
Adaptive Predication via Compiler-Microarchitecture Cooperation

Hyesoon Kim

High Performance Systems Group
Department of Electrical and Computer Engineering

The University of Texas at Austin

Austin, Texas 78712-0240

TR-HPS-2007-003

August 2007

This page is intentionally left blank.

Copyright

by

Hyesoon Kim

2007

The Dissertation Committee for Hyesoon Kim
certifies that this is the approved version of the following dissertation:

Adaptive Predication via Compiler-Microarchitecture Cooperation

Committee:

Yale N. Patt, Supervisor

Craig M. Chase

Steve Keckler

Derek Chiou

Jared Stark

Adaptive Predication via Compiler-Microarchitecture Cooperation

by

Hyesoon Kim, B.S.; M.S.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2007

Dedicated to my parents

Acknowledgments

After a long formal education journey, I finally have a chanceto thank everybody

who taught me, helped me, and shared their friendship with meduring my Ph.D. program.

This dissertation cannot be completed without support fromthem, especially my parents

Sun Sam Kim, Sook Ja Lee and my older brother Phill Soon Kim. Here I am trying to

express my gratitude to everybody although these words are never enough.

First of all, I thank my adviser, Yale N. Patt, who taught me how computers work

and also showed me what I really like. His passion during EE360N helped me find what

I want to study for my Ph.D. He invited me to join the HPS research group when I was

barely able to speak English and when I did not have enough background in the computer

engineering field. And then, he encouraged me to solve important and difficult problems

after building a strong background.

I thank every member of the HPS group. I have felt lucky to be a member of such a

wonderful research group. I especially thank Onur Mutlu. MyPh.D. life would have been

very different without him. He has always open to strong technical discussions and showed

me how to write strong papers. This dissertation became muchstronger and clearer with

his contributions.

I thank Francis Tseng for always being helpful in not only technical support but

also helping me with various kinds of user errors. I thank Moinuddin Qureshi for many

productive and joyful coffee meetings especially during our last year of graduate school.

I had a great time working with José A. Joao, especially on the topic of DMP. I

thank him for the discussions, support, and the chance to work with him. I also thank M.

Aater Suleman for working on 2D-profiling together with me. Ithank Chang Joo Lee for

v

useful discussions and many different kinds of support including frequent rides. I thank

Venyu Narasiman for providing helpful comments for many paper drafts, which eventually

became parts of my dissertation.

I thank David N. Armstrong for his help in developing the IA-64 simulator, for

educating me in the ways of the American culture, and for being a friend. I thank Santhosh

Srinath for answering my technical questions and accompanying me in many hiking trips

in Oregon and Texas. I thank David Thompson and Linda Hastings for their comments

and suggestions in many paper drafts, and Danny Lynch and Rustam Miftakhutdinov for

providing a cheerful office environment. I thank the senior members of HPS, Mary Brown,

Robert Chappell, Paul Racunas, and Sangwook Peter Kim, for being accessible mentors

and for their contributions to our group’s simulation infrastructure.

I would also like to thank Craig Chase, Derek Chiou, Steve Keckler and Jared Stark

for taking the time to serve on my dissertation committee. Jared Stark provided the initial

idea of wish branches, which is part of this dissertation. Derek Chiou was always open to

discussions and always gave me kindly advice.

I learned a lot during my internships in industry. Eric Sprangle and Jared Stark

walked me through the first steps of being a computer architect. I especially thank Robert

Cohn giving me a chance to intern with the VSSAD group and for supporting Pin. Konrad

Lai, Srikanth Srinivasan, Roy Ju, Joel Emer, Jon Pieper, andSanjay Patel provided valuable

comments on my research.

All my friends, Eunmi Park, Hyunjung Lee, Yoonjung Hong, many ECE folks in-

cluding Dam Sunwoo, Joonsoo Kim and many other friends helped me directly or indirectly

during my Ph.D. studies. Once again, I gratefully thank everybody and thank my parents.

Hyesoon Kim

July 2007, Austin, Texas

vi

Adaptive Predication via Compiler-Microarchitecture Cooperation

Publication No.

Hyesoon Kim, Ph.D.

The University of Texas at Austin, 2007

Supervisor: Yale N. Patt

Even after decades of research in branch prediction, branchpredictors still remain

imperfect, which results in significant performance loss inaggressive processors that sup-

port large instruction windows and deep pipelines. Predicated execution can reduce the

number of branch mispredictions by eliminating hard-to-predict branches. However, the

additional instruction overhead and data dependencies dueto predicated execution some-

times offset the performance benefits of having fewer mispredictions. This dissertation

presents two cooperative compiler-microarchitecture mechanisms to reduce the branch mis-

prediction penalty by combining predicated execution and branch prediction.

The first mechanism is a set of new control flow instructions, called wish branches.

With wish branches, the compiler generates code that can be executed either as normal

branch code or as predicated code. At run-time, the hardwarechooses between normal

branch code and predicated code based on the run-time branchbehavior and the estimated

run-time effectiveness of each solution. The results show that wish branches can signifi-

cantly improve both performance and energy efficiency compared to predication or branch

prediction.

vii

To provide the benefit of predicated code to non-predicated Instruction Set Archi-

tectures (ISAs) and to increase the benefit of predicated execution beyond the benefit of

wish branches, this dissertation also presents and evaluates the Diverge-Merge Processor

(DMP) architecture. In the diverge-merge processor, the compiler analyzes the control-flow

graphs of the program and marks branches suitable for dynamic predication –called di-

verge branches– and their corresponding control flow merge points. The hardware not only

chooses whether to use branch prediction or predication, but also decides “which” instruc-

tions after a branch should be predicated based on run-time branch behavior. This solution

significantly reduces the overhead of predicated code and allows a very large set of control-

flow graphs to be predicated, neither of which was possible previously because predication

was performed statically without any run-time information. This dissertation compares

DMP with all other major previously-proposed branch processing paradigms available in

the literature in terms of performance, power, energy consumption, and complexity. The

results show that DMP is the most energy-efficient and high-performance paradigm for

branch handling. Code generation algorithms for the DMP architecture and cost-benefit

analysis models of dynamic predication are also evaluated.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xv

List of Figures xvi

Chapter 1. Introduction 1
1.1 The Problem: The Limitations of Predicated Execution 1

1.2 Solution: Adaptive Predicated Execution 3

1.3 Thesis Statement . 4

1.4 Contributions . 5

1.5 Dissertation Organization 5

Chapter 2. Background on Predicated Execution 6
2.1 Predicated Execution .6

2.1.1 The Cost of Predicated Execution 7

2.1.2 Nested Hammocks . 9

2.2 Microarchitecture Support for Out-Of-Order Processors: Register Renam-
ing Problem . 9

2.2.1 Converting a Predicated Instruction Into a C-style Conditional Ex-
pression . 9

2.2.2 Breaking a Predicated Instruction into Twoµops 11

2.2.3 The Select-µop Mechanism . 12

2.2.4 Predicate Prediction . 12

2.3 The Overhead of Predicated Execution 13

ix

Chapter 3. Related Work 16
3.1 Related Research on Predicated Execution 16

3.1.1 Overcoming the Problems of Predicated Execution 17

3.1.1.1 Control-Flow Limitation Problem 17

3.1.1.2 The Lack of Adaptivity Problem 17

3.1.1.3 Predicate Prediction . 18

3.1.1.4 Lack of ISA support . 19

3.1.2 Predicated Code Generation Algorithms 20

3.2 Related Work on Control Flow Independence 21

3.3 Related Work on Multipath Execution 23

Chapter 4. Wish Branches 24
4.1 Wish Branches . 25

4.1.1 Wish Jumps and Wish Joins . 25

4.1.2 Wish Loops . 28

4.1.2.1 More on Wish Loops and Predication 31

4.1.3 Wish Branches in Complex Control Flow 33

4.2 Support for Wish Branches .34

4.2.1 ISA Support . 34

4.2.2 Compiler Support . 35

4.2.2.1 Compiler Support for Wish Branch Generation 35

4.2.3 Hardware Support . 36

4.2.3.1 Instruction Fetch and Decode Hardware36

4.2.3.2 Wish Branch State Machine Hardware 37

4.2.3.3 Predicate Dependency Elimination Module 37

4.2.3.4 Branch Misprediction Detection/Recovery Module 38

4.2.3.5 Confidence Estimator . 39

4.3 Advantages and Disadvantages of Wish Branches 39

4.4 Methodology . 41

4.4.1 µop Translator and Simulator . 42

4.4.2 Compilation . 42

4.4.2.1 Predicated Code Binary Generation Algorithm 43

x

4.4.2.2 Wish Branch Binary Generation Algorithm46

4.4.3 Trace Generation and Benchmarks47

4.5 Simulation Results and Analysis 49

4.5.1 Wish Jumps/Joins . 49

4.5.2 Wish Jumps/Joins and Wish Loops 52

4.5.2.1 Source Code Example for Wish Loops 54

4.5.3 Comparisons with the Best-Performing Binary for EachBenchmark . 56

4.5.4 Sensitivity to Microarchitectural Parameters 57

4.5.4.1 Effect of the Instruction Window Size57

4.5.4.2 Effect of the Pipeline Depth 58

4.5.4.3 Effect of the Mechanism Used to Support Predicated Exe-
cution . 58

4.5.4.4 Wish Branches in In-Order Processors60

4.5.4.5 Performance Analysis . 61

4.5.4.6 Effect of Front-end Design 63

4.5.4.7 Effect of Different Branch Predictors 64

4.5.5 Comparisons with Predicate Prediction 66

4.6 Summary . 68

Chapter 5. Diverge-Merge Processor (DMP) 70
5.1 Introduction . 70

5.2 The Diverge-Merge Concept and Comparisons with Previous Work 71

5.2.1 Diverge-Merge Concept . 71

5.2.2 The Basic DMP Operation . 73

5.2.2.1 Instruction Fetch Support 74

5.2.2.2 Select-µops . 74

5.2.2.3 Loop Branches . 77

5.2.3 DMP vs. Other Branch Processing Paradigms 78

5.3 Implementation of DMP . 82

5.3.1 Entering Dynamic Predication Mode 82

5.3.2 Multiple CFM points . 83

5.3.3 Exiting Dynamic Predication Mode 83

5.3.4 Select-µop Mechanism . 86

xi

5.3.5 Handling Loop Branches . 87

5.3.6 Resolution of Diverge Branches 88

5.3.7 Instruction Execution and Retirement 88

5.3.8 Load and Store Instructions .89

5.3.9 Interrupts and Exceptions .90

5.3.10 Hardware Complexity Analysis 90

5.3.11 ISA Support for Diverge Branches 91

5.4 Methodology . 92

5.4.1 Simulation Methodology . 92

5.4.2 Modeling of Other Branch Processing Paradigms 93

5.4.2.1 Dynamic-Hammock-Predication 93

5.4.2.2 Dual-path . 93

5.4.2.3 Multipath . 95

5.4.2.4 Limited Software Predication 95

5.4.2.5 Wish Branches . 95

5.4.3 Power Model . 96

5.4.4 Compiler Support for Diverge Branch and CFM Point Selection . . . 96

5.5 Results . 97

5.5.1 Performance of the Diverge-Merge Processor 97

5.5.2 Comparisons with Software Predication and Wish Branches 99

5.5.3 Analysis of the Performance Impact of Enhanced DMP Mechanisms 102

5.5.4 Sensitivity to Microarchitecture Parameters 103

5.5.4.1 Evaluation on the Less Aggressive Processor 103

5.5.4.2 Effect of a Different Branch Predictor 104

5.5.4.3 Effect of Confidence Estimator 106

5.5.5 Power Analysis . 109

5.5.6 The Diverge-Merge Processor Design Configuration 111

5.5.6.1 Select-µop vs. Conditional Expression Mechanism 111

5.5.6.2 Fetch Mechanisms . 112

5.5.7 DMP Analysis . 114

5.5.8 Diverge-Merge Processor and Pipeline Gating 115

5.6 Summary . 117

xii

Chapter 6. Compiler Algorithms for the Diverge-Merge Processor Architecture 119
6.1 Introduction . 119

6.2 Compiler Algorithms for DMP Architectures 119

6.2.1 Diverge Branch Candidates . 120

6.2.2 Algorithm to Select Simple/Nested Hammock Diverge Branches and
Exact CFM Points . 121

6.2.3 Algorithm to Select Frequently-hammock Diverge Branches and Ap-
proximate CFM Points . 122

6.2.3.1 A chain of CFM Points . 124

6.2.4 Short Hammocks . 125

6.2.5 Return CFM Points . 126

6.3 Compile-Time Cost-Benefit Analysis of Dynamic Predication 126

6.3.1 Simple/Nested Hammocks . 127

6.3.1.1 Estimation of the Overhead of Dynamic Predication 128

6.3.2 Frequently-hammocks . 132

6.3.3 Diverge Branches with Multiple CFM Points 132

6.3.4 Limitations of the Model . 133

6.4 Diverge Loop Branches . 134

6.4.1 Cost-Benefit Analysis of Loops .134

6.4.2 Heuristics to Select Diverge Loop Branches 136

6.5 Methodology . 137

6.5.1 Control-flow Analysis and Selection of Diverge BranchCandidates . 137

6.5.2 Simulation Methodology . 138

6.6 Results . 138

6.6.1 Diverge Branch Selection Algorithms 138

6.6.1.1 Effect of Optimizing Branch Selection Thresholds 142

6.6.2 Comparisons with Other Diverge Branch Selection Algorithms . . . 144

6.6.3 Input Set Effects . 145

6.7 Summary . 148

xiii

Chapter 7. Conclusions and Future Research Directions 150
7.1 Conclusions . 150

7.2 Future Research Directions .. . 153

7.2.1 Wish Branch Generation Algorithms 153

7.2.2 Diverge-Merge Processor . 154

Appendix 155

Appendix A. Input Dependent Branches 156
A.1 Input Dependent Branches .. 156

A.2 Frequency and Characteristics of Input-Dependent Branches 156

A.3 Examples of Input-Dependent Branches 160

Bibliography 163

Vita 172

xiv

List of Tables

4.1 The prediction of multiple wish branches in Figure 4.4c.. 34

4.2 Baseline processor configuration 43

4.3 Description of binaries compiled to evaluate the performance of different
combinations of wish branches . 44

4.4 Simulated benchmarks: characteristics of normal branch binaries 48

4.5 Simulated benchmarks:characteristics of wish branch binaries 48

4.6 Execution time reduction of the wish jump/join/loop binaries over the best-
performing binaries on a per-benchmark basis (using the real confidence
mechanism).DEF, MAX, BR (normal branch) indicate which binary is the best per-
forming binary for a given benchmark.. 56

5.1 Fetched instructions in different processing models (after the branch at A
is estimated to be low-confidence)We assume that the loop branch in block A
(Figure 5.4d) is predicted taken twice after it is estimatedto be low-confidence. 80

5.2 Hardware support required for different branch processing paradigms.(m+1)
is the maximum number of outstanding paths in multipath.. 91

5.3 Baseline processor configuration 92

5.4 Less aggressive baseline processor configuration 93

5.5 Characteristics of the benchmarks:total number of retired instructions (In-
sts), number of static diverge branches (Diverge Br.), number of all static
branches (All br.), increase in code size with diverge branch and CFM
information (Code size∆), IPC, potential IPC improvement with perfect
branch prediction (PBP IPC∆) in both baseline processor and less aggres-
sive processor. 94

5.6 Power and energy comparison of different branch processing paradigms . . 111

5.7 Power and energy comparison of different branch processing paradigms in
less aggressive baseline processor .. . 111

5.8 Characteristics of dpred-mode 115

A.1 Average branch misprediction rates of the evaluated programs (%) 160

xv

List of Figures

1.1 Relative execution time normalized to a non-predicatedbinary on a real
Itanium-II processor. 2

2.1 Source code and the corresponding assembly code for (a) normal branch
code (b) predicated code . 7

2.2 Execution time of predicated code and non-predicated code vs. branch
misprediction rate . 8

2.3 Nestedif-else source code and the corresponding assembly code for
(a) normal branch code (b) predicated code 10

2.4 An example of the multiple definition problem [19] 11

2.5 Execution time when sources of overhead in predicated execution are ide-
ally eliminated. 14

4.1 Source code and the corresponding control flow graphs andassembly code
for (a) normal branch code (b) predicated code (c) wish jump/join code. . . 26

4.2 while loop source code and the corresponding control flow graphs and
assembly code for (a) normal backward branch code (b) wish loop code. . . 29

4.3 do-while loop source code and the corresponding control flow graphs
and assembly code for (a) normal backward branch code (b) wish loop code. 30

4.4 Control flow graph examples with wish branches. 33

4.5 A possible instruction format for the wish branch. 35

4.6 State diagram showing mode transitions in a processor that supports wish
branches. 37

4.7 Simulation infrastructure 42

4.8 Major phase ordering in code generation of the ORC compiler [38] 45

4.9 Modified code generation phases .. . 47

4.10 Performance of wish jump/join binaries 50

4.11 Dynamic number of wish branches per 1M retiredµops. Left bars: low-
confidence, right bars: high-confidence. 52

4.12 Performance of wish jump/join/loop binaries 53

xvi

4.13 Dynamic number of wish loops per 1M retiredµops. Left bars: low-
confidence, right bars: high-confidence. 54

4.14 An example from parser showing an loop branch 55

4.15 Frequency of loop iteration of for the branch in Figure 4.14 55

4.16 Effect of instruction window size on wish branch performance.The left graph
shows the average execution time over all benchmarks, the right graph shows the average
execution time over all benchmarks except mcf.. 58

4.17 Effect of pipeline depth on wish branch performance. 59

4.18 Performance of wish branches on an out-of-order processor that imple-
ments the select-µop mechanism . 61

4.19 Normalized execution time in an in-order processor 62

4.20 The number of fetchedµops normalized to non-predicated binaries 63

4.21 Normalized execution time with a perfect D-cache 64

4.22 Performance of wish branches as a function of the maximum number of
conditional branches fetched in a cycle 65

4.23 Performance of wish branches with a perceptron branch predictor 66

4.24 Performance with the predicate predictor 67

4.25 Performance with the predicate predictor with a confidence estimator 68

5.1 Control-flow graph (CFG) example: (a) source code (b) CFG(c) possible
paths (hammocks) that can be predicated by DMP 71

5.2 An example of how the instruction stream in Figure 5.1b isdynamically
predicated: (a) fetched blocks (b) fetched assembly instructions (c) instruc-
tions after register renaming .75

5.3 An example of how a loop-type diverge branch is dynamically predicated:
(a) CFG (b) fetched assembly instructions (c) instructionsafter register re-
naming . 76

5.4 Control-flow graphs: (a) simple hammock (b) nested hammock (c) frequently-
hammock (d) loop (e) non-merging control flow 79

5.5 Distribution of mispredicted branches based on CFG type. 79

5.6 Control-flow graph (CFG) example for non-preemptive policy 85

5.7 Performance improvement provided by DMP vs. dynamic-hammock-predication,
dual-path, and multipath execution .. . 98

5.8 Fetched wrong-path instructions per entry into dynamic-predication/dual-
path mode (i.e., per low-confidence branch) 99

5.9 % reduction in pipeline flushes .. . 100

xvii

5.10 DMP vs. limited software predication and wish branches. 101

5.11 DMP performance when different CFG types are dynamically predicated . . 102

5.12 Performance impact of enhanced DMP mechanisms 103

5.13 Performance comparison of DMP versus other paradigms (hardware ori-
ented) on the less aggressive processor 104

5.14 Performance comparison of DMP versus other paradigms (compiler ori-
ented) on the less aggressive processor 105

5.15 DMP performance with different branch predictors 106

5.16 DMP performance with gshare branch predictors 107

5.17 Effect of confidence estimator size on performance 107

5.18 Confidence estimator thresholds 108

5.19 DMP with a perceptron based confidence estimator 109

5.20 Power consumption comparison of DMP with baseline processor (left) and
less aggressive baseline processor (right) 110

5.21 Select-µop vs. conditional expression . 113

5.22 Different fetch mechanisms 114

5.23 Pipeline gating mechanisms on DMP 116

6.1 Example of a chain of CFM points .125

6.2 Performance improvement of DMP with Alg-exact and Alg-freq selection
algorithms . 139

6.3 Performance improvement of DMP with cost-benefit analysis based selec-
tion algorithms . 140

6.4 Pipeline flushes due to branch mispredictions in the baseline and DMP . . . 141

6.5 Performance improvement of DMP with different MINMERGE PROB
and MAX INSTR heuristics . 143

6.6 Performance improvement of DMP with alternative simplealgorithms for
selecting diverge branches . 145

6.7 Performance improvement of DMP when a different input set is used for
profiling . 146

6.8 Dynamic diverge branches selected by different input sets (only run-time,
only train, or either input).Left bar: profiling with run-time input, Right bar: profil-
ing with train input . 147

A.1 The fraction of input-dependent branches (using train and reference input
sets) . 157

xviii

A.2 The distribution of input-dependent branches based on their branch predic-
tion accuracy . 158

A.3 The fraction of input-dependent branches in different prediction accuracy
categories . 159

A.4 An input-dependent branch fromgap . 161

A.5 An input-dependent loop exit branch fromgzip 162

xix

Chapter 1

Introduction

Today’s high performance processors employ deep pipelinesto support high clock

frequencies. Some processing cores in near-future chip multiprocessors are expected to

support a large number of in-flight instructions [56, 17, 14,75, 23] to extract both memory-

level parallelism (MLP) and instruction level parallelism(ILP) in order to obtain high

performance and energy-efficiency on the serial portions ofapplications [55]. The per-

formance benefit and energy efficiency of both pipelining andsupporting a large number

of in-flight instructions depend critically on the accuracyof the processor’s branch predic-

tor [73, 56, 75]. Even after decades of research in branch prediction, branch predictors still

remain imperfect. Hard-to-predict branches are frequently mispredicted, and they not only

limit performance but also result in wasted energy.

1.1 The Problem: The Limitations of Predicated Execution

Predication has been used to avoid pipeline flushes due to branch mispredictions

by converting control dependencies into data dependencies[3]. With predication, the pro-

cessor fetches instructions from both paths of a branch but commits only results from the

correct path, effectively avoiding the pipeline flush associated with a branch misprediction.

However, predication has the following problems/limitations:

1. Adaptivity: Predication is not adaptive to run-time branch behavior because a stat-

ically if-converted branch instruction remains if-converted regardless of whether or

1

not its instances are hard-to-predict at run-time.

Figure 1.1 shows the execution time of predicated code binaries with different inputs.

The data is measured on an Itanium-II machine and binaries are compiled with the

ORC-2.0 compiler [57]. Data is normalized to the execution time of a non-predicated

code binary for each input. The results show that predicatedcode binaries gener-

ally provide performance benefit over the non-predicated code binaries. But, they

sometimes perform worse. For example, for mcf, predicated code provides a 9% per-

formance improvement for input-C, but causes a 4% performance loss for input-A.

For bzip2, predicated code only provides a 1% improvement for input-C, but causes

a 16% loss for input-A. Hence, the performance of predicatedexecution is highly

dependent on the run-time input set of the program. AppendixA will discuss input

dependent branches.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

 E
xe

cu
tio

n
tim

e
no

rm
al

iz
ed

 to
 n

o
pr

ed
ic

at
io

n input-A
input-B
input-C

gzip vpr gcc mcf crafty parser perlbmk gap vortex bzip2 twolf

Figure 1.1: Relative execution time normalized to a non-predicated binary on a real
Itanium-II processor.

2

2. Complex CFG: The performance potential of predication is limited because a large

set of control-flow graphs (CFGs) either cannot be or are usually not converted to

predicated code by compilers because they are too complex orthey contain loops,

function calls, indirect branches, too many instructions [16, 3, 57, 29]. Current com-

pilers [57, 29] usually do not predicate large and complex CFGs because their predi-

cation would cause a large performance overhead.

3. Instruction Set Architecture (ISA): Predication requires significant changes to the

ISA, in particular the addition of predicate registers and predicated instructions.

To overcome these three limitations/problems, this dissertation proposes and eval-

uatesadaptive predicated execution.

1.2 Solution: Adaptive Predicated Execution

The adaptive predicated execution paradigm provides a choice to the hardware:

the choice of whether or not to use predicated execution foreach dynamic instanceof

a branch instruction. The compiler is not good at deciding which branches are hard-to-

predict because it does not have access to run-time information. In contrast, the hardware

has access to accurate run-time information about each branch. The adaptive predicated

execution paradigm divides the work of predication betweenthe hardware and the compiler

based on what each of them is better at: the compiler is betterat analyzing the control

flow comprehensively and generating code and the hardware isbetter at making decisions

based on observed run-time behavior. With adaptive predicated execution, the hardware

can efficiently choose between predication and branch prediction depending on whether

the branch is hard-to-predict or easy-to-predict.

The adaptive predicated execution paradigm includes two mechanisms:wish branches

and thediverge-merge processor (DMP)architecture.

3

With wish branches, the compiler produces code that can be executed either as

predicated code or normal branch code. At run-time the hardware can efficiently choose

between predicated code and conditional branch code depending on whether the branch is

hard-to-predict or easy-to-predict.

Wish branches can overcome the lack of adaptivity problem but inherit the limita-

tions of software predication (the ISA problem and the complex CFG problem) except they

can be applied to loop branches. To overcome all three problems, the diverge-merge pro-

cessor (DMP) is proposed. In DMP, in contrast to the wish branch mechanism, the compiler

does not produce a predicated version of the code, but it provides control-flow information

to simplify the hardware used for dynamically predicating the code. The compiler marks

suitable branches in the binary as candidates for dynamic predication. These branches are

calleddiverge branches. The compiler also marks the control-flow merge point correspond-

ing to each diverge branch. If a diverge branch is hard-to-predict at run-time, the processor

dynamically predicates the instructions between the diverge branch and the control-flow

merge point using the hints provided by the compiler. Hence,hard-to-predict branches can

be eliminated at run-time through cooperation between the compiler and microarchitec-

ture without requiring full support for predication (i.e.,predicate registers and predicated

instructions) in the ISA.

1.3 Thesis Statement

Adaptive predicated execution is a generalized and energy-efficient compiler and

microarchitecture cooperation technique that can reduce the branch misprediction penalty

in high performance processors.

4

1.4 Contributions

• Branch instruction handling : This dissertation presents both wish branches and

the diverge-merge processor, which are two new techniques for reducing the branch

misprediction penalty by combining the benefits of predicated execution and branch

prediction in energy-efficient ways that do not significantly increase the hardware

complexity.

• Overcoming the limitations of predicated execution: This dissertation presents the

diverge-merge processor (DMP) architecture to overcome the major limitations/problems

of software predication: adaptivity, complex-CFG, and ISAproblems. This disser-

tation also presents profile-driven compiler code generation algorithms for dynamic

predicated execution in the DMP architecture.

• Predication of backward branches: This dissertation presents wish loops that ex-

ploit predicated execution to reduce the branch misprediction penalty for backward

(loop) branches.

1.5 Dissertation Organization

This dissertation is organized into seven chapters. Chapter 2 provides background

on predicated execution. Chapter 3 shows related work in branch handling paradigms.

Chapter 4 presents wish branches, and evaluates the performance benefit of wish branches.

Chapter 5 presents and evaluates the diverge-merge processor architecture, which over-

comes the three major limitations of predicated execution.Chapter 6 discusses and eval-

uates compiler algorithms for the diverge-merge processor. Finally, Chapter 7 provides

conclusions, a summary of the key results and insights presented in this dissertation, and

future directions for adaptive predicated execution.

5

Chapter 2

Background on Predicated Execution

This chapter provides a brief background on predicated execution. The next chapter

will describe the previous research on predicated execution.

2.1 Predicated Execution

Figure 2.1 shows an example source code, the corresponding assembly code with

branches (normal branch code - 2.1a) and the corresponding assembly code with predica-

tion (predicated code - 2.1b). In branch prediction, the processor speculatively fetches and

executes block B or C based on the predicted direction of the branch in block A. When

the branch is mispredicted, the processor flushes its pipeline and rolls back to the end of

block A and fetches the alternate block. In predication, theprocessor fetches both block

B and block C. Instructions in blocks B and C are not executed until the predicate value

(p1 in Figure 2.1) is resolved.1 Since there is no speculative execution, there is no pipeline

flush penalty. However, the processor always fetches and executes instructions from both

control-flow paths.

1Depending on microarchitecture designs, predicated instructions can be executed first and later commit-
ted when the predicate value is evaluated (e.g., the predicate slip mechanism in [79]). However, even in that
design, the instructions can be executed first but the results of the predicated instructions still cannot be used
by the later instructions until the predicate value is ready.

6

A

D

A

C

 a = b + c;
 b = b + 1;

 d = d − a;

(a)

 p1 = (cond)A

B

C

(b)

B C

not−taken taken

(code)

TARGET:C

sub b, b, 1
add a, b, c
add d, d, a

D

B

A p1 = (cond)
branch p1, TARGET

D JOIN:

if (cond) {

 a = b + c;
 d = d + a;
}
else {

}

 b = b − 1;

B

branch.uncond JOIN

add b, b, 1
add a, b, c
sub d, d, a

add b, b, 1
sub b, b, 1
add a, b, c
sub d, d, a
add d, d, a

(!p1)

(!p1)
(p1)

(p1)

Figure 2.1: Source code and the corresponding assembly codefor (a) normal branch code
(b) predicated code

2.1.1 The Cost of Predicated Execution

Equations (2.1) and (2.2) show the cost of normal branch codeand the cost of

predicated code respectively. The compiler decides whether a branch is converted into

predicated code or stays as a branch based on Equation (2.3) [57, 53].

Exec cost(normal branch) = exec T ∗ P (T) + exec N ∗ P (N) (2.1)

+misp penalty ∗ P (misp)

Exec cost(predicated code) = exec pred (2.2)

Exec cost(normal branch) > Exec cost(predicated code) (2.3)

exec T : Execution time of the code when the branch under consideration is taken,

7

exec N : Execution time of the code when the branch under consideration is not taken,

P (case): The probability of the case; e.g., P(T) is the probability that the branch is taken,

misp penalty: Machine-specific branch misprediction penalty, and

exec pred: Execution time of the predicated code.

To demonstrate how sensitive Equation (2.1) is to the branchmisprediction rate, we

apply the equation to the code example shown in Figure 2.1. Weset misppenalty to 30

cycles, execT to 3 cycles, execN to 3 cycles, execpred to 5 cycles. Figure 2.2 displays

the two equations, (2.1) and (2.2), as the branch misprediction rate is varied on the X-axis.

With the given parameters, if the branch misprediction rateis less than 7%, normal branch

code takes fewer cycles to execute than predicated code. If the branch misprediction rate is

greater than 7%, predicated code takes fewer cycles than normal branch code. Therefore,

we need a mechanism which chooses between branch predictionand predication depending

on the run-time branch behavior.

0.00 0.05 0.10 0.15
 Branch misprediction rate

2

3

4

5

6

7

8

E
xe

cu
tio

n
tim

e
(c

yc
le

s)

normal branch code (Equation (2.1))
predicated code (Equation (2.2))

Figure 2.2: Execution time of predicated code and non-predicated code vs. branch mispre-
diction rate

8

2.1.2 Nested Hammocks

Predicated execution can be used not only for a simple hammock (i.e.,if-else)

but also for a nested hammock (i.e., nestedif-else). Figure 2.3 shows an example of

branch code and predicated code for a nested hammock. In thisexample, the branch at

basic block B, which is the control-flow dependent branch, should be executed only if p1

value is TRUE (i.e., when the branch at basic block A is taken). AND operation is performed

over the predicate values to change p2 value only if p1 value is TRUE.

2.2 Microarchitecture Support for Out-Of-Order Processors: Regis-
ter Renaming Problem

In an out-of-order processor, predication complicates register renaming because a

predicated instruction may or may not write into its destination register depending on the

value of the predicate [74]. This problem is called themultiple definition problemin [19].

Figure 2.4 demonstrates an example of the multiple definition problem. In this example,

instructions will write a value into register R33 dependingon the predicate (P6). The ADD

instruction does not know which value will be in R33 until thepredicate value is known.

Several solutions have been proposed to handle this problem: converting predicated

instructions into C-style conditional expressions [74], breaking predicated instructions into

two µops [21], the select-µop mechanism [79], and predicate prediction [19].2

2.2.1 Converting a Predicated Instruction Into a C-style Conditional Expression

A predicated instruction is transformed into another instruction similar to a C-style

conditional expression. For example,(P6) MOV R33 = 1 instruction is converted to

2In this dissertation, the C-style conditional expression mechanism is used as the baseline processor mech-
anism.

