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Even after decades of research in branch prediction, brpregfictors still remain
imperfect, which results in significant performance losaggressive processors that sup-
port large instruction windows and deep pipelines. Preadat@&xecution can reduce the
number of branch mispredictions by eliminating hard-tegict branches. However, the
additional instruction overhead and data dependenciesadpeedicated execution some-
times offset the performance benefits of having fewer mdipt®ns. This dissertation
presents two cooperative compiler-microarchitecturelmacsms to reduce the branch mis-
prediction penalty by combining predicated execution arahbh prediction.

The first mechanism is a set of new control flow instructioadled wish branches.
With wish branches, the compiler generates code that caxéauted either as normal
branch code or as predicated code. At run-time, the hardelameses between normal
branch code and predicated code based on the run-time bib@hetvior and the estimated
run-time effectiveness of each solution. The results sh@at wish branches can signifi-
cantly improve both performance and energy efficiency cargbéo predication or branch

prediction.

Vii



To provide the benefit of predicated code to non-predicatstiuction Set Archi-
tectures (ISAs) and to increase the benefit of predicatedutiom beyond the benefit of
wish branches, this dissertation also presents and eealtia¢ Diverge-Merge Processor
(DMP) architecture. In the diverge-merge processor, timegiler analyzes the control-flow
graphs of the program and marks branches suitable for dynpredication —called di-
verge branches— and their corresponding control flow meoggs The hardware not only
chooses whether to use branch prediction or predicatidralba decides “which” instruc-
tions after a branch should be predicated based on run-tiamehb behavior. This solution
significantly reduces the overhead of predicated code dosah very large set of control-
flow graphs to be predicated, neither of which was possil®@gipusly because predication
was performed statically without any run-time informatioihis dissertation compares
DMP with all other major previously-proposed branch prateg paradigms available in
the literature in terms of performance, power, energy consion, and complexity. The
results show that DMP is the most energy-efficient and higtigpmance paradigm for
branch handling. Code generation algorithms for the DMmiggcture and cost-benefit

analysis models of dynamic predication are also evaluated.
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Chapter 1

Introduction

Today’s high performance processors employ deep pipelomsgpport high clock
frequencies. Some processing cores in near-future chipipradessors are expected to
support a large number of in-flight instructions [56, 17,18, 23] to extract both memory-
level parallelism (MLP) and instruction level parallelisfit.P) in order to obtain high
performance and energy-efficiency on the serial portionapgflications [55]. The per-
formance benefit and energy efficiency of both pipelining ampporting a large number
of in-flight instructions depend critically on the accurasfythe processor’s branch predic-
tor [73, 56, 75]. Even after decades of research in brandtigiien, branch predictors still
remain imperfect. Hard-to-predict branches are freqyentspredicted, and they not only

limit performance but also result in wasted energy.

1.1 The Problem: The Limitations of Predicated Execution

Predication has been used to avoid pipeline flushes due mehmispredictions
by converting control dependencies into data dependeftjiesVith predication, the pro-
cessor fetches instructions from both paths of a branch dmmats only results from the
correct path, effectively avoiding the pipeline flush asst@a with a branch misprediction.

However, predication has the following problems/limiteus:

1. Adaptivity: Predication is not adaptive to run-time branch behavioabse a stat-
ically if-converted branch instruction remains if-contest regardless of whether or



not its instances are hard-to-predict at run-time.

Figure 1.1 shows the execution time of predicated code igimarith different inputs.
The data is measured on an Itanium-Il machine and binarees@npiled with the
ORC-2.0 compiler [57]. Data is normalized to the executioretof a non-predicated
code binary for each input. The results show that predicatete binaries gener-
ally provide performance benefit over the non-predicatededoinaries. But, they
sometimes perform worse. For example, for mcf, predicatet®@rovides a 9% per-
formance improvement for input-C, but causes a 4% perfoomaoss for input-A.
For bzip2, predicated code only provides a 1% improvemanifaut-C, but causes
a 16% loss for input-A. Hence, the performance of predicaestution is highly
dependent on the run-time input set of the program. AppeAdmll discuss input

dependent branches.

== input-A

Execution time normalized to no predication

gzip vpr gcce mcf  crafty parser perlomk gap vortex bzip2  twolf

Figure 1.1: Relative execution time normalized to a nordjmated binary on a real
Itanium-I11 processor.



2. Complex CFG: The performance potential of predication is limited beesaigarge
set of control-flow graphs (CFGSs) either cannot be or are liysnat converted to
predicated code by compilers because they are too complthegrcontain loops,
function calls, indirect branches, too many instructiab®, [3, 57, 29]. Current com-
pilers [57, 29] usually do not predicate large and complexs€Because their predi-
cation would cause a large performance overhead.

3. Instruction Set Architecture (ISA): Predication requires significant changes to the
ISA, in particular the addition of predicate registers angeldicated instructions.

To overcome these three limitations/problems, this diasen proposes and eval-
uatesadaptive predicated execution

1.2 Solution: Adaptive Predicated Execution

The adaptive predicated execution paradigm provides acehmi the hardware:
the choice of whether or not to use predicated executioreémh dynamic instancef
a branch instruction. The compiler is not good at decidingcWibranches are hard-to-
predict because it does not have access to run-time infaman contrast, the hardware
has access to accurate run-time information about eaclthrabhe adaptive predicated
execution paradigm divides the work of predication betwiberhardware and the compiler
based on what each of them is better at: the compiler is battanalyzing the control
flow comprehensively and generating code and the hardwanettier at making decisions
based on observed run-time behavior. With adaptive présticexecution, the hardware
can efficiently choose between predication and branch giiedi depending on whether
the branch is hard-to-predict or easy-to-predict.

The adaptive predicated execution paradigm includes twehar@smswish branches
and thediverge-merge processor (DMRjchitecture.



With wish branches, the compiler produces code that can beutsd either as
predicated code or normal branch code. At run-time the haredwan efficiently choose
between predicated code and conditional branch code deygeod whether the branch is

hard-to-predict or easy-to-predict.

Wish branches can overcome the lack of adaptivity probletrirtherit the limita-
tions of software predication (the ISA problem and the ca@r|@FG problem) except they
can be applied to loop branches. To overcome all three pmhléhe diverge-merge pro-
cessor (DMP) is proposed. In DMP, in contrast to the wish tlnanechanism, the compiler
does not produce a predicated version of the code, but iigige\control-flow information
to simplify the hardware used for dynamically predicatihg tode. The compiler marks
suitable branches in the binary as candidates for dynaredigation. These branches are
calleddiverge branchesThe compiler also marks the control-flow merge point cqroesl-
ing to each diverge branch. If a diverge branch is hard-esjt at run-time, the processor
dynamically predicates the instructions between the d&vdaranch and the control-flow
merge point using the hints provided by the compiler. Heheed-to-predict branches can
be eliminated at run-time through cooperation between tmpiler and microarchitec-
ture without requiring full support for predication (i.gredicate registers and predicated
instructions) in the ISA.

1.3 Thesis Statement

Adaptive predicated execution is a generalized and eneffigient compiler and
microarchitecture cooperation technique that can redoedtanch misprediction penalty
in high performance processors.



1.4 Contributions

e Branch instruction handling: This dissertation presents both wish branches and
the diverge-merge processor, which are two new techniqureeélucing the branch
misprediction penalty by combining the benefits of predidagxecution and branch
prediction in energy-efficient ways that do not significgnticrease the hardware

complexity.

e Overcoming the limitations of predicated execution This dissertation presents the
diverge-merge processor (DMP) architecture to overcometajor limitations/problems
of software predication: adaptivity, complex-CFG, and Ifblems. This disser-
tation also presents profile-driven compiler code genemagigorithms for dynamic

predicated execution in the DMP architecture.

e Predication of backward branches This dissertation presents wish loops that ex-
ploit predicated execution to reduce the branch misprigtigienalty for backward

(loop) branches.

1.5 Dissertation Organization

This dissertation is organized into seven chapters. Chapovides background
on predicated execution. Chapter 3 shows related work indbrdnandling paradigms.
Chapter 4 presents wish branches, and evaluates the parfoenbenefit of wish branches.
Chapter 5 presents and evaluates the diverge-merge poocassitecture, which over-
comes the three major limitations of predicated executi©hapter 6 discusses and eval-
uates compiler algorithms for the diverge-merge processamally, Chapter 7 provides
conclusions, a summary of the key results and insights pteden this dissertation, and
future directions for adaptive predicated execution.



Chapter 2

Background on Predicated Execution

This chapter provides a brief background on predicatedwdiat The next chapter
will describe the previous research on predicated executio

2.1 Predicated Execution

Figure 2.1 shows an example source code, the corresponsiésgndly code with
branches (normal branch code - 2.1a) and the correspondsegibly code with predica-
tion (predicated code - 2.1b). In branch prediction, thecpssor speculatively fetches and
executes block B or C based on the predicted direction of taadh in block A. When
the branch is mispredicted, the processor flushes its pgealnd rolls back to the end of
block A and fetches the alternate block. In predication,ghezessor fetches both block
B and block C. Instructions in blocks B and C are not execut&d the predicate value
(p1in Figure 2.1) is resolvetiSince there is no speculative execution, there is no pigelin
flush penalty. However, the processor always fetches antlige® instructions from both
control-flow paths.

1Depending on microarchitecture designs, predicatediostms can be executed first and later commit-
ted when the predicate value is evaluated (e.g., the predstia@ mechanism in [79]). However, even in that
design, the instructions can be executed first but the seetithe predicated instructions still cannot be used
by the later instructions until the predicate value is ready



}

}

if (cond) {

b=b-1;
a=b+g;
d=d+a;

else {

b=b+1;
a=b+c;
d=d-aq;

(code)

A

not—ta)ke/n/\iaken

B C

S

D

A pl = (cond)
branch pl, TARGET
B add b, b, 1
add a, b, c
subd, d, a
branch.uncond JOIN
C|TARGET:
subb, b, 1
adda, b, c
addd, d, a

D[ JOIN:

(@)

@

pl = (cond)
('pl) add b, b, 1
(pl) subb, b, 1
add a, b, ¢
('pl) subd, d, a
(pl) add d, d, a

(b)

Figure 2.1: Source code and the corresponding assemblyfoo¢k) normal branch code
(b) predicated code

2.1.1 The Cost of Predicated Execution

Equations (2.1) and (2.2) show the cost of normal branch @kthe cost of

predicated code respectively. The compiler decides whethaanch is converted into

predicated code or stays as a branch based on Equation §73%3].

Exec_cost(normal branch) = exec T x P(T) + exec_N % P(N) (2.1)

Exec_cost(predicated code) = exec_pred

+misp_penalty x P(misp)

(2.2)

Exec_cost(normal branch) > FEzec_cost(predicated code) (2.3)

exzec_ T Execution time of the code when the branch under considerat taken,



exec_N: Execution time of the code when the branch under considerét not taken,
P(case): The probability of the case; e.g., P(T) is the probabilitsittthe branch is taken,
misp_penalty: Machine-specific branch misprediction penalty, and

exec_pred: Execution time of the predicated code.

To demonstrate how sensitive Equation (2.1) is to the bramsprediction rate, we
apply the equation to the code example shown in Figure 2.1 séVenisppenalty to 30
cycles, execT to 3 cycles, exed\ to 3 cycles, exepred to 5 cycles. Figure 2.2 displays
the two equations, (2.1) and (2.2), as the branch mispiedicate is varied on the X-axis.
With the given parameters, if the branch misprediction imtess than 7%, normal branch
code takes fewer cycles to execute than predicated codee Hranch misprediction rate is
greater than 7%, predicated code takes fewer cycles thanahdaranch code. Therefore,
we need a mechanism which chooses between branch prediatigoredication depending

on the run-time branch behavior.
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Figure 2.2: Execution time of predicated code and non-pegdd code vs. branch mispre-
diction rate



2.1.2 Nested Hammocks

Predicated execution can be used not only for a simple hariec,i f - el se)
but also for a nested hammock (i.e., nestéd el se). Figure 2.3 shows an example of
branch code and predicated code for a nested hammock. Iexaisple, the branch at
basic block B, which is the control-flow dependent branclousth be executed only if p1
value is TRUE (i.e., when the branch at basic block A is tak&NpD operation is performed

over the predicate values to change p2 value only if p1 vaUd&RUE.

2.2 Microarchitecture Support for Out-Of-Order Processors: Regis-
ter Renaming Problem

In an out-of-order processor, predication complicatesstegrenaming because a
predicated instruction may or may not write into its dedimaregister depending on the
value of the predicate [74]. This problem is called thaltiple definition problenm [19].
Figure 2.4 demonstrates an example of the multiple defmpimblem. In this example,
instructions will write a value into register R33 dependorgthe predicate (P6). The ADD

instruction does not know which value will be in R33 until {medicate value is known.

Several solutions have been proposed to handle this proloiemerting predicated
instructions into C-style conditional expressions [74§dking predicated instructions into

two p.0ps [21], the select:op mechanism [79], and predicate prediction [49].

