.28-40.22-41.46-34.24 -34.40| -39.54|-37.16-26.01-27.20-16.89 -62.97 | -58.30(|-39.32

A executed instr. (%) || -8.12|-9.46|-8.73| -5.40{-10.53 -6.31|-5.46| -5.63 | -6.60 |-7.18|-6.43|-2.80| -2.82| -21.64 | -17.06]|-8.91

A energy (%) -26.99-27.08-25.32-20.69-28.62-23.63-20.14 -20.50| -24.61{-23.09-16.04-14.92 -5.50| -42.12 | -40.18(|-24.81

12| A energy-delay product (%4)-49.96-49.33-45.36-40.17]-51.46-44.7§-39.14 -39.56| -46.23[-43.17-30.97-31.33-11.35 -66.30 | -66.11[-45.54

=
28| o~ o g & w| v e

9Matlab performs convolution on two images; M5 simulatespglgormance of gcc using its complex out-of-order processadel.

10At the time of this writing, iDNA [3] worked for only 7 of the 1DaCapo benchmarks running on Sun Java SE 6 (version.@®.0The average indirect
jump MPKI for these benchmarks on Java 6 is 3fiigherthan on Java 1.4, but since we cannot use the full suite, watrte results for Java 1.4. We expect
DIP would perform better on Java 6.
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6.2. Compilation and Profiling Methodology

Our methodology targets an adaptive JIT compiler that ig abluse recent profiling information to recompile
the hot methods to improve performance. For the experimarttsis paper, we developed a dynamic profiling tool
that collects edge profiling information and computes théiQfeints during the 200M instructions preceding the
simulation points for each application. The algorithmsna fihe CFM points are similar to those algorithms described

in [33]. After profiling, our tool applies the jump selectiafgorithm described in Section 5.

7. Results
7.1. Dynamic Target Distribution

Table 2 shows that the average number of dynamic targetsfioidirect jump in the simulated benchmarks is 42.9.
We found that in our set of object-oriented benchmarks 61%llatynamic indirect jumps have 16 or more targets,
which is significantly higher than what was reported in poerg work for SPEC CPU C/C++ applications [30]. Even
though indirect jumps have many targets, the most frequenxttcuted targets (over the whole run of the program)
are taken by a significant fraction of all dynamic indireainjes, as we show in Figure 8. On average, the two most
frequent targets cover 59.9% of the dynamic indirect junbps,only 39.5% of the indirect jump mispredictions. The
contribution of less frequently executed targets steattibyps. This data shows that statically selecting two tarfmt
dynamic predication would likely not be very successfulliege object-oriented applications where indirect jumps

have a very large number of targets.
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Figure 8. Fraction of dynamic indirect jumps taking the most frequently executed N targets

7.2. Performance of DIP

The first set of bars in Figure 9 shows the performance impnareé of DIP over the baseline, using dynamic
2-target selection with a 3.6KB TST and all the techniquescdieed in Section 5. The average IPC improvement of
DIP is 37.8% and is analyzed in Section 7.3.

We also include five idealized experiments in Figure 9 to stim\potential of DIP. The IPC improvement increases

L1For the static target selection experiments, our dynanufilprg tool also applies the target selection algorithnsciébed in Section 5.2.1.
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to 51% if an unrealistically large TST is used (64K-entry T&ith local storage for 255 targets and 32-bit frequency
counters, which has a total data storage size of 128MB)elfl@BMB TST always ideally provides the correct target
for predication among the 2 selected targets (2T perfegetarthe performance improves only by 0.2%. This means
that the principles of the TST are adequate for selectingctiteect target among the two that are predicated. If
the DIP mechanism were used ideally only when the DIP-jungzigally mispredicted (2T perfect confidence) IPC
improves by an additional 2%. The combination of perfectfickemce estimation and perfect target selection (2T
perfect targ./conf.) adds only an extra 0.5%, showing thatrhaximum potential performance benefit of 2-target
DIP is 53.8%. Perfect indirect jump prediction (perfect)lprovides 72.2% performance improvement over baseline,
which is significantly higher than the maximum potential dPPbecause it does not have the overhead of dynamic
predication. Our realistic implementation achieves 52%hef potential with perfect indirect jump prediction and
70% of the potential with the ideal 2-target DIP (2T perfecgt/conf.). Xalan and matlab do not get as much of the

potential as the other benchmarks because the TST miss isigmificantly high (43% for both).
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Figure 9. DIP performance and potential