9

A

B C

D

G

A

B

C

D

G

branch p1, TARGET1

T N

add c, b, d
TARGET2:

mov d,1

branch !p2 TARGET2

TARGET1:
mov b,1

uncond br. TARGET2
mov b, 0

A

C

T N

B

D

G

p1 = cond1
mov b,1
p2 = p1 & (cond2)
mov d, 1
mov b, 0

p1 = cond1
(p1)

(p2)
(!p1)

add c, b, d

(b)(a)

(code)

if (cond1) {

b = 1;

d = 1;

if (cond2) {

else {
b = 0;

}

c = b+d;G

C

D

B

A

}

p2 = cond2

Figure 2.3: Nestedif-else source code and the corresponding assembly code for (a)
normal branch code (b) predicated code

theµopR33 = P6 ? 1 : R33. If the predicate is TRUE, the instruction performs

the computation and stores the result into the destination register. If the predicate is FALSE,

the instruction simply moves the old value of the destination register into its destination reg-

ister, which is architecturally a NOP operation. Hence, regardless of the predicate value, the

instructionalwayswrites into the destination register, allowing the dependent instructions

10

Instruction propagation through pipeline
Assembly code

CMP.EQ P6 = R34, R32 ;;
CMP.EQ P6 = R34, R32 ;;

(P6) MOV R33 = 1 (!P6) MOV R33 = 20

ADD R4 = R33, 5
??

MOV R33 = 1
MOV R33 = 20;;
ADD R4 = R33, 5

(P6)
(!P6)

Figure 2.4: An example of the multiple definition problem [19]

to be renamed correctly. This mechanism requires four register sources (the old destination

register value, the source predicate register, and the two source registers).

2.2.2 Breaking a Predicated Instruction into Twoµops

The CMOV instruction in the Alpha ISA behaves like the C-style conditional ex-

pression. For example,CMOV Ra, Rb, Rc is the same asRc = Ra ? Rb : Rc.

This mechanism requires an extra input source, which results in an extra input source only

for the CMOV instruction. To remove this special case, Alpha21264 decomposes the

CMOV instruction into two 2-operand instructions [21].

The Alpha architecture instruction CMOV Ra, Rb, Rc

Becomes the 21264 instructions CMOV1 Ra, oldRc⇒ newRc1

CMOV2 newRc1, Rb⇒ newRc2

The first instruction, CMOV1, tests the value of Ra and records the result of this

instruction in a 65th bit of its destination register, newRc1, which is a temporary physical

register. It also copies the value of the old physical destination register, oldRc, to newRc1.

The second instruction, CMOV2, then copies either the valuein newRc1 or the value in

Rb into a second physical destination register, newRc2, based on the CMOV predicate bit

11

stored in the 65th bit of newRc1.

The negative effect of this mechanism is that it increases the number ofµops since

every CMOV instruction becomes two micro-ops.

2.2.3 The Select-µop Mechanism

To reduce the number of extraµops, Wang et al.[79] proposed the select-µop mech-

anism. Similar to the static single assignment (SSA) form, aselect-µop is inserted to select

between multiple renamed registers based on the guarding predicate value. Multiple re-

named registers and their guarding predicates are assignedas the source operands of the

select-µop. A new renamed register allocated for the result of the select-µop can then

be referenced by all subsequent consumer instructions. Thecode in Figure 2.4 has two

instructions which write different values in architectural register R33. For example, ar-

chitectural register R33 in instruction ((P6) MOV R33 = 1) is allocated to physical

register PR10 and architectural register R33 in instruction ((!P6) MOV R33 = 1) is

allocated to physical register PR20. The select-µop mechanism inserts a select-µop in-

struction (PR30 = P6 ? PR10 : PR20) to choose between two physical registers.

The select-µop will write the result into a new physical register (PR30) when the predi-

cate value is evaluated. The select-µop mechanism also updates the register alias table, so

younger instructions source PR30 for architecture register R33.

The select-µop mechanism could reduce the number ofµops by combining multiple

CMOV instructions to one select-µop when there are several instructions that have the same

destination registers but different predicate values [79].

2.2.4 Predicate Prediction

Chuang and Calder [19] proposed a predicate predictor to solve the multiple def-

inition problem. The predicate value is predicted at the beginning of the renaming stage

12

so only the instructions whose predicate values are predicted to be TRUE are renamed and

passed to the pipeline. If the prediction is wrong, the replay mechanism re-renames the

registers and re-executes dependent instructions. In the example in Figure 2.4, when the

processor fetches instruction ((P6) MOV R33 = 1) the processor predicts P6 value. If

P6 value is predicted as TRUE, the processor sends instruction ((P6) MOV R33 = 1

) into the pipeline but not instruction ((!P6) MOV R33 = 20). Instruction ((!P6)

MOV R33 = 20) is still fetched but it will be stored in a separate buffer until the pred-

icate value is resolved. Hence, instruction (ADD R4 = R33, 5) sources the result of

instruction ((P6) MOV R33 = 1). Later P6 value is evaluated and if it turns out to be

FALSE, the processor fetches instruction ((!p6) MOV R33 = 20) from the buffer and

executes it. Instruction (ADD R3 = R33, 5) also will be re-executed.

2.3 The Overhead of Predicated Execution

Predicated execution introduces two major sources of overhead on the dynamic ex-

ecution of a program compared to conditional branch prediction. First, the processor needs

to fetch additional instructions that are guaranteed to be useless since their predicates will

be FALSE. These instructions waste fetch and possibly execution bandwidth and occupy

processor resources that can otherwise be utilized by useful instructions. Second, an in-

struction that is dependent on a predicate value cannot be executed until the predicate value

it depends on is ready. This introduces additional delay into the execution of predicated in-

structions and their dependents, and hence may increase theexecution time of the program.

We analyze the performance impact of these two sources of overhead on an out-of-order

processor model that implements predicated execution. Thesimulation methodology and

the baseline machine are described in Chapter 4.

Figure 2.5 shows the performance improvement achievable ifthe sources of over-

head in predicated execution are ideally eliminated. Data is normalized to the execution

13

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

E
xe

cu
tio

n
tim

e
no

rm
al

iz
ed

 to
 n

o
pr

ed
ic

at
io

n

BASE-MAX
NO-DEPEND
NO-DEPEND + NO-FETCH
PERFECT-CBP

gzip vpr mcf crafty parser gap vortex bzip2 twolf AVG

2.02

Figure 2.5: Execution time when sources of overhead in predicated execution are ideally
eliminated.

time of the non-predicated code binary. For each benchmark,four bars are shown from left

to right: (1) BASE-MAX shows the execution time of the predicated code binary produced

by the ORC compiler [57] - with all overheads of predicated execution faithfully mod-

eled. (2) NO-DEPEND shows the execution time of the predicated code binary when the

dependencies due to predication are ideally (using oracle information) removed. (3) NO-

DEPEND + NO-FETCH shows the execution time of the predicatedcode binary when both

sources of overhead in predicated execution are ideally eliminated: in addition to predicate

dependencies, the instructions whose predicates are FALSEare ideally eliminated so that

they do not consume fetch and execution bandwidth. (4) PERFECT-CBP shows the exe-

cution time of the non-predicated code binary when all conditional branches are perfectly

predicted using oracle information. This figure shows that predicated execution helps many

benchmarks, but it does not improve theaverage execution timeover a non-predicated code

binary when its overhead is faithfully modeled (i.e., the average execution time of BASE-

14

MAX is 1.02, which is 2% longer than that of the baseline (no predication)). However, if

the sources of overhead associated with it are completely eliminated, predicated execution

would improve the average execution time by 16.4% over no predication. When the over-

head of predicated execution is eliminated (NO-DEPEND+NO-FETCH), the predicated

code binary outperforms the non-predicated code binary by more than 2%on all bench-

marks, even on those where predicated execution normally loses performance (i.e., mcf and

bzip2). Note that a significant performance difference still exists between NO-DEPEND +

NO-FETCH and PERF-CBP (Perfect conditional branch prediction improves the average

execution time by 37.4%). This is due to the fact that not all branches can be eliminated

using predication. For example, backward (loop) branches,which constitute a significant

proportion of all branches, cannot be eliminated using predicated execution [3, 16].

15

Chapter 3

Related Work

Many researchers have studied how to handle branch instructions. This chapter

classifies the relevant approaches into three categories, predicated execution, control-flow

independence, and multipath execution, and briefly describes the proposed approaches.

3.1 Related Research on Predicated Execution

Predicated execution was first implemented in the Cray-1 computer system asmask

vectors[67]. Allen and Kennedy et al. proposed the predication of instructions usingif

conversionto enable automatic vectorization in the presence of complex control flow [3].

Hsu and Davidson proposed the use of predicated execution for scalar instructions, which

they calledguarded execution, to reduce the penalty of conditional branches in deeply-

pipelined processors [33]. Hsu and Davidson also describedhow predicated execution

enables compiler-based code scheduling optimizations.

Several papers examined the impact of predicated executionon branch prediction

and instruction-level parallelism. Pnevmatikatos and Sohi [61] showed that predicated ex-

ecution can significantly increase a processor’s ability toextract parallelism, but they also

showed that predication results in the fetch and decode of a significant number of useless

instructions. Mahlke et al. [50], Tyson [78], and Chang et al. [10] showed that predicated

execution can eliminate a significant number of branch mispredictions and can therefore

reduce the program execution time.

16

Choi et al. [16] examined the performance advantages and disadvantages of pred-

icated execution on a real IA-64 implementation. They showed that even though predica-

tion can potentially remove 29% of the branch mispredictions in the SPEC CPU2000 INT

benchmark suite, it results in only a 2% improvement in average execution time. For some

benchmarks, a significant performance loss is observed withpredicated execution. The

performance loss in some benchmarks and the small performance gain in others are due to

the overhead of predicated execution.

3.1.1 Overcoming the Problems of Predicated Execution

3.1.1.1 Control-Flow Limitation Problem

Hyperblock formation [51] predicates frequently executedbasic blocks based on

profiling data. It can predicate more complex CFGs than nested hammocks by tail du-

plication and loop peeling. The benefits of hyperblocks are that they increase the com-

piler’s scope for code optimization and instruction scheduling (by enlarging basic blocks)

in VLIW processors and they reduce branch mispredictions [50]. However, hyperblocks

still require a predicated ISA, incur the overhead of software predication, are not adap-

tive to run-time changes in frequently executed control flowpaths, and increase the code

size [70].

3.1.1.2 The Lack of Adaptivity Problem

Hazelwood and Conte [31] discussed the performance problems associated with

predicated code when the input set of the program changes. They used dynamic profiling

to identify hard-to-predict branches at run-time to solve this problem. Their mechanism

dynamically converted the identified hard-to-predict branches to predicated code via a dy-

namic optimization framework. They sampled the individualbranch misprediction rates at

the beginning of the program to identify most of the hard-to-predict branches for a given

17

input set. Besides the overhead of dynamic profiling and dynamic optimization, with their

mechanism, they can decide when to use predicated code only based on a given input set.

In contrast to their mechanism, both wish branches and DMP can decide when to use pred-

icated code based on a control-flow path which leads to a branch or program phase not only

for a given input set.

3.1.1.3 Predicate Prediction

Chuang and Calder [19] proposed a hardware mechanism to predict all predicate

values in order to overcome the register renaming problem inan out-of-order processor

that implements predicated execution. Although they did not mention it, their mechanism

can also reduce the extra instruction overhead of predicated execution. With predicate pre-

diction, instructions whose predicates are predicted FALSE do not need to be executed,

thus reducing the overhead of predicated execution—provided the prediction is correct.

However, the processor still needs to fetch and decode all the predicated instructions. The

adaptive predicated execution paradigm can eliminate the fetch and decode of predicated

instructions, as well as their execution. Also, every predicate is predicted with predicate

prediction, which can result in performance loss for hard-to-predict predicates. Further-

more, both wish branches and DMP can eliminate the misprediction penalty for backward

(loop) branches, whereas conventional predication augmented with predicate prediction

cannot. Recently, Quinones et al. [62] proposed a selectivepredicate prediction mecha-

nism. With the selective predicate predictor, the processor predicts a predicate value only if

the predicate prediction has high confidence. Hence, the processor can reduce the execution

bandwidth of predicated-FALSE instructions if the predicate prediction is correct. How-

ever, although their mechanism can overcome the problem of predicting every predicate

value, it does nothing for the rest of the problems stated above.

18

3.1.1.4 Lack of ISA support

Klauser et al. [43] proposeddynamic hammock predication, which is a purely hard-

ware mechanism that dynamically predicates hammock branches. Like wish branches and

dynamic predication, dynamic hammock predication also enables the hardware to dynam-

ically decide whether or not to use predication for a hammockbranch. In contrast to wish

branches and DMP, dynamic hammock predication is a purely hardware-based mechanism.

In the wish branch mechanism, the compiler generates predicated code. In the dynamic

predication mechanism, the compiler provides the hints about control flow information.

Both wish branches and DMP do not require complex hardware toconstruct control flow

information. Furthermore, dynamic hammock predication allows only simple control-flow

graphs to be converted into predicated code whereas both thewish branch mechanism and

the dynamic predication mechanism can predicate awider range of control flow shapes.

Santos et al. [26, 25] proposedDynamic Conditional Execution (DCE), a hybrid

mechanism of dynamic predication and multipath execution to handle complex branch in-

structions. In DCE, instructions that are not on correct paths become NOPs just like in

dynamic hammock predication. However, after the processorjoins at the corresponding

control-flow merge point, the processor generates replicated instructions to solve data-flow

dependences. Hence, the overhead of DCE is very similar to multipath1 execution except

that in DCE only instructions data-dependent on the instructions inside a hammock are

replicated (and thus executed) multiple times. In contrast, in multipath execution, all the

instructions are fetched/executed multiple times. Furthermore, DCE can handle only sim-

ple and nested hammocks, whereas DMP can handle more complexcontrol flow graphs.

1Multipath execution is described in Section 3.3.

19

3.1.2 Predicated Code Generation Algorithms

Static predicated code generation algorithms use edge profiling and/or the number

of instructions in a region that is considered for static predication to decide whether or

not to if-convert a branch instruction. Both Pnevmatikatosand Sohi [61] and Tyson [78]

used the number of instructions in a region to determine whether a short forward branch

should be if-converted. Chang et al. converted highly mispredicted branches to predicated

code [10].

Hyperblock formation [51] uses path execution frequencies, basic block sizes, and

basic block characteristics to decide which blocks should be included in a hyperblock. With

hyperblocks, one of the major benefits of predicated code is due to increased basic block

sizes, which enhances the compiler’s scope for code optimization. Hence, identifying hot-

paths is more important than identifying highly mispredicted branches. August et al. [6]

proposed a framework that considers branch misprediction rate and instruction scheduling

effects due to predication in an EPIC processor to decide which branches would not benefit

from if-conversion and should be reverse if-converted [81].

Mantripragada and Nicolau [53] developed compiler algorithms to select static if-

conversion candidates based on basic block sizes (in terms of the number of instructions)

and branch misprediction profile data.

Unlike static predication, the adaptive predication paradigm does not require com-

prehensive compiler algorithms since a bad compiler’s decision can be corrected later by

hardware at run-time. Nonetheless, since the compiler has more information about control

flows, a simple cost-benefit analysis or heuristics to generate predicated code or mark di-

verge branches still could help improve the performance of the program. We will show the

compiler algorithms and heuristics we use to generate wish branch code in Section 4.4.2.

We will present the compiler algorithms and heuristics to mark diverge branches/CFM

20

points and a new analytical model to select candidates for frequently-hammocks and loops

which cannot be predicated by conventional if-conversion in Chapter 6.

3.2 Related Work on Control Flow Independence

Several hardware mechanisms have been proposed to exploit control flow indepen-

dence [65] by reducing the branch misprediction penalty or improving parallelism [65, 18,

15]. These techniques aim to avoid flushing the processor pipeline when the processor is

known to be at a control-independent point in the program at the time a branch mispre-

diction is signaled. In contrast to both wish branches and DMP, these mechanisms require

a significant amount of hardware to exploit control flow independence [65]. Hardware is

required for the following:

1. Detection of the reconvergent (control-flow independent) point in the instruction

stream: While some mechanisms use software to detect the reconvergent point [65,

66], most proposed mechanisms use hardware-based heuristics and predictors [64,

18, 15, 28, 20]. The hardware used to detect/predict the reconvergent point adds

more complexity to the processor pipeline. In contrast, a wish branch exactly spec-

ifies the reconvergent point, because the compiler that generates the wish branch

knowsexactlywhere the reconvergent point is in the instruction stream. In DMP, the

compiler specifies reconvergent points using special instructions. Hence, there is no

need for extra hardware.

2. Removal of wrong-path instructions, formation of correct data dependences for control-

independent instructions, and selective re-scheduling and re-execution of instruc-

tions: Proposed mechanisms to exploit control flow independence [64, 65, 66, 18,

15, 28] require fairly complicated hardware structures to accomplish these tasks. In

contrast, as both wish branches and DMP make use of predication to exploit control-

21

flow independence, there is no need to provide extra hardwareother than what is in

place to support predicated execution. Instructions that are on the wrong-path will

become NOPs because they are predicated, and the control-independent instructions

on the correct path already have the correct data dependences because the compiler

correctly identifies their dependences while generating predicated code, which elim-

inates the need for re-scheduling and re-execution. In summary, both wish branches

and DMP, with their use of predication, eliminate most of thecomplex hardware

support required to exploit control-flow independence purely in hardware.

3. Formation of correct data dependences for control independent instructions: Al-

though instructions may be control independent with a preceding block of instruc-

tions, they may not bedata independent. Therefore, a hardware mechanism that se-

lectively flushes one of the previous blocks needs to fix the data dependencies (both

register and memory) for the instructions in the later control-independent blocks.

Previously-proposed mechanisms have all devoted a significant amount of hardware

to accomplish this [64, 65, 66, 18, 15, 28]. As wish branches and DMP make use

of predication to exploit control-flow independence, thereis no need to fix the data

dependences for control independent instructions. These instructions already have

thecorrectdata dependences, because the compiler correctly identifies their source

instructions while generating predicated code.

4. Selective re-scheduling and re-execution of instructions: A control independent in-

struction that got the wrong source data value due to a false data dependence with a

wrong-path instruction needs to be re-scheduled and re-executed in previously pro-

posed hardware mechanisms [64, 65, 66, 18, 15, 28]. Such selective re-scheduling

also requires hardware and adds complexity to the instruction scheduling logic. In

the adaptive predicated execution, the need for re-scheduling is eliminated. Since the

instructions that could possibly be on the wrong-path are predicated by the compiler,

the control-independent instructions can never get the wrong source data value and,

22

therefore, never need to be re-scheduled.

3.3 Related Work on Multipath Execution

Starting with Riseman and Foster’s eager execution [63] andthe dual-path fetch in

the IBM 360/91 [4], several contributions have been made in the field of multipath execu-

tion. Uht’s survey of multipath execution [47] provides a good overview and comparisons.

This section will only review the work most relevant to wish branches and DMP.

Heil and Smith [32] and Farrens et al. [27] proposed selective/limited dual path

execution mechanisms. The processor starts fetching from both paths of a low confi-

dence branch. The following low confidence branch either delays dual-path execution

or is ignored until the first low confidence branch is resolved. When the low confidence

branch is resolved, the instructions on the mispredicted path are discarded. As we will

show in Section 5.5, dual-path execution’s performance improvement is not as significant

as that of DMP or wish branches because dual-path execution always wastes half of the

fetch/execution resources, even after a control-independent point in the program.

Selective eager execution (PolyPath) was proposed by Klauser et al. [45] as an

implementation of multipath execution. Multipath execution requires more hardware and

complexity (e.g., multiple RATs/PCs/GHRs/RASs, logic to generate/manage path IDs/tags

for multiple paths, logic to selectively flush the wrong paths, and more complex store-load

forwarding logic that can support multiple outstanding paths) than DMP to keep multiple

paths in the instruction window. As we will show in Section 5.5.5, multipath execution

significantly increases maximum power and energy consumption without providing as large

performance improvements as those of DMP.

23

Chapter 4

Wish Branches

This chapter presents a set of new control flow instructions,calledwish branches,

the first mechanism of adaptive predicated execution. With wish branches, we can com-

bine normal conditional branching with predicated execution, providing the benefits of

predicated execution without its wasted fetch and execution bandwidth. Wish branches

aim to reduce the branch misprediction penalty by using predicated execution only when

it increases performance. The decision of when to use predicated execution is made dur-

ing run-time using a branch predictor and a confidence estimator. While in some run-time

scenarios normal branches perform better than predicated execution, predicated execution

performs better in others. Wish branches aim to get the better of the two under all scenarios.

A wish branch looks like a normal branch but the code on the fall-through path

between the branch and the target is predicated. A forward wish branch is called awish

jump. When the processor fetches the wish jump, it predicts the direction of the wish jump

using a branch predictor, just like it does for a normal branch. If the wish jump is predicted

not-taken, the processor executes the predicated code. Butif it is mispredicted, the pipeline

does not need to be flushed since the fall-through path is predicated. If the wish jump

is predicted taken, the processor executes the normal branch code. If this prediction is

correct, the extra useless instructions in the predicated code are not fetched. Hence, a wish

jump can obtain the better performance of a normal branch andpredicated execution. Wish

jumps are used with a confidence estimator. When the confidence estimator predicts that a

wish jump might be mispredicted, the hardware performs predicated execution. Thus, the

24

wish jump mechanism gives the hardware the option to dynamically decide whether or not

to use predicated execution.

A backward loop branch can be converted to a wish branch instruction, which we

call a wish loop. The wish loop instruction can reduce the branch misprediction penalty

by exploiting the benefits of predicated execution for backward branches. To use the wish

loop, the compiler predicates the body of the loop using the loop branch condition as the

predicate. When the wish loop is mispredicted, the processor doesn’t need to flush the

pipeline because the body of the loop is predicated.

This chapter describes the semantics, types, and operationof wish branches and

evaluates the performance of wish branches in the IA-64 ISA.

4.1 Wish Branches

There are three different wish branch instructions: (1) wish jumps (Section 4.1.1),

(2) wish joins (Section 4.1.1), and (3) wish loops (Section 4.1.2). Wish jumps and wish

joins are for forward branches and wish loops are used for backward branches. We will

explain the behavior of wish branches and how wish branches are different from normal

branches and predicated execution in this section.

4.1.1 Wish Jumps and Wish Joins

Figure 4.1 shows a simple source code example and the corresponding control flow

graphs and assembly code for: (a) a normal branch, (b) predicated execution, and (c) a wish

jump/join. The main difference between the wish jump/join code and the normal branch

code is that the instructions in basic blocks B and C are predicated in the wish jump/join

code (Figure 4.1c), but they are not predicated in the normalbranch code (Figure 4.1a).

The first conditional branch in the normal branch code is converted to a wish jump instruc-

25

tion and the following control-dependent unconditional branch is converted to a wish join

instruction in the wish jump/join code. The difference between the wish jump/join code

and the predicated code (Figure 4.1b) is that the wish jump/join code has branches (i.e., the

wish jump and the wish join), but the predicated code does not.

if (cond) {

}
else {

}

 b = 0;

 b= 1;

A

D

A

B

C

B C

mov b, 1

not−taken taken

branch p1, TARGET
p1 = (cond)

branch.uncond JOIN

(a)

D JOIN:

TARGET:
mov b, 0

A

C

D

B

(!p1) mov b, 1
(p1) mov b,0

A

B

C

p1 = (cond)

(b)

B

A

C

A

C

D

wish jump

B
wish join

 wish.jump p1, TARGET
 p1 = (cond)

(p1) mov b, 0
TARGET:

(!p1) mov b, 1
 wish.join !p1, JOIN

JOIN:

(c)

D

(code)

Figure 4.1: Source code and the corresponding control flow graphs and assembly code for
(a) normal branch code (b) predicated code (c) wish jump/join code.

Wish jump/join code can be executed in two different modes (high-confidence-mode

and low-confidence-mode) at run-time. The mode is determined by the confidence of the

wish jump prediction. When the processor fetches the wish jump instruction, it generates

a prediction for the direction of the wish jump using a branchpredictor, just like it does

for a normal conditional branch. A hardware confidence estimator provides a confidence

estimation for this prediction. If the prediction has high confidence, the processor enters

26

high-confidence-mode for this branch. If it has low confidence, the processor enters low-

confidence-mode.

High-confidence-mode is the same as using normal conditional branch prediction.

To achieve this, the wish jump instruction is predicted using the branch predictor. The

source predicate value (p1 in Figure 4.1c) of the wish jump instruction is predicted based

on the predicted branch direction so that the instructions in basic block B or C can be

executed before the predicate value is ready. When the wish jump is predicted to be taken,

the predicate value is predicted to be TRUE (and block B, which contains the wish join,

is not fetched). When the wish jump is predicted to be not taken, the predicate value is

predicted to be FALSE and the wish join is predicted to be taken.

Low-confidence-mode is the same as using predicated execution, except it has ad-

ditional wish branch instructions. In this mode, the wish jump and the following wish join

are always predicted to be not taken. The source predicate value of the wish jump instruc-

tion is not predicted and the instructions that are dependent on the predicate only execute

when the predicate value is ready.

When the confidence estimation for the wish jump is accurate,either the overhead

of predicated execution is avoided (high confidence) or a branch misprediction is elimi-

nated (low confidence). When the wish jump is mispredicted inhigh-confidence-mode, the

processor needs to flush the pipeline just like in the case of anormal branch mispredic-

tion. However, in low-confidence-mode, the processor neverneeds to flush the pipeline,

even when the branch prediction is incorrect. Like predicated code, the instructions that

are not on the correct control flow path will become NOPs sinceall instructions that are

control-dependent on the branch are predicated.

27

4.1.2 Wish Loops

A wish branch can also be used for a backward branch. We call this a wish loop

instruction. Figure 4.2 contains the source code for a simple loop body and the correspond-

ing control-flow graphs and assembly code for: (a) a normal backward branch and (b) a

wish loop. We compare wish loops only with normal branches since backward branches

cannot be directly eliminated using predication [3]. A wishloop uses predication to reduce

the branch misprediction penalty of a backward branch without eliminating the branch.

The main difference between the normal branch code (Figure 4.2a) and the wish

loop code (Figure 4.2b) is that in the wish loop code the instructions in block X (i.e., the

loop body) are predicated with the loop branch condition. Wish loop code also contains an

extra instruction in the loop header to initialize the predicate to 1 (TRUE). To simplify the

explanation of the wish loops, we use ado-while loop example in Figure 4.2. Similarly,

awhile loop as shown in Figure 4.3 or afor loop can also utilize a wish loop instruction.

When the wish loop instruction is first encountered, the processor enters either high-

confidence-mode or low-confidence-mode, depending on the confidence of the wish loop

prediction.

In high-confidence-mode, the processor predicts the direction of the wish loop ac-

cording to the loop/branch predictor. If the wish loop is predicted to be taken, the predicate

value (p1 in Figure 4.2b) is predicted to be TRUE, so the instructions in the loop body can

be executed without waiting for the predicate to be evaluated. If the wish loop is mispre-

dicted in high-confidence-mode, the processor flushes the pipeline, just as in the case of a

normal branch misprediction.

If the processor enters low-confidence-mode, it stays in this mode until the loop

is exited. In low-confidence-mode, the processor still predicts the wish loop according to

the loop/branch predictor. However, it doesnot predict the predicate value. Hence, the

28

Y

H
H

Y

X
wish loop

taken

not−taken
Xtaken

EXIT:Y

branch !p1, EXIT
p1 = (i<N)LOOP:H

EXIT:

i++;
a++;

}

while (i<N) {

(b)

p1 = (i<N)

LOOP:
(p1) add a, a,1
(p1) add i, i, 1
(p1) p1 = (i<N)
wish.loop p1, LOOP

H

(a)(code)

X

branch.uncond LOOP

add a, a,1

add i, i, 1

X

Y

(while)

Figure 4.2:while loop source code and the corresponding control flow graphs and as-
sembly code for (a) normal backward branch code (b) wish loopcode.

iterations of the loop are predicated (i.e., fetched but notexecuted until the predicate value

is known) during low-confidence-mode. There are three misprediction cases in this mode:

(1) early-exit: the loop is iterated fewer times than it should be, (2)late-exit: the loop is

iterated only a few more times by the processor front end thanit should be and the front

end has already exited when the wish loop misprediction is signaled, and (3)no-exit: the

loop is still being iterated by the processor front end when the wish loop misprediction is

signaled (as in the late-exit case, it is iterated more timesthan needed).

For example, consider a loop that iterates 3 times. The correct loop branch direc-

29

Y Y

X X

H

wish loop

taken

not−taken

taken

not−taken

EXIT:Y

X
mov p1,1H

i++;
a++;

X

do {

} while (i<N)

LOOP:
LOOP:

(p1) add a, a, 1
(p1) add i, i, 1
(p1) p1 = (i<N)
wish.loop p1, LOOP

(b)(a)

EXIT:Y

add a, a,1
add i, i, 1
p1 = (i<N)
branch p1, LOOP

(code)

(do−while)

Figure 4.3:do-while loop source code and the corresponding control flow graphs and
assembly code for (a) normal backward branch code (b) wish loop code.

tions are TTN (taken, taken, not-taken) for the three iterations, and the front end needs to

fetch blocks X1X2X3Y, where Xi is theith iteration of the loop body. An example for each

of the three misprediction cases is as follows: In the early-exit case, the predictions for

the loop branch are TN, so the processor front end fetches blocks X1X2Y. One example of

the late-exit case is when the predictions for the loop branch are TTTTN so the front end

fetches blocks X1X2X3X4X5Y. For the no-exit case, the predictions for the loop branch are

TTTTT...T so the front end fetches blocks X1X2X3X4X5...XN .

In the early-exit case, the processor needs to execute X at least one more time (in

30

the example above, exactly one more time; i.e., block X3), so it flushes the pipeline just

like in the case of a normal mispredicted branch.

In the late-exit case, the fall-through block Y has been fetched before the predicate

for the first extra block X4 has been resolved. Therefore, it is more efficient to simply allow

X4 and subsequent extra block X5 to flow through the data path as NOPs (with predicate

value p1 = FALSE) than to flush the pipeline. In this case, the wish loop performs better

than a normal backward branch because it reduces the branch misprediction penalty. The

smaller the number of extra loop iterations fetched, the larger the reduction in the branch

misprediction penalty.

In the no-exit case, the front end has not fetched block Y at the time the predicate

for the first extra block X4 has been resolved. Therefore, it makes more sense to flush X4

and any subsequent fetched extra blocks, and then fetch block Y, similar to the action taken

for a normal mispredicted branch. We could let X4X5...XN become NOPs as in the late-exit

case, but that would increase energy consumption without improving performance.

4.1.2.1 More on Wish Loops and Predication

Traditional predicated code reduces the branch misprediction penalty by eliminat-

ing branches. Since backward (loop) branches cannot be eliminated with predication due

to the nature of the control flow [3], traditional predicatedexecution cannot eliminate

or reduce the branch misprediction penalty for backward branches. However, with wish

branches, in the presence of the branch (which is the wish branch itself), the processor can

still reduce the branch misprediction penalty using predicated code as we showed in the

late-exit case for the wish loop. Wish branches reduce the branch misprediction penalty

not by eliminating branches but by using the characteristics of predicated code: instruc-

tions that should not be executed will become NOPs when the predicate value becomes

available (as false). Hence, with wish loops and predicatedcode, wish branches can re-

31

duce the branch misprediction penalty due to backward (loop) branches without having to

eliminate such branches.

Loop unrolling can reduce the number of loop branches, thereby perhaps reducing

the number of loop branch mispredictions. With predication, the compiler could perform

loop unrolling more aggressively. However, loop unrollingstill cannot eliminate all back-

ward branches. The remaining backward branches can still bemispredicted. Wish branches

can therefore convert the remaining branches into wish loops. Furthermore, loop unrolling

increases the pressure on architectural registers, increases code size, and requires extra

code to handle loop iterations that are not a multiple of the unrolling factor - three sources

of complexity that do not exist with wish branches. In addition, loop unrolling is usually

useful for regular loops that iterate a large number of times, whereas wish loop instructions

are aimed at eliminating loop branch mispredictions in loops that iterate a small number of

times - loops that occur frequently in irregular integer programs.

Note that the compiler can also predicate instructions inside the loop body to fa-

cilitate Software Pipelining (SWP). SWP can be used withoutpredication also. However,

Warter et al. [80] showed that pipelined loops performed 34%faster on average with pred-

ication than without predication. The purpose of software pipelining is orthogonal to the

purpose of wish branches: SWP is used to increase instruction level parallelism in order

to make static scheduling more effective (by finding more independent instructions across

different loop iterations that can be scheduled in parallel) whereas wish branches are used

to reduce the branch misprediction penalty. As such, software pipelining is much less ben-

eficial on processors that support dynamic scheduling whereas wish branches still provide

significant performance improvements on dynamically-scheduled processors. Note that

both loop unrolling and software pipelining, as shown by Choi et al. [16], are less effec-

tive for irregular integer benchmarks where parallelism ishard to find at compile time, In

contrast, wish branches are more effective for such irregular benchmarks where the branch

32

prediction accuracy is relatively low.