2.2.1 Converting a Predicated Instruction Into a C-style Canditional Expression

A predicated instruction is transformed into another instion similar to a C-style

conditional expression. For examplelP6) MOV R33 = 1 instruction is converted to

2In this dissertation, the C-style conditional expressi@thanism is used as the baseline processor mech-
anism.



o8}
@]
@O0 |m|>

A (if (cond1) { A

Ny

if (cond2) {

D(g=1; SN

} D

C (else {

b=0;

}
G pan- A pl = cond1 pl=condl
branch p1, TARGET1 (p1) movb,1
p2 = pl & (cond2)
(code) C mov b, 0 (p2) movd, 1
uncond br. TARGET?2 ('pl) movb, 0
B ) addc, b, d
TARGET1:
mov b,1
p2 = cond2
branch !'p2 TARGET2
mov d,1
G | TARGET2:
addc, b, d

(@) (b)

Figure 2.3: Nested f - el se source code and the corresponding assembly code for (a)
normal branch code (b) predicated code

thepopR33 = P6 ? 1 : R33. If the predicate is TRUE, the instruction performs
the computation and stores the result into the destinagigister. If the predicate is FALSE,
the instruction simply moves the old value of the destirmategister into its destination reg-
ister, which is architecturally a NOP operation. Henceardtess of the predicate value, the

instructionalwayswrites into the destination register, allowing the deperadiestructions

10



Instruction propagation through pipeline
Assembly code

CMP.EQ P6 = R34, R32 ;;
CMP.EQ P6 = R34, R32 ;;

(IP6) MOV R33 = 20;; -
ADD R4 =R33,5 ADD R4 =R33,5

Figure 2.4: An example of the multiple definition problem]19

to be renamed correctly. This mechanism requires four tegg®urces (the old destination

register value, the source predicate register, and the twrre registers).

2.2.2 Breaking a Predicated Instruction into Twouops

The CMOQV instruction in the Alpha ISA behaves like the C-stgbnditional ex-
pression. For exampl€MOV Ra, Rb, RcisthesameaBc = Ra ? Rb : Rc.
This mechanism requires an extra input source, which regulin extra input source only
for the CMOQV instruction. To remove this special case, Al@1264 decomposes the

CMOV instruction into two 2-operand instructions [21].
The Alpha architecture instruction  CMOV Ra, Rb, Rc
Becomes the 21264 instructions CMOV1 Ra, oldRmewRcl

CMOV2 newRcl, Rb= newRc2

The first instruction, CMOV1, tests the value of Ra and resdit result of this
instruction in a 65th bit of its destination register, neviRwhich is a temporary physical
register. It also copies the value of the old physical destim register, oldRc, to newRc1.
The second instruction, CMOV2, then copies either the valugewRc1 or the value in

Rb into a second physical destination register, newRczdaa the CMOV predicate bit

11



stored in the 65th bit of newRc1.

The negative effect of this mechanism is that it increasesittmber ofuops since

every CMOV instruction becomes two micro-ops.

2.2.3 The Selecyzop Mechanism

To reduce the number of extreps, Wang et al.[79] proposed the selgop mech-
anism. Similar to the static single assignment (SSA) forselact.op is inserted to select
between multiple renamed registers based on the guardedjgate value. Multiple re-
named registers and their guarding predicates are assam#te source operands of the
selectzop. A new renamed register allocated for the result of thectelop can then
be referenced by all subsequent consumer instructions. cdte in Figure 2.4 has two
instructions which write different values in architecturegister R33. For example, ar-
chitectural register R33 in instructiorf P6) MOV R33 = 1) is allocated to physical
register PR10 and architectural register R33 in instruc{ld P6) MOV R33 = 1) is
allocated to physical register PR20. The selegp mechanism inserts a seleatp in-
struction PR30 = P6 ? PR10 : PR20)to choose between two physical registers.
The selectzop will write the result into a new physical register (PR3Mem the predi-
cate value is evaluated. The selgcp mechanism also updates the register alias table, so
younger instructions source PR30 for architecture regR&3.

The selectzop mechanism could reduce the numberops by combining multiple
CMOQV instructions to one selegtop when there are several instructions that have the same

destination registers but different predicate values.[79]

2.2.4 Predicate Prediction

Chuang and Calder [19] proposed a predicate predictor ieegbe multiple def-

inition problem. The predicate value is predicted at theiti@gg of the renaming stage

12



so only the instructions whose predicate values are prdiict be TRUE are renamed and
passed to the pipeline. If the prediction is wrong, the ngpleechanism re-renames the
registers and re-executes dependent instructions. Inxéw@me in Figure 2.4, when the
processor fetches instructioO®6) MOV R33 = 1) the processor predicts P6 value. If
P6 value is predicted as TRUE, the processor sends instrutP6) MOV R33 = 1

) into the pipeline but not instructior( [ P6) MOV R33 = 20). Instruction (! P6)
MOV R33 = 20) is still fetched but it will be stored in a separate buffetiuthe pred-
icate value is resolved. Hence, instructidhkDD R4 = R33, 5) sources the result of
instruction (P6) MOV R33 = 1). Later P6 value is evaluated and if it turns out to be
FALSE, the processor fetches instructign p6) MOV R33 = 20) from the buffer and
executes it. InstructiolADD R3 = R33, 5) also will be re-executed.

2.3 The Overhead of Predicated Execution

Predicated execution introduces two major sources of @agtton the dynamic ex-
ecution of a program compared to conditional branch presictirst, the processor needs
to fetch additional instructions that are guaranteed todsdass since their predicates will
be FALSE. These instructions waste fetch and possibly g¢ixecbandwidth and occupy
processor resources that can otherwise be utilized by usefnuctions. Second, an in-
struction that is dependent on a predicate value cannotdmiged until the predicate value
it depends on is ready. This introduces additional delaytiné execution of predicated in-
structions and their dependents, and hence may increasgehetion time of the program.
We analyze the performance impact of these two sources ohead on an out-of-order
processor model that implements predicated execution.sirhelation methodology and

the baseline machine are described in Chapter 4.

Figure 2.5 shows the performance improvement achievaltheitources of over-

head in predicated execution are ideally eliminated. Dstaormalized to the execution

13
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] = NO-DEPEND

11- = NO-DEPEND + NO-FETCH}
] = PERFECT-CBP

Execution time normalized to no predication

gzip vpr mcf crafty parser gap vortex bzip2 twolf AVG

Figure 2.5: Execution time when sources of overhead in pegdd execution are ideally
eliminated.

time of the non-predicated code binary. For each benchrfauk pars are shown from left
to right: (1) BASE-MAX shows the execution time of the preatied code binary produced
by the ORC compiler [57] - with all overheads of predicate@axion faithfully mod-
eled. (2) NO-DEPEND shows the execution time of the prediatabde binary when the
dependencies due to predication are ideally (using oraftermation) removed. (3) NO-
DEPEND + NO-FETCH shows the execution time of the predicatet® binary when both
sources of overhead in predicated execution are ideallyirdited: in addition to predicate
dependencies, the instructions whose predicates are FAakSkleally eliminated so that
they do not consume fetch and execution bandwidth. (4) PERFEBP shows the exe-
cution time of the non-predicated code binary when all coodal branches are perfectly
predicted using oracle information. This figure shows thatjrated execution helps many
benchmarks, but it does not improve tineerage execution timmser a non-predicated code

binary when its overhead is faithfully modeled (i.e., the@ge execution time of BASE-
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MAX is 1.02, which is 2% longer than that of the baseline (nedication)). However, if

the sources of overhead associated with it are completighyrelted, predicated execution
would improve the average execution time by 16.4% over ndipagion. When the over-
head of predicated execution is eliminated (NO-DEPEND-HREI-CH), the predicated
code binary outperforms the non-predicated code binary bgerthan 2%on all bench-

marks even on those where predicated execution normally losésrpgance (i.e., mcf and
bzip2). Note that a significant performance difference stilsts between NO-DEPEND +
NO-FETCH and PERF-CBP (Perfect conditional branch premidmproves the average
execution time by 37.4%). This is due to the fact that not edhishes can be eliminated
using predication. For example, backward (loop) branchwsch constitute a significant

proportion of all branches, cannot be eliminated using ipegdd execution [3, 16].
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Chapter 3

Related Work

Many researchers have studied how to handle branch insnsct This chapter
classifies the relevant approaches into three categornegicated execution, control-flow
independence, and multipath execution, and briefly desstifbe proposed approaches.

3.1 Related Research on Predicated Execution

Predicated execution was first implemented in the Cray-1pder system asiask
vectors[67]. Allen and Kennedy et al. proposed the predication sfrirctions usingf
conversiorto enable automatic vectorization in the presence of coxngaatrol flow [3].
Hsu and Davidson proposed the use of predicated executictédar instructions, which
they calledguarded executignto reduce the penalty of conditional branches in deeply-
pipelined processors [33]. Hsu and Davidson also desciiitoed predicated execution

enables compiler-based code scheduling optimizations.

Several papers examined the impact of predicated execatidstanch prediction
and instruction-level parallelism. Pnevmatikatos andi §it] showed that predicated ex-
ecution can significantly increase a processor’s abilitgxtvact parallelism, but they also
showed that predication results in the fetch and decode mfréfisant number of useless
instructions. Mahlke et al. [50], Tyson [78], and Chang e{HD] showed that predicated
execution can eliminate a significant number of branch rewigtions and can therefore

reduce the program execution time.
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Choi et al. [16] examined the performance advantages ardihsitages of pred-
icated execution on a real I1A-64 implementation. They shbtat even though predica-
tion can potentially remove 29% of the branch mispredidiomthe SPEC CPU2000 INT
benchmark suite, it results in only a 2% improvement in agerexecution time. For some
benchmarks, a significant performance loss is observed pvélicated execution. The
performance loss in some benchmarks and the small perfaergain in others are due to
the overhead of predicated execution.

3.1.1 Overcoming the Problems of Predicated Execution

3.1.1.1 Control-Flow Limitation Problem

Hyperblock formation [51] predicates frequently execubedic blocks based on
profiling data. It can predicate more complex CFGs than delstanmocks by tail du-
plication and loop peeling. The benefits of hyperblocks et they increase the com-
piler's scope for code optimization and instruction scHedu(by enlarging basic blocks)
in VLIW processors and they reduce branch mispredictiof§. [Blowever, hyperblocks
still require a predicated ISA, incur the overhead of sofevaredication, are not adap-
tive to run-time changes in frequently executed control flaths, and increase the code
size [70].

3.1.1.2 The Lack of Adaptivity Problem

Hazelwood and Conte [31] discussed the performance prabbsseociated with
predicated code when the input set of the program changesy 0$ed dynamic profiling
to identify hard-to-predict branches at run-time to sollis fproblem. Their mechanism
dynamically converted the identified hard-to-predict lofzgs to predicated code via a dy-
namic optimization framework. They sampled the individo@nch misprediction rates at
the beginning of the program to identify most of the hargstedict branches for a given
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input set. Besides the overhead of dynamic profiling and ayoaptimization, with their

mechanism, they can decide when to use predicated code asd¢ylon a given input set.
In contrast to their mechanism, both wish branches and DNiRleaide when to use pred-
icated code based on a control-flow path which leads to a brangrogram phase not only

for a given input set.

3.1.1.3 Predicate Prediction

Chuang and Calder [19] proposed a hardware mechanism ticpeddpredicate
values in order to overcome the register renaming problem@nirout-of-order processor
that implements predicated execution. Although they didmention it, their mechanism
can also reduce the extra instruction overhead of predia@tecution. With predicate pre-
diction, instructions whose predicates are predicted FAID® not need to be executed,
thus reducing the overhead of predicated execution—peavitie prediction is correct.
However, the processor still needs to fetch and decodeaptbdicated instructions. The
adaptive predicated execution paradigm can eliminatedtud fand decode of predicated
instructions, as well as their execution. Also, every prath is predicted with predicate
prediction, which can result in performance loss for hargbtedict predicates. Further-
more, both wish branches and DMP can eliminate the mispiedipenalty for backward
(loop) branches, whereas conventional predication autgdewith predicate prediction
cannot. Recently, Quinones et al. [62] proposed a seleptiedicate prediction mecha-
nism. With the selective predicate predictor, the procegeedicts a predicate value only if
the predicate prediction has high confidence. Hence, threepsor can reduce the execution
bandwidth of predicated-FALSE instructions if the predécprediction is correct. How-
ever, although their mechanism can overcome the problemenfigiing every predicate
value, it does nothing for the rest of the problems stated@bo
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3.1.1.4 Lack of ISA support

Klauser et al. [43] proposeatlynamic hammock predicatipwhich is a purely hard-
ware mechanism that dynamically predicates hammock beandtike wish branches and
dynamic predication, dynamic hammock predication als®ksthe hardware to dynam-
ically decide whether or not to use predication for a hammuaekch. In contrast to wish
branches and DMP, dynamic hammock predication is a puretweae-based mechanism.
In the wish branch mechanism, the compiler generates @eiacode. In the dynamic
predication mechanism, the compiler provides the hintualbontrol flow information.
Both wish branches and DMP do not require complex hardwao®mstruct control flow
information. Furthermore, dynamic hammock predicatidaves only simple control-flow
graphs to be converted into predicated code whereas bothkishebranch mechanism and

the dynamic predication mechanism can predicateder range of control flow shapes.