7.3. Analysis of the Performance Improvement

The performance improvement of DIP comes from avoiding thiepipeline flushes caused by indirect jump mis-
predictions. DIP can improve performance only if it selettts correct target as one of the targets to predicate.
Therefore, most of our design effort for DIP is focused on hatsms to improve target selection. On average, DIP
eliminates 47% of the pipeline flushes that occur with a BERBda predictor (as shown in Table 3, row 8). Further-
more, the overhead of executing the extra path is low: theageenumber of dynamically predicated wrong-path
instructions is only 73.9 (Table 3, row 7), which is signifitlg smaller than the instruction window size of the pro-
cessor. Hence, in the steady state, dynamic predication a$@redicted jump would result in only 73.9 instruction
slots to be wasted whereas the misprediction itself wowe h@sulted in all instruction slots in the window plus those

in the front-end pipeline stages to be wasted.
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The benefit of DIP depends on the combination of target seteand confidence estimation. We classify dynamic
predication instances into four cases based on whethertdhaaorrect target is predicated and whether or not the
jump was actually mispredicted:

1. Useful: A dynamic predication instance is useful (i.e. succesgfaloids a pipeline flush) if it predicates the
correct target and the jump was originally mispredicted.a@erage, this happens for 90% of the dynamic predication
instances (Table 3, row 2).

2. Neutral: If the jump was mispredicted but DIP does not predicate threecbtarget, DIP has no impact on
performance. This case is no different from a mispredicbenause the pipeline is flushed, but it would have been
flushed anyway because the jump is mispredicted. This caseiats for 5.9% of the dynamic predication instances
(row 3).

3. Moderately harmful:If DIP decides to predicate a jump that was correctly predicthere is performance
degradation. If the correct target is one of the predicategkts, the degradation is less severe (it is only due to the
overhead of executing the extra predicated path). Thisdrwapfor 2.9% of the dynamic predication instances (row 4).

4. Harmful: The worst case is dynamically predicating a correctly-fred jump without predicating the correct
target, which introduces a new pipeline flush that would reastehhappened without dynamic predication. However,
this worst case occurs only in 1.2% of the dynamic predicatistances (row 5).

Figure 10 shows the outcomes of all executed indirect jurrigisIP: 46.8% were correctly predicted by the BTB,
39.9% were dynamically predicated and fall into one of the frases described above, and 14.3% were mispredicted

but not predicated by DIP. Hence, DIP is effective at elimimgatnost of the indirect jump mispredictions.
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Figure 10. Breakdown of all executed indirect jumps

Effect of Different DIP Mechanisms Figure 11 shows the performance improvement due to the atimellapplica-
tion of the different mechanisms included in DIP for dynaitarget selection. Basic DIP using only regular CFM

points provides 12.5% average performance improvemeriudimg return CFM points slightly increases the IPC
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improvement to 13.9%. The reentry policy for nested indijemps (Section 5.3.2) significantly increases the benefit
to 29% because it enables the benefit of DIP for the innernsastbnfidence jumps, which are more likely to have
merging control flow without being disrupted by further mmsgictions than the outermost jumps. Finally, overriding
the indirect jump prediction when there is one dominanteatig the TST increases the average IPC improvement to
37.8% because it reduces the overhead of DIP. The last ser®fkhow that overriding alone, i.e. using the TST as

an indirect jump predictor, provides about 70% of the beroéfiull DIP.
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7.4. Effect of Target Selection Policies

Static selectionFigure 12 shows the performance improvement of DIP over #szline for different number of
predicated targets and target selection techniques. Térage IPC improvement with two statically selected targets
is 6.6%. Increasing the number of static targets improvefpeance by up to 14.1% (for 5 targets). The 2 most
frequently executed targets account for 59.9% of the eredudirect jumps (Figure 8) but only 39.5% of the indirect
jump mispredictions. Even though 5 static targets cover B67%he executions and 64% of the mispredictions, this
is still not high enough to prevent most of the mispredictioAdditionally, the benefit of having the correct target is
offset by the overhead @lwayspredicating the extra paths. Therefore, static targetctiele does not provide high
performance.