For these reasons, we claim that wish loops can reduce the branch mispredic-

tion penalty for backward (loop) branches, which cannot be reduced by traditional predi-

cated execution. While traditional predication facilitates better loop unrolling and software

pipelining, these mechanisms are not fundamentally aimed at reducing the branch mispre-

diction penalty (even though loop unrolling sometimes can,as a side effect). Hence, wish

branches are orthogonal to these two schemes and can be combined with them to provide

higher performance.

4.1.3 Wish Branches in Complex Control Flow

Wish branches are used not only for simple control flow. They can also be used

in complex control flow where there are multiple branches, some of which are control-

dependent on others. Figure 4.4 shows a code with complex control flow, and the control

flow graphs of the normal branch code, predicated code, and the wish branch code corre-

sponding to it.

A

B

D

C

E

taken

not−taken

not−taken

(a) normal branch code

taken C

A

A

D

B

E

block Cblock A

 (code)

 // block B
}
else {

}
 // block D

if (cond1 || cond2) {

D

C

B

E

wish jump

wish join

wish join

(c) wish branch code(b) predicated code

Figure 4.4: Control flow graph examples with wish branches.

33

When there are multiple wish branches in a given region, the first wish branch is

a wish jump and the following wish branches are wish joins. Wish join instructions are

control-flow dependent on earlier wish branch instructions. Hence, the prediction for a

wish join is dependent on the confidence estimations made forthe previous wish jump,

any previous wish joins, and the current wish join itself. Ifthe previous wish jump, any of

the previous wish joins, or the current wish join is low-confidence, the current wish join is

predicted to be not-taken. Otherwise, the current wish joinis predicted using the branch

predictor. An example of the predictions made for each of thewish branches in Figure 4.4c

is shown in Table 4.1.

Table 4.1: The prediction of multiple wish branches in Figure 4.4c.
confidence prediction

jump (A) join (C) join (D) jump (A) join (C) join (D)
high high high predictor predictor predictor
high high low predictor predictor not-taken
high low - predictor not-taken not-taken
low - - not-taken not-taken not-taken

4.2 Support for Wish Branches

4.2.1 ISA Support

We assume that the baseline ISA to which wish branches are to be added supports

predicated execution. If the current ISA already has unusedhint bits for the conditional

branch instruction, like the IA-64 [34], wish branches can be implemented using the hint

bit fields without modifying the ISA. Figure 4.5 shows a possible instruction format for the

wish branch. A wish branch can use the same opcode as a normal conditional branch, but its

encoding has two additional fields:btypeandwtype. If the processor does not implement

the hardware support required for wish branches, it can simply treat a wish branch as a

34

normal branch (i.e., ignore the hint bits). New binaries containing wish branches will run

correctly on existing processors without wish branch support.

p

p: predicate register identifier

btype: branch type (0:normal branch 1:wish branch)
wtype: wish branch type (0:jump 1:loop 2:join)

wtypebtypeOPCODE target offset

Figure 4.5: A possible instruction format for the wish branch.

4.2.2 Compiler Support

4.2.2.1 Compiler Support for Wish Branch Generation

A wish branch binary is an object file consisting of a mixture of wish branches,

traditional predicated code, and normal branches. The compiler decides which branches

are predicated, which are converted to wish branches, and which stay as normal branches

based on estimated branch misprediction rates and compile-time heuristics. The compile-

time decisions need to take into account the following:

1. The size and the execution time of the basic blocks that areconsidered for predica-

tion/wish branch code.

2. Input data set dependence/independence of the branch.

3. The estimated branch misprediction penalty.

4. The extra instruction overhead associated with predicated execution or wish branches.

For example, it may be better to convert a short forward branch which has only one

or two control-dependent instructions into predicated code rather than wish branch code

because wish branch code has the overhead of at least one extra instruction (i.e., the wish

35

jump instruction). If the misprediction rate of a branch is strongly dependent on the input

data set, the compiler is more apt to convert the code into wish branch code. Otherwise, the

compiler is more apt to use a normal branch or convert the codeinto predicated code. The

compiler can determine whether or not the misprediction rate is dependent on the input

data with heuristics. The compiler heuristics used to decide which branches should be

converted into wish branches is an important research area that we intend to investigate in

future work. The heuristics are described in Section 4.4.2.

Note that wish branches provide the compiler with more flexibility in generating

predicated code. With wish branches, if the compiler makes a“bad decision” at compile

time, the hardware has the ability to “correct” that decision at run time. Hence, the com-

piler can generate predicated code more aggressively and the heuristics used to generate

predicated code can be less complicated.

4.2.3 Hardware Support

Aside from the hardware to support predicated execution, wish branches require the

hardware support described below.

4.2.3.1 Instruction Fetch and Decode Hardware

Instruction decode logic must be modified so that wish branchinstructions can be

decoded. A branch target buffer (BTB) entry is extended to indicate whether or not the

branch is a wish branch and the type of the wish branch. The fetch logic requires one

additional mux to override the result of the branch predictor for a wish jump or a wish

join in low-confidence-mode (since a wish jump or join is always predicted not-taken in

low-confidence-mode regardless of the branch predictor outcome).

36

4.2.3.2 Wish Branch State Machine Hardware

Figure 4.6 shows the front-end state machine that manages the various modes of a

processor implementing wish branches. There are three modes: normal-mode(00), low-

confidence-mode(10), and high-confidence-mode(01). The state diagram summarizes

the mode transitions that occur in the front-end of a processor supporting wish branches,

based on the information provided in Sections 4.1.1 and 4.1.2. In the state diagram, “target

fetched” means that the target of the wish jump/join that caused entry into low-confidence-

mode is fetched.

0 0
mode

NormalHigh−conf

0 1
mode

Low−conf

1 0
mode

wish br. misprediction signal
target fetched/wish loop is exited/

wish br. low−confidence

wish br. high−confidence

wish br. misprediction signal

wish br. high−confidence
wish join/loop high−confidence/

wish br. low−confidence

wish join/loop low−confidence

Figure 4.6: State diagram showing mode transitions in a processor that supports wish
branches.

4.2.3.3 Predicate Dependency Elimination Module

As we described in Sections 4.1.1 and 4.1.2, the predicate ofthe wish branch is pre-

dicted during high-confidence-mode to eliminate the delay in the execution of predicated

instructions. To support this, when the processor enters high-confidence-mode, the predi-

cate register number of the wish branch instruction is stored in a special buffer. Each fol-

lowing instruction compares its source predicate registernumber with the register number

37

in the special buffer. If both predicate register numbers are the same, the source predicate

register of the instruction is assumed to be ready, with a TRUE value when the wish branch

is predicted to be taken and with a FALSE value when the wish branch is predicted to be

not taken. The special buffer is reset if there is a branch misprediction or if an instruction

that writes to the same predicate register is decoded.

4.2.3.4 Branch Misprediction Detection/Recovery Module

When a wish branch misprediction is detected, the processorneeds to decide whether

or not a pipeline flush is necessary. If the wish branch is mispredicted during high-confidence-

mode,1 the processor always flushes the pipeline. If the wish branchis mispredicted during

low-confidence-mode and the wish branch is a wish jump or a wish join, then the processor

does not flush the pipeline.

If a wish loop is mispredicted during low-confidence-mode, the processor needs to

distinguish between early-exit, late-exit, and no-exit. To support this, the processor uses

a small buffer2 in the front end that stores the last prediction made for eachstatic wish

loop instruction that is fetched but not yet retired. When a wish loop is predicted, the

predicted direction is stored in the entry corresponding tothe static wish loop instruction.

When a wish loop is found to be mispredicted and the actual direction is taken, then it is

an early-exit case, so the processor flushes the pipeline. When a wish loop is mispredicted

and the actual direction is not-taken, the branch misprediction recovery module checks the

latest prediction made for the same static wish loop instruction by reading the buffer in the

front end. If the last stored prediction is not taken, it is a late-exit case, because the front

end must have already exited the loop, so no pipeline flush is required. If the last stored

1The mode that is checked when a wish branch is mispredicted isthe mode of the front-end when that
branch was fetched,not the mode of the front-end at the time the misprediction is detected.

2In our evaluation, we use a 4-entry fully associative buffer

38

prediction is taken, it is a no-exit case because the front-end must still be fetching the loop

body, and the processor flushes the pipeline.3 To reduce the hardware complexity we do

not support nested wish loops.

4.2.3.5 Confidence Estimator

An accurate confidence estimator is essential to maximize the benefits of wish

branches. An inaccurate confidence estimation for a wish branch can be harmful in two

different ways. First, if the wish branch prediction is estimated to be low confidence even

though the prediction is correct, the processor suffers from the overhead of predicated exe-

cution without any performance benefit. Second, if the wish branch prediction is estimated

to be high confidence when the branch is actually mispredicted, the processor loses the

opportunity to eliminate a pipeline flush.

Previously proposed confidence estimators, such as the JRS confidence estima-

tor [35], can be used to estimate the confidence of wish branchpredictions. In our eval-

uations, we used a tagged enhanced JRS confidence estimator [30]. Since the confidence

estimator is dedicated to wish branches, its size is small. If the baseline processor already

employs a confidence estimator for normal conditional branches, this estimator can also be

utilized to estimate the confidence of wish branch predictions.

4.3 Advantages and Disadvantages of Wish Branches

In summary, the advantages of wish branches are as follows:

3If the processor exited the loop and then re-entered it, thiscase will be incorrectly identified as a no-exit
case, when it is actually a late-exit case. Hence, the processor unnecessarily flushes the pipeline, but it still
functions correctly. We did not see this case happen in the benchmarks we simulated.

39

1. Wish jumps/joins provide a mechanism to dynamically eliminate the performance

and power overhead of predicated execution.These instructions allow the hardware

to dynamically choose between using predicated execution versus conditional branch

predictionfor each dynamic instanceof a branch based on the run-time confidence

estimation of the branch’s prediction.

2. Wish jumps/joins allow the compiler to generate predicatedcode more aggressively

and using simpler heuristics, since the “bad compile-time decisions” can be cor-

rected at run-time.In previous research, a static branch instruction either remained

as a conditional branch or was predicated forall its dynamic instances, based on less

accurate compile-time information. If the compiler made a bad decision to predicate,

there was no way to dynamically eliminate the overhead of thebad compile-time

decision. For this reason, compilers have been conservative in producing predicated

code and have avoided large predicated code blocks.

3. Wish loops provide a mechanism to exploit predicated execution to reduce the branch

misprediction penalty for backward (loop) branches.In previous research, it was

not possible to reduce the branch misprediction penalty fora backward branch by

solely utilizing predicated execution [3, 16]. Hence, predicated execution was not

applicable for a significant fraction of hard-to-predict branches.

4. Wish branches will also reduce the need to re-compile the predicated binaries when-

ever the machine configuration and branch prediction mechanisms change from one

processor generation to another (or even during compiler development).A branch

that is hard-to-predict in an older processor may become easy-to-predict in a newer

processor with a better branch predictor. If that branch is conventionally predicated

by the old compiler, the performance of the old code will degrade on the new proces-

sor because predicated execution would not improve, and in fact degrade, the perfor-

mance of the now easy-to-predict branch. Hence, to utilize the benefits of the new

processor, the old code needs to be recompiled. In contrast,if the branch were con-

40

verted to a wish branch by the compiler, the performance of the old binary would not

degrade on the new processor, since the new processor can dynamically decide not

to use predicated execution for the easy-to-predict wish branch. Thus, wish branches

reduce the need to frequently re-compile by providing flexibility (dynamic adaptiv-

ity) to predication.

The disadvantages of wish branches compared to conventional predication are:

1. Wish branches require extra branch instructions. These instructions would take up

machine resources and instruction cache space. However, the larger the predicated

code block, the less significant this becomes.

2. The extra wish branch instructions increase the contention for branch predictor table

entries. This may increase negative interference in the pattern history tables. We

found that performance loss due to this effect is negligible.

3. Wish branches reduce the size of the basic blocks by addingcontrol dependencies to

the code. Larger basic blocks can provide better opportunities for compiler optimiza-

tions. If the compiler that generates the wish branch binaries is unable to perform ag-

gressive code optimizations across basic blocks, the presence of wish branches may

constrain the compiler’s scope for code optimizations.

4.4 Methodology

Figure 4.7 illustrates the simulation infrastructure. We chose the IA-64 ISA to

evaluate the wish branch mechanism, because of its full support for predication, but we

converted the IA-64 instructions to micro-operations (µops) to execute on our out-of-order

superscalar processor model. We modified the ORC compiler [57] to generate the IA-64

binaries (with and without wish branches). The binaries were then run on an Itanium II

41

machine using the Pin binary instrumentation tool [49] to generate traces. These IA-64

traces were later converted toµops. Theµops were fed into a cycle-accurate simulator to

obtain performance results.

Trace
generation

module
Compiler
 (ORC)

IA−64 Binary

Translator Simulator

IA−64 TraceSource Code IA−64 uop uopuops

(Pin)

Figure 4.7: Simulation infrastructure

4.4.1 µop Translator and Simulator

We developed an IA-64 translator which converts the disassembled IA-64 instruc-

tions into our simulator’s nativeµops. We modelµops to be close to a generic RISC ISA.

Our translator handles correctly all the issues related to IA-64 specific features such as

rotating registers. All NOPs are eliminated duringµop translation.

µops are fed into our cycle-accurate simulator. Our baselineprocessor is an aggres-

sive superscalar, out-of-order processor based on the HPS processor [59, 60]. Table 5.3

describes our baseline microarchitecture. Because a less accurate branch predictor would

provide more opportunity for wish branches, a very large andaccurate hybrid branch pre-

dictor [82, 83, 9] is used in our experiments to avoid inflating the impact of wish branches.

4.4.2 Compilation

All benchmarks were compiled for the IA-64 ISA with the -O2 optimization by the

ORC compiler. Software pipelining, speculative loads, andother IA-64 specific optimiza-

tions were turned off to reduce the effects of features that are specific to the IA-64 ISA and

that are less relevant to an out-of-order microarchitecture. Software pipelining was shown

to provide less than 1% performance benefit on the SPEC CPU2000 INT benchmarks [16]

42

Table 4.2: Baseline processor configuration

64KB, 4-way, 2-cycle I-cache; 8-wide fetch/decode/rename
Front End Fetches up to 3 cond. branch but fetch ends at the first taken branch

I-cache stores IA-64 instructions; decoder/ROM producesµops
64K-entry gshare [54]/PAs [83] hybrid, 64K-entry selector

Branch Predictors 4K-entry BTB; 64-entry RAS; 64K-entry indirect target cache
minimum branch misprediction penalty is 30 cycles

Execution Core 512-entry reorder buffer; 8-wide execute/retire
L1 data cache: 64KB, 4-way, and 2-cycle latency

On-chip Caches L2 unified cache: 1MB, 8-way, 8 banks, 6-cycle latency
All caches use true LRU replacement and have 64B line size
300-cycle minimum memory latency; 32 memory banksBuses and Memory
32B-wide core-to-memory bus at 4:1 frequency ratio

Predication support Converted into C-style conditional expressions [74]
Confidence estimator1KB, tagged (4-way), 16-bit history enhanced JRS estimator[35, 30]

and we removed this optimization to simplify our analysis. Wish branch code generation is

also performed with -O2 optimization. To compare wish branches to normal branches and

predication, we generated five different binaries for each benchmark, which are described

in Table 4.3. Unless otherwise noted, all execution time results reported in this chapter are

normalized to the execution time of the normal branch binaries. Section 4.4.2.1 and 4.4.2.2

briefly describe the compilation algorithms we use in our experiments.

4.4.2.1 Predicated Code Binary Generation Algorithm

Figure 4.8 shows the major phase ordering in code generationof ORC. ORC does a

region based compilation [48]. Hence, the compiler forms a region first to perform all the

optimizations in a region boundary. If-conversion is in oneof the early phases, since after

if-conversion, the compiler can do other optimizations.

To generate predicated code, the ORC compiler first checks whether or not the

43

Table 4.3: Description of binaries compiled to evaluate theperformance of different com-
binations of wish branches

Branches that can be predicated
Binary name

with the ORC algorithm [48, 57, 53] ...
Backward branches...

normal branch binary remain as normal branches remain as normal branches
predicated code binary: are predicated based on remain as normal branches
BASE-DEF the compile-time cost-benefit analysis
predicated code binary: are predicated remain as normal branches
BASE-MAX
wish jump/join binary are converted to wish jumps/joins or remain as normal branches

are predicated
wish jump/join/loop binary are converted to wish jumps/joins or are converted to wish loops

are predicated or remain as normal branches

control-flow graph is suitable for if-conversion in a regionboundary. The ORC compiler

performs if-conversion within a region boundary. When the control-flow graph is suitable

for if-conversion, the compiler calculates the following equations. Each probability in

these equations is determined using compiler heuristics. Execution times are estimated with

dependency height and resource usage analysis. We set the branch misprediction penalty to

30 cycles. In the BASE-DEF binary, branches which satisfy Equation (4.3) are converted to

predicated code. In the BASE-MAX binary, all branches that are suitable for if-conversion

are converted to predicated code. Hence, the BASE-MAX binary contains code that is more

aggressively predicated. We use two predicated code binaries as our baselines because

neither binary performs the best for all benchmarks. For some benchmarks BASE-DEF

performs better and for others BASE-MAX performs better.

44

region formation

if−conversion

loop opt (swp, unrolling)

global instruction scheduling

register allocation

local instruction scheduling

edge/value profiling

Figure 4.8: Major phase ordering in code generation of the ORC compiler [38]

Exec. time of normal branch code = exec T ∗ P (T) + exec N ∗ P (N) +

misp penalty ∗ P (misprediction), (4.1)

Exec. time of predicated code = exec pred, (4.2)

Exec. time of predicated code < Exec. time of normal br. code, (4.3)

45

where

exec T : Exec. time of the code when the br. under consideration is taken,

exec N : Exec. time of the code when the br. under consideration is nottaken,

P (case) : The probability of the case; e.g., P(T) is the prob. that the br. is taken,

misp penalty : Machine-specific branch misprediction penalty, and

exec pred : Execution time of the predicated code.

4.4.2.2 Wish Branch Binary Generation Algorithm

Figure 4.9 shows the modified code generation phases in ORC togenerate wish

branches. Specifically the if-conversion and loop optimization phases (shaded boxes in

Figure 4.9) are modified to generate wish branches.

If a branch is suitable for if-conversion, we treat that branch as a wish branch can-

didate. If the number of instructions in the fall-through block of a branch is greater than

N (we set N to 5), the candidate branch is converted to a wish jump and the necessary

wish joins are inserted. Otherwise, the wish branch candidate is converted to predicated

code. We use a threshold of 5 instructions because we have found that very short forward

branches are better off being predicated. A loop branch is converted to a wish loop if the

number of instructions in the loop body is less than L (we set Lto 30). We have not tuned

the thresholds N and L used in these heuristics. Since our baseline compiler is not opti-

mized to build large predicated code blocks, we inserted some of the wish branches using a

binary instrumentation tool when the control flow is suitable to be converted to wish branch

code.

46

region formation

if−conversion

loop opt (swp, unrolling)

global instruction scheduling

register allocation

local instruction scheduling

edge/value profiling

wish jump conversion

if−conversion

wish join conversion

wish loop conversion

loop opt

predicate register allocation

branch elimination

cost−benefit analysis

candidate selection

Figure 4.9: Modified code generation phases

4.4.3 Trace Generation and Benchmarks

IA-64 traces were generated with the Pin instrumentation tool [49]. Because mod-

eling wrong-path instructions is important in studying theperformance impact of wish

branches, we generated traces that contain wrong-path information by forking a wrong-path

trace generation thread. We forked a thread at every wish branch down the mispredicted

path. The spawned thread executed until the number of executed wrong-path instructions

exceeded the instruction window size. The trace contains the PC, predicate register, regis-

ter value, memory address, binary encoding, and the currentframe marker information for

each instruction.

All experiments were performed using the SPEC INT 2000 benchmarks. The

benchmarks were run with a reduced input set [46] to simulateuntil the end of the pro-

gram. The information about the simulated benchmarks for the normal branch binaries

and the wish jump/join/loop binaries are shown respectively in Table 4.4 and Table 4.5.4

4Due to problems encountered during trace generation using Pin, gcc, perlbmk and eon benchmarks were
excluded. NOPs are included in the dynamic IA-64 instruction count, but they are not included in theµop

47

Branch information displayed is collected only for conditional branches. For the wish

jump/join/loop binaries, we show the total number of staticand dynamic wish branches

and the percentage of wish loops among all wish branches.

Table 4.4: Simulated benchmarks: characteristics of normal branch binaries

Dynamic instructions Mispredicted branches
Benchmark

IA64 instructions /µops
Static branchesDynamic branches

(per 1000µops)
IPC/µPC

164.gzip 303M / 211M 1271 31M 8.3 2.25/ 1.53
175.vpr 161M / 106M 4078 13M 7.8 2.38/ 1.60
181.mcf 189M / 135M 1288 28M 4.7 1.52/ 1.46
186.crafty 316M / 227M 4334 30M 4.7 1.68/ 1.01
197.parser 428M / 311M 2879 72M 9.6 1.21/ 0.87
254.gap 611M / 423M 4163 50M 1.0 1.22/ 0.80
255.vortex 113M / 87M 7803 12M 0.8 1.06/ 0.84
256.bzip2 429M / 308M 1236 40M 8.6 1.38/ 1.37
300.twolf 171M / 114M 4306 10M 6.8 1.81/ 1.16

Table 4.5: Simulated benchmarks:characteristics of wish branch binaries
Static wish branchesDynamic wish branches

Benchmark
(% of wish loops) (% of wish loops)

164.gzip 93 (80%) 9.5M (61%)
175.vpr 206 (83%) 4.3M (35%)
181.mcf 31 (54%) 5.1M (20%)
186.crafty 271 (65%) 3.7M (49%)
197.parser 214 (88%) 14.2M (63%)
254.gap 167 (74%) 6.1M (75%)
255.vortex 104 (33%) 1.7M (62%)
256.bzip2 130 (81%) 8.7M (90%)
300.twolf 356 (71%) 3.1M (57%)

count.

48

4.5 Simulation Results and Analysis

4.5.1 Wish Jumps/Joins

We first evaluate how using wish jumps/joins performs compared to normal branches

and predicated code. Figure 4.10 shows the normalized execution time of four different

configurations for each benchmark: (1) BASE-DEF binary, (2)BASE-MAX binary, (3)

wish jump/join binary with a real confidence estimator, and (4) wish jump/join binary with

a perfect confidence estimator. With a real confidence estimator, the wish jump/join bi-

naries improve the average execution time by 11.5% over the normal branch binaries and

by 10.7% over the best-performing (on average) predicated code binaries (BASE-DEF).

The wish jump/join binaries perform better than the normal branch binaries for all the

benchmarks, except mcf. Moreover, they perform better thanboth of the predicated code

binaries for gzip, vpr, mcf, gap, and, twolf. For vpr, mcf, and twolf, three benchmarks

where the overhead of predicated execution is very high, as was shown in Figure 2.5, the

wish jump/join binaries improve the execution time by more than 10% over the predicated

code binaries. Note that, the execution time of mcf skews theaverage normalized execu-

tion time, because mcf performs very poorly with predicatedexecution. Hence, this chapter

reports two average execution time numbers on the graphs. The set of bars labeled AVG

shows the average execution time with mcf included. The set of bars labeled AVGnomcf

shows the average execution time with mcf excluded.

Figure 4.10 also shows that the wish jump/join binaries reduce the overhead which

causes the predicated code binaries to perform worse than the normal branch binaries. For

example, the BASE-DEF binaries perform worse than the normal branch binaries for gzip,

mcf, crafty, and gap. Similarly, the BASE-MAX binaries perform worse than the normal

branch binaries on mcf and bzip2. In fact, aggressive predication (BASE-MAX) increases

the execution time of mcf by 102% because of the additional delay caused by predicated

instructions. In mcf, the execution of many critical load instructions that would cause

49

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

E
xe

c
tim

e
no

rm
al

iz
ed

 to
 n

or
m

al
 b

ra
nc

h
bi

na
ry BASE-DEF

BASE-MAX
wish jump/join (real-conf)
wish jump/join (perf-conf)

gzip vpr mcf crafty parser gap vortex bzip2 twolf AVG AVGnomcf

2.02

Figure 4.10: Performance of wish jump/join binaries

cache misses are delayed because their source predicates are dependent on other critical

loads which incur cache misses. Hence, predicated execution results in the serialization

of many critical load instructions that would otherwise be serviced in parallel had branch

prediction been used, leading to a large performance degradation. The wish jump/join

binaries eliminate the performance loss due to predicated execution on benchmarks where

predicated execution reduces performance. Hence, wish branches are effective at reducing

the negative effects of predicated execution.

The wish jump/join binary performs worse than both of the predicated code binaries

only for one benchmark, vortex. This is due to the reduced size of the basic blocks in the

wish jump/join binary for vortex. The compiler is able to optimize the code better and

more aggressively in the predicated code binaries that havelarger basic blocks. Note that

the compiler heuristics we used to insert wish branches are very simple. Better heuristics

that take into account more information, as explained in Section 4.2.2.1, can eliminate the

50

disadvantages caused by wish branches in vortex.

Figure 4.11 shows the dynamic number of wish branches per 1 million retiredµops.

The left bar for each benchmark shows the number of wish branches predicted to have low-

confidence and how many of those were mispredicted. The rightbar shows the number

of wish branches predicted to have high-confidence and how many of those were mispre-

dicted. Ideally, we would like two conditions to be true. First, only the actually mis-

predicted wish branches should be estimated as low-confidence. Second, no mispredicted

wish branch should be estimated as high-confidence. Figure 4.11 shows that the second

condition is much closer to being satisfied than the first on all benchmarks. Very few of the

high-confidence branches are actually mispredicted. However, the first condition is far from

being satisfied, especially in gzip, vpr, mcf, crafty, and twolf. In these benchmarks, a sig-

nificant number of wish branches are estimated as low-confidence even though they are not

mispredicted.5 Therefore, a better confidence estimator would improve the performance of

wish branches on these benchmarks, as shown in the rightmostbars in Figure 4.10.

Figure 4.11 also provides insight into why wish branches improve the performance

of predicated execution significantly in some benchmarks. For example, in mcf most of the

branches that are converted to wish branches are correctly predicted. These branches are

predicated in the BASE-MAX binary. However, predicating them reduces the performance

with the reduced input set, because those branches are almost always correctly predicted.

Converting them into wish branches rather than predicatingthem allows the hardware to

dynamically decide whether or not they should be predicated. As shown in Figure 4.11,

the hardware confidence estimator does well on mcf and correctly identifies most of the

correctly-predicted wish branches as high-confidence. Hence, for those wish branches, the

overhead of predicated execution is avoided and the wish branch binary performs as well

5As Jiménez and Lin discussed in [37], a confidence estimator usually has high a coverage with a low
accuracy or a low coverage with a high accuracy.

51

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

D
yn

am
ic

 n
um

be
r

of
 w

is
h

br
an

ch
es

 p
er

 1
M

 u
op

s

low-confidence (mispred)
low-confidence (correct-pred)
high-confidence (mispred)
high-confidence (correct-pred)

gzip vpr mcf crafty parser gap vortex bzip2 twolf

Figure 4.11: Dynamic number of wish branches per 1M retiredµops. Left bars: low-
confidence, right bars: high-confidence.

as the normal branch binary. Similarly in gzip, vpr, and gap,many of the wish branches are

correctly predicted and also estimated as high confidence, resulting in significant savings

in the overhead of predicated execution, which is reflected in the performance of the wish

jump/join binaries for these three benchmarks in Figure 4.10. Most wish branches are

correctly predicted and identified as high-confidence also in parser and vortex. However,

the performance of parser and vortex is not improved with wish branches compared to the

predicated code binaries because the overhead of predicated execution is very low for these

two benchmarks as shown in Figure 2.5.

4.5.2 Wish Jumps/Joins and Wish Loops

Figure 4.12 shows the performance of wish branches when wishloops are also used

in addition to wish jumps/joins. With a real confidence estimator, the wish jump/join/loop

binaries improve the average execution time by 14.2% compared to the normal branch bina-

52

ries and by 13.3% compared to the best-performing (on average) predicated code binaries

(BASE-DEF). An improved confidence estimator has the potential to increase the perfor-

mance improvement up to 16.2% compared to the normal branch binaries. Even if mcf is

excluded from the calculation of the average execution time, the wish jump/join/loop bina-

ries improve the average execution time by 16.1% compared tothe normal branch binaries

and by 6.4% compared to the best-performing predicated binaries (BASE-MAX), with a

real confidence estimator.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

E
xe

c
tim

e
no

rm
al

iz
ed

 to
 n

or
m

al
 b

ra
nc

h
bi

na
ry

BASE-DEF
BASE-MAX
wish jump/join (real-conf)
wish jump/join/loop (real-conf)
wish jump/join/loop (perf-conf)

gzip vpr mcf crafty parser gap vortex bzip2 twolf AVG AVGnomcf

2.02

Figure 4.12: Performance of wish jump/join/loop binaries

Using wish loops in addition to wish jumps/joins improves the execution time of

vpr, parser, and bzip2 by more than 3%. The reason for the performance improvement

on these three benchmarks can be seen in Figure 4.13. This figure shows the dynamic

number of wish loops per 1 millionµops and classifies them based on their confidence

estimation and misprediction status. Remember that thelate-exitmisprediction case is the

only case where a wish loop improves performance compared toa normal loop branch, as

53

described in Section 4.1.2. In vpr, parser, and bzip2 there is a significant number of wish

loop instructions that are predicted to be low-confidence and are actually mispredicted as

late-exit. Therefore, we see significant performance improvements due to wish loops for

these benchmarks.

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

D
yn

am
ic

 n
um

be
r

of
 w

is
h

lo
op

s
pe

r
1M

 u
op

s low-confidence (no-exit)
low-confidence (late-exit)
low-confidence (early-exit)
low-confidence (correct-pred)
high-confidence (mispred)
high-confidence(correct-pred)

gzip vpr mcf crafty parser gap vortex bzip2 twolf

Figure 4.13: Dynamic number of wish loops per 1M retiredµops. Left bars: low-
confidence, right bars: high-confidence.

4.5.2.1 Source Code Example for Wish Loops

Wish loops provide significant performance benefit for the parser benchmark. Fig-

ure 4.14 shows the high level source code of one of the major wish loops in this benchmark.

This function checks where a period symbol is inside a given word. Since an English word

has usually fewer than 16 characters, the number of iterations of the loop is usually fewer

than 16. However, a lot of abbreviations have a period symbolafter the first character. Due

to abbreviations, the frequency of the loop iterations overthe whole run of the benchmark

shows a high peak for 1 iteration as shown in Figure 4.15. The frequency of the loop also

54

has a normal distribution with a mean of 6-7 iterations. In this example, the number of

iterations is very unpredictable (because it is dependent on the input word) but it is more

likely to be smaller than 16. Therefore, this loop branch is avery good wish loop candidate.

int numberfy(char *c)
{
for (; (*s !=\0)&& (*s != .);s++) ; // the for loop becomes a wish loop branch
...
}

Figure 4.14: An example from parser showing an loop branch

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

F
re

qu
en

cy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 more

Figure 4.15: Frequency of loop iteration of for the branch inFigure 4.14

55

4.5.3 Comparisons with the Best-Performing Binary for EachBenchmark

We also compare the performance of wish branches to the best-performing binary

for each benchmark. To do so, we selected the best-performing binary for each benchmark

among the normal branch binary, BASE-DEF predicated code binary, and BASE-MAX

predicated code binary based on the execution times of thesethree binaries, which are

obtained via simulation. Note that this comparison is unrealistic because it assumes that

the compiler can, at compile-time, predict which binary would perform the best for the

benchmark at run-time. This assumption is not correct, because the compiler does not

know the run-time behavior of the branches in the program. Even worse, the run-time

behavior of the program can also vary from one run to another run. Hence, depending on

the input set to the program, a different binary could be the best-performing binary, as we

have already shown in Figure 1.1.

Table 4.6: Execution time reduction of the wish jump/join/loop binaries over the best-
performing binaries on a per-benchmark basis (using the real confidence mechanism).DEF,

MAX, BR (normal branch) indicate which binary is the best performing binary for a given benchmark.

column 1 column 2 column 3
% exec time reduction vs. % exec time reduction vs. % exec time reduction vs.