Santos et al. [26, 25] proposé&ynamic Conditional Execution (DCE& hybrid
mechanism of dynamic predication and multipath executdmandle complex branch in-
structions. In DCE, instructions that are not on correchpdiecome NOPs just like in
dynamic hammock predication. However, after the procegsns at the corresponding
control-flow merge point, the processor generates regtatstructions to solve data-flow
dependences. Hence, the overhead of DCE is very similar ttpatin' execution except
that in DCE only instructions data-dependent on the insityos inside a hammock are
replicated (and thus executed) multiple times. In contiasinultipath execution, all the
instructions are fetched/executed multiple times. Furttege, DCE can handle only sim-

ple and nested hammocks, whereas DMP can handle more cooagplg®l flow graphs.

IMultipath execution is described in Section 3.3.
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3.1.2 Predicated Code Generation Algorithms

Static predicated code generation algorithms use edgdipgoéind/or the number
of instructions in a region that is considered for staticdocation to decide whether or
not to if-convert a branch instruction. Both Pnevmatikaaosl Sohi [61] and Tyson [78]
used the number of instructions in a region to determine adred short forward branch
should be if-converted. Chang et al. converted highly nadfmted branches to predicated
code [10].

Hyperblock formation [51] uses path execution frequendiesic block sizes, and
basic block characteristics to decide which blocks shoalshbluded in a hyperblock. With
hyperblocks, one of the major benefits of predicated codeestd increased basic block
sizes, which enhances the compiler’'s scope for code opiiniz. Hence, identifying hot-
paths is more important than identifying highly mispredattoranches. August et al. [6]
proposed a framework that considers branch mispredictimand instruction scheduling
effects due to predication in an EPIC processor to decidelwrianches would not benefit

from if-conversion and should be reverse if-converted [81]

Mantripragada and Nicolau [53] developed compiler aldoni$ to select static if-
conversion candidates based on basic block sizes (in tefrthe @mumber of instructions)

and branch misprediction profile data.

Unlike static predication, the adaptive predication pagyaddoes not require com-
prehensive compiler algorithms since a bad compiler'sgiecican be corrected later by
hardware at run-time. Nonetheless, since the compiler ltas mformation about control
flows, a simple cost-benefit analysis or heuristics to geagreedicated code or mark di-
verge branches still could help improve the performancéefirogram. We will show the
compiler algorithms and heuristics we use to generate wighdh code in Section 4.4.2.
We will present the compiler algorithms and heuristics torkmdiverge branches/CFM
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points and a new analytical model to select candidates éguiently-hammocks and loops

which cannot be predicated by conventional if-conversio@hapter 6.

3.2 Related Work on Control Flow Independence

Several hardware mechanisms have been proposed to exqitibcflow indepen-
dence [65] by reducing the branch misprediction penaltymproving parallelism [65, 18,
15]. These techniques aim to avoid flushing the process@lipgwhen the processor is
known to be at a control-independent point in the progranhattime a branch mispre-
diction is signaled. In contrast to both wish branches andPDiflese mechanisms require
a significant amount of hardware to exploit control flow indegence [65]. Hardware is
required for the following:

1. Detection of the reconvergent (control-flow independemwinfpin the instruction
stream While some mechanisms use software to detect the recavepgint [65,
66], most proposed mechanisms use hardware-based hesiastil predictors [64,
18, 15, 28, 20]. The hardware used to detect/predict thenkergent point adds
more complexity to the processor pipeline. In contrast, shvdranch exactly spec-
ifies the reconvergent point, because the compiler thatrge®ethe wish branch
knowsexactlywhere the reconvergent point is in the instruction streanDVP, the
compiler specifies reconvergent points using specialusttins. Hence, there is no
need for extra hardware.

2. Removal of wrong-path instructions, formation of correataddependences for control-
independent instructions, and selective re-scheduling) r@rexecution of instruc-
tions Proposed mechanisms to exploit control flow independe6deg5, 66, 18,
15, 28] require fairly complicated hardware structuresd¢oamplish these tasks. In
contrast, as both wish branches and DMP make use of preahdatiexploit control-
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flow independence, there is no need to provide extra hardetaer than what is in
place to support predicated execution. Instructions thaa the wrong-path will
become NOPs because they are predicated, and the corteglendent instructions
on the correct path already have the correct data depensiéecause the compiler
correctly identifies their dependences while generatirgligated code, which elim-
inates the need for re-scheduling and re-execution. In sanyyrboth wish branches
and DMP, with their use of predication, eliminate most of tmnplex hardware
support required to exploit control-flow independence puirehardware.

. Formation of correct data dependences for control indegednstructions Al-
though instructions may be control independent with a gtexeblock of instruc-
tions, they may not bdata independentTherefore, a hardware mechanism that se-
lectively flushes one of the previous blocks needs to fix tha dapendencies (both
register and memory) for the instructions in the later colrimdependent blocks.
Previously-proposed mechanisms have all devoted a signifamount of hardware
to accomplish this [64, 65, 66, 18, 15, 28]. As wish branches BAMP make use
of predication to exploit control-flow independence, thisr@o need to fix the data
dependences for control independent instructions. Thesteuctions already have
the correctdata dependences, because the compiler correctly iderttieer source
instructions while generating predicated code.

. Selective re-scheduling and re-execution of instructighgontrol independent in-
struction that got the wrong source data value due to a faltedkpendence with a
wrong-path instruction needs to be re-scheduled and redés@ in previously pro-
posed hardware mechanisms [64, 65, 66, 18, 15, 28]. Sucttiselee-scheduling
also requires hardware and adds complexity to the instmacheduling logic. In
the adaptive predicated execution, the need for re-scimedisleliminated. Since the
instructions that could possibly be on the wrong-path aeglisated by the compiler,

the control-independent instructions can never get thengismurce data value and,
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therefore, never need to be re-scheduled.

3.3 Related Work on Multipath Execution

Starting with Riseman and Foster’s eager execution [63]thadiual-path fetch in
the IBM 360/91 [4], several contributions have been madéénfield of multipath execu-
tion. Uht's survey of multipath execution [47] provides aodaverview and comparisons.

This section will only review the work most relevant to wistabches and DMP.

Heil and Smith [32] and Farrens et al. [27] proposed selefitmited dual path
execution mechanisms. The processor starts fetching frotn paths of a low confi-
dence branch. The following low confidence branch eitheayeldual-path execution
or is ignored until the first low confidence branch is resolv&dhen the low confidence
branch is resolved, the instructions on the mispredictati pee discarded. As we will
show in Section 5.5, dual-path execution’s performanceavgment is not as significant
as that of DMP or wish branches because dual-path executi@ys wastes half of the

fetch/execution resources, even after a control-indegeingoint in the program.

Selective eager execution (PolyPath) was proposed by &itaetsal. [45] as an
implementation of multipath execution. Multipath exeoutrequires more hardware and
complexity (e.g., multiple RATs/PCs/GHRs/RASS, logic emgrate/manage path IDs/tags
for multiple paths, logic to selectively flush the wrong matand more complex store-load
forwarding logic that can support multiple outstandinghsatthan DMP to keep multiple
paths in the instruction window. As we will show in Sectiob.5, multipath execution
significantly increases maximum power and energy consumtithout providing as large

performance improvements as those of DMP.
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Chapter 4

Wish Branches

This chapter presents a set of new control flow instructicaledwish branches
the first mechanism of adaptive predicated execution. Widhwranches, we can com-
bine normal conditional branching with predicated exemutiproviding the benefits of
predicated execution without its wasted fetch and exeout@ndwidth. Wish branches
aim to reduce the branch misprediction penalty by usingipageld execution only when
it increases performance. The decision of when to use ptmticexecution is made dur-
ing run-time using a branch predictor and a confidence estim#/hile in some run-time
scenarios normal branches perform better than predicaescligon, predicated execution

performs better in others. Wish branches aim to get the fadttee two under all scenarios.

A wish branch looks like a normal branch but the code on thetfiabugh path
between the branch and the target is predicated. A forwasth Wianch is called wish
jump. When the processor fetches the wish jump, it predicts ttextion of the wish jump
using a branch predictor, just like it does for a normal braritthe wish jump is predicted
not-taken, the processor executes the predicated codd.iBatmispredicted, the pipeline
does not need to be flushed since the fall-through path isqaeed. If the wish jump
is predicted taken, the processor executes the normal tbremate. If this prediction is
correct, the extra useless instructions in the predicatelé are not fetched. Hence, a wish
jump can obtain the better performance of a normal branctpegdicated execution. Wish
jumps are used with a confidence estimator. When the confdestamator predicts that a

wish jump might be mispredicted, the hardware performsipegdd execution. Thus, the
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wish jump mechanism gives the hardware the option to dynaliyiidecide whether or not

to use predicated execution.

A backward loop branch can be converted to a wish branchucistn, which we
call awish loop The wish loop instruction can reduce the branch mispremigbenalty
by exploiting the benefits of predicated execution for baatdbranches. To use the wish
loop, the compiler predicates the body of the loop using dlog lbranch condition as the
predicate. When the wish loop is mispredicted, the progedsesn’t need to flush the

pipeline because the body of the loop is predicated.

This chapter describes the semantics, types, and opemitissh branches and

evaluates the performance of wish branches in the IA-64 ISA.

4.1 Wish Branches

There are three different wish branch instructions: (1)hwignps (Section 4.1.1),
(2) wish joins (Section 4.1.1), and (3) wish loops (Sectich2). Wish jumps and wish
joins are for forward branches and wish loops are used fokwai branches. We will
explain the behavior of wish branches and how wish brancheslifferent from normal

branches and predicated execution in this section.

4.1.1 Wish Jumps and Wish Joins

Figure 4.1 shows a simple source code example and the condisyg control flow
graphs and assembly code for: (a) a normal branch, (b) @etiexecution, and (c) a wish
jump/join. The main difference between the wish jump/joade and the normal branch
code is that the instructions in basic blocks B and C are padeld in the wish jump/join
code (Figure 4.1c), but they are not predicated in the nobrahch code (Figure 4.1a).

The first conditional branch in the normal branch code is eaied to a wish jump instruc-
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tion and the following control-dependent unconditionatrh is converted to a wish join
instruction in the wish jump/join code. The difference beém the wish jump/join code
and the predicated code (Figure 4.1b) is that the wish jusiipdjode has branches (i.e., the
wish jump and the wish join), but the predicated code does not

A A Alsk jump
not—tilk/eDNiken
B Y
B Cc C V\ll3 join
f(cond) { ~o S !
D C
else { i
b=1;
} D
A pl=(cond) | A pl = (cond) A pl = (cond)
branch p1, TARGET | | (p1) mov b, 1 wish.jump p1, TARGET
B mov b, 1 |
branch.uncond JOIN ¢ (p1) movbO |8 (V\K,J,;Lr)”mr?thl) %OIN
C | TARGET: C |TARGET:
mov b, 0 (p1) mov b, 0
D [JOIN: | D [JOIN: |
(code) (a) (b) (c)

Figure 4.1: Source code and the corresponding control flaplgg and assembly code for
(a) normal branch code (b) predicated code (c) wish jump/Aoide.

Wish jumpl/join code can be executed in two different modgh-confidence-mode
andlow-confidence-modet run-time. The mode is determined by the confidence of the
wish jump prediction. When the processor fetches the wisfpjinstruction, it generates
a prediction for the direction of the wish jump using a brapecidictor, just like it does
for a normal conditional branch. A hardware confidence esttimprovides a confidence
estimation for this prediction. If the prediction has higtnidence, the processor enters
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high-confidence-mode for this branch. If it has low confiderbe processor enters low-

confidence-mode.

High-confidence-mode is the same as using normal conditivaach prediction.

To achieve this, the wish jump instruction is predicted gdine branch predictor. The
source predicate value (pl in Figure 4.1c) of the wish jungpruction is predicted based
on the predicted branch direction so that the instructionbasic block B or C can be
executed before the predicate value is ready. When the wisp js predicted to be taken,
the predicate value is predicted to be TRUE (and block B, Wwisentains the wish join,
is not fetched). When the wish jump is predicted to be notriakiee predicate value is
predicted to be FALSE and the wish join is predicted to bertake

Low-confidence-mode is the same as using predicated egacetcept it has ad-
ditional wish branch instructions. In this mode, the wisimjuand the following wish join
are always predicted to be not taken. The source predicaie sathe wish jump instruc-
tion is not predicted and the instructions that are depenoiethe predicate only execute

when the predicate value is ready.