Dynamic selection:Dynamic 2-target selection with a 3.6KB Target Selectiobl@amproves IPC much more
significantly (by 37.8%) than static 2-target selectionhese the TST (1) keeps the most likely targets for the current
phase and context of the program thereby increasing theapiiity of predicating the correct target and (2) avoids
the overhead of predication when one target is dominant byriming the jump prediction (Section 5.2.4). Increasing
the maximum number of targets that can be predicated (usandytnamic target selection algorithm of Section 5.2.3)
improves IPC by more than 2% only fahar t . In the other benchmarks, there is almost no effect on IP@Qenet

is performance degradation due to the overhead of the eatresp Thetwo most frequent targets in the recent past
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provide most of the benefit, as already shown by the expetimith perfect targets in Section 7.%Ve conclude that
the most efficient implementation of DIP is with dynamicgeaselectiorand use this implementation in the rest of

our evaluations.
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Figure 12. Performance of DIP with different target selecti on policies

7.5. DIP versus Indirect Jump Predictors

Figure 13(top) compares the performance of DIP with the edggrget cache (TTC) predictor [9]. Our TTC is
4-way set associative and uses full tags, but its size is atedpassuming only 2-byte tags and 4-byte targets per
entry, plus pseudo-LRU and valid bits. Since an entry in tR€Ts created only when the BTB mispredicts, the
monomorphic or easy-to-predict indirect jumps do not codtior TTC space, unlike previous work [9]. On average,
DIP with a 3.6KB TST performs 6.2% better than a 12.4KB TTC aiittlin 1.8% of a 24.8KB TTC. For four of the
benchmarks, DIP performs better than a 24.8KB TTC. Figui®@diBom) shows the IPC improvement of Dtl a
baseline with a TTC of the indicated siZelP improves IPC for every TTC size, from 18.6% on a processth a
3.1KB TTC to 3.8% on a processor with a very large, 24.8KB TTC.

Figure 13(top) also shows (in the fourth bars from the IdfigttDIP performs 12.2% better than the recently
proposed VPC predictor [30], configured to perform up to 1€digtion iterations. If VPC is used in the baseline to
predict indirect jumps, DIP still improves IPC by 6.6% (Figu.3(bottom)).

Figure 13(top) also compares (in the rightmost two bars)reormance of DIP with a 3-stage cascaded predic-
tor [13].12 On average, DIP performs 4.5% better than an 11.3KB casqa@eittor and within 2.4% of a 22.6KB
cascaded predictor. Figure 13(bottom) shows that DIP camawne performance significantly even on baseline pro-
cessors with very large cascaded predictors.

Summary: Our comparisons of DIP with three of the best previouslypased indirect jump predictors show

that: 1) DIP can provide significantly higher performancarthhat provided by predictors with larger storage cost, 2)

12The size of the cascaded predictor is the sum of the size®afata store and tag store tables, assuming 2-byte tagstaytd fargets, although we simulate
full tags. An 11.3KB cascaded predictor performs 1.2% bétizn a 12.4KB TTC.
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Figure 13. Performance of DIP vs. Indirect Jump Predictors

DIP can significantly improve performance even when usedijunction with a large indirect jump predictor, and
3) DIP is very effective in reducing the performance impacindirect jumps that are difficult to predict even with
sophisticated indirect jump predictors. As suate, conclude that DIP is an effective indirect jump handliegique

that can replace or be used in conjunction with previoustyppsed indirect jump predictors

7.6. Sensitivity to Microarchitectural Parameters

7.6.1. Less Aggressive Baseline Processbrgure 14 shows the performance of DIP along with TTC, VPC and
3-stage cascaded predictors on a less aggressive provadsdrwide fetch/issue/retire rate, 20-stage pipelirgg-1
entry instruction window, 16KB perceptron branch predicod 200-cycle memory latency. Improving indirect
jump handling on a less aggressive processor provides desrpalformance improvement due to the reduced jump
misprediction penalty. However, DIP (with a 3.6KB TST) siitiproves performance by 25.2%, very close to the

performance with a 24.8KB TTC predictor or a 22.6KB cascguiedlictor.

7.6.2. BTB SizesTable 4 shows average results for DIP with different BTB sifiem 1K to 16K entries. The
performance improvement of DIP increases with BTB size bse@ontention due to storing extra targets in the BTB
for target selection becomes less of a problem. However,d3i€fformance improvement is still significant (18.1%)

with a small 1K-entry BTB. Our baseline 4K-entry BTB -simmik® the one in Pentium 4 [18]- allows most of the

22



= 2T-DIP(3.6KB)
50 = TTC 12.4KB —
= TTC 24.8KB
eVPC —
=CASC 11.3KB
2 CASC 22.6KB

N
o

IPC delta (%)
8
i

10 ¥

o S

59
@ © & ©» & & o
S & & & WSS F NS Lo &S L
S F P KR X RPN » & ¢
TS CTEIFTETE T TEHTE

Figure 14. Performance of DIP on a less aggressive processor

benefit of DIP that can be obtained with larger BTBs.