Benchmark normal branch binary the best predicated code binarythe best non-wish-branch binary
for the benchmark for the benchmark

gzip 12.5% 3.8% MAX 3.8% MAX
vpr 36.3% 23.9% MAX 23.9% MAX
mcf -1.5% 13.3% DEF -1.5% BR

crafty 16.8% 0.4% MAX 0.4% MAX
parser 23.1% 8.3% MAX 8.3% MAX
gap 4.9% 2.5% MAX 2.5% MAX

vortex 3.2% -4.3% DEF -4.3% DEF
bzip2 3.5% -1.2% DEF -1.2% DEF
twolf 29.8% 13.8% MAX 13.8% MAX
AVG 14.2% 6.7% 5.1%

56

Table 4.6 shows, for each benchmark, the reduction in execution time achieved with

the wish jump/join/loop binary compared to the normal branch binary (column 1), the best-

performing predicated code binary for the benchmark (column 2), and the best-performing

binary (that does not contain wish branches) for the benchmark (column 3). Even if the

compiler were able to choose and generate the best-performing binary for each benchmark,

the wish jump/join/loop binary outperforms the best-performing binary for each benchmark

by 5.1% on average, as shown in the third column.

4.5.4 Sensitivity to Microarchitectural Parameters

4.5.4.1 Effect of the Instruction Window Size

Figure 4.16 shows the normalized execution time of the wish jump/join/loop bina-

ries on three different machines with 128, 256, and 512-entry instruction windows. The

data shown in the left graph is averaged over all the benchmarks examined. The data in

the right graph is averaged over all benchmarks except mcf. The execution time of each

binary is normalized to the execution time of the normal branch binary on the machine

with the corresponding instruction window size. Compared to the normal branch binaries,

the wish jump/join/loop binaries improve the execution time by 11.4%, 13.0%, and 14.2%

respectively on a 128, 256, and 512-entry window processor.Wish branches provide larger

performance improvements on processors with larger instruction windows. This is due to

the increased cost of branch mispredictions (due to the increased time to fill the instruction

window after the pipeline is flushed) on machines with largerinstruction windows. Wish

loops are also more effective on larger windows, because, with a larger window, it is more

likely that the front-end of the processor has already exited the loop when a mispredicted

wish loop branch is resolved. This increases the likelihoodof the late-exit case.

57

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

 e
xe

c
tim

e

BASE-DEF
BASE-MAX
wish jump/join/loop binary (real-conf)
wish jump/join/loop binary (perf-conf)

128 256 512
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

 e
xe

c
tim

e

BASE-DEF
BASE-MAX
wish jump/join/loop binary (real-conf)
wish jump/join/loop binary (perf-conf)

128 256 512

MCF EXCLUDED

Figure 4.16: Effect of instruction window size on wish branch performance.The left graph

shows the average execution time over all benchmarks, the right graph shows the average execution time over

all benchmarks except mcf.

4.5.4.2 Effect of the Pipeline Depth

Figure 4.17 shows the normalized execution time of the five binaries on three dif-

ferent 256-entry window processors with 10, 20, and 30 pipeline stages. Compared to the

normal branch binaries, the wish jump/join/loop binaries improve the execution time by

8.0%, 11.0%, and 13.0% respectively on processors with 10, 20, and 30 pipeline stages.

The performance benefits of wish branches increase as the pipeline depth increases, since

the branch misprediction penalty is higher on processors with deeper pipelines. The wish

jump/join/loop binaries always significantly outperform the normal branch and predicated

code binaries for all pipeline depths and instruction window sizes examined.

4.5.4.3 Effect of the Mechanism Used to Support Predicated Execution

Our baseline out-of-order processor uses C-style conditional expressions to handle

predicated instructions as described in Section 2.2.1. We also implemented the select-µop

mechanism proposed by Wang et al. [79](Section 2.2.3) to quantify the benefits of wish

branches on an out-of-order microarchitecture that uses a different technique to support

58

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

 e
xe

c
tim

e

BASE-DEF
BASE-MAX
wish jump/join/loop binary (real-conf)
wish jump/join/loop binary (perf-conf)

10 20 30
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

 e
xe

c
tim

e

BASE-DEF
BASE-MAX
wish jump/join/loop binary (real-conf)
wish jump/join/loop binary (perf-conf)

10 20 30

MCF EXCLUDED

Figure 4.17: Effect of pipeline depth on wish branch performance.

predicated execution.

The advantage of the select-µop mechanism over the C-style conditional expres-

sions is that it does not require the extra register read portand the extra input in the data-

path to read and carry the old destination register value. Hence, the implementation cost

of predicated execution is lower on a processor that supports predicated instructions using

the select-µop mechanism. The select-µop also enables the execution of a predicated in-

struction before its source predicate value is ready, but the dependents of the predicated

instruction still cannot be executed until the source predicate is resolved. Since depen-

dent instructions cannot be executed, we found that a significant portion of the overhead of

predicated execution still remains on a processor implementing the select-µop mechanism.

The disadvantage of the select-µop mechanism is that it requires additionalµops

to handle the processing of predicated instructions. Note that this is not the case in a

processor that supports predicated instructions using C-style conditional expressions. Due

to this additionalµop overhead, the performance benefits of predicated code arelower

on a processor that uses the select-µop mechanism than on a processor that uses C-style

conditional expressions.

59

Figure 4.18 shows the normalized execution time of the predicated code, wish

jump/join, and wish jump/join/loop binaries on a processorthat supports predicated execu-

tion using the select-µop mechanism. With a real confidence estimator, the wish jump/join/loop

binaries improve the average execution time by 11.0% compared to the normal branch bi-

naries and by 14.0% compared to the best-performing (on average) predicated code bi-

naries (BASE-DEF). On the processor that uses the select-µop mechanism, the overall

performance improvement of wish branches over conditionalbranch prediction (11.0%)

is smaller than it is on the processor that uses C-style conditional expressions (14.2%).

This is due to the higher instruction overhead of the select-µop mechanism to support the

predicated instructions. On the other hand, the overall performance improvement of wish

branches over predicated execution (14.0%) is larger than it is on the processor that uses

C-style conditional expressions (13.3%). Hence, the performance benefit of wish branches

over predicated execution is larger when predicated execution has higher overhead.

4.5.4.4 Wish Branches in In-Order Processors

We also evaluate the benefits of wish branches in an in-order machine. The pro-

cessor we evaluate has a 30-cycle minimum branch misprediction penalty. Since branch

mispredictions are less costly on an in-order machine, predicated code binaries do not show

performance benefits as large as they do on out-of-order machines. Even so, wish branches

still reduce most of the negative effects of predicated codeand keep the benefits of pred-

icated code if the predicated code provides a performance benefit. Wish jump/join/loop

binaries improve the performance of the in-order processorby 6.0% compared to tradi-

tional conditional branches and by 1% compared to BASE-MAX.But compared to BASE-

DEF, wish jump/join/loop binaries reduce performance by 2.1%. In an in-order processor,

BASE-MAX binaries perform worse than BASE-DEF on gzip, vpr,mcf, vortex, and bzip2.

Unlike an out-of-order processor, an in-order processor isless tolerant of the increasing

60

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

E
xe

cu
tio

n
tim

e
no

rm
al

iz
ed

 to
 n

o
pr

ed
ic

at
io

n

BASE-DEF
BASE-MAX
wish jump/join (real-conf)
wish jump/join/loop (real-conf)
wish jump/join/loop (perf-conf)

gzip vpr mcf crafty parser gap vortex bzip2 twolf AVG AVGnomcf

2.12

Figure 4.18: Performance of wish branches on an out-of-order processor that implements
the select-µop mechanism

number of executed instructions. BASE-MAX binaries have a higher number of instruc-

tions than BASE-DEF binaries because more branches are converted to predicated code in

BASE-MAX binaries. Since wish branch binaries also have a higher number of instructions

than BASE-DEF binaries, wish branch binaries sometimes perform worse than BASE-DEF

binaries. If we are to consider using wish branches in an in-order processor, the cost-benefit

analysis to generate wish branches in an in-order processorshould be developed.

4.5.4.5 Performance Analysis

Figure 4.20 shows the number of fetchedµops for three different binaries. All the

results are normalized to normal branch binaries. Since wish branches reduce the number of

pipeline flushes, the number of fetched instructions is reduced significantly (14%). Hence

wish branches would improve the energy efficiency. Section 5.5.5 will analyze the power

61

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

E
xe

cu
tio

n
tim

e
no

rm
al

iz
ed

 to
 n

o
pr

ed
ic

at
io

n

BASE-DEF
BASE-MAX
wish jump/join (real-conf)
wish jump/join/loop (real-conf)
wish jump/join/loop (perf-conf)

gzip vpr mcf crafty parser gap vortex bzip2 twolf AVG

Figure 4.19: Normalized execution time in an in-order processor

and energy consumption of wish branches.

With the BASE-MAX binary, mcf’s execution time significantly increases in com-

parison to other benchmarks. As we discussed in Section 4.5.1, the main reason is the

execution delay of memory operations that depend on predicate values. Figure 4.21 shows

the result of an ideal experiment. In this experiment, all load operations take two cycles,

which is equivalent to the data cache access time. (In other words, we simulate a per-

fect data cache.) The result shows that most of the performance degradation of mcf in

the BASE-MAX binary is eliminated (from 112% to 14%). The performance results for

the remaining benchmarks are similar to the results with thebaseline with the real data

cache. Hence, we conclude that the main reason of mcf’s performance degradation in the

BASE-MAX binary is the execution delay of predicate-dependent memory operations.

62

-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5

10
15
20
25
30
35
40
45

N
or

m
al

iz
ed

 n
um

be
r

of
 u

op
s

BASE-DEF
BASE-MAX
wish jump/join/loop

gzip vpr mcf crafty parser gap vortex bzip2 twolf AVG

Figure 4.20: The number of fetchedµops normalized to non-predicated binaries

4.5.4.6 Effect of Front-end Design

Figure 4.22 shows the performance of four evaluated binaries with different front-

end configurations: the maximum number of conditional branches that can be fetched in

one cycle is varied from 2 (less aggressive front-end) to 4 (aggressive front-end). All the

results are normalized to the execution time of non-predicated binaries in the same ma-

chine configuration. The results show that the performance benefit of wish branches is

not sensitive to the aggressiveness of the front-end design. All three cases show 14% per-

formance benefit. One of the benefits of predicated code is that it reduces the number of

branches, which could increase the average number of instructions fetched in one cycle

as compared to normal branch code. (i.e., normal branch codehas more fetch breaks.)

With wish branches, this benefit of predicated code is lost since wish branch code does

not eliminate the predicated branches. However, as shown inFigure 4.22, this effect is not

significant. There are two reasons for this. First, as we showed in Section 4.2.2.1, short

63

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

E
xe

cu
tio

n
tim

e
no

rm
al

iz
ed

 to
 n

o
pr

ed
ic

at
io

n

BASE-DEF
BASE-MAX
wish jump/join
wish jump/join/loop

gzip vpr mcf crafty parser gap vortex bzip2 twolf AVG

Figure 4.21: Normalized execution time with a perfect D-cache

forward branches are already converted to predicated code in the wish branch binaries.

Second, the performance benefit of reducing the branch misprediction penalty and provid-

ing adaptivity to predicated execution significantly outweighs the performance loss due to

the reduction in the average number of instructions fetchedin one cycle. This is because

fetch breaks due to limitations on the number of branches that can be fetched in one cycle

happens rarely in the baseline processor.

4.5.4.7 Effect of Different Branch Predictors

Figure 4.23 shows the normalized execution time of the wish jump/join/loop bina-

ries with a 59KB (1021 rows and 59-bit history) perceptron branch predictor [36]. The exe-

cution time of each binary is normalized to the execution time of the normal branch binary

on the same machine with the perceptron branch predictor. Wish branch binaries improve

64

0.50

0.60

0.70

0.80

0.90

1.00

1.10

E
xe

cu
tio

n
tim

e
no

rm
al

iz
ed

 to
 n

o
pr

ed
ic

at
io

n

BASE-DEF
BASE-MAX
wish jump/join
wish-jump/join/loop

2-br 3-br 4-br

Figure 4.22: Performance of wish branches as a function of the maximum number of con-
ditional branches fetched in a cycle

the average execution time by 13% over the normal branch binaries and by 11.2% over

the BASE-DEF binaries. The performance benefit of wish branches is slightly less than

the benefit with a 64KB hybrid branch predictor. This is because the perceptron branch

predictor provides higher branch prediction accuracy. Theaverage branch prediction accu-

racy of the perceptron branch predictor is 92.04% and that ofthe hybrid branch predictor is

91.94%. Furthermore, the confidence estimator used in the evaluation is originally devel-

oped for a branch predictor like gshare. However, wish branches still provide significant

performance benefit, and their benefit can be further increased with a better confidence

estimator tuned for the branch predictor used in the baseline machine.

65

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

E
xe

cu
tio

n
tim

e
no

rm
al

iz
ed

 to
 n

o
pr

ed
ic

at
io

n

BASE-DEF
BASE-MAX
wish jump/join (real-conf)
wish jump/join/loop (real-conf)
wish jump/join/loop (perf-conf)

gzip vpr mcf crafty parser gap vortex bzip2 twolf AVG

2.00

AVGnomcf

2.00

Figure 4.23: Performance of wish branches with a perceptronbranch predictor

4.5.5 Comparisons with Predicate Prediction

Section 2.2.4 discussed predicate prediction. A predicatepredictor can reduce the

problem of execution delay due to dependencies on the predicate values. However, it can-

not reduce the problem of increased number of fetched instructions in predicated code.

Figure 4.24 shows the performance of BASE-DEF and BASE-MAX binaries with a 512B

predicate predictor [19]. Unlike wish branches, which are used selectively, the predicate

predictor predicts all predicate values. Although correctpredictions of the predicate pre-

dictor could improve performance, the results show that thepredicate predictor actually

reduces performance. The evaluated Predicate predictor has on average 81% prediction

accuracy, which means that 19% of predictions cause replay penalty. These results are

different from Chuang and Calder [19]’s results. The main reason is, in their work, the

baseline machine stalls the pipeline in the rename stage until the multiple definition prob-

lem is solved. This stall results in a lot of execution delay.However, our baseline employs

the CMOV-style mechanism, so only predicate-value-dependent instructions cannot be ex-

66

ecuted but the remaining predicate-value-independent instructions can be executed.

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

E
xe

cu
tio

n
tim

e
no

rm
al

iz
ed

 to
 n

o
pr

ed
ic

at
io

n

BASE-DEF
BASE-DEF-pred-pred
BASE-MAX
BASE-MAX-pred-pred
wish jump/join/loop

gzip vpr mcf crafty parser gap vortex bzip2 twolf AVG

Figure 4.24: Performance with the predicate predictor

Figure 4.25 shows the performance of BASE-DEF and BASE-MAX binaries with

a 1KB confidence estimator and a predicate predictor. In thisexperiment, the processor

predicts a predicate value only if the predicate predictionhas a high confidence. The con-

fidence estimator estimates the confidence of predicate predictions. If the predicate predic-

tion has a low confidence, the processor does not execute predicated instructions until the

predicate value is resolved (i.e., the predicate value is not predicted). The results show that

even though using the confidence estimator with the predicate predictor improves perfor-

mance compared to using only the predicate predictor, predicate prediction still does not

perform better than the baseline processor. The reason is that the confidence estimator does

not have a good accuracy. With wish branches, the confidence estimator is used only for

wish branches. However, with the predicate predictor, the confidence estimator needs to

estimate the confidence for all predicate instructions, which results in a significant lower

accuracy.

67

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

E
xe

cu
tio

n
tim

e
no

rm
al

iz
ed

 to
 n

o
pr

ed
ic

at
io

n

BASE-DEF
BASE-DEF-conf-pred-pred
BASE-MAX
BASE-MAX-conf-pred-pred
wish jump/join/loop

gzip vpr mcf crafty parser gap vortex bzip2 twolf AVG

Figure 4.25: Performance with the predicate predictor witha confidence estimator

4.6 Summary

This chapter proposed a new control-flow mechanism calledwish branchesto re-

duce the negative effects of predicated code and to obtain the best performance of predi-

cated execution and branch prediction. It described the operation of three types of wish

branches: wish jumps, wish joins, and wish loops. The major contributions of wish

branches to the research in predicated execution and branchmisprediction penalty reduc-

tion are:

1. Wish jumps and joins provide a mechanism to dynamically eliminate the overhead of

predicated execution. These instructions allow the hardware to dynamically choose

between using predicated execution versus conditional branch prediction for each

dynamic instance of a branch based on the run-time confidenceestimation of the

branch’s prediction.

68

2. Wish jumps and joins also allow the compiler to generate predicated code more ag-

gressively and using simpler heuristics, since the “bad compile-time decisions” can

be corrected at run-time. In previous research, a static branch instruction either re-

mained as a conditional branch or was predicated forall its dynamic instances, based

on less accurate compile-time information. If the compilermade a bad decision to

predicate, there was no way to dynamically eliminate the overhead of the bad deci-

sion.

3. Wish loops provide a mechanism to exploit predicated execution to reduce the branch

misprediction penalty forbackward(loop) branches. In previous research, it was not

possible to reduce the branch misprediction penalty for a backward branch by solely

utilizing predicated execution.

Our results show that wish branches improve the average execution time of nine

SPEC INT 2000 benchmarks on an aggressive out-of-order superscalar processor by 14.2%

compared to conditional branch prediction only and by 13.3%compared to the best-performing

predicated code binary.

69

Chapter 5

Diverge-Merge Processor (DMP)

5.1 Introduction

Chapter 1 described the three major problems/limitations of predicated execution:

ISA support, the lack of adaptivity, and complex control-flow graphs. Wish branches in

Chapter 4 was proposed to solve the second problem, the lack of adaptivity problem.

However, wish branches inherit the limitations of softwarepredication (ISA support and

complex control flow graphs problem) with the exception thatthey can be applied to loop

branches.

The goal of this chapter is to devise a comprehensive technique that overcomes the

three problems/limitations of predication so that more processors can employ predicated

execution to reduce the misprediction penalty due to hard-to-predict branches.

This chapter presents a new processor architecture, calledtheDiverge-Merge Pro-

cessor (DMP). DMP dynamically predicates not only simple but also complex control-

flow graphs without requiring predicate registers and predicated instructions in the ISA

and without incurring large hardware/energy cost and complexity. The key mechanism of

DMP is that it dynamically predicates instructionsonly on frequently executed control-flow

pathsandonly if a branch is hard-to-predict at run-time. Dynamically predicating only

the frequently executed paths allows DMP to achieve two benefits at the same time: 1)

the processor can reduce the overhead of predicated execution since it does not need to

fetch/executeall instructions that are control-dependent on the predicatedbranch, 2) the

processor can dynamically predicate a large set of control-flow graphs because a complex

70

control-flow graph can look and behave like a simple hammock structure when only fre-

quently executed paths are considered.

5.2 The Diverge-Merge Concept and Comparisons with Previous Work

5.2.1 Diverge-Merge Concept

A A A

A A A

H

H

H

H

H

H

Not frequently executed path
Frequently executed path

B C

D

E

F

NT T

T
NT

NT
T

CFM point

A

H

(b)

Diverge Branch

NT
T

G

(c)

(a)

if (cond1) {A

// block E

D

C

 else {

else {

 }

 if (cond2) {

 }

// block BB

// block F
F

}

// block C

 if (cond3 || cond4){

// block G

}

 }

// block H

Dynamically predicated block

Figure 5.1: Control-flow graph (CFG) example: (a) source code (b) CFG (c) possible paths
(hammocks) that can be predicated by DMP

Figure 5.1 shows a control-flow graph to illustrate the key insight behind DMP.

In software predication, if the compiler estimates that thebranch at block A is hard-to-

predict, it would convert blocks B, C, D, E, F, and G to predicated code and all these blocks

would be executed together even though blocks D, F, and G are not frequently executed

at run-time [57].1 In contrast, DMP considers frequently executed paths at run-time, so

1If the compiler does not predicate all basic blocks between Aand H because one of the branches is easy-
to-predict, then the remaining easy-to-predict branch is likely to become a hard-to-predict branch after if-
conversion. This problem is called misprediction migration [5, 71]. Therefore, the compiler (e.g. ORC [57])
usually predicates all control-flow dependent basic blocksinside a region (the region is A,B,C,D,E,F,G and

71

it can dynamically predicateonly blocks B, C, and E. To simplify the hardware, DMP

uses some control-flow information provided by the compiler. The compiler identifies and

marks suitable branches as candidates for dynamic predication. These branches are called

diverge branches. The compiler also selects a control-flow merge (or reconvergence) point

corresponding to each diverge branch. In this example, the compiler marks the branch

at block A as a diverge branch and the entry of block H as a control-flow merge (CFM)

point. Instead of the compiler specifying which blocks are predicated (and thus fetched),

the processor decides what to fetch/predicate at run-time.If a diverge branch is estimated

to be low-confidence at run-time, the processor follows and dynamically predicates both

paths after the branch until the CFM point. The processor follows the branch predictor

outcomes on the two paths to fetch only the frequently executed blocks between a diverge

branch and a CFM point.

The compiler could predicate only blocks B, C, and E based on profiling [51] rather

than predicating all control-dependent blocks. Unfortunately, frequently executed paths

change at run-time (depending on the input data set and program phase), and code pred-

icated for only a few paths can hurt performance if other paths turn out to be frequently

executed. In contrast, DMP determines and follows frequently executed paths at run-time

and therefore it can flexibly adapt its dynamic predication to run-time changes (Figure 5.1c

shows the possible hammock-shaped paths that can be predicated by DMP for the exam-

ple control-flow graph). Thus, DMP can dynamically predicate hard-to-predict instances

of a branch with less overhead than static predication and with minimal support from the

compiler. Furthermore, DMP can predicate a much wider rangeof control-flow graphs

than dynamic-hammock-predication [43] because a control-flow graph does nothave tobe

a simple if-else structure to be dynamically predicated; itjust needs tolook like a simple

H in this example.). This problem can be mitigated with reverse if-conversion [81, 6] or by incorporating
predicate information into the branch history register [5].

72

hammock when only frequently executed paths are considered.

5.2.2 The Basic DMP Operation

The compiler identifies conditional branches with control flow suitable for dynamic

predication asdiverge branches. A diverge branch is a branch instruction after which the

execution of the programusuallyreconverges at a control-independent point in the control-

flow graph, a point we call thecontrol-flow merge (CFM) point. In other words, diverge

branches result in hammock-shaped control flow based onfrequently executed paths in the

control-flow graphof the program but they are not necessarily simple hammock branches

that require the control-flow graph to be hammock-shaped. The compiler also identifies

a CFM point associated with the diverge branch. Diverge branches and CFM points are

conveyed to the microarchitecture through modifications inthe ISA, which are described

in Section 5.3.11.

When the processor fetches a diverge branch, it estimates whether or not the branch

is hard to predict using a branch confidence estimator. If thediverge branch has low con-

fidence, the processor entersdynamic predication mode (dpred-mode). In this mode, the

processor fetches both paths after the diverge branch and dynamically predicates instruc-

tions between the diverge branch and the CFM point. On each path, the processor follows

the branch predictor outcomes until it reaches the CFM point. After the processor reaches

the CFM point on both paths, it exits dpred-mode and starts tofetch from only one path.

If the diverge branch is actually mispredicted, then the processor does not need to flush its

pipeline since instructions on both paths of the branch are already fetched and the instruc-

tions on the wrong path will become NOPs through dynamic predication.

In this section, we describe the basic concepts of the three major mechanisms to

support diverge-merge processing: instruction fetch support, select-µops, and loop branches.

A detailed implementation of DMP is described in Section 5.3.

73

5.2.2.1 Instruction Fetch Support

In dpred-mode, the processor fetches instructions from both directions (taken and

not-taken paths) of a diverge branch using two program counter (PC) registers and a round-

robin scheme to fetch from the two paths in alternate cycles.On each path, the processor

follows the outcomes of the branch predictor. Note that the outcomes of the branch pre-

dictor favor the frequently executed basic blocks in the control flow graph. The processor

uses a separate global branch history register (GHR) to predict the next fetch address on

each path, and it checks whether the predicted next fetch address is the CFM point of the

diverge branch.2 If the processor reaches the CFM point on one path, it stops fetching from

that path and fetches from only the other path. When the processor reaches the CFM point

on both paths, it exits dpred-mode.

5.2.2.2 Select-µops

Instructions after the CFM point should have data dependencies on instructions

from only the correct path of a diverge branch. Before the diverge branch is executed,

the processor does not know which path is correct. Instead ofwaiting for the resolution

of the diverge branch, the processor inserts select-µops to continue renaming/execution

after exiting dpred-mode. Select-µops are similar to theφ-functions in the static single-

assignment (SSA) form [24] in that they “merge” the registervalues produced on both

sides of the hammock.3 Select-µops ensure that instructions dependent on the register

values produced on either side of the hammock are supplied with the correct data values

that depend on the correct direction of the diverge branch. After inserting select-µops, the

processor can continue fetching and renaming instructions. If an instruction fetched after

2When the predicted next fetch address is the CFM point of the diverge branch, the processor considers
that it has reached the CFM point.

3Select-µops handle the merging of only register values. We explain how memory values are handled in
Section 5.3.8.

74

the CFM point is dependent on a register produced on either side of the hammock, it sources

(i.e., depends on) the output of a select-µop. Such an instruction will be executed after the

diverge branch is resolved. However, instructions that arenot dependent on select-µops are

executed as soon as their sources are ready without waiting for the resolution of the diverge

branch. Figure 5.2 illustrates the dynamic predication process. Note that instructions in

blocks C, B, and E, which are fetched during dpred-mode, are also executed before the

resolution of the diverge branch.

H

A

C

E

B

select−uop pr43 = p1? pr13 : pr33
select−uop pr40 = p1? pr20 : pr30

add pr21 <− pr13, #1
pr20 = (cond2)
branch pr20, G

C

add pr31 <− pr12, #−1

sub pr33 <− pr31, pr12
branch.uncond H

B

E

H add pr24 <− pr41, pr43

select−uop pr41 = p1? pr21 : pr31

branch pr10, C

A pr10 = (cond1)
p1 = pr10

(!p1)
(!p1)

(!p1)
pr30 = (cond3) (!p1)

(!p1)

(p1)
(p1)
(p1)

branch pr30, E

(b)(a) (c)

add r1 <− r3, #1 C
r0 = (cond2)
branch r0, G

branch r0, E
r0 = (cond3)
add r1 <− r2, #−1B

sub r3 <− r1, r2
branch.uncond H

E

add r4 <− r1, r3 H

branch r0, C
r0 = (cond1)A

Figure 5.2: An example of how the instruction stream in Figure 5.1b is dynamically pred-
icated: (a) fetched blocks (b) fetched assembly instructions (c) instructions after register
renaming

75

pr20 = (cond1)
add pr21 <− pr11, #1

p2= pr20branch A, pr20

select−uop pr22 = p1? pr21 : pr11
select−uop pr23 = p1? pr20 : pr10

A add pr31 <− pr22, #1
pr30 = (cond1)

select−uop pr32 = p2? pr31 : pr22
select−uop pr33 = p2? pr30 : pr23

add pr17 <− pr32, #10B

(c)

branch A, pr10

A

pr10 = (cond1)
add pr11 <− pr1, #1 A

(b)(a)

A

B

p1= pr10

NT T

add r1 <− r1, #1
r0 = (cond1)
branch A, r0

A

add r1 <− r1, #1
r0 = (cond1)
branch A, r0

A

add r1 <− r1, #1
r0 = (cond1)
branch A, r0

A

add r7 <−r1, #10B

(p1)
(p1)
(p1)

(p2)
(p2)
(p2)branch A, pr30

Figure 5.3: An example of how a loop-type diverge branch is dynamically predicated: (a)
CFG (b) fetched assembly instructions (c) instructions after register renaming

76

5.2.2.3 Loop Branches

DMP can dynamically predicate loop branches. The benefit of dynamically predi-

cating loop branches using DMP is very similar to the benefit of wish loopsin Chapter 4.

The key mechanism to predicate a loop-type diverge branch isthat the processor needs to

predicate each loop iteration separately. This is accomplished by using a different predicate

register for each iteration and inserting select-µops after each iteration. Select-µops choose

between live-out register values before and after the execution of a loop iteration, based on

the outcome of each dynamic instance of the loop branch. Instructions that are executed in

later iterations and that are dependent on live-outs of previous predicated iterations source

the outputs of select-µops. Similarly, instructions that are fetched after the processor exits

the loop and that are dependent on registers produced withinthe loop source the outputs

of select-µops so that they receive the correct source values even though the loop branch

may be mispredicted. The pipeline does not need to be flushed if a predicated loop is it-

erated more times than it should be because the predicated instructions in the extra loop

iterations will become NOPs and the live-out values from thecorrect last iteration will be

propagated to dependent instructions via select-µops. Figure 5.3 illustrates the dynamic

predication process of a loop-type diverge branch (The processor enters dpred-mode after

the first iteration and exits after the third iteration).

There is a negative effect of predicating loops: instructions that source the results

of a previous loop iteration (i.e., loop-carried dependencies) cannot be executed until the

loop-type diverge branch is resolved because such instructions are dependent on select-

µops. However, we found that the negative effect of this execution delay is much less

than the benefit of reducing pipeline flushes due to loop branch mispredictions. Note that

the dynamic predication of a loop does not provide any performance benefit if the branch

predictor iterates the loop fewer times than required by correct execution, or if the predictor

has not exited the loop by the time the loop branch is resolved.

77

5.2.3 DMP vs. Other Branch Processing Paradigms

We compare DMP with five previously proposed mechanisms in predication and

multipath execution paradigms: dynamic-hammock-predication [43], software predica-

tion [3, 58], wish branches, selective/limited dual-path execution (dual-path) [32, 27], and

multipath/PolyPath execution (multipath) [63, 45]. First, we classify control-flow graphs

(CFGs) into five different categories to illustrate the differences between these mechanisms

more clearly.

Figure 5.4 shows examples of the five different CFG types. Simple hammock (Fig-

ure 5.4a) is anif or if-else structure that does not have any nested branches inside

the hammock. Nested hammock (Figure 5.4b) is anif-else structure that has multiple

levels of nested branches. Frequently-hammock (Figure 5.4c) is a CFG that becomes a sim-

ple hammock if we consider only frequently executed paths. Loop (Figure 5.4d) is a cyclic

CFG (for, do-while, orwhile structure). Non-merging control-flow (Figure 5.4e) is a

CFG that does not have a control-flow merge point even if we consider only frequently ex-

ecuted paths.4 Figure 5.5 shows the frequency of branch mispredictions dueto each CFG

type. Table 5.1 summarizes which blocks are fetched/predicated in different processing

models for each CFG type, assuming that the branch in block A is hard to predict.

Dynamic-hammock-predicationcan predicate only simple hammocks which ac-

count for 12% of all mispredicted branches. Simple hammocksby themselves account for

a significant percentage of mispredictions in only two benchmarks: vpr (40%) and twolf

(36%). We expect dynamic-hammock-predication will improve the performance of these

two benchmarks.

4If the number of static instructions between a branch and theclosest control-flow merge point exceeds
a certain number (T), we consider that the CFG does not have a control-flow merge point. T=200 in our
experiments.

78

Frequently executed path

A

B C

A

F

E

D

A

C

F

E

D

A

C

AA

GG D E

EE

(a)

(e)

BB

(b)

B C

ED F

H

I

B C

ED F

H

I

F G

(d)

C

L

A

B

(c)

BB

F

AA

D

CC

DG

H

Not frequently executed path

Figure 5.4: Control-flow graphs: (a) simple hammock (b) nested hammock (c) frequently-
hammock (d) loop (e) non-merging control flow

0

1

2

3

4

5

6

7

8

9

10

M
is

pr
ed

ic
tio

ns
 p

er
 k

ilo
 in

st
ru

ct
io

ns
 (

M
P

K
I) non-merging

loop
frequently
nested
simple

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

am
ea

n

16.6

Figure 5.5: Distribution of mispredicted branches based onCFG type

Software predication can predicate both simple and nested hammocks, which in

total account for 16% of all mispredicted branches. Software predication fetches all basic

blocks between an if-converted branch and the corresponding control-flow merge point. For

79

Table 5.1: Fetched instructions in different processing models (after the branch at A is
estimated to be low-confidence)We assume that the loop branch in block A (Figure 5.4d) is predicted

taken twice after it is estimated to be low-confidence.