When the confidence estimation for the wish jump is accugatiker the overhead
of predicated execution is avoided (high confidence) or adiramisprediction is elimi-
nated (low confidence). When the wish jump is mispredictddgh-confidence-mode, the
processor needs to flush the pipeline just like in the caserafranal branch mispredic-
tion. However, in low-confidence-mode, the processor neeeds to flush the pipeline,
even when the branch prediction is incorrect. Like predidatode, the instructions that
are not on the correct control flow path will become NOPs s@lt@structions that are

control-dependent on the branch are predicated.
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4.1.2 Wish Loops

A wish branch can also be used for a backward branch. We dalhtwish loop
instruction. Figure 4.2 contains the source code for a srgup body and the correspond-
ing control-flow graphs and assembly code for: (a) a normakward branch and (b) a
wish loop. We compare wish loops only with normal branchesesibackward branches
cannot be directly eliminated using predication [3]. A wishp uses predication to reduce
the branch misprediction penalty of a backward branch wiatletiminating the branch.

The main difference between the normal branch code (Figita)4nd the wish
loop code (Figure 4.2b) is that in the wish loop code the utttons in block X (i.e., the
loop body) are predicated with the loop branch conditionsMloop code also contains an
extra instruction in the loop header to initialize the poade to 1 (TRUE). To simplify the
explanation of the wish loops, we uséda- whi | e loop example in Figure 4.2. Similarly,

awhi | e loop as shown in Figure 4.3 ofar loop can also utilize a wish loop instruction.

When the wish loop instruction is first encountered, the gssor enters either high-
confidence-mode or low-confidence-mode, depending on thiddemce of the wish loop

prediction.

In high-confidence-mode, the processor predicts the directf the wish loop ac-
cording to the loop/branch predictor. If the wish loop isgicted to be taken, the predicate
value (pl in Figure 4.2b) is predicted to be TRUE, so the urtditons in the loop body can
be executed without waiting for the predicate to be evalliatethe wish loop is mispre-
dicted in high-confidence-mode, the processor flushes thedipe, just as in the case of a

normal branch misprediction.

If the processor enters low-confidence-mode, it stays i ithdde until the loop
is exited. In low-confidence-mode, the processor still mtsdhe wish loop according to
the loop/branch predictor. However, it doest predict the predicate value. Hence, the
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H taken
H

Y
Y X
take X wish loop
not-taken

while (i<N) { !

a++; Y Y
i++;

}
HlLoopP: p1 = (i<N) H| pl = (i<N) |
|
branch Ipl, EXIT % [LooP-

[ gt
add i, I, 1 (p1) p1 = (<N)
branch.uncond LOOR wish.loop p1, LOOP

Y EXIT: | Y [EXIT:

(code) () (b)
(while)

Figure 4.2:whi | e loop source code and the corresponding control flow grapdsasn
sembly code for (a) normal backward branch code (b) wish tomfe.

iterations of the loop are predicated (i.e., fetched butaxetuted until the predicate value
is known) during low-confidence-mode. There are three reidigtion cases in this mode:
(1) early-exit the loop is iterated fewer times than it should be, |62§-exit the loop is
iterated only a few more times by the processor front end thahould be and the front
end has already exited when the wish loop mispredictiongsaded, and (3ho-exit the
loop is still being iterated by the processor front end whHeawish loop misprediction is

signaled (as in the late-exit case, it is iterated more tithas needed).

For example, consider a loop that iterates 3 times. The cblwep branch direc-
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taken @E taken

Y
X X
wish loop
not—taken not-taken
do { Y Y
a++; Y Y
i++;
} while (i<N) H
X [LOOP: __movplL |
add a, a,1 X' | LOOP:
add i, i, 1 (p
i, pl) add a, a, 1
pl = (i<N) (p1) add i, i, 1
branch p1, LOOR (p1) p1 = (i<N)
ish.l 1, LOOP
Y [exim ‘ wish.loop p1, LOO
Y EXIT:
(code) (a) (0)
(do-while)

Figure 4.3:do- whi | e loop source code and the corresponding control flow grapts an
assembly code for (a) normal backward branch code (b) wish ¢mde.

tions are TTN (taken, taken, not-taken) for the three iterst, and the front end needs to
fetch blocks XX.X3Y, where X; is thei'” iteration of the loop body. An example for each
of the three misprediction cases is as follows: In the eaxiiy-case, the predictions for
the loop branch are TN, so the processor front end fetchek®lg X, Y. One example of
the late-exit case is when the predictions for the loop biaare TTTTN so the front end
fetches blocks XX,X35X,X5Y. For the no-exit case, the predictions for the loop brarreh a
TTTTT...T so the front end fetches blockg ¥, X3X ,X5... Xy

In the early-exit case, the processor needs to execute Xastt tme more time (in
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the example above, exactly one more time; i.e., blogk Xo it flushes the pipeline just

like in the case of a normal mispredicted branch.

In the late-exit case, the fall-through block Y has beentfetcbefore the predicate
for the first extra block X has been resolved. Therefore, it is more efficient to simjibya
X, and subsequent extra block Xo flow through the data path as NOPs (with predicate
value pl = FALSE) than to flush the pipeline. In this case, tighwoop performs better
than a normal backward branch because it reduces the braisphedliction penalty. The
smaller the number of extra loop iterations fetched, thgdathe reduction in the branch
misprediction penalty.

In the no-exit case, the front end has not fetched block Y atithe the predicate
for the first extra block X has been resolved. Therefore, it makes more sense to flush X
and any subsequent fetched extra blocks, and then fetchk W)@milar to the action taken
for a normal mispredicted branch. We could lefX%...X become NOPs as in the late-exit
case, but that would increase energy consumption withopitaing performance.

4.1.2.1 More on Wish Loops and Predication

Traditional predicated code reduces the branch mispiedigenalty by eliminat-
ing branches. Since backward (loop) branches cannot bénelied with predication due
to the nature of the control flow [3], traditional predicatedecution cannot eliminate
or reduce the branch misprediction penalty for backwarahdinas. However, with wish
branches, in the presence of the branch (which is the wighchraself), the processor can
still reduce the branch misprediction penalty using pratid code as we showed in the
late-exit case for the wish loop. Wish branches reduce thadbr misprediction penalty
not by eliminating branches but by using the charactessticpredicated code: instruc-
tions that should not be executed will become NOPs when tbdigate value becomes

available (as false). Hence, with wish loops and predicatate, wish branches can re-
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duce the branch misprediction penalty due to backward floognches without having to

eliminate such branches.

Loop unrolling can reduce the number of loop branches, theperhaps reducing
the number of loop branch mispredictions. With predicatithie compiler could perform
loop unrolling more aggressively. However, loop unrollstgl cannot eliminate all back-
ward branches. The remaining backward branches can stiligigredicted. Wish branches
can therefore convert the remaining branches into wishdogprthermore, loop unrolling
increases the pressure on architectural registers, ipeseaode size, and requires extra
code to handle loop iterations that are not a multiple of thielling factor - three sources
of complexity that do not exist with wish branches. In additiloop unrolling is usually
useful for regular loops that iterate a large number of timdsereas wish loop instructions
are aimed at eliminating loop branch mispredictions in btyat iterate a small number of
times - loops that occur frequently in irregular integergmams.

Note that the compiler can also predicate instructiongdmshe loop body to fa-
cilitate Software Pipelining (SWP). SWP can be used witlpyatlication also. However,
Warter et al. [80] showed that pipelined loops performed 348ter on average with pred-
ication than without predication. The purpose of softwapefining is orthogonal to the
purpose of wish branches: SWP is used to increase instrulgi@!| parallelism in order
to make static scheduling more effective (by finding moreepehdent instructions across
different loop iterations that can be scheduled in paraiidélereas wish branches are used
to reduce the branch misprediction penalty. As such, soé&wgelining is much less ben-
eficial on processors that support dynamic scheduling veisangsh branches still provide
significant performance improvements on dynamically-deited processors. Note that
both loop unrolling and software pipelining, as shown by G#taal. [16], are less effec-
tive for irregular integer benchmarks where parallelisrhasd to find at compile time, In

contrast, wish branches are more effective for such iregutnchmarks where the branch
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prediction accuracy is relatively low.

For these reasons, we claim that wish loops can reduce thehbmnaispredic-
tion penalty for backward (loop) branches, which cannotdsiiced by traditional predi-
cated execution. While traditional predication faciksabetter loop unrolling and software
pipelining, these mechanisms are not fundamentally airhestacing the branch mispre-
diction penalty (even though loop unrolling sometimes @a side effect). Hence, wish
branches are orthogonal to these two schemes and can bensahvbith them to provide

higher performance.

4.1.3 Wish Branches in Complex Control Flow

Wish branches are used not only for simple control flow. Thay also be used
in complex control flow where there are multiple branchesnsmf which are control-
dependent on others. Figure 4.4 shows a code with complaxatdiow, and the control
flow graphs of the normal branch code, predicated code, and/ibh branch code corre-

sponding to it.

W'iAsh jum
A A jump
block A block C not—taken - !
take -
[if (condi ||[ COﬂdZ}) { c wishljoin
11 block B °
aken | not-taken B D
else { wish join
// block D B £
D
B
E E
(code) (a) normal branch code (b) predicated code (c) wish branch code

Figure 4.4: Control flow graph examples with wish branches.
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When there are multiple wish branches in a given region, tisé\rish branch is
a wish jump and the following wish branches are wish joins.sM\jbin instructions are
control-flow dependent on earlier wish branch instructioftence, the prediction for a
wish join is dependent on the confidence estimations madéé&previous wish jump,
any previous wish joins, and the current wish join itselfthé previous wish jump, any of
the previous wish joins, or the current wish join is low-coleince, the current wish join is
predicted to be not-taken. Otherwise, the current wish igipredicted using the branch

predictor. An example of the predictions made for each oftlsh branches in Figure 4.4c
is shown in Table 4.1.

Table 4.1: The prediction of multiple wish branches in Fegdr4c.

| confidence | prediction |
jump (A) | join (C) | join (D) || jump (A) | join (C) | join (D)

high high high predictor | predictor | predictor
high high low predictor | predictor | not-taken
high low - predictor | not-taken| not-taken
low - - not-taken| not-taken| not-taken

4.2 Support for Wish Branches
4.2.1 ISA Support

We assume that the baseline ISA to which wish branches are &olteed supports
predicated execution. If the current ISA already has unumsetbits for the conditional
branch instruction, like the 1A-64 [34], wish branches canilmplemented using the hint
bit fields without modifying the ISA. Figure 4.5 shows a paésiinstruction format for the
wish branch. A wish branch can use the same opcode as a nanthlional branch, but its
encoding has two additional fieldbtypeandwtype If the processor does not implement

the hardware support required for wish branches, it can lgimpat a wish branch as a
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normal branch (i.e., ignore the hint bits). New binariestaoring wish branches will run

correctly on existing processors without wish branch suppo

OPCODE| btype | wtype target offset p

btype: branch type (0:normal branch 1:wish branch)
wtype: wish branch type (0:jump 1:loop 2:join)
p: predicate register identifier

Figure 4.5: A possible instruction format for the wish branc

4.2.2 Compiler Support
4.2.2.1 Compiler Support for Wish Branch Generation

A wish branch binary is an object file consisting of a mixtufenash branches,
traditional predicated code, and normal branches. The dengecides which branches
are predicated, which are converted to wish branches, anchvgtay as normal branches
based on estimated branch misprediction rates and conmpiéeheuristics. The compile-
time decisions need to take into account the following:

1. The size and the execution time of the basic blocks that@meidered for predica-
tion/wish branch code.

2. Input data set dependence/independence of the branch.
3. The estimated branch misprediction penalty.

4. The extrainstruction overhead associated with preeécaxecution or wish branches.

For example, it may be better to convert a short forward dnamisich has only one
or two control-dependent instructions into predicatedecaather than wish branch code
because wish branch code has the overhead of at least oaaresttuction (i.e., the wish
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jump instruction). If the misprediction rate of a branchti®agly dependent on the input
data set, the compiler is more apt to convert the code intb taianch code. Otherwise, the
compiler is more apt to use a normal branch or convert the cuderedicated code. The
compiler can determine whether or not the mispredictioe ratdependent on the input
data with heuristics. The compiler heuristics used to deeithich branches should be
converted into wish branches is an important research hetanvie intend to investigate in
future work. The heuristics are described in Section 4.4.2.

Note that wish branches provide the compiler with more flgiybin generating
predicated code. With wish branches, if the compiler makédsad decision” at compile
time, the hardware has the ability to “correct” that deaisat run time. Hence, the com-
piler can generate predicated code more aggressively anddtrristics used to generate
predicated code can be less complicated.

4.2.3 Hardware Support

Aside from the hardware to support predicated executioghwranches require the
hardware support described below.