Table 4. Effect of different BTB sizes

Baseline DIP 2-target
BTB entries cond. br. indi. cond. br.
(size) BTB miss% | MPKI IPC BTB miss% IPC | IPCA

1K (6.4 KB) 4.57% 11.68 | 0.95 5.89% 1.12| 18.1%
2K (12.9KB) 1.86% 11.40| 0.98 2.53% 1.29| 30.7%
4K (25.8 KB) 0.74% 11.27 | 1.00 1.14% 1.37| 37.8%
8K (51.5 KB) 0.23% 11.20| 1.00 0.45% 1.41| 41.5%
16K (103 KB) 0.07% 11.19 | 1.00 0.15% 141 41.2%

7.7. Effect of Dynamic Target Selection Hardware

140 64Kentry, 255T, 32-bit ctrs (128MBy——————
130 = 2-bit counters (68MB) —
120 =only 3 targets (1.6MB)
110 =3 targets in BTB (836KB)
100 =3T-BTB 1 per cycle (836KB)

90 = 2K entries (4MB)

807 = 2K-3T-BTB-2bit (3.6KB)

IPC delta (%)
=

Figure 15. Effect of TST hardware budget on DIP performance

Figure 15 shows the effect of the design parameters of thgeTa&8election Table (TST) for dynamic 2-target
selection. We start from an unrealistic TST that achievestrabthe potential for perfect target selection, as disedss
in Section 7.2. The rest of the experiments introduce reéalisnits on the TST. Reducing the size of the counters to
2-bit saturating counters actually helps in most of the bemarks because the aging mechanism improves the ability
to track the current phase behavior. The realistic congdhat reduce the IPC improvement most significantly are:
(1) storing the targets in the BTB instead of in the TST (bseathis creates contention for BTB entries); and (2)

reducing the number of TST entries to 2K (because the TSTatetdrops from 97% to 87%). The effects of these
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two performance limiters mostly overlap because both th€ a&d the BTB use the LRU replacement policy. Since
we cannot add extra ports to the BTB to access all the tangetsd cycle, we model one access to the BTB per cycle,
which reduces the IPC improvement by 2%. The results shotathealistic 3.6KB TST performs only 13% below

the unrealistic 128MB TST. We conclude that our TST desigffisient and effective for our purposes.

Figure 16 shows the performance improvement for differe®t Tonfigurations (number of entries and associativ-
ity). Our 3.6KB configuration (2K entries, 4-way set asstie® is a good trade-off because it provides most of the

performance of a larger TST.

100 =512 entries 4-way(0.91KB)—
90 21024 entries 4-way(1.82KB}————
#2048 entries D.M.(3.5KB)
=2048 entries 2-way(3.6KB)
70 = 2048 entries 4-way(3.6KB)
22048 entries 8-way(3.7KB)
24096 entries 4-way(7.25KB
28192 entries 4-way(14.5KB

IPC delta (%)
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Figure 16. Performance of DIP with different TST configurati ons

7.8. Performance on SPEC Integer Benchmarks

Figure 17 shows the performance of DIP on the subset of SPEC ZTPO and 2006 benchmarks described in
Section 6. Even though the SPEC benchmarks are not as ihflinep intensive as the object-oriented Java DaCapo
benchmarks, DIP still increases performance by 26% on geemaore than the VPC predictor and very close to a

12.4KB TTC predictor or a 22.6KB cascaded predictor.

90

8 = 2T-DIP(3.6KB)

70 =TTC 124KB |——
=TTC 24.8KB
| | =VPC 12-iter
+— =CASC 11.3KB——

=CASC 22.6KB
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Figure 17. DIP performance on SPEC CPU integer benchmarks
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7.9. Effect on Energy and Power Consumption

DIP reduces energy consumption by 24.8% (Table 3, row 11eaedyy-delay product by 45.5% on average (row
12). The significant decrease in energy reduction is beaaiube large reduction in fetched instructions (39.3%, row
9) and executed instructioh8.9%, row 10). The reduction in fetched/executed instomstis due to the elimination
of pipeline flushes. When DIP eliminates a flush by predicgtiive correct target for an otherwise mispredicted jump,
it eliminates 1) the waste of all pipeline and instructiomdaw slots for the execution of wrong-path instructions and
2) the need to re-fetch and re-execute instructions on theaeindependent path after a predicated indirect jump.