Processing model simple hammock nested hammock frequently-hammock loop non-merging

DMP B, C, D, E, F B, C, D, G, H, I B, C, D, E, H A, A, B, C can’t predicate
Dynamic-hammock-predication B, C, D, E, F can’t predicate can’t predicate can’t predicate can’t predicate
Software predication B, C, D, E, F B, C, D, E, F, G, H, I usually don’t/can’t predicatecan’t predicate can’t predicate
Wish branches B, C, D, E, F B, C, D, E, F, G, H, I usually don’t/can’t predicateA, A, B, C can’t predicate

path1: B, D, E, F path1: B, D, H, I path1: B, D, E, H path1: A, A, B, C path1: B ...Dual-path
path2: C, D, E, F path2: C, G, H, I path2: C, E, H path2: B, C path2: C ...

example, in the nested hammock case (Figure 5.4b), softwarepredication fetches blocks B,

C, D, E, F, G, H, and I, whereas DMP fetches blocks B, C, D, G, H, and I. Current compilers

usually do not predicate frequently-hammocks since the overhead of predicated code would

be too high if these CFGs include function calls, cyclic control-flow, too many exit points,

or too many instructions [3, 58, 78, 50, 16, 57]. Note that hyperblock formation [51] can

predicate frequently-hammocks at the cost of increased code size, but it is not an adaptive

technique because frequently executed basic blocks changeat run-time. Even if we assume

that software predication can predicate all frequently-hammocks, it could predicate up to

56% of all mispredicted branches.

Wish branchescan even predicate loops, which account for 10% of all mispre-

dicted branches, in addition to what software predication can do. The main difference

between wish branches and software predication is that the wish branch mechanism can

selectively predicate each dynamic instance of a branch. With wish branches, a branch

is predicated only if it is hard to predict at run-time, whereas with software predication a

branch is predicated for all its dynamic instances. Thus, wish branches reduce the overhead

of software predication. However, even with wish branches,all basic blocks between an

if-converted branch and the corresponding CFM point are fetched/predicated. Therefore,

wish branches also have higher performance overhead for nested hammocks than DMP.

80

Note that software predication (and wish branches) can eliminate a branch mispre-

diction due to a branch that is control-dependent on anotherhard-to-predict branch (e.g.,

the branch at B is control-dependent on the branch at A in Figure 5.4b), since it predicates

all the basic blocks within a nested hammock. This benefit is not possible with any of the

other paradigms except multipath, but we found that it provides significant performance

benefit in only two benchmarks (3% in twolf, 2% in go).

Selective/limited dual-path executionfetches from two paths after a hard-to-predict

branch. The instructions on the wrong path are selectively flushed when the branch is re-

solved. Dual-path execution is applicable to any kind of CFGbecause the control-flow

does not have to reconverge. Hence, dual-path can potentially eliminate the branch mis-

prediction penalty for all five CFG types. However, the dual-path mechanism needs to

fetch a larger number of instructions than any of the other mechanisms (except multipath)

because it continues fetching from two paths until the hard-to-predict branch is resolved

even though the processor may have already reached a control-independent point in the

CFG. For example, in the simple hammock case (Figure 5.4a), DMP fetches blocks D, E,

and F only once, but dual-path fetches D, E, and F twice (once for each path). Therefore,

the overhead of dual-path is much higher than that of DMP. Detailed comparisons of the

overhead and performance of different processing models are provided in Section 5.5.

Multipath execution is a generalized form of dual-path execution in that it fetches

both paths aftereverylow-confidence branch and therefore it can execute along many (more

than two) different paths at the same time. This increases the probability of having the cor-

rect path in the processor’s instruction window. However, only one of the outstanding paths

is the correct path and instructions on every other path haveto be flushed. Furthermore,

instructions after a control-flow independent point have tobe fetched/executed separately

for each path (like dual-path but unlike DMP), which causes the processing resources to be

wasted for instructions on all paths but one. For example, ifthe number of outstanding paths

81

is 8, then a multipath processor wastes 87.5% of its fetch/execution resources for wrong-

path/useless instructions even after a control-independent point. Hence, the overhead of

multipath is much higher than that of DMP. In the example of Table 5.1 the behavior of

multipath is the same as that of dual-path because the example assumes there is only one

hard-to-predict branch to simplify the explanation.

DMP can predicate simple hammocks, nested hammocks, frequently-hammocks,

and loops. On average, these four CFG types account for 66% ofall branch mispredictions.

The number of fetched instructions in DMP is less than or equal to other mechanisms for

all CFG types, as shown in Table 5.1. Hence, we expect DMP to eliminate branch mispre-

dictions more efficiently (i.e., with less overhead) than the other processing paradigms.

5.3 Implementation of DMP

5.3.1 Entering Dynamic Predication Mode

The diverge-merge processor enters dynamic predication mode (dpred-mode) if a

diverge branch is estimated to be low-confidence at run-time.5 When the processor enters

dpred-mode, it needs to do the following:

1. The front-end stores the address of the CFM point associated with the diverge branch

into a buffer called CFM register. The processor also marks the diverge branch as

the branch that caused entry into dpred-mode. The BTB is extended to store diverge

branch type information and CFM information.

2. The front-end forks (i.e., creates a copy of) the return address stack (RAS) and the

GHR when the processor enters dpred-mode. In dpred-mode, the processor accesses

the same branch predictor table with two different GHRs (onefor each path) but

5The compiler could also provide a hint bit to indicate that itis better to enter dpred-mode regardless
of the confidence estimation. This additional mechanism is calledshort-hammocksand it will be explained
more in Chapter 6

82

only correct path instructions update the table after they commit. A separate RAS

is needed for each path. The processor forks the register alias table (RAT) when

the diverge branch is renamed so that each path uses a separate RAT for register

renaming in dpred-mode. This hardware support is similar tothe dual-path execution

mechanisms [1].

3. The front-end allocates a predicate register for the initiated dpred-mode. An instruc-

tion fetched in dpred-mode carries the predicate register identifier (id) with an extra

bit indicating whether the instruction is on the taken or thenot-taken path of the

diverge branch.

5.3.2 Multiple CFM points

DMP can support more than one CFM point for a diverge branch toenable the

predication of dynamic hammocks that start from the same branch but end at different

control-independent points. The compiler provides multiple CFM points. At run-time, the

processor chooses the CFM point reached first on any path of the diverge branch and uses

it to end dpred-mode. To support multiple CFM points, the CFMregister is extended to

hold multiple CFM-point addresses.

5.3.3 Exiting Dynamic Predication Mode

DMP exits dpred-mode when either (1) both paths of a diverge branch have reached

the corresponding CFM point or (2) a diverge branch is resolved. The processor marks

the last instruction fetched in dpred-mode (i.e., the last predicated instruction). The last

predicated instruction triggers the insertion of select-µops after it is renamed.

DMP uses two policies to exit dpred-mode early to increase the benefit and reduce

the overhead of dynamic predication:

1. Counter Policy: CFM points are chosen based on frequently executed paths

83

determined through compile-time profiling. At run-time, the processor might not reach

a CFM point if the branch predictor predicts that a differentpath should be executed. For

example, in Figure 5.4c, the processor could fetch blocks C and F. In that case, the processor

never reaches the CFM point and hence continuing dynamic predication is less likely to

provide benefit. To stop dynamic predication early (before the diverge branch is resolved)

in such cases, we use a heuristic. If the processor does not reach the CFM point until

a certain number of instructions (N) are fetched on any of thetwo paths, it exits dpred-

mode. N can be a single global threshold or it can be chosen by the compiler for each

diverge branch. We found that a per-branch threshold provides 2.3% higher performance

than a global threshold because the number of instructions executed to reach the CFM point

varies across diverge branches. After exiting dpred-mode early, the processor continues to

fetch from only the predicted direction of the diverge branch.

2. Non-preemptive Policy: DMP fetches only two paths at the same time. If the

processor encounters another low-confidence diverge branch during dpred-mode, it has two

choices: it either treats the branch as a normal (non-diverge) branch or exits dpred-mode

for the earlier diverge branch and enters dpred-mode for thelater branch. We found that a

low-confidence diverge branch seen on the predicted path of adpred-mode-causing diverge

branch usually has a higher probability to be mispredicted than the dpred-mode-causing di-

verge branch. Moreover, dynamically predicating the latercontrol-flow dependent diverge

branch usually has less overhead than predicating the earlier diverge branch because the

number of instructions inside the CFG of the later branch is smaller (since the later branch

is usually a nested branch of the previous diverge branch). Therefore, our DMP implemen-

tation exits dpred-mode for the earlier diverge branch and enters dpred-mode for the later

diverge branch.

Figure 5.6 shows an example of non-preemptive policy. Assume that the processor

enters dpred-mode when it fetches diverge branch A. Later, the processor fetches diverge

84

branch D that also has low-confidence. At that moment, the processor has already fetched

blocks B, C, and G. With non-preemptive policy, the processor exits dpred-mode for branch

A and re-enters dpred-mode for diverge branch D. The processor allocates a new predicate

id register for diverge branch D and then predicates instructions with the new predicate id.

Right before the processor enters dpred-mode for the diverge branch D, it creates a check-

point for the register alias table, GHR, RAS, and PC address associated with path-C. The

instructions on path-C that are older than the checkpoint will still be sent to the pipeline.

When branch A is resolved and if path-C is the correct path, all the instructions on path-

C will have TRUE predicate values and all the instructions onpath-B will have FALSE

predicate values. Similar to the loop mechanism that will bedescribed in Section 5.3.6,

predicate ids that are generated later than the predicate idfor diverge branch C will broad-

cast FALSE values. The processor restores the checkpoint associated with path-C and then

restarts fetch. If path-B is correct and path-C is wrong, allthe instructions on path-C would

have FALSE predicate values.

Note that the storing/restoring of checkpoints on path C needs to happen even in

the baseline processor to support recovery from branch mispredictions. The processor has

to create a checkpoint regardless of whether it enters dpred-mode again or not. Hence,

non-preemptive policy does not add significant extra hardware overhead to the pipeline.

B C

Diverge Branch D G

Diverge Branch A

path−B path−C

Figure 5.6: Control-flow graph (CFG) example for non-preemptive policy

85

5.3.4 Select-µop Mechanism

Select-µops are inserted when the processor reaches the CFM point on both paths.

Select-µops choose data values that were produced from the two paths of a diverge branch

so that instructions after the CFM point receive correct data values from select-µops. Our

select-µop generation mechanism is similar to Wang et al.’s [79]. However, our scheme is

simpler than theirs because it needs to compare only two RATsto generate the select-µops.

A possible implementation of our scheme is as follows:

When a diverge branch that caused entry into dpred-mode reaches the renaming

stage, the processor forks the RAT. The processor uses two different RATs, one for each

path of the diverge branch. We extend the RAT with one extra bit (M -modified-) per

entry to indicate that the corresponding architectural register has been renamed in dpred-

mode. Upon entering dpred-mode, all M bits are cleared. Whenan architectural register is

renamed in dpred-mode, its M bit is set.

When the last predicated instruction reaches the register renaming stage, the select-

µop insertion logic compares the two RATs.6 If the M bit is set for an architectural reg-

ister in either of the two RATs, a select-µop is inserted to choose, according to the predi-

cate register value, between the two physical registers assigned to that architectural reg-

ister in the two RATs. A select-µop allocates a new physical register (PRnew) for the

architectural register. Conceptually, the operation of a select-µop can be summarized

asPRnew=(predicate register value)?PRT:PRNT , wherePRT(PRNT) is the

physical register assigned to the architectural register in the RAT of the taken (not-taken)

path.

A select-µop is executed when the predicate value and the selected source operand

6This comparison is actually performed incrementally everytime a register is renamed in dpred-mode so
that no extra cycles are wasted for select-µop generation. We simplify the explanation by describing itas if it
happens at once at the end of dpred-mode.

86

are ready. As a performance optimization, a select-µop does not wait for a source register

that will not be selected. Note that the select-µop generation logic operates in parallel with

work done in other pipeline stages and its implementation does not increase the pipeline

depth of the processor.

5.3.5 Handling Loop Branches

Loop branches are treated differently from non-loop branches. One direction of

a loop branch is the exit of the loop and the other direction isone more iteration of the

loop. When the processor enters dpred-mode for a loop branch, only one path (the loop

iteration direction) is executed and the processor will fetch the same static loop branch

again. Entering dpred-mode for a loop branch always impliesthe execution of one more

loop iteration.

The processor enters dpred-mode for a loop if the loop-type diverge branch is low

confidence. When the processor fetches the same static loop branch again during dpred-

mode, it exits dpred-mode and inserts select-µops. If the branch is predicted to iterate the

loop once more, the processor enters dpred-mode again with adifferent predicate register

id7, regardless of the confidence of the branch prediction. In other words, once the proces-

sor dynamically predicates one iteration of the loop, it continues to dynamically predicate

the iterations until the loop is exited by the branch predictor. The processor stores the pred-

icate register ids associated with the same static loop branch in a small buffer and these are

later used when the branch is resolved as we will describe in Section 5.3.6. If the branch

is predicted to exit the loop, the processor does not enter dpred-mode again but it starts to

fetch from the exit of the loop after inserting select-µops.

7DMP has a limited number of predicate registers (32 in our model). Note that these registers are not
architecturally visible.

87

5.3.6 Resolution of Diverge Branches

When a diverge branch that caused entry into dpred-mode is resolved, the processor

does the following:

1. It broadcasts the predicate register id of the diverge branch with the correct branch

direction (taken or not-taken). Instructions with the samepredicate id and the same

direction are said to be predicated-TRUE and those with the same predicate id but

different direction are said to be predicated-FALSE.

2. If the processor is still in dpred-mode for that predicateregister id, it simply exits

dpred-mode and continues fetching only from the correct path as determined by the

resolved branch. If the processor has already exited dpred-mode, it does not need to

take any special action. In either case, the pipeline is not flushed.

3. If a loop-type diverge branch exits the loop (i.e., resolved as not-taken in a backward

loop), the processor also broadcasts the predicate id’s that were assigned for later

loop iterations along with the correct branch direction in consecutive cycles.8 This

ensures that the select-µops after each later loop iteration choose the correct live-out

values.

DMP flushes its pipeline for any mispredicted branch that didnot cause entry into

dpred-mode, such as a mispredicted branch that was fetched in dpred-mode and turned out

to be predicated-TRUE.

5.3.7 Instruction Execution and Retirement

Dynamically predicated instructions are executed just like other instructions (except

for store-load forwarding described in Section 5.3.8). Since these instructions depend on

8Note that only one predicate id needs to be broadcast per cycle because select-µops from a later iteration
cannot anyway be executed before the select-µops from the previous iteration are executed (since select-µops
of the later iteration are dependent on the select-µops of the previous iteration).

88

the predicate value only for retirement purposes, they can be executed before the predicate

value (i.e., the diverge branch) is resolved. If the predicate value is known to be FALSE, the

processor does not need to execute the instructions or allocate resources for them. Nonethe-

less, all predicated instructions consume retirement bandwidth. When a predicated-FALSE

instruction is ready to be retired, the processor simply frees the physical register (along

with other resources) allocated for that instruction and does not update the architectural

state with its results.9 The predicate register associated with dpred-mode is released when

the last predicated instruction is retired.

5.3.8 Load and Store Instructions

Dynamically predicated load instructions are executed like normal load instruc-

tions. Dynamically predicated store instructions are sentto the store buffer with their pred-

icate register id. As one would expect, a predicated store instruction is not sent further

down the memory system (i.e., into the caches) until it is known to be predicated-TRUE.

The processor drops all predicated-FALSE store requests. Thus, DMP requires the store

buffer logic to check the predicate register value before sending a store request to the mem-

ory system.

DMP requires support in the store-load forwarding logic. The forwarding logic

should check not only the addresses but also the predicate register ids. The logic can

forward from: (1) a non-predicated store to any later load, (2) a predicated store whose

predicate register value is known to be TRUE to any later load, or (3) a predicated store

whose predicate register is not ready to a later load with thesame predicate register id (i.e.,

9In a high performance out-of-order processor, when an instruction is ready to be retired, the processor
frees the physical register allocated by the previous instruction that wrote to the same architectural register.
This is exactly how physical registers are freed in DMP for non-predicated and predicated-TRUE instructions.
The only difference is that a predicated-FALSE instructionfrees the physical register allocated by itself (since
that physical register will not be part of the architecturalstate) rather than the physical register allocated by
the previous instruction that wrote to the same architectural register.

89

on the same dynamically predicated path). If forwarding is not possible, the load waits.

Note that this mechanism and the structures to support it arethe same as the store-load

forwarding mechanism in dynamic-hammock-predication [43]. An out-of-order execution

processor that implements software predication or wish branches also requires the same

support in the store buffer and store-load forwarding logic.

5.3.9 Interrupts and Exceptions

DMP does not require any special support for handling interrupts or exceptions.

When the pipeline is flushed before servicing the interrupt or exception, any speculative

state, including DMP-specific state is also flushed. There isno need to save and re-

store predicate registers, unlike software predication. The processor restarts in normal

mode right after the last architectural retired instruction after coming back from the inter-

rupt/exception service. Exceptions generated by predicated-FALSE instructions are simply

dropped.

5.3.10 Hardware Complexity Analysis

DMP increases hardware complexity compared to current processors but is an en-

ergy efficient design as we will show in Section 5.5.5. Some ofthe hardware required for

DMP already exists in current processors. For example, select-µops are similar to CMOV

operations and complexµop generation and insertion schemes are already implemented

in x86 processors. Table 5.2 summarizes the additional hardware support required for

DMP and the other processing models. DMP requires slightly more hardware support than

dynamic-hammock-predication and dual-path but much less than multipath.

90

Table 5.2: Hardware support required for different branch processing paradigms.(m+1) is

the maximum number of outstanding paths in multipath.

Hardware DMP Dynamic-hammock Dual-path/Multipath Software predication Wish branches

CFM registers, +1 PCfetch both paths +1/m PC selection betweenFetch support
round-robin fetch in simple hammock round-robin fetch

-
branch/predicated code

Hardware-generated
predicate/path IDs

required required required (path IDs) - -

Branch pred. support +1 GHR, +1 RAS - +1/m GHR, +1/m RAS- -
BTB support mark diverge br./CFMmark hammock br. - - mark wish branches
Confidence estimatorrequired optional (performance)required - required
Decode support CFM point info - - predicated instructionspredicated instructions
Rename support +1 RAT +1 RAT +1/m RAT - -
Predicate registers required required - required required
Select-µop generationrequired required - optional (performance)optional (performance)
LD-ST forwarding check predicate check predicate check path IDs check predicate check predicate

check flush/no flushBranch resolution
predicate id broadcast

check flush/no flush check flush/no flush - check flush/no flush

Retirement check predicate check predicate selective flush check predicate check predicate

5.3.11 ISA Support for Diverge Branches

This section presents an example of how the compiler can transfer diverge branch

and CFM point information to the hardware through simple modifications in the ISA. Di-

verge branches are distinguished with two bits in the ISA’s branch instruction format. The

first bit indicates whether or not the branch is a diverge branch and the second bit indicates

whether or not a branch is of loop-type. If a branch is a diverge branch, the followingN bits

in the program code are interpreted as the encoding for the associated CFM points. A CFM

point address can be encoded as a relative address from the diverge branch address or as an

absolute address without the most significant bits. Since CFM points are located close to a

diverge branch we found that 10 bits are enough to encode eachCFM point selected by our

compiler algorithm. The ISA could dedicate a fixed number of bytes to encode CFM points

or the number of bytes can vary depending on the number of CFM points for each diverge

branch. We allow a maximum of three CFM points per diverge branch. To support early

exit (Section 5.3.3), the compiler also usesL extra bits to encode the maximum distance

between a branch and its CFM point (L is a scaled 4-bit value in our implementation).

91

5.4 Methodology

5.4.1 Simulation Methodology

The evaluation is done with an execution-driven simulator [11] of a processor that

implements the Alpha ISA. An aggressive, 64KB branch predictor is used in the baseline

processor. The parameters of the baseline processor are shown in Table 5.3. A less aggres-

sive processor is also modeled to evaluate the DMP concept ina configuration similar to

today’s processors. Table 5.4 shows the parameters of the less aggressive processor that are

different from the baseline processor.

Table 5.3: Baseline processor configuration

64KB, 2-way, 2-cycle I-cache
Front End fetches up to 3 conditional branches but fetch ends at the first predicted-taken branch

8 RAT ports
64KB (64-bit history, 1021-entry) perceptron branch predictor [36]

Branch Predictors 4K-entry BTB; 64-entry return address stack
minimum branch misprediction penalty is 30 cycles
8-wide fetch/issue/execute/retire
512-entry reorder buffer; 128-entry load-store queue; 512physical registersExecution Core
scheduling window is partitioned into 8 sub-windows of 64 entries each
4-cycle pipelined wake-up and selection logic [76, 8]
L1 D-cache: 64KB, 4-way, 2-cycle, 2 ld/st portsOn-chip Caches
L2 cache: 1MB, 8-way, 8 banks, 10-cycle, 1 port; LRU replacement and 64B line size
300-cycle minimum memory latency; 32 banksBuses and Memory
32B-wide core-to-memory bus at 4:1 frequency ratio; bus latency: 40-cycle round-trip

Prefetcher Stream prefetcher with 32 streams and 16 cache line prefetchdistance (lookahead) [77]

2KB (12-bit history, threshold 14) enhanced JRS confidence estimator [35, 30]DMP Support
32 predicate registers; 3 CFM registers (also see Table 5.2)

The experiments are run using the 12 SPEC CPU 2000 integer benchmarks and

five of the eight SPEC 95 integer benchmarks.10 Table 5.5 shows the characteristics of the

10Gcc, vortex, and perl in SPEC 95 are not included because later versions of these benchmarks are in-
cluded in SPEC CPU 2000.

92

Table 5.4: Less aggressive baseline processor configuration

Fetches up to 2 conditional branches but fetch ends at the first predicted-taken branch;Front End
4 RAT ports
16KB (31-bit history, 511-entry) perceptron branch predictor [36]; 1K-entry BTBBranch Predictors
32-entry return address stack; minimum branch misprediction penalty is 20 cycles
4-wide fetch/issue/execute/retire; 128-entry reorder buffer; 64-entry scheduling windowExecution Core
48-entry load-store queue; 128 physical registers; 3-cycle pipelined wake-up and selection logic

Buses and Memory200-cycle minimum memory latency; bus latency: 20-cycle round-trip

benchmarks on the baseline processor. All binaries are compiled for the Alpha ISA with

the -fast optimizations. We use a binary instrumentation tool that marks diverge branches

and their respective CFM points after profiling. The benchmarks are run to completion

with a reduced input set [46] to reduce simulation time. In all the IPC (retired Instructions

Per Cycle) performance results shown in the rest of the dissertation for DMP, instructions

whose predicate values are FALSE and select-µops inserted to support dynamic predication

do not contribute to the instruction count.

5.4.2 Modeling of Other Branch Processing Paradigms

5.4.2.1 Dynamic-Hammock-Predication

Klauser et al. [43] discussed several design configurationsfor dynamic-hammock-

predication. We chose the following design configurations that provide the best perfor-

mance: (1) Simple hammock branches are marked by the compiler through profiling, (2) A

confidence estimator is used to decide when to predicate a simple hammock.

5.4.2.2 Dual-path

Several design choices for dual-path processors were proposed [32, 27, 45, 1].

The dual-path processor we model fetches instructions fromtwo paths of a low confi-

dence branch using a round-robin scheme. To give priority tothe predicted path (since

93

Table 5.5: Characteristics of the benchmarks:total numberof retired instructions (Insts),
number of static diverge branches (Diverge Br.), number of all static branches (All br.), in-
crease in code size with diverge branch and CFM information (Code size∆), IPC, potential
IPC improvement with perfect branch prediction (PBP IPC∆) in both baseline processor
and less aggressive processor.

baseline processorless aggressive processorInsts Diverge br. All br Code size∆
IPC PBP IPC∆ IPC PBP IPC∆

gzip 249M 84 1.6K 0.12% 2.02 90% 1.77 39%
vpr 76M 434 4.2K 0.35% 1.50 229% 1.39 84%
gcc 83M 1245 29.5K 0.23% 1.25 96% 0.98 46%
mcf 111M 62 1.4K 0.1 % 0.45 113% 0.52 58%

crafty 190M 192 5.1K 0.13% 2.54 60% 1.76 27%
parser 255M 37 3.7K 0.03% 1.50 137% 1.36 65%
eon 129M 116 4.9K 0.01% 3.26 21% 2.05 9%

perlbmk 99M 92 9.4K 0.03% 2.27 15% 1.36 7%
gap 404M 79 4.6K 0.03% 2.88 15% 2.03 9%

vortex 284M 250 13K 0.09% 3.37 16% 1.73 8%
bzip2 316M 74 1.4K 0.11% 1.48 94% 1.39 46%
twolf 101M 235 4.7K 0.16% 2.18 112% 1.71 46%

compress 150M 16 0.6K 0.02% 2.18 139% 1.79 50%
go 137M 117 7.7K 0.08% 0.97 227% 0.86 101%

ijpeg 346M 48 2K 0.04% 2.73 93% 2.05 37%
li 248M 18 1.2K 0.02% 2.15 60% 1.69 34%

m88ksim 145M 158 1.7K 0.13% 3.27 24% 2.10 12%

the branch predictor is more likely to predict a correct direction), the processor fetches

twice as many instructions from the predicted path as from the other path [1]. This is

accomplished by fetching from the other path every third cycle. The configuration of

the confidence estimator is optimized to maximize the benefitof dual-path (13-bit his-

tory, threshold 4). Most of the previous evaluations of dual-path processors increased

the fetch/rename/execution bandwidth to support two paths. However, in our model, the

baseline, dynamic-hammock-predication, dual-path, multipath, and DMP have the same

amount of fetch/rename/execution bandwidth in order to provide fair comparisons.

94

5.4.2.3 Multipath

The modeled multipath processor starts fetching from both pathsevery timeit en-

counters a low-confidence branch, similar to PolyPath [45].The maximum number of out-

standing paths is 8, which we found to perform best among 4, 6,8, 16, or 32 outstanding

paths. The processor fetches instructions from each outstanding path using a round-robin

scheme.

5.4.2.4 Limited Software Predication

Since the Alpha ISA does not support full predication, we model limited soft-

ware predication11 with the following modifications in the DMP mechanism: (1) a diverge

branch is always (i.e., statically) converted into predicated code and eliminated from the

program, (2) only simple and nested hammocks are converted into predicate code, (3) all

basic blocks (instructions) between a diverge branch and the CFM point of the branch are

fetched/predicated, (4) there is no branch misprediction between the diverge branch and

the CFM point since all blocks are predicated, (5) a select-uop mechanism [79] (similarly

to DMP) is employed so that predicated instructions can be executed before the predicate

value is ready.

5.4.2.5 Wish Branches

We model wish branches similarly to limited software predication except that: (1)

the processor decides whether or not to predicate based on the confidence of branch pre-

diction (same as in DMP), (2) the processor can predicate notonly simple and nested ham-

mocks but also loop branches, (3) a wish branch is not eliminated from the program.

11We call it limited software predication, because our software predication does not model the compiler
optimization effect on if-conversion

95

5.4.3 Power Model

We incorporated the Wattch infrastructure [7] into our cycle-accurate simulator.

The power model is based on 100nm technology. The frequency we assume is 4GHz for

the baseline processor and 1.5GHz for the less aggressive processor. We use the aggressive

CC3 clock-gating model in Wattch: unused units dissipate only 10% of their maximum

power when they are not accessed [7]. All additional structures and instructions required

by DMP are faithfully accounted for in the power model: the confidence estimator, one

more RAT/RAS/GHR, select-µop generation/execution logic, additional microcode fields

to support select-µops, additional fields in the BTB to mark diverge branches andto cache

CFM points, predicate and CFM registers, and modifications to handle load-store forward-

ing and instruction retirement. Forking of tables and insertion of select-µops are modeled

by increasing the dynamic access counters for every relevant structure.

5.4.4 Compiler Support for Diverge Branch and CFM Point Selection

Diverge branch and CFM point candidates are determined based on a combination

of CFG analysis and profiling. Simple hammocks, nested hammocks, and loops are found

by the compiler using CFG analysis. To determine frequently-hammocks, the compiler

finds CFM point candidates (i.e., post-dominators) considering the portions of a program’s

control-flow graph that are executed during the profiling run. A branch in a suitable CFG

is marked as a possible diverge branch if it is responsible for at least 0.1% of the total

number of mispredictions during profiling. A CFM point candidate is selected as a CFM

point if it is reached from a diverge branch for at least 30% ofthe dynamic instances

of the branch during the profiling run and if it is within 120 static instructions from the

diverge branch. The thresholds used in compiler heuristicsare determined experimentally.

A detailed evaluation will be presented in Chapter 6. We usedthetrain input sets to collect

profiling information.

96

5.5 Results

5.5.1 Performance of the Diverge-Merge Processor

Figure 5.7 shows the performance improvement of dynamic-hammock-predication,

dual-path, multipath, and DMP over the baseline processor.The average IPC improvement

over all benchmarks is 3.5% for dynamic-hammock-predication, 4.8% for dual-path, 8.8%

for multipath,12 and 19.3% for DMP. DMP improves the IPC by more than 20% on vpr

(58%), mcf (47%), parser (26%), twolf (31%), compress (23%), and ijpeg (25%). A sig-

nificant portion (more than 60%) of branch mispredictions inthese benchmarks is due to

branches that can be dynamically predicated by DMP as was shown in Figure 5.5. Mcf

shows additional performance benefit due to the prefetchingeffect caused by predicated-

FALSE instructions. In bzip2, even though 87% of mispredictions are due to frequently-

hammocks, DMP improves IPC by only 12.2% over the baseline. Most frequently-hammocks

in bzip2 have more than one CFM point and the run-time heuristic used by DMP to decide

which CFM point to use for dynamic predication (Section 5.3.2) does not work well for

bzip2.

Dynamic-hammock-predication provides over 10% performance improvement on

vpr and twolf because a relatively large portion of mispredictions is due to simple ham-

mocks. The performance benefit of dual-path is higher than that of dynamic-hammock-

predication but much less than that of DMP, even though dual-path is applicable to any kind

of CFG. This is due to two reasons. First, dual-path fetches alarger number of instructions

from the wrong path compared to dynamic-hammock-predication and DMP, as was shown

12Klauser et al. [43] reported average 5% performance improvement for dynamic-hammock-predication,
Farrens et al. [27] reported average 7% performance improvement for dual-path (with extra execution re-
sources to support dual-path), and Klauser and Grunwald [44] reported average 9.3% performance improve-
ment for PolyPath (multipath) with a round-robin fetch scheme. The differences between their and our results
are due to different branch predictors, machine configurations, and benchmarks. Our baseline branch predic-
tor is much more accurate than those in previous work.

97

0

5

10

15

20

25

30

35

40

45

50

55

60

IP
C

 d
el

ta
 (

%
)

dynamic-hammock
dual-path
multipath
DMP

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

hm
ea

n

Figure 5.7: Performance improvement provided by DMP vs. dynamic-hammock-
predication, dual-path, and multipath execution

in Table 5.1. Figure 5.8 shows the average number of fetched wrong-path instructions

per each entry into dynamic-predication/dual-path mode inthe different processors. On

average, dual-path fetches 134 wrong-path instructions, which is much higher than 4 for

dynamic-hammock-predication, and 20 for DMP (note that this overhead is incurred even if

the low-confidence branch turns out to be correctly predicted). Second, dual-path is appli-

cable to one low-confidence branch at a time. While a dual-path processor is fetching from

two paths, it cannot perform dual-path execution for another low-confidence branch. How-

ever, DMP can diverge again if another low confidence divergebranch is encountered after

the processor has reached the CFM point of a previous divergebranch and exited dpred-

mode. For this reason, we found that dual-path cannot reduceas many pipeline flushes due

to branch mispredictions as DMP. As Figure 5.9 shows, dual-path reduces pipeline flushes

by 18% whereas DMP reduces them by 38%.

98

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

W
ro

ng
-p

at
h

in
st

ru
ct

io
ns

 p
er

 e
nt

ry

dynamic-hammock
dual-path
multipath
DMP

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

am
ea

n

Figure 5.8: Fetched wrong-path instructions per entry intodynamic-predication/dual-path
mode (i.e., per low-confidence branch)

Multipath performs better than or similarly to DMP on gzip, gcc, and go. In these

benchmarks more than 40% of branch mispredictions are due tonon-merging control flow

that cannot be predicated by DMP but can be eliminated by multipath. Multipath also per-

forms better than dual-path execution on average because itis applicable to multiple out-

standing low-confidence branches. On average, multipath reduces pipeline flushes by 40%,

similarly to DMP. However, because multipath has very high overhead (200 wrong-path

instructions per low-confidence branch, as shown in Figure 5.8), its average performance

improvement is much less than that of DMP.