4.2.3.1 Instruction Fetch and Decode Hardware

Instruction decode logic must be modified so that wish branstructions can be
decoded. A branch target buffer (BTB) entry is extended thcate whether or not the
branch is a wish branch and the type of the wish branch. Tlah fieigic requires one
additional mux to override the result of the branch predid¢tw a wish jump or a wish
join in low-confidence-mode (since a wish jump or join is atwgredicted not-taken in
low-confidence-mode regardless of the branch predictacng).
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4.2.3.2 Wish Branch State Machine Hardware

Figure 4.6 shows the front-end state machine that managestious modes of a
processor implementing wish branches. There are three snodemal-modé€ 00) , low-
confidence-modé10) , and high-confidence-modé1) . The state diagram summarizes
the mode transitions that occur in the front-end of a promesspporting wish branches,
based on the information provided in Sections 4.1.1 an@4lf.the state diagram, “target
fetched” means that the target of the wish jump/join thaseaentry into low-confidence-
mode is fetched.

wish join/loop high—confidenc
wish join/loop low—confidence

wish br. high—confiden wish br. low—-confidence
Normal >/ Low-con
0 d0 10
o target fetched/wish loop is e ited

wish br. misprediction sig wish br. misprediction signa

wish br. high—confidence

wish br. low—confidence

Figure 4.6: State diagram showing mode transitions in age®sar that supports wish
branches.

4.2.3.3 Predicate Dependency Elimination Module

As we described in Sections 4.1.1 and 4.1.2, the predicateafish branch is pre-
dicted during high-confidence-mode to eliminate the detethe execution of predicated
instructions. To support this, when the processor entgis-bonfidence-mode, the predi-
cate register number of the wish branch instruction is stamea special buffer. Each fol-
lowing instruction compares its source predicate registenber with the register number
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in the special buffer. If both predicate register numbegesthe same, the source predicate
register of the instruction is assumed to be ready, with a ER&lue when the wish branch
is predicted to be taken and with a FALSE value when the wisindit is predicted to be
not taken. The special buffer is reset if there is a branclpradiction or if an instruction

that writes to the same predicate register is decoded.

4.2.3.4 Branch Misprediction Detection/Recovery Module

When a wish branch misprediction is detected, the processats to decide whether
or not a pipeline flush is necessary. If the wish branch is redipted during high-confidence-
mode! the processor always flushes the pipeline. If the wish branotispredicted during
low-confidence-mode and the wish branch is a wish jump or h j@is, then the processor

does not flush the pipeline.

If a wish loop is mispredicted during low-confidence-modie, processor needs to
distinguish between early-exit, late-exit, and no-exib. shipport this, the processor uses
a small buffef in the front end that stores the last prediction made for esiatic wish
loop instruction that is fetched but not yet retired. When iahwloop is predicted, the
predicted direction is stored in the entry correspondinth®static wish loop instruction.
When a wish loop is found to be mispredicted and the actuattion is taken, then it is
an early-exit case, so the processor flushes the pipelinen&hvish loop is mispredicted
and the actual direction is not-taken, the branch misptedicecovery module checks the
latest prediction made for the same static wish loop insisndy reading the buffer in the
front end. If the last stored prediction is not taken, it itetexit case, because the front

end must have already exited the loop, so no pipeline flusagsired. If the last stored

1The mode that is checked when a wish branch is mispredictéttisnode of the front-end when that
branch was fetchediotthe mode of the front-end at the time the misprediction iscked.
2In our evaluation, we use a 4-entry fully associative buffer
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prediction is taken, it is a no-exit case because the fradtreust still be fetching the loop
body, and the processor flushes the pipefinto reduce the hardware complexity we do

not support nested wish loops.

4.2.3.5 Confidence Estimator

An accurate confidence estimator is essential to maximieebtmefits of wish
branches. An inaccurate confidence estimation for a wishdbra@an be harmful in two
different ways. First, if the wish branch prediction is estited to be low confidence even
though the prediction is correct, the processor suffensiftioe overhead of predicated exe-
cution without any performance benefit. Second, if the wisimbh prediction is estimated
to be high confidence when the branch is actually misprediidtee processor loses the

opportunity to eliminate a pipeline flush.

Previously proposed confidence estimators, such as the dRf&lence estima-
tor [35], can be used to estimate the confidence of wish branetictions. In our eval-
uations, we used a tagged enhanced JRS confidence estiB@jtoS[nce the confidence
estimator is dedicated to wish branches, its size is snfdlelbaseline processor already
employs a confidence estimator for normal conditional binas¢this estimator can also be
utilized to estimate the confidence of wish branch predigtio

4.3 Advantages and Disadvantages of Wish Branches

In summary, the advantages of wish branches are as follows:

3If the processor exited the loop and then re-entered itadée will be incorrectly identified as a no-exit
case, when it is actually a late-exit case. Hence, the psocesnecessarily flushes the pipeline, but it still
functions correctly. We did not see this case happen in thetmmarks we simulated.
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1. Wish jumps/joins provide a mechanism to dynamically ebterthe performance
and power overhead of predicated executidbhese instructions allow the hardware
to dynamically choose between using predicated execugmug conditional branch
predictionfor each dynamic instanoef a branch based on the run-time confidence
estimation of the branch’s prediction.

2. Wish jumps/joins allow the compiler to generate predicatede more aggressively
and using simpler heuristics, since the “bad compile-tineeisions” can be cor-
rected at run-timeln previous research, a static branch instruction eitheraieed
as a conditional branch or was predicateddlits dynamic instancedased on less
accurate compile-time information. If the compiler madead Hecision to predicate,
there was no way to dynamically eliminate the overhead ofbih@ compile-time
decision. For this reason, compilers have been conseevattiproducing predicated
code and have avoided large predicated code blocks.

3. Wish loops provide a mechanism to exploit predicated exattd reduce the branch
misprediction penalty for backward (loop) branche previous research, it was
not possible to reduce the branch misprediction penaltyafbackward branch by
solely utilizing predicated execution [3, 16]. Hence, peated execution was not
applicable for a significant fraction of hard-to-predicabches.

4. Wish branches will also reduce the need to re-compile thdipaged binaries when-
ever the machine configuration and branch prediction meigmas change from one
processor generation to another (or even during compilerettgopment).A branch
that is hard-to-predict in an older processor may becomg-tapredict in a newer
processor with a better branch predictor. If that branchoisventionally predicated
by the old compiler, the performance of the old code will @&t on the new proces-
sor because predicated execution would not improve, aratirdiegrade, the perfor-
mance of the now easy-to-predict branch. Hence, to utiheebtenefits of the new

processor, the old code needs to be recompiled. In contirés¢ branch were con-
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verted to a wish branch by the compiler, the performance@bttl binary would not
degrade on the new processor, since the new processor camabally decide not
to use predicated execution for the easy-to-predict wighdf. Thus, wish branches
reduce the need to frequently re-compile by providing flayo(dynamic adaptiv-

ity) to predication.
The disadvantages of wish branches compared to convehpicedication are:

1. Wish branches require extra branch instructions. Thestuctions would take up
machine resources and instruction cache space. Howeeelartper the predicated
code block, the less significant this becomes.

2. The extra wish branch instructions increase the coreriitir branch predictor table
entries. This may increase negative interference in theepahistory tables. We
found that performance loss due to this effect is negligible

3. Wish branches reduce the size of the basic blocks by addinigol dependencies to
the code. Larger basic blocks can provide better opporasfior compiler optimiza-
tions. If the compiler that generates the wish branch b&sas unable to perform ag-
gressive code optimizations across basic blocks, the peesaf wish branches may

constrain the compiler’s scope for code optimizations.

4.4 Methodology

Figure 4.7 illustrates the simulation infrastructure. Wese the IA-64 ISA to
evaluate the wish branch mechanism, because of its fullstpgr predication, but we
converted the IA-64 instructions to micro-operatiopss) to execute on our out-of-order
superscalar processor model. We modified the ORC compilgrtfbgenerate the 1A-64
binaries (with and without wish branches). The binarieseatkien run on an Itanium I
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machine using the Pin binary instrumentation tool [49] toayate traces. These |A-64
traces were later converted t@ps. Theuops were fed into a cycle-accurate simulator to

obtain performance results.

Source Code IA-64 | IA-64 Binary Traciz_ IA-64 Trace uop uops uop
- i ~| generation - - .
C(:grgpcl;er g module Translator Simulator
(Pin)

Figure 4.7: Simulation infrastructure

4.4.1 pop Translator and Simulator

We developed an 1A-64 translator which converts the disabted IA-64 instruc-
tions into our simulator’s nativeops. We model.ops to be close to a generic RISC ISA.
Our translator handles correctly all the issues relatedAt®4 specific features such as

rotating registers. All NOPs are eliminated duringp translation.

1ops are fed into our cycle-accurate simulator. Our bas@lineessor is an aggres-
sive superscalar, out-of-order processor based on the H&t®gsor [59, 60]. Table 5.3
describes our baseline microarchitecture. Because a ¢essade branch predictor would
provide more opportunity for wish branches, a very large aocurate hybrid branch pre-

dictor [82, 83, 9] is used in our experiments to avoid inflgtihe impact of wish branches.

4.4.2 Compilation

All benchmarks were compiled for the 1A-64 ISA with the -O2tiopization by the
ORC compiler. Software pipelining, speculative loads, atiwer IA-64 specific optimiza-
tions were turned off to reduce the effects of features traspecific to the IA-64 ISA and
that are less relevant to an out-of-order microarchitect@oftware pipelining was shown
to provide less than 1% performance benefit on the SPEC CRUJRODbenchmarks [16]
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Table 4.2: Baseline processor configuration

Front End

64KB, 4-way, 2-cycle I-cache; 8-wide fetch/decode/rename
Fetches up to 3 cond. branch but fetch ends at the first takerchr
I-cache stores IA-64 instructions; decoder/ROM prodycsss

Branch Predictors

64K-entry gshare [54]/PAs [83] hybrid, 64K-entry selector
4K-entry BTB; 64-entry RAS; 64K-entry indirect target cach
minimum branch misprediction penalty is 30 cycles

Execution Core

512-entry reorder buffer; 8-wide execute/retire

On-chip Caches

L1 data cache: 64KB, 4-way, and 2-cycle latency
L2 unified cache: 1MB, 8-way, 8 banks, 6-cycle latency
All caches use true LRU replacement and have 64B line size

Buses and Memory

300-cycle minimum memory latency; 32 memory banks
32B-wide core-to-memory bus at 4:1 frequency ratio

Predication support

Converted into C-style conditional expressions [74]

Confidence estimat

bi KB, tagged (4-way), 16-bit history enhanced JRS estin{a®r30]

and we removed this

also performed with -

optimization to simplify our analysigsi\branch code generation is
02 optimization. To compare wish bregto normal branches and

predication, we generated five different binaries for eaghdhmark, which are described

in Table 4.3. Unless

otherwise noted, all execution timelteseported in this chapter are

normalized to the execution time of the normal branch bemrBection 4.4.2.1 and 4.4.2.2

briefly describe the compilation algorithms we use in oureskpents.

4.42.1 Predicated

Code Binary Generation Algorithm

Figure 4.8 shows the major phase ordering in code generatiofirC. ORC does a

region based compilation [48]. Hence, the compiler formegian first to perform all the

optimizations in a region boundary. If-conversion is in ai¢he early phases, since after

if-conversion, the compiler can do other optimizations.

To generate predicated code, the ORC compiler first checletheh or not the
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Table 4.3: Description of binaries compiled to evaluategbdormance of different com-
binations of wish branches

Binary name B_ranches that can pe predicated Backward branches...
with the ORC algorithm [48, 57, 53] |..
normal branch binary remain as normal branches remain as normal branches
predicated code binary: | are predicated based on remain as normal branches
BASE-DEF the compile-time cost-benefit analysjs
predicated code binary: | are predicated remain as normal branches
BASE-MAX
wish jump/join binary are converted to wish jumps/joins or|remain as normal branches
are predicated
wish jump/join/loop binary are converted to wish jumps/joins or| are converted to wish loops
are predicated or remain as normal branches

control-flow graph is suitable for if-conversion in a regibaundary. The ORC compiler
performs if-conversion within a region boundary. When tbatcol-flow graph is suitable
for if-conversion, the compiler calculates the followinguations. Each probability in
these equations is determined using compiler heuristsciion times are estimated with
dependency height and resource usage analysis. We seatiehbmisprediction penalty to
30 cycles. Inthe BASE-DEF binary, branches which satisfydfipn (4.3) are converted to
predicated code. In the BASE-MAX binary, all branches thiatsuitable for if-conversion
are converted to predicated code. Hence, the BASE-MAX pioantains code that is more
aggressively predicated. We use two predicated code bmas our baselines because
neither binary performs the best for all benchmarks. Fored®nchmarks BASE-DEF
performs better and for others BASE-MAX performs better.
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Figure 4.8: Major phase ordering in code generation of th&€@Bmpiler [38]

Exec. time of normal branch code

FExec. time of predicated code

Ezxec. time of predicated code <
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evec.T x P(T) + exec.N % P(N) +

misp_penalty * P(misprediction), (4.1)
(4.2)
(4.3)

exec_pred,

Ezxec. time of normal br. code,



where

execT :  Exec. time of the code when the br. under consideration mstak
exec_N :  Exec. time of the code when the br. under consideration isaketn
P(case) :  The probability of the case; e.g., P(T) is the prob. that théstiaken
misp_penalty :  Machine-specific branch misprediction penadtgd

exec_pred :  Execution time of the predicated code

4.4.2.2 Wish Branch Binary Generation Algorithm

Figure 4.9 shows the modified code generation phases in ORf@rterate wish
branches. Specifically the if-conversion and loop optirtiiraphases (shaded boxes in

Figure 4.9) are modified to generate wish branches.