Table 5 shows a power/energy comparison of DIP and indirgwipj predictors that perform close to it. DIP
reduces energy consumption and energy-delay producffisigmily more than any of the indirect jump predictors.
DIP increases maximum power slightly more than the predictine to the hardware required for dynamic predi-
cation. However, note that this hardware can also be usegrtandically predicate conditional branches to further
increase performance and reduce energy consumption. #dirpredication is already implemented for conditional
branches [31], additional structures required for DIP widntrease maximum power consumption by only 1.3%.
conclude that DIP is the most energy-efficient mechanisrmdaodling indirect jumps.

Table 5. Performance, power, energy comparison of DIP and in  direct jump predictors

| [ DIP [TTC 12.4KB[ VPC [Casc. 11.3KB

IPCA 37.8%| 33.8% |26.0% 34.8%

Max powerA 2.27% 1.06% |0.87% 1.09%
EnergyA -24.8% -21.0% |-19.6% -21.7%
Energyx DelayA||-45.5% -38.9% [-40.8% -39.9%

8. Related Work

We have already discussed related work on compiler-basedigation and dynamic predication of conditional
branches in Sections 2 and 3. Previously proposed statigrardic predication approaches were not applicable to
indirect jumps.

Most current processors use the BTB [40, 18] to predict thgetaaddresses of indirect jumps. A BTB predicts
the last taken target of the indirect jump as the currenetaagd is therefore inaccurate at predicting “polymorphic”
indirect jumps that frequently switch between differemptas. Specialized indirect jump predictors [9, 12, 28, 39]
were proposed to predict the target addresses of indiregpguthat switch between different target addresses in a
predictable manner. Recently, VPC prediction [30] was pegg to use the existing conditional branch prediction

hardware to predict indirect jump targets. These previgus@aches work well if the target is predictable based on

13The number of executed instructions includes all instargtianduops introduced by the DIP mechanism: predicate definitithmsh ops and selegizops.
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past history. In contrast, DIP can reduce the performangeanof an indirect jump even if the jump is difficult
to predict. We have provided extensive comparisons to éatlijump predictors. Evaluations in Section 7.5 show
that DIP provides larger performance and energy improvesran indirect jump predictors that use much larger
hardware storage budgets.

Dependence-based pre-computation [38] improves indi@tprediction by pre-computing targets for future vir-
tual function calls as soon as an object reference is createilling a misprediction if the result of the computation
is correct and ready to be used in time. In contrast, DIP doegaguire any pre-computation logic, and is applicable
to any indirect jump.

Pure software approaches to mitigate the performance fyeofavirtual function calls include the method cache
in Smalltalk-80 [11], polymorphic inline caches [19] angeyfeedback/devirtualization [20, 24]. Devirtualization
converts an indirect jump into multiple conditional braestbased on extensive program analysis or accurate profiling
The benefit of devirtualization is limited by its lack of adigjty (as shown in [30]), very much like our static target
selection mechanism. Therefore, most state-of-the-artpders either do not use devirtualization or implement a
limited form of it [41]. Code replication and superinstriacts [14] were proposed to improve indirect jump prediction
accuracy on virtual machine interpreters. Our approacbispecific to any platform and can be used for any indirect

jump.
9. Conclusion

This paper proposed the dynamic predication of indirectgarfDIP) as a new architectural approach to improve
the performance of programming language constructs imghded using indirect jumps. DIP is a cooperative hard-
ware/software (architecture/compiler) technique thambimes the strengths of both. The key idea of DIP is that the
processor follows multiple target paths of a hard-to-predidirect jump by dynamically predicating them instead
of predicting only one target for the jump. This significgnitnproves the likelihood that the correct target path is
in the processor and therefore reduces the likelihood ofllgipeline flush due to an indirect jump with multiple
dynamically-exercised targets. We showed that the halwast of DIP is very small if dynamic predication is al-
ready implemented for conditional branches. Thereforehalieve that dynamic predication is a substrate that should
be used for both conditional and indirect jumps.

We evaluated DIP on modern object-oriented applicatior@uding the full set of Java DaCapo benchmarks. Our
results show that DIP improves performance by 37.8% ovemantonly-used BTB-based indirect jump predictor,
while also reducing energy consumption by 24.8%. We alsduated DIP in comparison with three previously

proposed indirect jump predictors and found that DIP presilletter performance and better energy efficiency, while
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requiring smaller hardware storage cost. As such, DIP cbaldn enabler that improves the performance of modular
object-oriented applications that heavily make use ofraxtijumps. We believe the importance of DIP will increase
in the future as more programs will likely be written in objexiented styles to reduce software development costs

and to improve ease of programming.
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