5.5.2 Comparisons with Software Predication and Wish Branches

Figure 5.10 shows the execution time reduction over the baseline for limited soft-

ware predication and wish branches. Since the number of executed instructions is different

99

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

R
ed

uc
tio

n
in

 p
ip

el
in

e
flu

sh
es

 (
%

)

dynamic-hammock
dual-path
multipath
DMP

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

am
ea

n

Figure 5.9: % reduction in pipeline flushes

in limited software predication and wish branches, we use the execution time metric for

performance comparisons. Overall, limited software predication reduces execution time by

3.8%, wish branches by 6.4%, and DMP by 13.0%. In most benchmarks, wish branches

perform better than predication because they can selectively enable predicated execution

at run-time, thereby reducing the overhead of predication.Wish branches perform signif-

icantly better than limited software predication on vpr, parser, and ijpeg because they can

be applied to loop branches.

There are some differences between results of Chapter 4 and the results of Chap-

ter 5 in the benefit of software predication and wish branches. The differences are due to

the following: (1) our baseline processor already employs CMOVs which provide the per-

formance benefit of predication for very small basic blocks,(2) ISA differences (Alpha vs.

IA-64), (3) in our model of software predication, there is nobenefit due to compiler opti-

mizations that can be enabled with larger basic blocks in predicated code, (4) since wish

100

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

E
xe

cu
tio

n
tim

e
no

rm
al

iz
ed

 to
 th

e
ba

se
lin

e

limited software predication
wish branches
DMP

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

am
ea

n

Figure 5.10: DMP vs. limited software predication and wish branches

branches dynamically reduce the overhead of software predication, they allow larger code

blocks to be predicated, but we could not model this effect because Alpha ISA/compiler

does not support predication.

Even though wish branches perform better than limited software predication, there

is a large performance difference between wish branches andDMP. The main reason is

that DMP can predicate frequently-hammocks, the majority of mispredicted branches in

many benchmarks as shown in Figure 5.5. Only parser does not have many frequently-

hammocks, so wish branches and DMP perform similarly for this benchmark. Figure 5.11

shows the performance improvement of DMP over the baseline if DMP is allowed to dy-

namically predicate: (1) only simple hammocks, (2) simple and nested hammocks, (3)

simple, nested, frequently-hammocks, and (4) simple, nested, frequently-hammocks and

loops. There is a large performance provided by the predication of frequently-hammocks

as they are the single largest cause of branch mispredictions. Hence, DMP provides large

101

performance improvements by enabling the predication of a wider range of CFGs than

limited software predication and wish branches.

0

5

10

15

20

25

30

35

40

45

50

55

60

IP
C

 d
el

ta
 (

%
)

simple (1)
simple-nested (2)
simple-nested-frequently (3)
simple-nested-frequently-loop (4)

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

hm
ea

n

Figure 5.11: DMP performance when different CFG types are dynamically predicated

5.5.3 Analysis of the Performance Impact of Enhanced DMP Mechanisms

Figure 5.12 shows the performance improvement provided by the enhanced mech-

anisms in DMP.Single-cfmsupports only a single CFM point for each diverge branch

without any enhancements. Single-cfm by itself provides 11.4% IPC improvement over

the baseline processor.Multiple-cfmsupports more than one CFM point for each diverge

branch as described in Section 5.3.2. Multiple-cfm increases the performance benefit of

DMP for most benchmarks because it increases the probability of reaching a CFM point in

dpred-mode and, hence, the likelihood of success of dynamicpredication.Mcfm-counter

supports multiple CFM points and also adopts theCounter Policy(Section 5.3.3). Counter

Policy improves performance significantly in twolf, compress, and go; three benchmarks

102

that have a high fraction of large frequently-hammock CFGs where the branch predictor

sometimes deviates from the frequently executed paths.Mcfm-counter-nonprealso adopts

thenon-preemptive Policy(Section 5.3.3) to exit dpred-mode early, increasing the perfor-

mance benefit of DMP to 19.3%. Non-preemptive Policy is beneficial for vpr, mcf, twolf,

compress, and go benchmarks. In these benchmarks, many diverge branches are control-

flow dependent (i.e., nested) on other diverge branches, andcontrol-flow dependent diverge

branches are more likely to be mispredicted.

0

5

10

15

20

25

30

35

40

45

50

55

60

IP
C

 d
el

ta
 (

%
)

single-cfm
multiple-cfm
mcfm-counter
mcfm-counter-nonpre

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

hm
ea

n

Figure 5.12: Performance impact of enhanced DMP mechanisms

5.5.4 Sensitivity to Microarchitecture Parameters

5.5.4.1 Evaluation on the Less Aggressive Processor

Figure 5.13 shows the performance benefit for dynamic-hammock-predication, dual-

path, multipath, and DMP on the less aggressive baseline processor and Figure 5.14 shows

103

0

5

10

15

20

25

30

IP
C

 d
el

ta
 (

%
)

dynamic-hammock
dual-path
multipath
DMP

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

hm
ea

n

Figure 5.13: Performance comparison of DMP versus other paradigms (hardware oriented)
on the less aggressive processor

the execution time reduction over the less aggressive baseline for limited software predica-

tion, wish branches, and DMP. Since the less aggressive processor incurs a smaller penalty

for a branch misprediction, improved branch handling has less performance potential than

in the baseline processor. However, DMP still provides 7.8%IPC improvement by reducing

pipeline flushes by 30%, whereas dynamic-hammock-predication, dual-path and multipath

improve IPC by 1.6%, 1.5%, and 1.3% respectively. Limited software predication reduces

execution time by 1.0%, wish branches by 2.9%, and DMP by 5.7%.

5.5.4.2 Effect of a Different Branch Predictor

We also evaluate DMP with a recently developed branch predictor, O-GEHL [68].

The O-GEHL predictor requires a complex hashing mechanism to index the branch pre-

dictor tables, but it effectively increases the global branch history length. As Figure 5.15

104

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

limited software predication
wish branches
DMP

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

am
ea

n

Figure 5.14: Performance comparison of DMP versus other paradigms (compiler oriented)
on the less aggressive processor

shows, replacing the baseline processor’s perceptron predictor with a more complex, 64KB

O-GEHL branch predictor (OGEHL-base) provides 13.8% performance improvement, which

is smaller than the 19.3% performance improvement providedby implementing diverge-

merge processing (perceptron-DMP). Furthermore, using DMP with an O-GEHL predictor

(OGEHL-DMP) improves the average IPC by 13.3% over OGEHL-base and by 29% over

our baseline processor. Hence, DMP still provides large performance benefits when the

baseline processor’s branch predictor is more complex and more accurate.

Figure 5.16 shows the effect of replacing the baseline processor’s perceptron predic-

tor with a less complex 16KB gshare branch predictor (gshare-16KB). DMP with a 16KB

gshare branch predictor provides 20.3% performance improvement, which is slightly better

than the 19.3% with a perceptron branch predictor (perceptron-64KB). Even if DMP em-

ploys a larger gshare branch predictor (32KB, 64KB), the performance benefit of DMP is

105

0

5

10

15

20

25

30

35

40

IP
C

 d
el

ta
 (

%
)

perceptron-dynamic-hammock
perceptron-dual-path
perceptron-multipath
perceptron-DMP
OGEHL-base
OGEHL-dynamic-hammock
OGEHL-dual-path
OGEHL-multipath
OGEHL-DMP

Figure 5.15: DMP performance with different branch predictors

not reduced even though actual IPC performance is improved.The results show that DMP

is effective at reducing the branch misprediction penalty with other branch predictors.

5.5.4.3 Effect of Confidence Estimator

Figure 5.17 shows the performance of dynamic-hammock-predication, dual-path,

multipath and DMP with 512B, 2KB, 4KB, and 16KB confidence estimators and a per-

fect confidence estimator. Our baseline employs a 2KB enhanced JRS confidence estima-

tor [35], which has 14% PVN (≃ accuracy) and 70% SPEC (≃ coverage) [30].13 Even

with a 512-byte estimator, DMP still provides 18.4% performance improvement. The ben-

efit of dual-path/multipath increases significantly with a perfect estimator because dual-

13These numbers are actually lower than what was previously published [30] because our baseline branch
predictor uses a different algorithm and has a much higher prediction accuracy than that of [30].

106

0

5

10

15

20

25

30

35

40

45

50

55

60

IP
C

 d
el

ta
 (

%
)

gshare-16KB
gshare-32KB
gshare-64KB
perceptron-64KB

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

hm
ea

n

Figure 5.16: DMP performance with gshare branch predictors

0

5

10

15

20

25

30

35

IP
C

 d
el

ta
 (

%
)

512B
2KB
4KB
16KB
perfect

dynamic-hammock dual-path multipath DMP

Figure 5.17: Effect of confidence estimator size on performance

107

path/multipath has very high overhead as shown in Figure 5.8, and a perfect confidence

estimator eliminates the incurrence of this large overheadfor correctly-predicted branches.

However, even with a perfect estimator, dual-path/multipath has less potential than DMP

because (1) dual-path is applicable to one low-confidence branch at a time (as explained

previously in Section 5.5.1), (2) the overhead of dual-path/multipath is still much higher

than that of DMP for a low-confidence branch because dual-path/multipath executes the

same instructions twice/multiple times after a control-independent point in the program.

Figure 5.18 shows the accuracy and the coverage of the confidence estimator along

with the performance improvement of DMP when we vary the threshold (N) of the con-

fidence estimator. When N increases, branches are more likely to be estimated as low

confidence [35], so the accuracy decreases but the coverage increases. Since the accu-

racy does not drop as fast as the coverage improves, DMP results in the best performance

improvement when the coverage of the confidence estimator isthe highest.

0

5

10

15

20

25

30

35

40

(%
)

N = 1
N = 3
N = 5
N = 7
N = 9
N = 11
N = 13
N = 15

accuracy coverage AVG

Figure 5.18: Confidence estimator thresholds

108

Our evaluation employs a JRS confidence estimator. Figure 5.19 shows the perfor-

mance improvement with a perceptron confidence estimator [2]. The results show that the

perceptron based confidence estimator provides 9.11% performance improvement, which

is much less than when the DMP employs the JRS confidence estimator. The main reason

is that the perceptron confidence estimator has lower accuracy and lower coverage than the

JRS confidence estimator. Our experiments show that the perceptron predictor has 5-10%

accuracy with 20-30% coverage when used with our baseline’sbranch predictor.

-5

0

5

10

15

20

25

30

35

40

45

50

IP
C

 d
el

ta
 (

%
)

N = -125
N = -75
N = 0
N = 75
N = 125

gz
ip_

0
vp

r
gc

c
m

cf
cr

af
ty

pa
rs

er

eo
n

pe
rlb

m
ga

p
vo

rte
x

bz
ip2

_

tw
olf

_
co

m
p

go ijp
eg li

m
88

ks
i

hm
ea

n

Figure 5.19: DMP with a perceptron based confidence estimator

5.5.5 Power Analysis

Figure 5.20 (left) shows the average increase/reduction due to DMP in the number

of fetched/executed instructions, maximum power, energy,and energy-delay product com-

pared to the baseline. Even though DMP has to fetch instructions from both paths of every

dynamically predicated branch, the total number of fetchedinstructions decreases by 23%

109

because DMP reduces pipeline flushes and thus eliminates thefetch of many wrong-path

instructions. DMP executes 1% more instructions than the baseline due to the overhead of

select-µops and predicated-FALSE instructions.

-25

-20

-15

-10

-5

0

5

de
lta

 (
%

)

fetched instructions
executed instructions
max power
energy
energy-delay product

baseline less-aggressive

Figure 5.20: Power consumption comparison of DMP with baseline processor (left) and
less aggressive baseline processor (right)

Due to the extra hardware required to support DMP, maximum power consump-

tion increases by 1.4%. However, because of the reduction infetched instructions, energy

consumption is reduced by 9.0%. Moreover, energy-delay product decreases by 22.3% be-

cause of both the performance improvement and energy reduction. Hence, although DMP

increases hardware complexity, it actually increases energy-efficiency by reducing pipeline

flushes due to branch mispredictions. DMP is an energy-efficient design even in the less

aggressive processor configuration as Figure 5.20 (right) shows.

Table 5.7 provides a power/energy comparison of the branch processing paradigms.

DMP reduces energy consumption and energy-delay product much more than other ap-

proaches while it increases the maximum power requirementsslightly more than the most

110

Table 5.6: Power and energy comparison of different branch processing paradigms
Baseline processor

DMP dyn-ham.dual-pathmultipath SW-pred wish br.

Max power∆ 1.4% 1.1% 1.2% 6.5% 0.1% 0.4%
Energy∆ -9.0% -0.7% -2.2% 4.7% -1.5% -2.9%

Energy× Delay∆ -22.3% -0.9% -7.0% -4.3% -1.8% -6.1%

Table 5.7: Power and energy comparison of different branch processing paradigms in less
aggressive baseline processor

Less aggressive baseline processor
DMP dyn-ham.dual-pathmultipath SW-predwish br.

Max power∆ 0.9% 0.8% 0.8% 4.3% 0.1% 0.4%
Energy∆ -5.6% -0.8% 1.1% 3.7% -0.1% -1.5%

Energy× Delay∆ -9.7% -0.5% 0.5% 2.2% 1.2% -2.1%

relevant hardware techniques (dynamic-hammock-predication and dual-path). Note that

multipath significantly increases both maximum power and energy consumption due to the

extra hardware to support many outstanding paths.

5.5.6 The Diverge-Merge Processor Design Configuration

5.5.6.1 Select-µop vs. Conditional Expression Mechanism

DMP uses the select-µop mechanism to effectively execute dynamic predicated in-

structions. Predicated instructions (instructions fetched during dpred-mode) can be ex-

ecuted before predicate value is known. Dynamic predication can also be implemented

using C-style conditional expressions [74]. For example,(p1)r1=r2+r3 instruction is

converted to theµop r1 = (p1) ? (r2+r3) : r1, which is similar to a select-

µop. If the predicate is TRUE, the instruction performs the computation and stores the

result into the destination register. If the predicate is FALSE, the instruction simply moves

the old value of the destination register into its destination register. With the C-style condi-

111

tional expression mechanism, the processor can reduce the overhead of select-µops (gen-

eration of select-µops and execution of select-µops). However, not all instructions fetched

during dpred-mode can be executed until the diverge branch is resolved. The processor also

needs to support one more register read port to support the reading of the old value from

the destination register.

Figure 5.21 shows the performance difference between conditional expression mech-

anism and select-µop mechanism. Since the execution delay due to predicated instructions

is not high in most benchmarks, both mechanisms show similarperformance benefit except

in mcf. Mcf is a memory-limited benchmark. In mcf, critical instructions that generate

L2 cache miss requests cannot be executed until the predicate value is ready if the pro-

cessor employs the conditional expression mechanism. Thisresults in significant delay

in handling L2 misses, which reduces memory level parallelism, thereby leading to the

significant performance degradation. These results show that if a processor cannot afford

a select-µop generation mechanism, converting predicated instructions to conditional ex-

pressions could be useful. However, in that case, the compiler needs to be aware of long

latency operations when generating code for the DMP processor. (In other words, if the

instructions between a diverge branch and the CFM point are more likely to generate cache

misses, it is better not to mark the branch as a diverge branch. Note that this problem also

exists in generating predicated code for an out-of-order processor.)

5.5.6.2 Fetch Mechanisms

DMP fetches instructions from both paths in a round-robin manner during dynamic

predication mode. An alternative design option is to fetch one-path first until the CFM

point and the other path next instead of fetching from two paths in alternate cycles. This

mechanism is calledfetch-one-by-one. The benefit of fetch-one-by-one is that the pro-

cessor does not require two active register alias tables andtwo return address stacks. In

112

-40
-35
-30
-25
-20
-15
-10
-5
0
5

10
15
20
25
30
35
40
45
50
55
60

IP
C

 d
el

ta
 (

%
)

conditional expression
select-uop

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

hm
ea

n

Figure 5.21: Select-µop vs. conditional expression

fetch-one-by-one, when the processor enters dynamic predication mode, it creates a check-

point of the register alias table and fetches the predicted path first (this is the path predicted

to be followed by the branch predictor). When the processor reaches the CFM point on the

predicted path, it restores the checkpoint and starts fetching from the other path. It fetches

from the other path until it reaches the CFM point again. After that, the processor inserts

select-µops by comparing two register alias tables (one is the activeregister alias table and

the other is stored in the checkpoint). Figure 5.22 shows theperformance benefit com-

parison of fetch-one-by-one and round-robin schemes. Fetch-one-by-one performs slightly

worse than the round-robin scheme. However, fetch-one-by-one still provides 17.7% per-

formance improvement. Hence, fetch-one-by-one could be a viable design option if design

constraints prohibit the maintenance of two active register alias tables and return address

stacks at the same time.

113

0

5

10

15

20

25

30

35

40

45

50

55

60

IP
C

 d
el

ta
 (

%
)

fetch-one-by-one
round-robin

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

hm
ea

n

Figure 5.22: Different fetch mechanisms

5.5.7 DMP Analysis

Table 5.8 summarizes the important dynamic predication mode statistics.Useful

dpred-modeshows how often dpred-mode is useful, i.e., the fraction of dpred-mode in-

stances initiated by an actually-mispredicted branch. Theresults show that about 20% of

the dpred-mode instances are useful. The usefulness of a dpred-mode instance is strongly

dependent on the accuracy of the confidence estimator. As Figure 5.18 shows, the accu-

racy of the confidence estimator is about 20%. This explains why useful dpred-mode is

approximately 20%.

Merge probabilityshows how often both paths merge at the same CFM point. On

average, 58.7% dpred-mode instances result in both paths merging at the same CFM point.

However, benchmark that see significant performance benefits –such as vpr, mcf, twolf, li,

and ijpeg– have more than 70% merge probability. Hence, it isimportant for the compiler

114

to choose candidate “hammocks” that are likely to merge.

average select-µopsshows the average number of select-µops generated for each

dynamic dpred-mode. On average about 7 select-µops are generated. Hence, the overhead

of select-µops is not significant compared to the instructions saved dueto an eliminated

pipeline flush.

Table 5.8: Characteristics of dpred-mode
useful dpred-modemerge probabilityaverage select-µops

gzip 20.1 % 37.8 % 14.33
vpr 22.6 % 71.7 % 5.17
gcc 17.7 % 40.3 % 7.00
mcf 17.7 % 78.9 % 3.22

crafty 13.4 % 49.9 % 7.67
parser 18.3 % 50.3 % 5.78
eon 15 % 50.2 % 3.69

perlbmk 20.2 % 60.9 % 7.17
gap 23.4 % 48.7 % 6.49

vortex 15.3 % 59.2 % 5.43
bzip2 21.2 % 19.6 % 13.98
twolf 20.2 % 77.5 % 4.86

compress 21.5 % 68.5 % 10.24
go 19.6 % 42.7 % 9.13

ijpeg 34.3 % 81.8 % 6.70
li 26.3 % 70.7 % 8.65

m88ksim 15.6 % 90.1 % 2.22
amean 20.2 % 58.7 % 7.16

5.5.8 Diverge-Merge Processor and Pipeline Gating

Pipeline gating mechanism was proposed to save energy by reducing the specula-

tive instruction fetch [52]. The processor stops the front-end if there is a certain number

of low-confidence branch instructions inside the pipeline.This pipeline gating mechanism

115

can be applied to the diverge-merge processor also. If thereis a certain number of low-

confidence non-diverge branches inside the pipeline, the processor gates the front-end just

as in the original pipeline gating mechanism. Figure 5.23 shows the performance improve-

ment and energy consumption of pipeline gating on top of DMP.pg-th is the number of

low-confidence branches in the pipeline, which triggers theprocessor gates the pipeline. As

pg-th increases, the energy consumption reduction becomescloser to that of DMP without

pipeline gating. pg-th 15 shows the best Energy-Delay-Product reduction.

0

5

10

15

20

25

Im
pr

ov
em

en
t (

%
)

pg-th=5
pg-th=10
pg-th=15
pg-th=20
pg-th=25
pg-th=30
pg-th=35
DMP

energy energy-delay product performance

Figure 5.23: Pipeline gating mechanisms on DMP

These results show that pipeline gating reduces energy consumption at the cost of

moderate performance loss whereas DMP can reduce energy consumption while at the

same time increasing performance. However, both mechanisms can be used together to

achieve the best energy-delay product.

116

5.6 Summary

This chapter proposed the diverge-merge processor (DMP) asan efficient archi-

tecture for compiler-assisted dynamic predicated execution. DMP dynamically predicates

hard-to-predict instances of statically-selected diverge branches. The major contributions

of the diverge-merge processing concept are:

1. DMP enables the dynamic predication of branches that result in complex control-flow

graphsrather than limiting dynamic predication to simple hammockbranches. The

key insight is that most control-flow graphs look and behave like simple hammock

(if-else) structures when only frequently executed paths in the graphs are consid-

ered. Therefore, DMP can eliminate branch mispredictions due to a much larger set

of branches than previous predication techniques such as software predication and

dynamic hammock predication.

2. DMP concurrently overcomes the three major limitations of software predication

(described in Section 5.1).

3. DMP eliminates branch misprediction flushes much more efficiently (i.e., with less

instruction execution overhead) than alternative approaches, especially dual-path and

multipath execution (as shown in Table 5.1 and Figure 5.8).

Our results show that DMP outperforms an aggressive baseline processor with a

very large branch predictor by 19.3% while consuming 9.0% less energy. Furthermore,

DMP provides higher performance and better energy-efficiency than dynamic hammock

predication, dual-path/multipath execution, software predication, and wish branches.

Furthermore, diverge-merge processor increases the applicability of predication in

4 major ways:

1. It significantly reduces the ISA support required for predicated execution by elimi-

nating the need for ISA-visible predicate registers and predicated instructions.This

117

would enable more processors to support predicated execution regardless of the ISA

they implement.

2. It makes the benefits of predicated execution applicable to a large set of CFGs, es-

pecially complex code structures, with less overhead than static predication.This

enables complex applications with large, complicated CFGsto benefit from predi-

cated execution.

3. It makes predicated execution adaptive to run-time branch behavior, which elimi-

nates the performance degradation sometimes caused by statically predicated code.

Unlike static predication or hyperblocks, the decision of which paths are predicated

and when they are predicated is not statically fixed by the compiler. This enables

more applications to benefit from predicated execution, especially those with branch

phase behavior and whose run-time behavior differs significantly from profile-time

behavior.

4. It makes code generation for predicated execution simpler because the compiler

does not need to decide, without run-time information, which branchesshould be

if-converted. This simplifies the compile-time profiling and cost-benefit analysis

schemes required for predication.

118

Chapter 6

Compiler Algorithms for the Diverge-Merge Processor
Architecture

6.1 Introduction

In the DMP architecture, branches that can be dynamically predicated (i.e.,diverge

branches) and the corresponding control-flow convergence/merge points (CFM-points) are

identified by the compiler and conveyed to the hardware through the ISA. A diverge branch

can be part of either a simple hammock or a frequently-hammock. How the compiler

selects diverge branches and CFM points and how the processor chooses when to predicate

them at run-time are critical factors that determine the performance of dynamic predication

in a DMP processor. This chapter describes the compiler and profiling algorithms for a

DMP processor and explores the tradeoffs involved in the design of these algorithms. This

chapter evaluates the impact of these algorithms on the performance of a DMP processor

and provides insights into what is important to consider in the design of such algorithms.

6.2 Compiler Algorithms for DMP Architectures

The compiler marks the diverge branches and their respective CFM points in a DMP

binary. At run-time, the processor decides whether or not toenter dpred-mode based on

the confidence estimation for a diverge branch. The hardwarehas relatively more accu-

rate dynamic information on whether or not a diverge branch is likely to be mispredicted.

However, it is difficult for the hardware to determine (1) theCFM point of a branch, (2)

119

whether or not dynamically predicating a diverge branch would provide performance ben-

efit. The performance benefit of dynamic predication is strongly dependent on the number

of instructions between a diverge branch and its corresponding CFM points (similarly to

static predication [58, 51, 78, 53]). In frequently-hammocks, the probability that both paths

after a diverge branch reach a CFM point is another factor that determines whether or not

dynamically predicating the diverge branch would provide benefit. Since the compiler has

easy access to both CFG information and profiling data to estimate frequently executed

paths, it can estimate which branches and CFM points would begood candidates to be dy-

namically predicated. Thus, in this section, we develop profile-driven compiler algorithms

to solve the following new problems introduced by DMP processors:

1. DMP introduces a new CFG concept: frequently-hammocks. We develop a compiler

algorithm to find frequently-hammocks and their corresponding CFM points.

2. DMP requires the selection of diverge branches and corresponding CFM points that

would improve performance when dynamically predicated. Wedevelop compiler

algorithms to determine which branches should be selected as diverge branches and

which CFM point(s) should be selected as corresponding CFM point(s). Simple

algorithms and heuristics are developed in this section anda more detailed cost-

benefit model is presented in Section 6.3.

6.2.1 Diverge Branch Candidates

There are four types of diverge branches based on the CFG types they belong to:

simple hammock (Figure 5.4a), nested hammock (Figure 5.4b), frequently-hammock (Fig-

ure 5.4c), and loop (Figure 5.4d). The descriptions of each CFG types are explained in

Section 5.2.3.

We also classify CFM points into two categories: exact and approximate. Exact

CFM pointsare those that are always reached from the corresponding diverge branch, in-

120

dependently of the actually executed control-flow paths between the branch and the CFM

point. In other words, an exact CFM point is the immediate post-dominator (IPOSDOM)

of the diverge branch.Approximate CFM pointsare those that are reached from the corre-

sponding diverge branch only on the frequently-executed paths. Simple and nested ham-

mocks and single-exit loops have only exact CFM points. Frequently-hammocks have

approximate CFM points.

6.2.2 Algorithm to Select Simple/Nested Hammock Diverge Branches and Exact
CFM Points

Algorithm 1 (Alg-exact) describes how to find and select simple and nested ham-

mock diverge branches that have exact CFM points. Simple andnested hammocks have

strictly one exact CFM point, which is the IPOSDOM of the branch. We use Cooper et

al.’s algorithm [22] to find the IPOSDOM. Our algorithm uses the number of instructions

and the number of conditional branches between the branch and the CFM point to select

diverge branches among the possible candidates.

Algorithm 1 Finding and selecting simple/nested-hammock diverge branches and exact
CFM points (Alg-exact)

for eachconditional branchB do
ComputeIPOSDOM(B) of B

num instr ← maximum number of static instructions on any path fromB to
IPOSDOM(B)
num cbr ← maximum number of conditional branches on any path fromB to
IPOSDOM(B)
if (num instr ≤MAX INSTR) and (num cbr ≤MAX CBR) then

markB as a diverge branch candidate withCFM = IPOSDOM(B)
end if

end for

This algorithm eliminates candidates that can reconverge only after a large number

of instructions (MAX INSTR) on any path. This is because the benefit of DMP pro-

121

cessors comes from fetching and possibly executing instructions following the CFM point

after dynamically predicating both paths of a diverge branch. Such control-independent

instructions do not have to be flushed when the diverge branchis resolved. If either the

taken or the not-taken path of the diverge branch is too long,the processor’s instruction

window is likely to be filled before reaching the CFM point, thereby reducing the potential

benefit of DMP. Additionally, instructions on the wrong pathof the dynamically-predicated

branch consume machine resources, increasing the overheadof predication. Therefore, a

branch with a potentially long wrong path before the CFM point (i.e., a branch that has a

large number of instructions between itself and its CFM point) is not a good candidate for

dynamic predication and is not selected as a diverge branch by our algorithm.

Alg-exact also eliminates candidates with a large number ofconditional branches

(MAX CBR) on any path from the branch to the CFM point. DMP can enter dpred-

mode for only one branch at a time. Limiting the number of conditional branches that

are allowed between a diverge branch and its CFM point reduces the likelihood of an-

other low-confidence branch occurring on a predicated path.Since the number of con-

ditional branches is correlated with the number of instructions, we conservatively use

MAX CBR = MAX INSTR/10 in all experiments. We experiment with different

values forMAX INSTR.

6.2.3 Algorithm to Select Frequently-hammock Diverge Branches and Approximate
CFM Points

Algorithm 2 (Alg-freq) describes our algorithm for finding and selecting frequently-

hammock diverge branches and their approximate CFM points.The algorithm uses edge

profiling information to determine frequently executed paths.

While traversing the CFG to compute paths after a branch, only directions (taken/not-

taken) that were executed with at leastMIN EXEC PROB during the profiling run are

122

followed. This threshold (set to 0.001) eliminates the exploration of extremely infrequently

executed paths during the search for paths that merge at CFMs, reducing the processing

time of the algorithm.

Algorithm 2 Finding and selecting frequently-hammock diverge branches and approximate
CFM points (Alg-freq)

1: for eachconditional branchB executed during profilingdo
2: ComputeIPOSDOM(B) of B

3: With a working list algorithm, compute all paths starting from B, up to reaching
IPOSDOM(B) or MAX INSTR instructions orMAX CBR conditional branches,
following only branch directions with profiled frequency≥MIN EXEC PROB.

4: for eachbasic blockX reached on both the taken and the not-taken directions ofB do
5: pT (X)← edge-profile-based probability ofX being reached on the taken direction ofB

6: pNT (X)← edge-profile-based probability ofX being reached on the not-taken direction
of B

7: probability of merging at X ← pT (X) ∗ pNT (X)
8: if (probability of merging at X ≥MIN MERGE PROB) then
9: addX as a CFM point candidate forB

10: end if
11: end for
12: select up toMAX CFM CFM point candidates forB, the ones with the highest

probability of merging at X

13: end for

In addition toMAX INSTR andMAX CBR, the algorithm for selecting frequently-

hammocks uses the probability of merging at each CFM point (MIN MERGE PROB)

and the number of CFM points (MAX CFM). The CFM point candidates with the high-

est probability of being reached on both paths during the profiling run are selected by

our algorithm because dynamic predication provides more benefit if both paths of a di-

verge branch reach a corresponding CFM point.1 If the profiled probability of reaching a

CFM point candidate is lower than a threshold (MIN MERGE PROB), the CFM point

1If both paths after the dynamically-predicated diverge branch do not merge at a CFM point, DMP could
still provide performance benefit. In that case, the benefit would be similar to that of dual-path execution [32].

123

candidate is not selected as a CFM point. Selecting multipleCFM points for a diverge

branch increases the likelihood that the predicated paths after a diverge branch will actu-

ally reconverge and thus increases the likelihood that dynamic predication would provide

performance benefits. Since we found that using three CFM points is enough to get the full

benefit of our algorithms, we setMAX CFM = 3.

6.2.3.1 A chain of CFM Points

Figure 6.1 shows a possible CFG with two CFM point candidates, C and D, for

the branch at A. The DMP processor stops fetching from one path when it reaches the

first CFM point in dpred-mode. Since the taken path of the diverge branch candidate at A

always reaches C before it reaches D, even if both C and D are selected as CFM points, dy-

namic predication would always stop at C. D would never be reached by both dynamically-

predicated paths of the branch at A in dpred-mode, and thus choosing D as a CFM point

does not provide any benefit if C is chosen as a CFM point. Therefore, the compiler should

choose either C or D as a CFM point, but not both. In general, ifa CFM point candidate

is on any path to another CFM point candidate, we call these candidatesa chain of CFM

points. The compiler identifies chains of CFM point candidates based on the list of paths

from the diverge branch to each CFM point candidate, generated by Alg-freq. Then, the

compiler conservatively chooses only one CFM point in the chain, the one with the highest

probability of merging.2

2When there is a chain of CFM points, theprobability of merging at X in Alg-freq has to be modified
to compute the probability of both paths of the diverge branch actually mergingat X for the first time,
instead of justreachingX. For the diverge branch candidate A in Figure 6.1,probability of merging at C

= pT (C) ∗ pNT (C) = 1 ∗ P (BC) = P (BC), where P(BC) is the edge probability from B to C. In contrast,
probability of merging at D = pT (D) ∗ pNT (D) = P (CD) ∗ P (BE) because if the not-taken path of the
branch at A takes BC, the actual merging point would be C instead of D.

124

AA

FF

E

BB

NT

T

C

D

Figure 6.1: Example of a chain of CFM points

6.2.4 Short Hammocks

Frequently-mispredicted hammock branches with few instructions before the CFM

point are good candidates to bealwayspredicated, even if the confidence on the branch

prediction is high. The reason for this heuristic is that while the cost of mispredicting a

short-hammock branch is high (flushing mostly control-independent instructions that were

fetched after the CFM point), the cost of dynamic predication of a short-hammock branch

is low (useless execution of just the few instructions on thewrong-path of the branch).

Therefore, always predicating short-hammock diverge branch candidates with very low

dynamic predication cost is a reasonable trade-off. Our experiments found that always

predicating hammocks that execute fewer than 10 instructions on each path, that have a

probability of merging of at least 95%, and that have a branchmisprediction rate of at least

5% provides the best performance.