If a branch is suitable for if-conversion, we treat that lmtaas a wish branch can-
didate. If the number of instructions in the fall-througlodk of a branch is greater than
N (we set N to 5), the candidate branch is converted to a wistpjand the necessary
wish joins are inserted. Otherwise, the wish branch caneigaconverted to predicated
code. We use a threshold of 5 instructions because we hawe that very short forward
branches are better off being predicated. A loop branchisexed to a wish loop if the
number of instructions in the loop body is less than L (we s&t BO). We have not tuned
the thresholds N and L used in these heuristics. Since owlibascompiler is not opti-
mized to build large predicated code blocks, we insertedesoithe wish branches using a
binary instrumentation tool when the control flow is suitatd be converted to wish branch
code.
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Figure 4.9: Modified code generation phases

4.4.3 Trace Generation and Benchmarks

IA-64 traces were generated with the Pin instrumentatioh[#9]. Because mod-
eling wrong-path instructions is important in studying gherformance impact of wish
branches, we generated traces that contain wrong-patmiatmn by forking a wrong-path
trace generation thread. We forked a thread at every wishchrdown the mispredicted
path. The spawned thread executed until the number of ee@eutong-path instructions
exceeded the instruction window size. The trace contam®1D, predicate register, regis-
ter value, memory address, binary encoding, and the cuim@mie marker information for

each instruction.

All experiments were performed using the SPEC INT 2000 beraks. The
benchmarks were run with a reduced input set [46] to simulatéd the end of the pro-
gram. The information about the simulated benchmarks ferrtbrmal branch binaries
and the wish jump/join/loop binaries are shown respegtiuelTable 4.4 and Table 45.

4Due to problems encountered during trace generation usimaec, perlomk and eon benchmarks were
excluded. NOPs are included in the dynamic IA-64 instructount, but they are not included in thep
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Branch information displayed is collected only for conalital branches. For the wish

jump/join/loop binaries, we show the total number of staiicd dynamic wish branches

and the percentage of wish loops among all wish branches.

Table 4.4: Simulated benchmarks: characteristics of nbbnach binaries

Dynamic instructions . . Mispredicted branche
Benchmark |A64 instructions /:0ps Static brancheDynamic branches (per 1000,:0ps) ﬁPC/uPC
164.9zip 303M/211M 1271 31M 8.3 2.25/ 1.53
175.vpr 161M/ 106M 4078 13M 7.8 2.38/1.6(
181.mcf 189M / 135M 1288 28M 4.7 1.52/1.44
186.crafty 316M /[ 227M 4334 30M 4.7 1.68/1.01
197.parser 428M [ 311M 2879 72M 9.6 1.21/0.87
254.gap 611M /[ 423M 4163 50M 1.0 1.22/0.80
255.vortex 113M/ 87M 7803 12M 0.8 1.06/ 0.84
256.bzip2 429M / 308M 1236 40M 8.6 1.38/ 1.37
300.twolf 171IM/ 114M 4306 10M 6.8 1.81/1.16

Table 4.5: Simulated benchmarks:characteristics of wiahdh binaries

Benchmark Static wish branchg®ynamic wish branches
(% of wish loops) (% of wish loops)
164.gzip 93 (80%) 9.5M (61%)
175.vpr 206 (83%) 4.3M (35%)
181.mcf 31 (54%) 5.1M (20%)
186.crafty 271 (65%) 3.7M (49%)
197.parser 214 (88%) 14.2M (63%)
254.gap 167 (74%) 6.1M (75%)
255.vortex 104 (33%) 1.7M (62%)
256.bzip2 130 (81%) 8.7M (90%)
300.twolf 356 (71%) 3.1M (57%)

count.
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4.5 Simulation Results and Analysis
4.5.1 Wish Jumps/Joins

We first evaluate how using wish jumps/joins performs coragao normal branches
and predicated code. Figure 4.10 shows the normalized ggadime of four different
configurations for each benchmark: (1) BASE-DEF binary, BASE-MAX binary, (3)
wish jump/join binary with a real confidence estimator, aspwish jump/join binary with
a perfect confidence estimator. With a real confidence estimine wish jump/join bi-
naries improve the average execution time by 11.5% over dheal branch binaries and
by 10.7% over the best-performing (on average) predicatet® dinaries (BASE-DEF).
The wish jump/join binaries perform better than the norm@nich binaries for all the
benchmarks, except mcf. Moreover, they perform better th@h of the predicated code
binaries for gzip, vpr, mcf, gap, and, twolf. For vpr, mcf,datwolf, three benchmarks
where the overhead of predicated execution is very high,asskown in Figure 2.5, the
wish jump/join binaries improve the execution time by mdrart 10% over the predicated
code binaries. Note that, the execution time of mcf skewsattezgage normalized execu-
tion time, because mcf performs very poorly with predicarecution. Hence, this chapter
reports two average execution time numbers on the graphs.sé&hof bars labeled AVG
shows the average execution time with mcf included. The sbars labeled AVGnomcf
shows the average execution time with mcf excluded.

Figure 4.10 also shows that the wish jump/join binaries cedtie overhead which
causes the predicated code binaries to perform worse tieamottmal branch binaries. For
example, the BASE-DEF binaries perform worse than the nbbmsench binaries for gzip,
mcf, crafty, and gap. Similarly, the BASE-MAX binaries pemn worse than the normal
branch binaries on mcf and bzip2. In fact, aggressive patidic (BASE-MAX) increases
the execution time of mcf by 102% because of the addition&ydeaused by predicated

instructions. In mcf, the execution of many critical loadtimctions that would cause
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1.205 = BASE-DEF
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= wish jump/join (perf-conf]
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gzip vpr mcf  crafty parser gap vortex bzip2 twoif AVG AVGnomcf

Figure 4.10: Performance of wish jump/join binaries

cache misses are delayed because their source predicatdspandent on other critical
loads which incur cache misses. Hence, predicated exectggults in the serialization
of many critical load instructions that would otherwise leeviced in parallel had branch
prediction been used, leading to a large performance datjcerd The wish jump/join
binaries eliminate the performance loss due to predicatedution on benchmarks where
predicated execution reduces performance. Hence, wistthes are effective at reducing
the negative effects of predicated execution.

The wish jump/join binary performs worse than both of thedizated code binaries
only for one benchmark, vortex. This is due to the reduced sfzhe basic blocks in the
wish jump/join binary for vortex. The compiler is able to opize the code better and
more aggressively in the predicated code binaries that laager basic blocks. Note that
the compiler heuristics we used to insert wish branches ang simple. Better heuristics

that take into account more information, as explained irtiSe@.2.2.1, can eliminate the
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disadvantages caused by wish branches in vortex.

Figure 4.11 shows the dynamic number of wish branches pellibmrietired ;.0ps.
The left bar for each benchmark shows the number of wish Im@spredicted to have low-
confidence and how many of those were mispredicted. The bghshows the number
of wish branches predicted to have high-confidence and homy obthose were mispre-
dicted. Ideally, we would like two conditions to be true. gEjronly the actually mis-
predicted wish branches should be estimated as low-comi@de®econd, no mispredicted
wish branch should be estimated as high-confidence. Figade shows that the second
condition is much closer to being satisfied than the first bhedchmarks. Very few of the
high-confidence branches are actually mispredicted. Hew#he first condition is far from
being satisfied, especially in gzip, vpr, mcf, crafty, andlfwIn these benchmarks, a sig-
nificant number of wish branches are estimated as low-camfgleven though they are not
mispredicted. Therefore, a better confidence estimator would improve gréopmance of

wish branches on these benchmarks, as shown in the righbacsin Figure 4.10.

Figure 4.11 also provides insight into why wish branchesrowp the performance
of predicated execution significantly in some benchmarks eample, in mcf most of the
branches that are converted to wish branches are correettiigbed. These branches are
predicated in the BASE-MAX binary. However, predicatingitmreduces the performance
with the reduced input set, because those branches aretalinays correctly predicted.
Converting them into wish branches rather than predicatiegn allows the hardware to
dynamically decide whether or not they should be predicatesishown in Figure 4.11,
the hardware confidence estimator does well on mcf and dbyrelentifies most of the
correctly-predicted wish branches as high-confidence celgior those wish branches, the
overhead of predicated execution is avoided and the wishchrlainary performs as well

5As Jiménez and Lin discussed in [37], a confidence estimator yshal high a coverage with a low
accuracy or a low coverage with a high accuracy.
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Figure 4.11: Dynamic number of wish branches per 1M retjnegs. Left bars: low-
confidence, right bars: high-confidence.

as the normal branch binary. Similarly in gzip, vpr, and gapny of the wish branches are
correctly predicted and also estimated as high confideesglting in significant savings
in the overhead of predicated execution, which is refleatetieé performance of the wish
jump/join binaries for these three benchmarks in Figure&d4.Most wish branches are
correctly predicted and identified as high-confidence alsparser and vortex. However,
the performance of parser and vortex is not improved witthviisanches compared to the
predicated code binaries because the overhead of prediies¢éeution is very low for these

two benchmarks as shown in Figure 2.5.

4.5.2 Wish Jumps/Joins and Wish Loops

Figure 4.12 shows the performance of wish branches whenlaigs are also used
in addition to wish jumps/joins. With a real confidence estiom, the wish jump/join/loop

binaries improve the average execution time by 14.2% coetp@arthe normal branch bina-
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ries and by 13.3% compared to the best-performing (on ae¢magdicated code binaries
(BASE-DEF). An improved confidence estimator has the paktd increase the perfor-
mance improvement up to 16.2% compared to the normal braimeliés. Even if mcf is
excluded from the calculation of the average execution timewish jump/join/loop bina-
ries improve the average execution time by 16.1% comparétetoormal branch binaries
and by 6.4% compared to the best-performing predicatedibméBASE-MAX), with a

real confidence estimator.

120 202 = BASE-DEF
T = BASE-MAX
1.15 = wish jump/join (real-conf)
1.10 = wish jump/join/loop (real-cont)
E = wish jump/join/loop (perf-conf)

Exec time normalized to normal branch binary

gzip vpr mcf  crafty parser gap vortex bzip2 twoif AVG AVGnomcf

Figure 4.12: Performance of wish jump/join/loop binaries

Using wish loops in addition to wish jumps/joins improveg #xecution time of
vpr, parser, and bzip2 by more than 3%. The reason for theopednce improvement
on these three benchmarks can be seen in Figure 4.13. This Bows the dynamic
number of wish loops per 1 milliomops and classifies them based on their confidence
estimation and misprediction status. Remember thalatieeexitmisprediction case is the

only case where a wish loop improves performance comparachtirmal loop branch, as
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described in Section 4.1.2. In vpr, parser, and bzip2 treeedignificant number of wish
loop instructions that are predicted to be low-confidenad @e actually mispredicted as
late-exit Therefore, we see significant performance improvemengstdwvish loops for

these benchmarks.

25000 - :
== |ow-confidence (no-exit)

22500 === |0W-confidence (late-exit)
=== |ow-confidence (early-exit)

20000 — == low-confidence (correct-predy——
i —= high-confidence (mispred)
)

17500 == high-confidence(correct-pred

15000

12500 i'=—i—

10000 —

7500 —
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-

T
gzip vpr mcf crafty parser gap vortex bzip2 twolf

Dynamic number of wish loops per 1M uops

Figure 4.13: Dynamic number of wish loops per 1M retirgdps. Left bars: low-
confidence, right bars: high-confidence.

4.5.2.1 Source Code Example for Wish Loops

Wish loops provide significant performance benefit for thespabenchmark. Fig-
ure 4.14 shows the high level source code of one of the magir lwops in this benchmark.
This function checks where a period symbol is inside a giverdwSince an English word
has usually fewer than 16 characters, the number of iteraind the loop is usually fewer
than 16. However, a lot of abbreviations have a period syrafiet the first character. Due
to abbreviations, the frequency of the loop iterations dkierwhole run of the benchmark
shows a high peak for 1 iteration as shown in Figure 4.15. Téguency of the loop also
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has a normal distribution with a mean of 6-7 iterations. lis #txample, the number of
iterations is very unpredictable (because it is dependerhe input word) but it is more

likely to be smaller than 16. Therefore, this loop branchve®y good wish loop candidate.

i nt nunmberfy(char =c)
{

for (; (*s '=\0)&& (*s !'= .);s++) ; [/ the for |oop becones a wish |oop branch

Figure 4.14: An example from parser showing an loop branch
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Figure 4.15: Frequency of loop iteration of for the branclrigure 4.14
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4.5.3 Comparisons with the Best-Performing Binary for EachBenchmark

We also compare the performance of wish branches to thepeeiirming binary

for each benchmark. To do so, we selected the best-perfgroinary for each benchmark
among the normal branch binary, BASE-DEF predicated codarpi and BASE-MAX
predicated code binary based on the execution times of ttiese binaries, which are

obtained via simulation. Note that this comparison is ulista because it assumes that

the compiler can, at compile-time, predict which binary ‘aoperform the best for the

benchmark at run-time. This assumption is not correct, leedahe compiler does not

know the run-time behavior of the branches in the programenEworse, the run-time

behavior of the program can also vary from one run to anotiver Hence, depending on

the input set to the program, a different binary could be thstdperforming binary, as we

have already shown in Figure 1.1.

Table 4.6: Execution time reduction of the wish jump/jadaj binaries over the best-
performing binaries on a per-benchmark basis (using tHeecgdidence mechanismpEeF,
MAX, BR (normal branch) indicate which binary is the bestfpaming binary for a given benchmark.

column 1 column 2 column 3
% exec time reduction vs. % exec time reduction vs. % exec time reduction vs.
Benchmarkl normal branch binary |the best predicated code binatige best non-wish-branch bing
for the benchmark for the benchmark
gzip 12.5% 3.8% MAX 3.8% MAX
vpr 36.3% 23.9% MAX 23.9% MAX
mcf -1.5% 13.3% DEF -1.5% BR
crafty 16.8% 0.4% MAX 0.4% MAX
parser 23.1% 8.3% MAX 8.3% MAX
gap 4.9% 2.5% MAX 2.5% MAX
vortex 3.2% -4.3% DEF -4.3% DEF
bzip2 3.5% -1.2% DEF -1.2% DEF
twolf 29.8% 13.8% MAX 13.8% MAX
AVG 14.2% 6.7% 5.1%
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Table 4.6 shows, for each benchmark, the reduction in ei@ttime achieved with
the wish jump/join/loop binary compared to the normal brahmary (column 1), the best-
performing predicated code binary for the benchmark (col@) and the best-performing
binary (that does not contain wish branches) for the benckiftalumn 3). Even if the
compiler were able to choose and generate the best-perfgriomary for each benchmark,
the wish jumpl/join/loop binary outperforms the best-pariog binary for each benchmark
by 5.1% on average, as shown in the third column.

4.5.4 Sensitivity to Microarchitectural Parameters
45.4.1 Effect of the Instruction Window Size

Figure 4.16 shows the normalized execution time of the wishg/join/loop bina-
ries on three different machines with 128, 256, and 512yenstruction windows. The
data shown in the left graph is averaged over all the bendtsratamined. The data in
the right graph is averaged over all benchmarks except mié éxecution time of each
binary is normalized to the execution time of the normal brabinary on the machine
with the corresponding instruction window size. Comparethe normal branch binaries,
the wish jump/join/loop binaries improve the executiondibyy 11.4%, 13.0%, and 14.2%
respectively on a 128, 256, and 512-entry window proced8@h branches provide larger
performance improvements on processors with larger ioBtma windows. This is due to
the increased cost of branch mispredictions (due to theasad time to fill the instruction
window after the pipeline is flushed) on machines with latigstruction windows. Wish
loops are also more effective on larger windows, becaudé, aviarger window, it is more
likely that the front-end of the processor has already exitee loop when a mispredicted

wish loop branch is resolved. This increases the likelihobithe late-exit case.
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Figure 4.16: Effect of instruction window size on wish brargerformanceThe left graph
shows the average execution time over all benchmarks,dhegraph shows the average execution time over
all benchmarks except mcf.

4.5.4.2 Effect of the Pipeline Depth

Figure 4.17 shows the normalized execution time of the fivates on three dif-
ferent 256-entry window processors with 10, 20, and 30 pipedtages. Compared to the
normal branch binaries, the wish jump/join/loop binariegrove the execution time by
8.0%, 11.0%, and 13.0% respectively on processors with @0ad 30 pipeline stages.
The performance benefits of wish branches increase as teén@mlepth increases, since
the branch misprediction penalty is higher on processotis éeper pipelines. The wish
jump/join/loop binaries always significantly outperforhretnormal branch and predicated

code binaries for all pipeline depths and instruction windaozes examined.

4.5.4.3 Effect of the Mechanism Used to Support Predicated¥ecution

Our baseline out-of-order processor uses C-style comditiexpressions to handle
predicated instructions as described in Section 2.2.1. [¢¢eimplemented the selepbp
mechanism proposed by Wang et al. [79](Section 2.2.3) tmtifyathe benefits of wish
branches on an out-of-order microarchitecture that useiffereht technique to support
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Figure 4.17: Effect of pipeline depth on wish branch perfance.

predicated execution.

The advantage of the seleebp mechanism over the C-style conditional expres-
sions is that it does not require the extra register read guitthe extra input in the data-
path to read and carry the old destination register valuencelethe implementation cost
of predicated execution is lower on a processor that suppoetdicated instructions using
the selectzop mechanism. The selegbp also enables the execution of a predicated in-
struction before its source predicate value is ready, beitddépendents of the predicated
instruction still cannot be executed until the source prawd is resolved. Since depen-
dent instructions cannot be executed, we found that a stgnifiportion of the overhead of
predicated execution still remains on a processor implémgthe selecfzop mechanism.

The disadvantage of the seleatp mechanism is that it requires additionealps
to handle the processing of predicated instructions. No#¢ this is not the case in a
processor that supports predicated instructions usintyl€é-sonditional expressions. Due
to this additionalyop overhead, the performance benefits of predicated cod®wer
on a processor that uses the selegp mechanism than on a processor that uses C-style

conditional expressions.
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Figure 4.18 shows the normalized execution time of the petdd code, wish
jump/join, and wish jump/join/loop binaries on a procesat supports predicated execu-
tion using the select:op mechanism. With a real confidence estimator, the wish jioimgoop
binaries improve the average execution time by 11.0% coetpir the normal branch bi-
naries and by 14.0% compared to the best-performing (orageg¢rpredicated code bi-
naries (BASE-DEF). On the processor that uses the sglgetmechanism, the overall
performance improvement of wish branches over conditidmahch prediction (11.0%)
is smaller than it is on the processor that uses C-style tiondi expressions (14.2%).
This is due to the higher instruction overhead of the sel@pt-mechanism to support the
predicated instructions. On the other hand, the overafbp@ance improvement of wish
branches over predicated execution (14.0%) is larger thsnan the processor that uses
C-style conditional expressions (13.3%). Hence, the perdmce benefit of wish branches

over predicated execution is larger when predicated ei@thas higher overhead.

45.4.4 Wish Branches in In-Order Processors

We also evaluate the benefits of wish branches in an in-oréehme. The pro-
cessor we evaluate has a 30-cycle minimum branch mispiedipenalty. Since branch
mispredictions are less costly on an in-order machine,ipated code binaries do not show
performance benefits as large as they do on out-of-orderimeghEven so, wish branches
still reduce most of the negative effects of predicated caud keep the benefits of pred-
icated code if the predicated code provides a performannefthe Wish jump/join/loop
binaries improve the performance of the in-order proce$s0o6.0% compared to tradi-
tional conditional branches and by 1% compared to BASE-MBMt compared to BASE-
DEF, wish jump/join/loop binaries reduce performance 22. In an in-order processor,
BASE-MAX binaries perform worse than BASE-DEF on gzip, vpicf, vortex, and bzip2.
Unlike an out-of-order processor, an in-order processadess tolerant of the increasing
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Figure 4.18: Performance of wish branches on an out-ofrqrdecessor that implements
the selectzop mechanism

number of executed instructions. BASE-MAX binaries havaghér number of instruc-
tions than BASE-DEF binaries because more branches arexedvo predicated code in
BASE-MAX binaries. Since wish branch binaries also havegiér number of instructions
than BASE-DEF binaries, wish branch binaries sometime®pamnworse than BASE-DEF
binaries. If we are to consider using wish branches in arrdteigprocessor, the cost-benefit

analysis to generate wish branches in an in-order processaid be developed.

4.5.4.5 Performance Analysis

Figure 4.20 shows the number of fetcheaps for three different binaries. All the
results are normalized to normal branch binaries. Sinch taianches reduce the number of
pipeline flushes, the number of fetched instructions is cedwsignificantly (14%). Hence

wish branches would improve the energy efficiency. Sectiéb5will analyze the power
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Figure 4.19: Normalized execution time in an in-order pesoE

and energy consumption of wish branches.

With the BASE-MAX binary, mcf’s execution time significaptincreases in com-
parison to other benchmarks. As we discussed in Sectiod,4fse main reason is the
execution delay of memory operations that depend on prexhedues. Figure 4.21 shows
the result of an ideal experiment. In this experiment, alld@perations take two cycles,
which is equivalent to the data cache access time. (In otloedsy we simulate a per-
fect data cache.) The result shows that most of the perfazemdegradation of mcf in
the BASE-MAX binary is eliminated (from 112% to 14%). The fe@mance results for
the remaining benchmarks are similar to the results withidhgeline with the real data
cache. Hence, we conclude that the main reason of mcf’s npegfoce degradation in the

BASE-MAX binary is the execution delay of predicate-depamdnemory operations.
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Figure 4.20: The number of fetche@ps normalized to non-predicated binaries

4.5.4.6 Effect of Front-end Design

Figure 4.22 shows the performance of four evaluated bisavi¢h different front-
end configurations: the maximum number of conditional bin@scthat can be fetched in
one cycle is varied from 2 (less aggressive front-end) toggi@ssive front-end). All the
results are normalized to the execution time of non-pradit®inaries in the same ma-
chine configuration. The results show that the performarereefit of wish branches is
not sensitive to the aggressiveness of the front-end degiljthree cases show 14% per-
formance benefit. One of the benefits of predicated code tsttheduces the number of
branches, which could increase the average number of aigtns fetched in one cycle
as compared to normal branch code. (i.e., normal branch badanore fetch breaks.)
With wish branches, this benefit of predicated code is lastesiwish branch code does
not eliminate the predicated branches. However, as showigime 4.22, this effect is not

significant. There are two reasons for this. First, as we glboin Section 4.2.2.1, short
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Figure 4.21: Normalized execution time with a perfect D¥eac

forward branches are already converted to predicated aodlei wish branch binaries.
Second, the performance benefit of reducing the branch edsggion penalty and provid-
ing adaptivity to predicated execution significantly ouigVes the performance loss due to
the reduction in the average number of instructions fetahemhe cycle. This is because
fetch breaks due to limitations on the number of branchetsciéna be fetched in one cycle

happens rarely in the baseline processor.

45.4.7 Effect of Different Branch Predictors

Figure 4.23 shows the normalized execution time of the wishg/join/loop bina-
ries with a 59KB (1021 rows and 59-bit history) perceptroarmh predictor [36]. The exe-
cution time of each binary is normalized to the executioretwhthe normal branch binary

on the same machine with the perceptron branch predictashWianch binaries improve
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Figure 4.22: Performance of wish branches as a functioneofrtaximum number of con-
ditional branches fetched in a cycle

the average execution time by 13% over the normal branchriesand by 11.2% over
the BASE-DEF binaries. The performance benefit of wish dnaeds slightly less than
the benefit with a 64KB hybrid branch predictor. This is bessathe perceptron branch
predictor provides higher branch prediction accuracy. aberage branch prediction accu-
racy of the perceptron branch predictor is 92.04% and thtteohybrid branch predictor is
91.94%. Furthermore, the confidence estimator used in thle&yvon is originally devel-
oped for a branch predictor like gshare. However, wish bnascstill provide significant
performance benefit, and their benefit can be further inextagth a better confidence

estimator tuned for the branch predictor used in the basetiachine.
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Figure 4.23: Performance of wish branches with a percegiranch predictor

4.5.5 Comparisons with Predicate Prediction

Section 2.2.4 discussed predicate prediction. A predigeddictor can reduce the
problem of execution delay due to dependencies on the @tedvalues. However, it can-
not reduce the problem of increased number of fetched ictsbns in predicated code.
Figure 4.24 shows the performance of BASE-DEF and BASE-MAXabes with a 512B
predicate predictor [19]. Unlike wish branches, which asediselectively, the predicate
predictor predicts all predicate values. Although corqgedictions of the predicate pre-
dictor could improve performance, the results show thatpteslicate predictor actually
reduces performance. The evaluated Predicate predictoomaverage 81% prediction
accuracy, which means that 19% of predictions cause re@aglfy. These results are
different from Chuang and Calder [19]'s results. The maiasan is, in their work, the
baseline machine stalls the pipeline in the rename stagiethmimultiple definition prob-
lem is solved. This stall results in a lot of execution deldgwever, our baseline employs

the CMQOV-style mechanism, so only predicate-value-depehihstructions cannot be ex-
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ecuted but the remaining predicate-value-independetruizttons can be executed.