Note that, with this heuristic, diverge branch-CFM point pairs that are identified

asshort hammocksare always predicated, unlike regular hammocks. Therefore, any other

CFM point candidates found for the same diverge branch that do not qualify as short ham-

mocks are not selected as CFM points.

125

6.2.5 Return CFM Points

Some function calls are ended by different return instructions on the taken and not-

taken paths of a diverge branch. In this case, the CFM point isthe instruction executed after

the return, whose address is not known at compile time because it depends on the caller

position. We introduce a special type of CFM point calledreturn CFM to handle this case.

When a diverge branch includes a return CFM, the processor does not look for a particular

CFM point address to end dpred-mode, but for the execution ofa return instruction.

6.3 Compile-Time Cost-Benefit Analysis of Dynamic Predication

In the basic algorithms presented in Section 6.2 (Alg-exactand Alg-freq), the com-

piler uses several simple heuristics to select diverge branches and CFM points that are

likely to provide performance benefit during dynamic predication. These algorithms re-

quire theMAX INSTR, MAX CBR, andMIN MERGE PROB thresholds to be

optimized. Determining an effective combination of these parameters may require several

iterations. In this section, we present an analytical cost-benefit model to select diverge

branches and CFM points whose dynamic predication is likelyto be beneficial for over-

all performance. The cost-benefit model still uses Alg-exact and Alg-freq to find diverge

branch and CFM point candidates, but instead of filtering candidates with the compile-

time fixed MIN MERGE PROB, MAX INSTR, andMAX CBR parameters, it

performs a profile-driven cost-benefit analysis.3

3In order to use Alg-exact and Alg-freq, the compiler still needs values forMAX INSTR and
MAX CBR because these parameters also decide the compiler scope forthe CFG analysis. In our cost-
benefit model, we useMAX INSTR = 200 andMAX CBR = 20, which we found to be large enough
to enable the analysis of all CFGs that can profit from dynamicpredication.

126

6.3.1 Simple/Nested Hammocks

During dpred-mode, DMP always incurs some performance overhead in terms of

execution cycles. The overhead of dynamic predication (dpred overhead) is due to the

fetch and possible execution of useless (i.e., wrong-path)instructions. We describe how

a profiling compiler can model the overhead of dynamic predication and make decisions

as to whether or not dynamically predicating a branch instruction would be beneficial for

performance.

There are two cases for which the cost of dynamic predicationof a branch is dif-

ferent. First, if a diverge branch would actually have been correctly predicted, entering

dpred-mode for that branch results only in overhead (dpred overhead) without providing

any benefit. Second, if a diverge branch would actually have been mispredicted, entering

dpred-mode for that branch results in both overhead (dpred overhead) and performance

benefit that is equivalent to saving the branch misprediction penalty (misp penalty cy-

cles). Hence, the overall cost of dynamic predication (dpred cost) in terms of cycles can

be computed as:

dpred cost = dpred overhead ∗ P (enter dpred corr pred)

+(dpred overhead−misp penalty) ∗ P (enter dpred misp) (6.1)

P (enter dpred corr pred) = 1− Acc Conf (6.2)

P (enter dpred misp) = Acc Conf (6.3)

dpred overhead : Overhead of dynamic predication in cycles,

P (enter dpred corr pred) : Probability of entering dpred-mode when a branch is cor-
rectly predicted,

127

P (enter dpred misp) : Probability of entering dpred-mode when a branch is mispre-
dicted,

misp penalty : Machine-specific branch misprediction penalty in cycles, and

Acc Conf : The accuracy of the confidence estimator (i.e., the fractionof low-confidence
branches that are actually mispredicted).

The compiler decides to select a branch as a diverge branch ifthe cost of dynamic

predication, as determined using Equation (6.1), is less than zero (i.e., if the benefit of

dynamic predication is positive in terms of execution cycles):

Select a branch as a diverge branch ifdpred cost < 0 (6.4)

Note that the probability of entering dpred-mode when a branch is correctly pre-

dicted versus when it is mispredicted is a function of the accuracy of the hardware con-

fidence estimator [35]. Confidence estimator accuracy (defined as the percentage of low-

confidence branches that are actually mispredicted, i.e., PVN [30]) is usually between 15%-

50% and is dependent on confidence estimator parameters suchas the threshold values used

in the design [30]. In the calculation of the cost of dynamic predication, the compiler can

use the average accuracy of the confidence estimator based onthe set of profiled bench-

marks or it can obtain the accuracy of the confidence estimator for each individual applica-

tion and use that per-application accuracy. In our analysisthe compiler uses one accuracy

value (Acc Conf = 40%) for all applications.4

6.3.1.1 Estimation of the Overhead of Dynamic Predication

To calculate the overhead of dynamic predication (dpred overhead), the com-

piler first estimates the number of instructions fetched between a diverge branch candi-

4Note that there is a trade-off between coverage (of mispredicted branches) and accuracy in confidence
estimators. We found that the cost-benefit model is not sensitive to reasonable variations inAcc Conf values
(20%-50%).

128

date and the corresponding CFM point (N(dpred insts)). The compiler can estimate

N(dpred insts) in three different ways: (1) based on the most frequently-executed two

paths (using profile data), (2) based on the longest path between the diverge branch can-

didate and the CFM point, (3) based on the average number of instructions obtained using

edge profile data. Equations 6.5-6.11 show how the compiler calculatesN(dpred insts)

with these three different methods using the example presented in Figure 5.1. Note that

the most frequently executed paths are shaded in Figure 5.1.In the equations, N(X) is the

number of instructions in block X, and P(XY) is the edge probability from basic block X

to Y.5 In this chapter, we evaluate methods 2 and 3.

N(dpred insts) = N(BH) + N(CH) (6.5)

N(BH): Estimated number of insts from block B to the beginning of block H

N(CH): Estimated number of insts from block C to the beginning of block H

5Edge profiling assumes that the direction taken by a branch isindependent of the direction taken by a
previous branch, which is not always accurate. However, we use edge profiling due to its simplicity and short
run-time.

129

(Method 1) Based on the most frequently-executed two paths:

N(BH) = N(B) + N(E) (6.6)

N(CH) = N(C) (6.7)

(Method 2) Based on the longest possible path:

N(BH) = MAX{N(B) + N(D) + N(F),

N(B) + N(D) + N(E), N(B) + N(E)} (6.8)

N(CH) = N(C) + N(G) (6.9)

(Method 3) Based on the edge profile data (i.e., average number of instructions):

N(BH) = N(B) + P (BE) ∗N(E) + P (BD) ∗ P (DE) ∗N(E)

+P (BD) ∗N(D) + P (BD) ∗ P (DF) ∗N(F) (6.10)

N(CH) = N(C) + P (CG) ∗N(G) (6.11)

Because not all of the instructions fetched in dpred-mode are useless, the com-

piler also estimates the number of instructions that are actually useful (i.e., those that

are on the correct path). The number of instructions on the correct path in dpred-mode

(N(useful dpred insts)) is calculated as follows.N(BH) andN(CH) can be calculated

with any of above three methods.

N(useful dpred insts) = P (AB) ∗N(BH) + P (AC) ∗N(CH) (6.12)

130

Once the compiler has computedN(dpred insts) andN(useful dpred insts), it can cal-

culatedpred overhead. We calculatedpred overhead in terms of fetch cycles. The actual

cost of dynamic predication is the sum of its fetch overhead and execution overhead. Un-

fortunately, modeling the execution overhead is very complicated in an out-of-order pro-

cessor due to the dataflow-based dynamic execution (which requires an analytical model

of benchmark-dependent data dependence behavior as well asa model of dynamic events

that affect execution). Furthermore, DMP does not execute predicated-FALSE instructions

after the predicate value is known, so the execution overhead is likely not as high as the

fetch overhead. Therefore, we model only the fetch overheadof dynamic predication in our

cost-benefit analysis. The overhead of dynamically predicating a branch in terms of fetch

cycles is thus calculated as:

N(useless dpred insts) = N(dpred insts)−N(useful dpred insts) (6.13)

dpred overhead = N(useless dpred insts)/fw (6.14)

fw: Machine-specific instruction fetch width

useless dpred insts: Useless instructions fetched during dpred-mode

Combining Equation (6.14) with Equations (6.1) and (6.4) gives us the final equa-

tion used by the compiler to decide whether or not a branch should be selected as a diverge

branch:

Select a branch as a diverge branch if

{(N(useless dpred insts)/fw)−misp penalty} ∗ P (enter dpred misp) +

{N(useless dpred insts)/fw} ∗ P (enter dpred corr pred) < 0 (6.15)

131

6.3.2 Frequently-hammocks

The overhead of predicating frequently-hammocks is usually higher than that of

predicating simple or nested hammocks. With a frequently-hammock, the processor might

not reach the corresponding CFM point during dpred-mode. Inthat case, the processor

wastes half of the fetch bandwidth to fetch useless instructions until the diverge branch is

resolved. On the other hand, if the processor reaches the CFMpoint in dpred-mode, the

predication overhead of frequently-hammocks is the same asthat of simple/nested ham-

mocks, as calculated in Equation (6.14). Therefore, we use the following equation to cal-

culate the dynamic predication overhead of a frequently-hammock:

dpred overhead = {1− P (merge)} ∗ {branch resol cycles/2}+

P (merge) ∗ {N(useless dpred insts)/fw} (6.16)

P (merge): The probability of both paths after the candidate branch merging at the CFM
point (based on edge profile data)

branch resol cycles: The time (in cycles) between when a branch is fetched and when it

is resolved (i.e.,misp penalty)

The resultingdpred overhead is plugged into Equations (6.1) and (6.4) to deter-

mine whether or not selecting a frequently-hammock branch as a diverge branch would be

beneficial for performance.

6.3.3 Diverge Branches with Multiple CFM Points

So far, we have discussed how the compiler selects diverge branches assuming that

there is only one CFM point for each diverge branch. However,in frequently-hammocks,

there are usually multiple CFM point candidates for a branch. After reducing the list of

132

CFM point candidates according to Section 6.2.3.1, the overhead of dynamically predicat-

ing a diverge branch with multiple CFM points is computed assuming all CFM points (Xi)

are independent:

dpred overhead =

{
∑

i

N(useless dpred insts(Xi)) ∗ P (merge at Xi)}/fw +

{1−
∑

i

P (merge at Xi)} ∗ {branch resolution cycles/2} (6.17)

N(useless dpred insts(x)): useless dpred insts assumingx is the only CFM

point of the diverge branch candidate

If the diverge branch candidate satisfies Equations (6.1) and (6.4) after using the

dpred overhead developed in Equation (6.17), the branch is selected as a diverge branch

with its reduced list of CFM points.

6.3.4 Limitations of the Model

Note that we make the following assumptions to simplify the construction of the

cost-benefit analysis model:

1. The processor can fetchfw (fetchwidth) number of instructions all the time. There

are no I-cache misses or fetch breaks.

2. During dpred-mode, the processor does not encounter another diverge branch or a

branch misprediction.

3. When the two predicated paths of a diverge branch do not merge, half of the fetched

instructions are useful. This is not always true because theprocessor may reach the

CFM point on one path. In that case, the processor would fetchinstructions only

133

from the path that did not reach the CFM point, which may or maynot be the useful

path.

4. The overhead of the select-µops is not included in the model. We found that this

overhead is negligible; on average less than 1 fetch cycles per entry into dpred-mode.

Especially the first three assumptions do not always hold andtherefore limit the

accuracy of the model. However, accurate modeling of these limitations requires fine-

grain microarchitecture-dependent, application-dependent, and dynamic-event-dependent

information to be incorporated into the model, which would significantly complicate the

model.

6.4 Diverge Loop Branches

DMP dynamically predicates low-confidence loop-type diverge branches to reduce

the branch misprediction penalty in loops. If a mispredicted forward (i.e., non-loop) branch

is successfully dynamically predicated, performance willlikely improve. However, this is

not necessarily true for loop branches. With dynamically-predicated loop branches, there

are three misprediction cases (early-exit, late-exit and no-exit; similarly to wish loops.

Only the late-exit case provides performance benefit (see below). Hence, the cost-benefit

analysis of loops needs to consider these different misprediction cases. In this section,

we provide a cost-benefit model for the dynamic predication of diverge loop branches and

describe simple heuristics to select diverge loop branches.

6.4.1 Cost-Benefit Analysis of Loops

The overhead of correctly-predicted case:Entering dpred-mode when a diverge

loop branch is correctly predicted has performance overhead due to the select-µops inserted

after each dynamically-predicated iteration. We model thecost of select-µops based on the

134

number of fetch cycles they consume as shown below:

dpred overhead = N(select uops) ∗ dpred iter/fw (6.18)

N(select uops): The number of select-µops inserted after each iteration

dpred iter: The number of loop iterations during dpred-mode

Misprediction case 1 (Early-exit): During dpred-mode, if the loop is iterated

fewer times than it should be, the processor needs to executethe loop at least one more time,

so it flushes its pipeline. Hence, the early-exit case has only the overhead of select-µops

and no performance benefit. The overhead is calculated the same way as in the correctly

predicted case (Equation (6.18)).

Misprediction case 2 (Late-exit):During dpred-mode, if the loop is iterated a few

times more than it should be, the misprediction case is called late-exit. Late exit is the

only case for which the dynamic predication of a loop branch provides performance benefit

because the processor is able to fetch useful control-independent instructions after the loop

exit. In this case, the overhead is due to the cost of select-µops and extra loop iterations

(that will become NOPs). However, instructions fetched after the processor exits the loop

are useful and therefore not included in the overhead. The overhead of the late-exit case is

thus calculated as follows:

dpred overhead = N(loop body) ∗ dpred extra iter/fw +

N(select uops) ∗ dpred iter/fw (6.19)

N(loop body): The number of instructions in the loop body

dpred extra iter: The number of extra loop iterations in dpred-mode

135

Misprediction case 3 (No-exit): If the processor has not exited a dynamically-

predicated loop until the loop branch is resolved, the processor flushes the pipeline just

like in the case of a normal loop branch misprediction. Hence, the no-exit case has only

overhead, which is the cost of select-µops as calculated in Equation (6.18).

Thus, the total cost of dynamically predicating a loop is:

dpred cost = dpred overhead(corr pred) ∗ P (enter dpred corr pred)

+ dpred overhead(early exit) ∗ P (early exit)

+ dpred overhead(late exit) ∗ P (late exit)

+ dpred overhead(no exit) ∗ P (no exit)

−misp penalty ∗ P (late exit) (6.20)

dpred overhead(X): dpredoverhead of case X

6.4.2 Heuristics to Select Diverge Loop Branches

According to the cost-benefit model presented in Section 6.4.1, the cost of a diverge

loop branch increases with (1) the number of instructions inthe loop body, (2) the number

of select-µops (We found this is strongly correlated with the loop body size), (3) the average

number of dynamically-predicated loop iterations (dpred iter), (4) the average number

of extra loop iterations (dpred extra iter) in the late-exit case, and (5) the probability

of a dynamic predication case other than late-exit. Unfortunately, a detailed cost-benefit

analysis of each dynamic predication case requires the collection of per-branch profiling

data obtained by emulating the behavior of a DMP processor. In particular, determining

the probability of each misprediction case, the number of dynamically predicated iterations,

and the number of extra iterations in the late-exit case requires either profiling on a DMP

136

processor (with specialized hardware support for profiling) or emulating a DMP processor’s

behavior in the profiler. Since such a profiling scheme is impractical due to its cost, we use

simple heuristics that take into account the insights developed in the cost-benefit model

to select diverge loop branches. These heuristics do not select a loop branch as a diverge

branch if any of the following is true:

1. If the number of instructions in the loop body is greater thanSTATIC LOOP SIZE.

2. If the average number of executed instructions from the loop entrance to the loop

exit (i.e., the average number of instructions in the loop body times the average loop

iteration count) based on profile data is greater thanDY NAMIC LOOP SIZE.

We found that there is a strong correlation between the average number of loop it-

erations anddpred extra iter. Hence, this heuristic filters branches with relatively

highdpred overhead for the late-exit case based on Equation (6.19).

3. If the average number of loop iterations (obtained through profiling) is greater than

LOOP ITER. We found that when a branch has high average number of loop

iterations, it has highP (no exit).

In this chapter, we useSTATIC LOOP SIZE = 30, DY NAMIC LOOP SIZE =

80, andLOOP ITER = 15, which we empirically determined to provide the best perfor-

mance.

6.5 Methodology

6.5.1 Control-flow Analysis and Selection of Diverge BranchCandidates

We developed a binary analysis toolset to analyze the control-flow graphs, imple-

ment the selection algorithms presented in Section 6.2, andevaluate the diverge branch

candidates using the cost-benefit model developed in Sections 6.3 and 6.4. The result of

137

our analysis is a list of diverge branches and CFM points thatis attached to the binary

and passed to a cycle-accurate execution-driven performance simulator that implements a

diverge-merge processor.

A limitation of our toolset is that the possible targets of indirect branches/calls

are not available because our tool does not perform data flow analysis. Therefore, we

cannot exploit possible diverge branches whose taken/not-taken paths encounter indirect

branches/calls before reaching a CFM point. Implementing our techniques in an actual

compiler can overcome this limitation because a compiler has source-level information

about the targets of indirect branches/calls.

6.5.2 Simulation Methodology

Simulation Methodology is described in Section 5.4. The benchmarks are run to

completion with a reduced input set [46] to reduce simulation time. Section 6.6.3 presents

results obtained when the train input sets are used for profiling. All other sections present

results with the reduced input set used for profiling.

6.6 Results

6.6.1 Diverge Branch Selection Algorithms

Figure 6.2 and 6.3 show the performance improvement of DMP with different di-

verge branch selection algorithms. Figure 6.2 shows the performance impact of adding the

results of each selection algorithm one by one cumulatively: Alg-exact (exact), Alg-freq

(exact+freq), short hammocks (exact+freq+short), returnCFM points (exact+freq+short+ret),

and loops (exact+freq+short+ret+loop).6 All algorithms use thresholds that are empirically

6exact+freq+short+ret+loop is calledAll-best-heurin the rest of the chapter, standing for “all techniques,
with the best empirically-determined thresholds, and using heuristics to select diverge branches.”

138

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

IP
C

 d
el

ta
 (

%
)

exact
exact+freq
exact+freq+short
exact+freq+short+ret
exact+freq+short+ret+loop

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

hm
ea

n

Figure 6.2: Performance improvement of DMP with Alg-exact and Alg-freq selection al-
gorithms

determined to provide the best performance.

According to Figure 6.2 the performance benefit of DMP increases as we cumula-

tively employ our diverge branch selection techniques. Using just Alg-exact, DMP provides

a performance improvement of 3.1%. However, when all our techniques are used, the per-

formance improvement of DMP increases to 20.6%. Figure 6.4 provides insight into the

performance increases by showing the number of pipeline flushes in the baseline processor

and in DMP. As we employ more and more of the proposed branch selection algorithms, the

number of pipeline flushes due to branch mispredictions decreases. These results demon-

strate that the proposed mechanisms are effective at selecting diverge branches that provide

performance benefits when dynamically predicated.

As shown in Figure 6.2, selecting frequently-hammocks (Alg-freq) improves aver-

age performance by 11% on top of Alg-exact. Hence, the selection of frequently-hammocks

139

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

IP
C

 d
el

ta
 (

%
)

cost-long
cost-edge
cost-edge+short
cost-edge+short+ret
cost-edge+short+ret+loop

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

hm
ea

n

Figure 6.3: Performance improvement of DMP with cost-benefit analysis based selection
algorithms

is the largest contributor to the performance of dynamic predication. Always predicating

short hammocks improves performance by 3.0% on average and by more than 4% in vpr

(14%), mcf (15%) and twolf (4%). Vpr and twolf have many shorthammocks that are

highly mispredicted and, thus, always predicating them provides significant improvements.

In mcf, the most highly mispredicted branch is a short hammock branch whose predication

provides a 15% performance benefit. Including return CFM points improves performance

by 0.9% on average and by more than 3% in twolf (8.3%) and go (3.6%). Twolf and go have

many hammocks inside function calls that merge at differentreturn instructions. Those

hammocks cannot be diverge branches without the return CFM point mechanism. Finally,

selecting diverge loop branches using the heuristics described in Section 6.4 provides an

additional 2.2% average performance improvement, especially in gzip (6.3%) and parser

(17%). Parser has a frequently-executed small loop in whichan input word is compared to

140

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

P
ip

el
in

e
flu

sh
es

 p
er

 1
00

0
in

st
ru

ct
io

ns base
exact
exact+freq
exact+freq+short
exact+freq+short+ret
exact+freq+short+ret+loop

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

am
ea

n

17.2

Figure 6.4: Pipeline flushes due to branch mispredictions inthe baseline and DMP

a word in the dictionary. The exit branch of this loop is frequently mispredicted (because

the lengths of the input words are not predictable), and therefore its dynamic predication

results in a large performance benefit.

Figure 6.3 shows the performance improvement of DMP if we usethe cost-benefit

analysis developed in Section 6.3 to select diverge branches. The compiler uses two differ-

ent methods to calculate the overhead of dynamic predication: longest path (cost-long),

method 2 in Section 6.3.1.1, and edge-profile-based averagepath (cost-edge), method

3 in Section 6.3.1.1. The cost-edge method provides slightly higher performance than

the cost-long method because cost-edge calculates the overhead of dynamic predication

more precisely. Figure 6.2 also shows the performance impact of adding each algorithm

in sequence with the edge-profiling based cost-benefit analysis: always predicating short

hammocks (cost-edge+short), return CFM points (cost-edge+short+ret), and diverge loops

141

(cost-edge+short+ret+loop).7 Using all these optimizations in conjunction with cost-edge

results in 20.4% performance improvement over the baselineprocessor. Therefore, we

conclude that using cost-benefit analysis (which does not require the optimization of any

thresholds) to determine diverge branches can provide the same performance provided by

using optimized threshold-based heuristics in conjunction with Alg-exact and Alg-freq.

6.6.1.1 Effect of Optimizing Branch Selection Thresholds

Figure 6.5 shows the performance improvement for differentMIN MERGE PROB

andMAX INSTR thresholds when the compiler uses only Alg-exact and Alg-freq. The

results show that it is better to choose lowerMIN MERGE PROB when the number of

instructions between a diverge branch and the CFM is less than 50, since the overhead of

entering dpred-mode for these small hammocks is relativelylow. WhenMAX INSTR is

100 or 200,MIN MERGE PROB=5% results in the best average performance. On av-

erage,MAX INSTR=50,MAX CBR=5, andMIN MERGE PROB=1% provides

the best performance, so we used these thresholds for all other experiments that do not

use the cost-benefit model to select diverge branches. Usinga too small (e.g., 10) or

too large (e.g., 200) threshold value forMAX INSTR hurts performance. A too small

MAX INSTR value prevents many mispredicted relatively large hammocks from being

dynamically predicated, thereby reducing the performancepotential. A too largeMAX INSTR

value causes the selection of very large hammocks that fill the instruction window in dpred-

mode, which significantly reduces the benefit of dynamic predication.

Note that not selecting the best thresholds results in an average performance loss of

as much as 3.7%. Therefore, optimizing the thresholds used in our heuristic-based selection

algorithms is important to obtain the best performance. This observation also argues for

7cost-edge+short+ret+loop is calledAll-best-costin the rest of the dissertation.

142

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

IP
C

 d
el

ta
 (

%
)

MAX_INSTR = 10 (p(merge)=5)
MAX_INSTR = 20 (p(merge)=5)
MAX_INSTR = 50 (p(merge)=1)
MAX_INSTR = 50 (p(merge)=5)
MAX_INSTR = 50 (p(merge)=30)
MAX_INSTR = 50 (p(merge)=70)
MAX_INSTR = 50 (p(merge)=90)
MAX_INSTR = 100 (p(merge)=5)
MAX_INSTR = 200 (p(merge)=5)

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

hm
ea

n

Figure 6.5: Performance improvement of DMP with different MIN MERGE PROB and
MAX INSTR heuristics

the use of the analytical cost-benefit model that does not require the optimization of any

thresholds to provide equivalent performance.

Another conclusion from Figure 6.5 is that selecting only those CFM points with

a large merging probability (MIN MERGE PROB = 90%) provides most of the per-

formance benefit in DMP. Adding CFM point candidates with smaller merge probabilities

incrementally improves average performance by at most 3%, but selecting candidates with

a merge probability lower than 30% provides only negligible(less than 0.1%) benefit. Thus,

DMP gains most of its performance from the frequently executed paths in which control-

flow is very likely to merge at a control-independent point. This result can be used to

optimize (i.e., reduce) the number of CFM points supported by the DMP ISA.

143

6.6.2 Comparisons with Other Diverge Branch Selection Algorithms

Since there is no previous work on compilation for DMP processors, we compare

our algorithms with several simple algorithms to select diverge branches. Figure 6.6 com-

pares the performance of six different algorithms: (1)Every-br: This is the extreme case

where all branches in the program are selected as diverge branches, (2)Random-50: 50%

of all branches are randomly selected, (3)High-BP-5: All branches that have higher than

5% misprediction rate during the profiling run are selected,(4) Immediate: All branches

that have an IPOSDOM are selected. (5)If-else: Only if and if-else branches with no inter-

vening control-flow are selected, (6)All-best-heur: Our best-performing algorithm. Note

that for the simple algorithms (1), (2) and (3), not all branches have corresponding CFM

points.8 If there is no CFM point for a low-confidence diverge branch, then the processor

stays in dpred-mode until the branch is resolved, and any performance benefit would come

from dual-path execution.

Figure 6.6 shows thatEvery-br, High-BP-5, andImmediateare the best-performing

simple algorithms for selecting diverge branches with average performance improvements

of 6.5%, 4.3% 6.4% respectively. However, none of these other algorithms provide as

large performance improvements as our technique, which improves average performance

by 20.6%. We conclude that our algorithms are very effectiveat identifying good diverge

branch candidates.

Note thatEvery-br, High-BP-5, andImmediateshow relatively large performance

improvements in benchmarks where a large percentage of the mispredicted branches are

simple hammock branches (e.g., eon, perlbmk, and li). Only in gcc does one simple al-

gorithm (Every-br) perform almost as well as our scheme. Gcc has very complex CFGs

8If a branch has an IPOSDOM, the IPOSDOM is selected as the CFM point in the explored simple
algorithms.

144

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

IP
C

 d
el

ta
 (

%
)

Every-br
Random-50
High-bp-5
Immediate
If-else
All-best-heur

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

hm
ea

n

Figure 6.6: Performance improvement of DMP with alternative simple algorithms for se-
lecting diverge branches

(that usually do not result in frequently-hammocks), so there are few diverge branch can-

didates. Gcc also has a very high branch misprediction rate (5%). Every-brallows the

processor to enter dpred-mode forall low-confidence branches, which covers 50% of all

mispredicted branches. Therefore,Every-brprovides a similar performance improvement

as that of entering dpred-mode for only carefully selected branches, which covers only 23%

of all mispredicted branches.

6.6.3 Input Set Effects

We developed the algorithms and heuristics in previous sections by profiling and

evaluating with the same input set to exclude the effects of input-set variations on the

evaluation. In this experiment, we use the same algorithms and the same heuristic val-

ues developed in the previous sections, but we profile with the train input set to select

145

diverge branches and CFM points. Figure 6.7 shows the DMP performance when the pro-

filing input set is the same as the run-time input set (same) versus when the profiling input

set is different from the run-time input set (diff). The compiler uses the best performing

heuristic-based optimizations (All-best-heur-same, All-best-heur-diff) and the cost-benefit

model with all optimizations (All-best-cost-same, All-best-cost-diff).

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

IP
C

 d
el

ta
 (

%
)

All-best-heur-same
All-best-heur-diff
All-best-cost-same
All-best-cost-diff

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

hm
ea

n

Figure 6.7: Performance improvement of DMP when a differentinput set is used for pro-
filing

Figure 6.7 shows that the performance improvement providedby DMP is 19.8%

(bothAll-best-heur-diffandAll-best-cost-diff) when different input sets are used for profil-

ing and actual runs. These improvements are only very slightly (0.5%) lower than when

the same input set is used for profiling and actual runs. Only in gzip does profiling with the

same input set significantly outperform profiling with a different input set (by 6.4%) when

the compiler usesAll-best-heurto select diverge branches. Hence, we find that DMP per-

formance is not significantly sensitive to differences in the profile-time and run-time input

146

sets.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

D
yn

am
ic

 n
um

be
r

of
 d

iv
er

ge
 b

ra
nc

he
s

Only-run
Either-run-train
Only-train
Either-run-train

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

co
m

p
go ijp

eg li
m

88
ks

im

Figure 6.8: Dynamic diverge branches selected by differentinput sets (only run-time, only
train, or either input).Left bar: profiling with run-time input, Right bar: profilingwith train input

Figure 6.8 shows whether or not the compiler finds the same setof diverge branches

across input sets. We classify diverge branches into three groups: (1)Only-run: branches

that are selected only when the compiler uses the run-time input set (MinneSPEC’s reduced

input set [46]) for profiling, (2)Only-train: branches that are selected only when the com-

piler uses a different input set (SPEC’s train input set) forprofiling, (3) Either-run-train:

branches that are selected when the compiler uses either input set for profiling. The bars in

Figure 6.8 show the classification of diverge branches when respectively the run-time (left)

and train (right) input sets are used for profiling.

More than 74% of all dynamic diverge branches in all benchmarks are selected

when either input set is used for profiling. Thus, most of the diverge branches identified by

profiling with different input sets are the same. Only gap (26%) has more than 20% and

147

mcf (14%), crafty (13%), vortex (13%), bzip2 (16%) and ijpeg(18%) have more than 10%

of all dynamic diverge branches that are classifed as eitheronly-runor only-train. However,

even with differences of 10-20% in the dynamic diverge branches selected by profiling with

different input sets, only mcf (1%) and crafty (1.6%) show more than 1% IPC degradation

when a different input set is used for profiling. This is due totwo major reasons: (1)

programs have similar sets of highly mispredicted static branches across different input

sets [10], (2) even though a branch may be marked as a diverge branch by the compiler, only

low-confidence diverge branches are actually predicated atrun-time; therefore the selection

of a slightly different set of branches with different profiling input sets does not necessarily

mean that the set of dynamically predicated branches will besignificantly different.

We can make the following conclusions based on our results:

1. Our diverge branch selection algorithms are not significantly sensitive to differences

in the profiling input set.

2. The dynamic nature of predication in the DMP architecturemitigates the effects of

changing the profiling input set by selectively entering dpred-mode and dynamically

choosing which CFM points to use at run-time.

6.7 Summary

This chapter presented and evaluated new code generation algorithms for dynamic

predication in the diverge-merge processor (DMP) architecture. The proposed algorithms

select branches that are suitable and profitable for dynamicpredication based on profiling

information. We explored diverse heuristics to select hammock and loop diverge branches

and corresponding control-flow merge (CFM) points, and someoptimizations based on

program characteristics: always-predicating short hammocks and return CFM points. We

also proposed a new profile-driven analytical cost-benefit model to select branches that are

148

profitable for dynamic predication.

Our results show that, with the proposed branch selection algorithms, a DMP pro-

cessor outperforms an aggressive baseline processor by 20.6%. In contrast, the best-

performing alternative branch selection algorithm results in a performance increase of only

4.5% over the baseline.

149

Chapter 7

Conclusions and Future Research Directions

7.1 Conclusions

Branch misprediction penalty is an important performance limiter and a major rea-

son of wasted energy in high-performance processors. Predication has been used to avoid

pipeline flushes due to branch mispredictions by convertingcontrol dependencies into data

dependencies. However, predication has three major limitations/problems: adaptivity, com-

plex CFG, and ISA, as Chapter 1 showed. This dissertation proposed and evaluated the

adaptive predicated execution paradigm to solve these three limitations/problems.

The adaptive predicated execution paradigm provides a choice to the hardware: the

choice of whether or not to use predicated execution for eachdynamic instance of a branch

instruction. This dissertation proposed two mechanisms toimplement the adaptive predi-

cated execution paradigm, wish branches and the diverge-merge processor architecture.

Chapter 4 proposed wish branches and evaluated the performance benefit of wish

branches. Wish branches are a set of new control flow instructions, that combine both

branch prediction and predicated execution. With wish branches, the compiler generates

code that can be executed either as normal branch code or as predicated code. At run-

time, the hardware chooses between normal branch code and predicated code based on

the run-time branch behavior. Hence, wish branches provideadaptivity to predicated code

to dynamically eliminate the overhead of predicated execution. Furthermore, wish loops

provide a mechanism to exploit predicated execution to reduce the branch misprediction

penalty for backward (loop) branches. The results in Chapter 4 show that wish branches

150

improve the average execution time of nine SPEC INT 2000 benchmarks on an aggressive

out-of-order superscalar processor by 14.2% compared to conditional branch prediction

and by 13.3% compared to the best performing predicated codebinary.

Although wish branches can provide the adaptivity to predicated code, wish branches

still need the predicated ISA support. Furthermore, the compiler cannot convert most com-

plex CFGs to wish branches because wish branch code is generated at static (compilation)

time. Hence, to enable adaptive predicated execution in non-predicated ISA and to over-

come the complex CFG problem of software predicated execution, Chapter 5 proposed the

diverge-merge processor (DMP) and evaluated its performance benefit.

In DMP, instead the compiler produces a predicated version of code, the processor

dynamically predicates instructions. The compiler provides control-flow information (a

diverge branch and the corresponding control-flow merge point) to simplify the hardware

used for dynamically predicating the code. If a diverge branch is hard-to-predict at run-

time, the processor dynamically predicates the instructions between the diverge branch

and the control-flow merge point. Hence, hard-to-predict branches can be executed as

predicated code at run-time without requiring full supportfor predication in the ISA. The

diverge-merge processor can dynamically predicate a branch if frequently executed paths

of the branch look/behave like a simple hammock even though the control flow graph is not

a really hammock. Hence, DMP can also overcome the complex CFG problem. The results

showed that about 66% of dynamic mispredicted branches can be dynamically predicated

in DMP.

Chapter 5 also compared DMP with five major previously-proposed branch pro-

cessing paradigms, both qualitatively in terms of functionality and complexity and quan-

titatively in terms of performance benefits and energy/power consumption. DMP is able

to predicate a much larger set of CFGs that cause mispredictions than dynamic hammock

predication, software predication, wish branches, and dual-path execution because DMP

151

enables the predication of frequently-hammocks. The results showed that DMP has much

less overhead than dual-path/multipath execution paradigms because DMP does not exe-

cute control-independent instructions multiple times. Therefore, the average IPC improve-

ment over all benchmarks is 3.5% for dynamic hammock predication, 4.8% for dual-path,

8.8% for multipath, and 19.3% for DMP. Conventional software predication reduces ex-

ecution time by 3.8%, wish branches by 6.4%, and DMP by 13.0%.DMP provides the

best energy efficiency and energy-delay product (EDP) amongall paradigms, reducing en-

ergy consumption by 9% and improving EDP by 22.3% due to a 38% reduction in pipeline

flushes. Even on a less aggressive processor with a short pipeline and a small instruction

window, DMP improves performance by 7.8% while improving EDP by 9.7%.

Finally, the dissertation also presented the code generation algorithms for DMP

architecture in Chapter 6. The algorithms select branches that are suitable and profitable

for dynamic predication based on profiling information and corresponding control-flow

merge (CFM) points. We also developed a new profile-driven analytical cost-benefit model

to select branches that are profitable for dynamic predication.

Based on the results presented in this dissertation, we believe that the adaptive pred-

icated execution has three major advantages:

1. The adaptive predicated execution overcomes the three major problems/limitations

of predicated execution: adaptivity, complex CFG and ISA.

2. Wish branches in Chapter 4 provide the hardware with a choice to use branch predic-

tion or predicated execution for each dynamic instance of a branch.

3. DMP in Chapter 5 eliminates branch misprediction flushes much more efficiently

(i.e., with less instruction execution overhead) than alternative approaches, especially

dual-path and multipath execution.

152

Hence, we conclude that the adaptive predicated execution paradigm provides a

high performance and energy efficient mechanism to reduce the branch misprediction penalty.

7.2 Future Research Directions

7.2.1 Wish Branch Generation Algorithms

The next step of wish branch research is to develop compiler algorithms and heuris-

tics to decide which branches should be converted to wish branches. For example, an input-

dependent branch, whose accuracy varies significantly withthe input data set of the pro-

gram, is the perfect candidate to be converted to a wish branch. Since an input-dependent

branch is sometimes easy-to-predict and sometimes hard-to-predict depending on the input

set, the compiler is more apt to convert such a branch to a wishbranch rather than predi-

cating it or leaving it as a normal branch. Similarly, if the compiler can identify branches

whose prediction accuracies significantly change depending on the program phase or the

control-flow path leading to the branch, it would be more apt to convert them into wish

branches.

Other compile-time heuristics or profiling mechanisms thatwould lead to higher-

quality wish branch code are also an area of future work. For example, if the compiler

can determine that converting a branch into a wish branch will significantly reduce code

optimization opportunities as opposed to predicating it, it could be better off predicating

the branch. This optimization would eliminate the cases where wish branch code performs

worse than conventionally predicated code due to reduced scope for code optimization.

Similarly, if the compiler can take into account the execution delay due to the data

dependencies on predicates when estimating the execution time of wish branch code on an

out-of-order processor, it can perform a more accurate cost-benefit analysis to determine

what to do with a branch. Such heuristics will also be useful in generating better predicated

153

code for out-of-order execution processors.

7.2.2 Diverge-Merge Processor

The proposed DMP mechanism still requires some ISA support.A cost-efficient

hardware mechanism to detect diverge branches and CFM points at run-time would elimi-

nate the need to change the ISA. Developing such mechanisms is part of the future work.

The cost of implementing the diverge-merge processor couldbe reduced in other

processing paradigms such as Simultaneous Multithreading(SMT). SMT processors al-

ready support multiple fetch mechanisms and multiple active renaming mechanisms, which

will reduce the cost of implementing DMP.

On the compiler side, future research can focus on the exploration of more accu-

rate cost-benefit models. In particular, the proposed cost model for loop diverge branches

in Chapter 6 requires the profiler to collect DMP-specific information. It is worth while

to examine techniques that can make the cost model for selecting loop branches imple-

mentable. Besides static cost-benefit models, explorationof dynamic profiling mechanisms

that collect feedback on the usefulness of dynamic predication at run-time and accordingly

enable/disable dynamic predication is another promising avenue for future research.

154

Appendix

155

Appendix A

Input Dependent Branches

One of the motivations of this dissertation is that branch misprediction rate changes

depending on an input to a program, program phase [69, 72], and a control-path [13, 12]

that leads to a branch. Sherwood and Calder [69] showed that the average program’s branch

misprediction rate has time varying behavior. Chappell [13, 12] quantitatively analyzed

branch misprediction rate characteristics depending on program paths. However, not many

researchers have shown how much individual branch’s misprediction rate is dependent on

input sets. Hence, this appendix discusses input dependentbranches.

A.1 Input Dependent Branches

We classify a conditional branch as input-dependent if its prediction accuracy changes

by a certain threshold value across two input sets. We set this threshold to be 5% in our

analysis. For example, if the prediction accuracy of a branch instruction is 80% with one

input set and 85.1% with another, this branch is considered to be an input-dependent branch

since the delta, 5.1%, is greater than the threshold, 5%.

A.2 Frequency and Characteristics of Input-Dependent Branches

Figure A.1 shows the dynamic and static fraction of conditional branches that show

input-dependent behavior. Train and reference input sets for the SPEC INT 2000 bench-

marks were used to identify the input-dependent branches. Our baseline branch predictor

156

is a 4KB gshare branch predictor. The dynamic fraction is obtained by dividing the number

of dynamic instances of all input-dependent branches by thenumber of dynamic instances

of all branch instructions, using the reference input set. The benchmarks are sorted by the

dynamic fraction of input-dependent branches, in descending order from left to right.1 The

data shows that there are many branches that show more than 5%absolute change in pre-

diction accuracy between the train and reference input sets. More than 10% of the static

branches in bzip2, gzip, twolf, gap, crafty, and gcc are input-dependent branches. Note

that this data is obtained using only two input sets to define the set of input-dependent

branches.

0.00

0.10

0.20

0.30

0.40

0.50

F
ra

ct
io

n
of

 in
pu

t-
de

pe
nd

en
t b

ra
nc

he
s dynamic fraction

static fraction

bzip2 gzip twolf gap crafty parser mcf gcc vpr vortexperlbmk eon

Figure A.1: The fraction of input-dependent branches (using train and reference input sets)

Figure A.2 shows whether or not all input-dependent branches are hard-to-predict.

1Note that input-dependence is a property of astaticbranch. Input-dependence cannot be defined for a
dynamic instance of a branch, since the dynamic instance of abranch is executed only once. We show the
dynamic fraction of input-dependent branches in Figure A.1to provide insight into the execution frequency
of input-dependent branches. All other results in this paper are based onstatic branches.

157

This figure displays the distribution of all input-dependent branches based on their predic-

tion accuracy. Input-dependent branches are classified into six categories based on their

prediction accuracy using the reference input set. The datashows that a sizable fraction

of input-dependent branches are actually relatively easy-to-predict (i.e., have a prediction

accuracy of greater than 95%) in many of the benchmarks. Eventhe fraction of input-

dependent branches with a prediction accuracy greater than99% -which is a very strict

accuracy threshold- is significant for gap (19%), vortex (8%), gcc (7%), crafty (6%), twolf

(4%), and parser (4%). Hence, not all input-dependent branches are hard-to-predict. There

are many input-dependent branches that are relatively easy-to-predict.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
is

tr
ib

ut
io

n
of

 in
pu

t-
de

pe
nd

en
t b

ra
nc

he
s

0-70%
70-80%
80-90%
90-95%
95-99%
99-100%

bzip2 gzip twolf gap crafty parser mcf gcc vpr vortexperlbmk eon

Figure A.2: The distribution of input-dependent branches based on their branch prediction
accuracy

Figure A.3 shows whether or not all hard-to-predict branches are input-dependent.

We classify all branches into six categories based on their prediction accuracy. The fig-

ure presents the fraction of input-dependent branches in each category. For example, in

bzip2, 75% of branches with a prediction accuracy lower than70% are input-dependent

and only 10% of branches with a prediction accuracy between 95-99% are input-dependent.

158

In general, the fraction of input-dependent branches increases as the prediction accuracy

decreases. Thus, branches with a low prediction accuracy are more likely to be input-

dependent. However, many branches with a low prediction accuracy are actually not input-

dependent. For example, in gzip only half of the branches with a prediction accuracy lower

than 70% are input-dependent.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
of

 in
pu

t-
de

pe
nd

en
t b

ra
nc

he
s

99-100%
95-99%
90-95%
80-90%
70-80%
0-70%

bzip2 gzip twolf gap crafty parser mcf gcc vpr vortexperlbmk eon

Figure A.3: The fraction of input-dependent branches in different prediction accuracy cat-
egories

We also measure the overall branch misprediction rate to examine the correlation

between the overall branch misprediction rate difference across input sets and the fraction

of input-dependent branches. Table A.1 shows the average branch misprediction rate for

each input set. Some benchmarks that have a small differencein the overall branch mispre-

diction rate between the two input sets, such as eon and perlbmk, also have a small frac-

tion of input-dependent branches (as can be seen in Figure A.1). For these benchmarks,

profiling with multiple input sets and computing the averagebranch prediction accuracy

would correctly indicate that there are not many input-dependent branches. In contrast,

159

even though twolf and crafty have a small difference in overall branch prediction accuracy

across the two input sets, they have a high number of input-dependent branches. So, just

comparing the overall branch misprediction rate across input sets does not provide enough

information to judge whether or not a benchmark has many input-dependent branches.

Table A.1: Average branch misprediction rates of the evaluated programs (%)

Input Data Set bzip2 gzip twolf gap crafty parser mcf gcc vpr vortex perlbmk eon

train 1.9 7.5 16.4 5.7 12.4 9.1 7.8 7.3 11.2 0.8 5.1 12.2
reference 8.3 6.5 15.7 3.9 11.8 8.9 6.6 2.4 11.1 0.4 5.1 12.1

A.3 Examples of Input-Dependent Branches

What kind of branches are sometimes easy to predict and sometimes hard to pre-

dict? We provide two examples to show the code structures causing input-dependent branch

behavior.

One example of an input-dependent branch is a branch that checks data types. A

branch in the gap benchmark, which is shown on line 5 in FigureA.4, checks whether or

not the data type of a variable (hd) is an integer. The programexecutes different functions

depending on the data type of the variable. The misprediction rate of this branch is 10%

with the train input set, but it is 42% with the reference input set. With the train input

set, the variable is an integer for 90% of the time, so the taken rate of the branch is 90%.

Hence, even a simple predictor achieves 90% accuracy for that branch. In contrast, with

the reference input set, approximately half of the time the variable is of non-integer type

and therefore the branch misprediction rate increases to 42%. Gap is a math program that

can compute using different types of data. It uses a non-integer data type to store values

greater than230. The reference input set contains a large fraction of valuesthat are greater

than230, which are stored in variables of a non-integer data type. Incontrast, most input

160

data values in the train input set are smaller than230 and they are stored as integers. This

results in very different behavior across input sets for thebranch that checks the type of the

input data.

1 :TypHandle Sum (TypHandle hd) {
2 : // initialize hdL and hdR using hd
3 : // ...
4 : // input-dependent br. checks the type of hd (line 5)
5 : if ((long)hdL & (long)hdR & T_INT) {
6 : // use integer sum function for integer type
7 : result = (long)hdL + (long)hdR - T_INT;
8 : ov = (int)result;
9 : if (((ov << 1) >> 1) == ov)
10: return (TypHandle) ov; // return integer sum
11: }
12:
13: // call a special SUM function for non-integer type
14: return SUM(hdL, hdR);
15:}

Figure A.4: An input-dependent branch fromgap

The prediction behavior of a loop branch is strongly dependent on what determines

the number of loop iterations. If the loop iteration count isdetermined by input data, the

prediction behavior of the loop branch is dependent on the input set. If the iteration count

is a large number, then the branch is easy to predict, whereasif the iteration count is small,

the branch can be hard to predict. For example, some loops in the gzip benchmark execute

for different number of iterations depending on the compression level, which is specified

as a parameter to the program. Figure A.5 shows an example. The branch on line 25 is a

loop exit branch. The exit condition is defined on line 18 using pack levelandmaxchain.

pack level is the compression level andmaxchain is the value that determines the number

of loop iterations.maxchainhas a higher value at higher compression levels, as shown on

lines 9-13. At compression level 1, the loop iterates 4 timesand the prediction accuracy

161

of the branch is 75% (3/4) without a specialized loop predictor. But, at compression level

9, the loop iterates 4096 times, so the prediction accuracy of the branch is very close to

100% (4095/4096). Therefore, the branch is input-dependent on the input parameter that

specifies the compression level.

1: typedef struct config {
2: int good_length;
3: int max_lazy;
4: int nice_length;
5: int max_chain;
6: } config;
7:
8: local config config_table[10] = {
9: /* 1 */ {4, 4, 8, 4}, // min compression level
10: // ...
11: /* 4 */ {4, 4, 16, 16},
12: // ...
13: /* 9 */ {32, 258, 258, 4096} // max compression level
14: };
15:
16: /*** Initialization code begin ***/
17: // max chain length is read from the config table
18: max_chain_length = config_table[pack_level].max_chain;
19: unsigned chain_length = max_chain_length;
19: /*** Initialization code end ***/
20:
21: do {
22: // ...
23: // input-dependent loop exit branch (line 25)
24: } while ((cur_match = prev[cur_match & WMASK]) > limit
25: && --chain_length != 0);

Figure A.5: An input-dependent loop exit branch fromgzip

162

Bibliography

[1] P. S. Ahuja, K. Skadron, M. Martonosi, and D. W. Clark. Multipath execution:
opportunities and limits. InProceedings of the 12th International Conference on
Supercomputing, pages 101–108, 1998.

[2] H. Akkary, S. T. Srinivasan, R. Koltur, Y. Patil1, and W. Refaai. Perceptron-based
branch confidence estimation. In10th International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 265–275, 2004.

[3] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of control depen-
dence to data dependence. In10th ACM Symposium on Principles of Programming
Languages, pages 177–189, 1983.

[4] D. Anderson, F. Sparacio, and R. Tomasulo. The IBM system/360 model 91: Ma-
chine philosophy and instruction-handling.IBM Journal of Research and Develop-
ment, 11(1):8–24, Jan. 1967.

[5] D. I. August, D. A. Connors, J. C. Gyllenhaal, and W. W. Hwu. Architectural sup-
port for compiler-synthesized dynamic branch prediction strategies: Rationale and
initial results. InProceedings of the Third IEEE International Symposium on High
Performance Computer Architecture, pages 84–93, 1997.

[6] D. I. August, W. W. Hwu, and S. A. Mahlke. A framework for balancing control flow
and predication. InProceedings of the 30th ACM/IEEE International Symposium on
Microarchitecture, pages 92–103, 1997.

[7] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for architectural-
level power analysis and optimizations. InProceedings of the 27th International
Symposium on Computer Architecture, pages 83 – 94, 2000.

[8] M. D. Brown, J. Stark, and Y. N. Patt. Select-free scheduling logic. InProceedings of
the 34th ACM/IEEE International Symposium on Microarchitecture, pages 204–213,
2001.

163

[9] P.-Y. Chang, E. Hao, and Y. N. Patt. Alternative implementations of hybrid branch
predictors. InProceedings of the 28th ACM/IEEE International Symposium on Mi-
croarchitecture, pages 252–263, 1995.

[10] P.-Y. Chang, E. Hao, Y. N. Patt, and P. P. Chang. Using predicated execution to
improve the performance of a dynamically scheduled machinewith speculative exe-
cution. InProceedings of the 1995 ACM/IEEE Conference on Parallel Architectures
and Compilation Techniques, pages 99—108, 1995.

[11] R. Chappell, P. Racunas, F. Tseng, S. Kim, M. Brown, O. Mutlu, H. Kim, M. Qureshi,
J. A. Joao, and C. J. Lee. The scarab microarchitectural simulator. Unpublished
documentation.

[12] R. S. Chappell. Simultaneous Subordinate Microthreading (SSMT). PhD thesis,
University of Michigan, 2004.

[13] R. S. Chappell, F. Tseng, A. Yoaz, and Y. N. Patt. Difficult-path branch prediction
using subordinate microthreads. InProceedings of the 29th International Symposium
on Computer Architecture, pages 307—317, 2002.

[14] S. Chaudhry, P. Caprioli, S. Yip, and M. Tremblay. High-performance throughput
computing.IEEE Micro, 25(3):32–45, May 2005.

[15] C.-Y. Cher and T. N. Vijaykumar. Skipper: a microarchitecture for exploiting control-
flow independence. InProceedings of the 34th ACM/IEEE International Symposium
on Microarchitecture, pages 4–15, 2001.

[16] Y. Choi, A. Knies, L. Gerke, and T.-F. Ngai. The impact ofif-conversion and branch
prediction on program execution on the Intel Itanium processor. InProceedings of
the 34th ACM/IEEE International Symposium on Microarchitecture, pages 182–191,
2001.

[17] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture optimizations for exploiting
memory-level parallelism. InProceedings of the 31th International Symposium on
Computer Architecture, pages 76—87, 2004.

[18] Y. Chou, J. Fung, and J. P. Shen. Reducing branch misprediction penalties via dy-
namic control independence detection. InProceedings of the 13th International Con-
ference on Supercomputing, pages 109–118, 1999.

164

[19] W. Chuang and B. Calder. Predicate prediction for efficient out-of-order execution.
In Proceedings of the 17th International Conference on Supercomputing, pages 183–
192, 2003.

[20] J. D. Collins, D. M. Tullsen, and H. Wang. Control flow optimization via dynamic
reconvergence prediction. InProceedings of the 37th ACM/IEEE International Sym-
posium on Microarchitecture, pages 129–140, 2004.

[21] Compaq Computer Corporation.Alpha 21264 Microprocessor Hardware Reference
Manual, 1999.

[22] K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fastdominance algorithm.
Software Practice and Experience, 4:1–10, 2001.

[23] A. Cristal, O. J. Santana, F. Cazorla, M. Galluzzi, T. Ramirez, M. Pericas, and M. Valero.
Kilo-instruction processors: Overcoming the memory wall.IEEE Micro, 25(3):48–
57, May 2005.

[24] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph.ACM
Transactions on Programming Languages and Systems, 13(4):451–490, Oct. 1991.

[25] R. R. dos Santos.DCE: The Dynamic Conditional Execution in a Multipath Control
Independent Architecture. PhD thesis, PPGC/UFRGS, 2003.

[26] R. R. dos Santos, T. G. S. dos Santos, M. L. Pilla, P. O. A. Navaux, S. Bampi, and
M. Nemirovsky. Complex branch profiling for dynamic conditional execution. In
Proceedings of the 15th Symposium on Computer Architectureand High Performance
Computing, pages 28—35, 2003.

[27] M. Farrens, T. Heil, J. E. Smith, and G. Tyson. Restricted dual path execution.
Technical Report CSE-97-18, University of California at Davis, Nov. 1997.

[28] A. Gandhi, H. Akkary, and S. T. Srinivasan. Reducing branch misprediction penalty
via selective recovery. InProceedings of the Tenth IEEE International Symposium on
High Performance Computer Architecture, pages 254–264, 2004.

[29] GCC-4.0. GNU compiler collection. http://gcc.gnu.org/.

165

[30] D. Grunwald, A. Klauser, S. Manne, and A. Pleszkun. Confidence estimation for
speculation control. InProceedings of the 25th International Symposium on Com-
puter Architecture, pages 122–131, 1998.

[31] K. Hazelwood and T. Conte. A lightweight algorithm for dynamic if-conversion
during dynamic optimization. InProceedings of the 2000 ACM/IEEE International
Conference on Parallel Architectures and Compilation Techniques, 2000.

[32] T. Heil and J. E. Smith. Selective dual path execution. Technical report, University
of Wisconsin-Madison, Nov. 1996.

[33] P. Hsu and E. Davidson. Highly concurrent scalar processing. InProceedings of the
13th International Symposium on Computer Architecture, pages 386–395, 1986.

[34] Intel Corporation. IA-64 Intel Itanium Architecture Software Developer’s Manual
Volume 3: Instruction Set Reference, 2002.

[35] E. Jacobsen, E. Rotenberg, and J. E. Smith. Assigning confidence to conditional
branch predictions. InProceedings of the 29th ACM/IEEE International Symposium
on Microarchitecture, pages 142–152, 1996.

[36] D. A. Jiménez and C. Lin. Dynamic branch prediction with perceptrons. InProceed-
ings of the Seventh IEEE International Symposium on High Performance Computer
Architecture, pages 197–206, 2001.

[37] D. A. Jiménez and C. Lin. Composite confidence estimators for enhanced speculation
control. Technical report, Department of Computer Sciences, The University of Texas
at Austin, Jan. 2002.

[38] R. Ju, S. Chan, C. Wu, R. Lian, and T. Tuo. Open research compiler for Itanium
processor family. InMICRO-34 Tutorial, 2001.

[39] H. Kim, J. A. Joao, O. Mutlu, and Y. N. Patt. Diverge-merge processor (DMP):
Dynamic predicated execution of complex control-flow graphs based on frequently
executed paths. InProceedings of the 39th ACM/IEEE International Symposium on
Microarchitecture, pages 53–64, 2006.

166

[40] H. Kim, J. A. Joao, O. Mutlu, and Y. N. Patt. Profile-assisted compiler support for
dyanmic predication in diverge-merge processors. InProceedings of the Fifth Inter-
national Symposium on Code Generation and Optimization, pages 367–378, 2007.

[41] H. Kim, O. Mutlu, J. Stark, and Y. N. Patt. Wish branches:Combining conditional
branching and predication for adaptive predicated execution. In Proceedings of the
38th ACM/IEEE International Symposium on Microarchitecture, pages 43–54, 2005.

[42] H. Kim, M. A. Suleman, O. Mutlu, and Y. N. Patt. 2D-profiling: Detecting input-
dependent branches with a single input data set. InProceedings of the Fourth Inter-
national Symposium on Code Generation and Optimization, pages 159–172, 2006.

[43] A. Klauser, T. Austin, D. Grunwald, and B. Calder. Dynamic hammock predica-
tion for non-predicated instruction set architectures. InProceedings of the 1998
ACM/IEEE Conference on Parallel Architectures and Compilation Techniques, pages
278–285, 1998.

[44] A. Klauser and D. Grunwald. Instruction fetch mechanisms for multipath execution
processors. InProceedings of the 32nd ACM/IEEE International Symposium on
Microarchitecture, pages 38–47, 1999.

[45] A. Klauser, A. Paithankar, and D. Grunwald. Selective eager execution on the poly-
path architecture. InProceedings of the 25th International Symposium on Computer
Architecture, pages 250–259, 1998.

[46] A. KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEC benchmark workload
for simulation-based computer architecture research.Computer Architecture Letters,
1, June 2002.

[47] A. K.Uht. Multipath Execution. CRC PRESS, 2005.

[48] Y. Liu, Z. Zhang, R. Qiao, and R. Ju. A region-based compilation infrastructure. In
Proc. of the 7th Workshop on Interaction between Compilers and Computer Architec-
ture, pages 75–84, 2003.

[49] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: Building customized program analysis tools with
dynamic instrumentation. InProgramming Language Design and Implementation,
pages 190–200, 2005.

167

[50] S. A. Mahlke, R. E. Hank, R. A. Bringmann, J. C. Gyllenhaal, D. M. Gallagher, and
W. W. Hwu. Characterizing the impact of predicated execution on branch prediction.
In Proceedings of the 27th ACM/IEEE International Symposium on Microarchitec-
ture, pages 217–227, 1994.

[51] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann. Effective
compiler support for predicated execution using the hyperblock. In Proceedings of
the 25th ACM/IEEE International Symposium on Microarchitecture, pages 45–54,
1992.

[52] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating:Speculation control for
energy reduction. InProceedings of the 25th International Symposium on Computer
Architecture, pages 132–141, 1998.

[53] S. Mantripragada and A. Nicolau. Using profiling to reduce branch misprediction
costs on a dynamically scheduled processor. InProceedings of the 14th International
Conference on Supercomputing, pages 206–214, 2000.

[54] S. McFarling. Combining branch predictors. TechnicalReport TN-36, Digital West-
ern Research Laboratory, June 1993.

[55] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and E. Ayguad́e. Performance,
power efficiency and scalability of asymmetric cluster chipmultiprocessors.Com-
puter Architecture Letters, 5(1), 2006.

[56] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution: An alternative
to very large instruction windows for out-of-order processors. InProceedings of the
Ninth IEEE International Symposium on High Performance Computer Architecture,
pages 129–140, 2003.

[57] ORC. Open research compiler for Itanium processor family. http://ipf-orc.sourceforge.net/.

[58] J. C. H. Park and M. Schlansker. On predicated execution. Technical Report HPL-
91-58, Hewlett-Packard Laboratories, Palo Alto CA, May 1991.

[59] Y. N. Patt, W. Hwu, and M. Shebanow. HPS, a new microarchitecture: Rationale
and introduction. InProceedings of the 18th ACM/IEEE International Symposium on
Microarchitecture, pages 103–107, 1985.

168

[60] Y. N. Patt, S. W. Melvin, W. Hwu, and M. C. Shebanow. Critical issues regarding
HPS, a high performance microarchitecture. InProceedings of the 18th ACM/IEEE
International Symposium on Microarchitecture, pages 109–116, 1985.

[61] D. N. Pnevmatikatos and G. S. Sohi. Guarded execution and dynamic branch predic-
tion in dynamic ILP processors. InProceedings of the 21st International Symposium
on Computer Architecture, pages 120–129, 1994.

[62] E. Quiones, J.-M. Parcerisa, and A. Gonzalez. Selective predicate prediction for out-
of-order processors. InProceedings of the 20th annual international conference on
Supercomputing, pages 46–54, 2006.

[63] E. M. Riseman and C. C. Foster. The inhibition of potential parallelism by conditional
jumps. IEEE Transactions on Computers, C-21(12):1405–1411, 1972.

[64] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. E. Smith.Trace processors. In
Proceedings of the 30th ACM/IEEE International Symposium on Microarchitecture,
pages 138–148, 1997.

[65] E. Rotenberg, Q. Jacobson, and J. E. Smith. A study of control independence in
superscalar processors. InProceedings of the Fifth IEEE International Symposium
on High Performance Computer Architecture, pages 115–124, 1999.

[66] E. Rotenberg and J. Smith. Control independence in trace processors. InProceedings
of the 32nd ACM/IEEE International Symposium on Microarchitecture, pages 4–15,
1999.

[67] R. M. Russell. The CRAY-1 computer system.Communications of the ACM,
21(1):63–72, Jan. 1978.

[68] A. Seznec. Analysis of the O-GEometric History Length branch predictor. InPro-
ceedings of the 32th International Symposium on Computer Architecture, pages 394–
405, 2005.

[69] T. Sherwood and B. Calder. Time varying behavior of programs. Technical Report
UCSD-CS99-630, UC San Diego, 1999.

169

[70] J. W. Sias, S. Ueng, G. A. Kent, I. M. Steiner, E. M. Nystrom, and W. W. Hwu.
Field-testing IMPACT EPIC research results in Itanium 2. InProceedings of the 31th
International Symposium on Computer Architecture, pages 26–37, 2004.

[71] B. Simon, B. Calder, and J. Ferrante. Incorporating predicate information into branch
predictors. InProceedings of the Ninth IEEE International Symposium on High
Performance Computer Architecture, pages 53–64, 2003.

[72] M. D. Smith. Overcoming the challenges to feedback-directed optimization. InACM
SIGPLAN Workshop on Dynamic and Adaptive Compilation and Optimization, pages
1–11, 2000.

[73] E. Sprangle and D. Carmean. Increasing processor performance by implementing
deeper pipelines. InProceedings of the 29th International Symposium on Computer
Architecture, pages 25–34, 2002.

[74] E. Sprangle and Y. Patt. Facilitating superscalar processing via a combined static/dynamic
register renaming scheme. InProceedings of the 27th ACM/IEEE International Sym-
posium on Microarchitecture, pages 143–147, 1994.

[75] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M.Upton. Continual flow
pipelines. InProceedings of the 11th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS-XI), pages 107–
119, 2004.

[76] J. Stark, M. D. Brown, and Y. N. Patt. On pipelining dynamic instruction scheduling
logic. In Proceedings of the 33rd ACM/IEEE International Symposium on Microar-
chitecture, pages 57–66, 2000.

[77] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy. POWER4 system
microarchitecture.IBM Technical White Paper, Oct. 2001.

[78] G. S. Tyson. The effects of predication on branch prediction. In Proceedings of
the 27th ACM/IEEE International Symposium on Microarchitecture, pages 196–206,
1994.

[79] P. H. Wang, H. Wang, R. M. Kling, K. Ramakrishnan, and J. P. Shen. Register renam-
ing and scheduling for dynamic execution of predicated code. In Proceedings of the

170

Seventh IEEE International Symposium on High Performance Computer Architecture,
pages 15–25, 2001.

[80] N. J. Warter, D. Lavery, and W. W. Hwu. The benefit of predicated execution for
software pipelining. InProceedings of the Twenty-Sixth Hawaii International Con-
ference on System Sciences, pages 496–506, 1993.

[81] N. J. Warter, S. A. Mahlke, W. W. Hwu, and B. R. Rau. Reverse if-conversion. In
Proceedings of the ACM SIGPLAN’93 Conference on Programming Language De-
sign and Implementation, pages 290–299, 1993.

[82] T.-Y. Yeh and Y. N. Patt. Two-level adaptive branch prediction. InProceedings of the
24th ACM/IEEE International Symposium on Microarchitecture, pages 51–61, 1991.

[83] T.-Y. Yeh and Y. N. Patt. Alternative implementations of two-level adaptive branch
prediction. InProceedings of the 19th International Symposium on Computer Archi-
tecture, pages 124–134, 1992.

171

Vita

Hyesoon Kim was born in Taejon city, south Korea on August 29,1974, the daugh-

ter of Mr. Sunsam Kim and Ms. Sookja Lee. She graduated from Taejon Science High

School. She received the Bachelor of Science degree in Mechanical Engineering from

Korea Advanced Institute of Science and Technology (KAIST)in 1996. She received the

Master of Science degree in Mechanical Engineering from Seoul National University in

1998. The following year she started working at Hyundai-Motor company as a researcher

until she entered the Ph.D. program at the University of Texas at Austin in the fall of 2000.

She received the Master of Science and Engineering degree inElectrical Engineering in

2003, after which she continued her Ph.D studies.

While in graduate school, she served as a teaching assistantfor two semesters at the

University of Texas at Austin. She had summer internships atIntel for four times. She has

published papers in major computer architecture and compiler conferences and journals

(MICRO, ISCA, HPCA, CGO, IEEE-TC, IJPP). Three of the papersshe co-authored have

been selected in a collection of the most industry-relevantcomputer architecture research

papers by theIEEE Micro technical magazine in the years 2005 and 2006.

Permanent address: Sam-mu-ri APT 212-1901, Dunsang-dong,Seou-gu
Taejon, Korea

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of Donald
Knuth’s TEX Program.

172