1.60-
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= wish jump/join/loop

Execution time normalized to no predication
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Figure 4.24: Performance with the predicate predictor

Figure 4.25 shows the performance of BASE-DEF and BASE-MAdabes with
a 1KB confidence estimator and a predicate predictor. Ingkperiment, the processor
predicts a predicate value only if the predicate predichiaa a high confidence. The con-
fidence estimator estimates the confidence of predicatecticets. If the predicate predic-
tion has a low confidence, the processor does not executegted instructions until the
predicate value is resolved (i.e., the predicate valuetprezlicted). The results show that
even though using the confidence estimator with the presligagdictor improves perfor-
mance compared to using only the predicate predictor, pageliprediction still does not
perform better than the baseline processor. The reasoatithih confidence estimator does
not have a good accuracy. With wish branches, the confidestoeator is used only for
wish branches. However, with the predicate predictor, thafidence estimator needs to
estimate the confidence for all predicate instructions,civlmesults in a significant lower

accuracy.
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Figure 4.25: Performance with the predicate predictor wittonfidence estimator

4.6 Summary

This chapter proposed a new control-flow mechanism callsth branchego re-
duce the negative effects of predicated code and to obtaiélt performance of predi-
cated execution and branch prediction. It described theatipe of three types of wish
branches: wish jumps, wish joins, and wish loops. The magortributions of wish
branches to the research in predicated execution and braisgrediction penalty reduc-

tion are:

1. Wish jumps and joins provide a mechanism to dynamicaiigiabte the overhead of
predicated execution. These instructions allow the harew@dynamically choose
between using predicated execution versus conditionaidbrgrediction for each
dynamic instance of a branch based on the run-time confidestb@ation of the
branch’s prediction.
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2. Wish jumps and joins also allow the compiler to generagglipated code more ag-
gressively and using simpler heuristics, since the “badpt@viime decisions” can
be corrected at run-time. In previous research, a statiedbranstruction either re-
mained as a conditional branch or was predicatealiots dynamic instancedased
on less accurate compile-time information. If the compiteade a bad decision to
predicate, there was no way to dynamically eliminate theload of the bad deci-
sion.

3. Wish loops provide a mechanism to exploit predicated etk to reduce the branch
misprediction penalty fobackward(loop) branches. In previous research, it was not
possible to reduce the branch misprediction penalty forckward branch by solely

utilizing predicated execution.

Our results show that wish branches improve the averageuggactime of nine
SPEC INT 2000 benchmarks on an aggressive out-of-orderstgdar processor by 14.2%
compared to conditional branch prediction only and by 13c8¥apared to the best-performing

predicated code binary.
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Chapter 5

Diverge-Merge Processor (DMP)

5.1 Introduction

Chapter 1 described the three major problems/limitatidnaredicated execution:
ISA support, the lack of adaptivity, and complex controlaflgraphs. Wish branches in
Chapter 4 was proposed to solve the second problem, the faeklaptivity problem.
However, wish branches inherit the limitations of softwaredication (ISA support and
complex control flow graphs problem) with the exception tihaty can be applied to loop

branches.

The goal of this chapter is to devise a comprehensive teakrtizgat overcomes the
three problems/limitations of predication so that morecpssors can employ predicated

execution to reduce the misprediction penalty due to hawgrédict branches.

This chapter presents a new processor architecture, cakddiverge-Merge Pro-
cessor (DMP) DMP dynamically predicates not only simple but also complentrol-
flow graphs without requiring predicate registers and pratid instructions in the ISA
and without incurring large hardware/energy cost and cemifpl. The key mechanism of
DMP is that it dynamically predicates instructiomsly on frequently executed control-flow
pathsandonly if a branch is hard-to-predict at run-timeDynamically predicating only
the frequently executed paths allows DMP to achieve two fitsra& the same time: 1)
the processor can reduce the overhead of predicated exeaitice it does not need to
fetch/executall instructions that are control-dependent on the predichtadch, 2) the

processor can dynamically predicate a large set of cofibel-graphs because a complex
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control-flow graph can look and behave like a simple hammaaictire when only fre-

guently executed paths are considered.

5.2 The Diverge-Merge Concept and Comparisons with PreviaiWork
5.2.1 Diverge-Merge Concept

A —  Frequently executed path
if (condl
{ ) A — — »  Not frequently executed path
c /I'block C Diverge Branch — Dynamically predicated block
if (cond2) {
} /I block G

}

else

B | // block B
e P

I/l block E

}
F ( else{
[ // block F }

} }
/I block H CFM point
H

@ (b) (©

Figure 5.1: Control-flow graph (CFG) example: (a) sourceec(ly) CFG (c) possible paths
(hammocks) that can be predicated by DMP

Figure 5.1 shows a control-flow graph to illustrate the kegight behind DMP.
In software predication, if the compiler estimates that bh@nch at block A is hard-to-
predict, it would convert blocks B, C, D, E, F, and G to pretkcbcode and all these blocks
would be executed together even though blocks D, F, and Gar&eguently executed

at run-time [57}* In contrast, DMP considers frequently executed paths atirne, so

1if the compiler does not predicate all basic blocks betweeméAH because one of the branches is easy-
to-predict, then the remaining easy-to-predict branchkisly to become a hard-to-predict branch after if-
conversion. This problem is called misprediction migratib, 71]. Therefore, the compiler (e.g. ORC [57])
usually predicates all control-flow dependent basic blaokgle a region (the region is A,B,C,D,E,F,G and
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it can dynamically predicatenly blocks B, C, and E. To simplify the hardware, DMP
uses some control-flow information provided by the compildre compiler identifies and
marks suitable branches as candidates for dynamic premticathese branches are called
diverge branchesThe compiler also selects a control-flow merge (or recagemrece) point
corresponding to each diverge branch. In this example, tmepder marks the branch
at block A as a diverge branch and the entry of block H as a obfiaw merge (CFM)
point. Instead of the compiler specifying which blocks aredicated (and thus fetched),
the processor decides what to fetch/predicate at run-tifreediverge branch is estimated
to be low-confidence at run-time, the processor follows aymhadically predicates both
paths after the branch until the CFM point. The processdovid the branch predictor
outcomes on the two paths to fetch only the frequently exsetbtocks between a diverge

branch and a CFM point.

The compiler could predicate only blocks B, C, and E basedrofilipg [51] rather
than predicating all control-dependent blocks. Unforteta frequently executed paths
change at run-time (depending on the input data set andgroghase), and code pred-
icated for only a few paths can hurt performance if other padthn out to be frequently
executed. In contrast, DMP determines and follows frequexxecuted paths at run-time
and therefore it can flexibly adapt its dynamic predicatmruin-time changes (Figure 5.1c
shows the possible hammock-shaped paths that can be pgeztiimaDMP for the exam-
ple control-flow graph). Thus, DMP can dynamically predéchard-to-predict instances
of a branch with less overhead than static predication aria nvinimal support from the
compiler. Furthermore, DMP can predicate a much wider rasfgeontrol-flow graphs
than dynamic-hammock-predication [43] because a cofital-graph does ndtave tobe

a simple if-else structure to be dynamically predicateglist needs tdook like a simple

H in this example.). This problem can be mitigated with reeeif-conversion [81, 6] or by incorporating
predicate information into the branch history register [5]
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hammock when only frequently executed paths are considered

5.2.2 The Basic DMP Operation

The compiler identifies conditional branches with controhflsuitable for dynamic
predication agliverge branchesA diverge branch is a branch instruction after which the
execution of the programsuallyreconverges at a control-independent point in the control-
flow graph, a point we call theontrol-flow merge (CFM) pointin other words, diverge
branches result in hammock-shaped control flow basedeguently executed paths in the
control-flow graphof the program but they are not necessarily simple hammoahkdbres
that require the control-flow graph to be hammock-shaped. The compiky mlentifies
a CFM point associated with the diverge branch. Diverge ¢divas and CFM points are
conveyed to the microarchitecture through modificationthanISA, which are described
in Section 5.3.11.

When the processor fetches a diverge branch, it estimatethethor not the branch
is hard to predict using a branch confidence estimator. Ifiiherge branch has low con-
fidence, the processor entetgnamic predication mode (dpred-modéh this mode, the
processor fetches both paths after the diverge branch amahagally predicates instruc-
tions between the diverge branch and the CFM point. On eatth e processor follows
the branch predictor outcomes until it reaches the CFM pdifter the processor reaches
the CFM point on both paths, it exits dpred-mode and startsttdh from only one path.
If the diverge branch is actually mispredicted, then theepssor does not need to flush its
pipeline since instructions on both paths of the branch leady fetched and the instruc-

tions on the wrong path will become NOPs through dynamicipegbn.

In this section, we describe the basic concepts of the thiggerrmechanisms to
support diverge-merge processing: instruction fetch suppelectrops, and loop branches.

A detailed implementation of DMP is described in Section 5.3
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5.2.2.1 Instruction Fetch Support

In dpred-mode, the processor fetches instructions frorh dotctions (taken and
not-taken paths) of a diverge branch using two program e&{RIC) registers and a round-
robin scheme to fetch from the two paths in alternate cyd@s.each path, the processor
follows the outcomes of the branch predictor. Note that thie@mes of the branch pre-
dictor favor the frequently executed basic blocks in thetdrilow graph. The processor
uses a separate global branch history register (GHR) taqirae next fetch address on
each path, and it checks whether the predicted next fetcteaslds the CFM point of the
diverge branch.If the processor reaches the CFM point on one path, it stdpkifey from
that path and fetches from only the other path. When the pemeeaches the CFM point

on both paths, it exits dpred-mode.

5.2.2.2 Selecjtops

Instructions after the CFM point should have data dependsmn instructions
from only the correct path of a diverge branch. Before thesdje branch is executed,
the processor does not know which path is correct. Insteasadifng for the resolution
of the diverge branch, the processor inserts seglegis to continue renaming/execution
after exiting dpred-mode. Seleabps are similar to the-functions in the static single-
assignment (SSA) form [24] in that they “merge” the registalues produced on both
sides of the hammock. Selectyops ensure that instructions dependent on the register
values produced on either side of the hammock are suppliddtive correct data values
that depend on the correct direction of the diverge brandterAnserting selecj:ops, the

processor can continue fetching and renaming instructitren instruction fetched after

2When the predicted next fetch address is the CFM point of iverge branch, the processor considers
that it has reached the CFM point.

3Selectuops handle the merging of only register values. We explaim im@mory values are handled in
Section 5.3.8.
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the CFM point is dependent on a register produced on eitterdithe hammock, it sources

(i.e., depends on) the output of a selgop. Such an instruction will be executed after the

diverge branch is resolved. However, instructions thanatelependent on selegbps are

executed as soon as their sources are ready without wadtingd resolution of the diverge

branch. Figure 5.2 illustrates the dynamic predicatiorcpss. Note that instructions in

blocks C, B, and E, which are fetched during dpred-mode, @ executed before the

resolution of the diverge branch.
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T |={M |

(@)

A

r0 = (condl)
branch r0, C

add rl <-r3, #1
rO = (cond2)
branch r0, G

add rl <-r2, #-1
rO = (cond3)
branch r0, E

subr3<-r1, r2
branch.uncond H

add r4 <-r1, r3

(b)

A prl0 = (condl)

branch pr10, C pl =prl0

C |add pr2l <- pril3, #1 (pl)
pr20 = (cond2) (p1)
branch pr20, G (p1)

B | add pr3l <- prl2, #-1!pl)
pr30 = (cond3) ('pl)
branch pr30, E ('pl)

E | sub pr33 <— pr31, pri@pl)
branch.uncond H ('pl)

select-uop pr4l =pl? pr2l: pr3
select-uop prd43 =pl? prl3: pr3
select-uop pr40 = pl1? pr20: pr3

add pr24 <- pr4l, pr43

(€)

Figure 5.2: An example of how the instruction stream in Feghrlb is dynamically pred-
icated: (a) fetched blocks (b) fetched assembly instrasti@) instructions after register

renaming



A laddrl <-r1, #1
rO = (condl)
branch A, rO

>

addrl <-rl, #1
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A laddrl <-r1, #1
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branch A, rO
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prl0 = (condl)

branch A, pr10 pl=prl0

add pr21 <- prll, #1(p1)
pr20 = (condl) (p1)
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select-uop pr23 =pl? pr20 : prli0
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Figure 5.3: An example of how a loop-type diverge branch isahgically predicated: (a)
CFG (b) fetched assembly instructions (c) instructionerattgister renaming
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5.2.2.3 Loop Branches

DMP can dynamically predicate loop branches. The benefiyoandhically predi-

cating loop branches using DMP is very similar to the benéfiwish loopsin Chapter 4.
The key mechanism to predicate a loop-type diverge branttiaisthe processor needs to
predicate each loop iteration separately. This is accaned by using a different predicate
register for each iteration and inserting selgops after each iteration. Seleebps choose
between live-out register values before and after the di@tof a loop iteration, based on
the outcome of each dynamic instance of the loop branchrulctsins that are executed in
later iterations and that are dependent on live-outs ofipusvpredicated iterations source
the outputs of selegtops. Similarly, instructions that are fetched after thecpssor exits
the loop and that are dependent on registers produced withitoop source the outputs
of selectuops so that they receive the correct source values even tthibiegoop branch
may be mispredicted. The pipeline does not need to be flugteedredicated loop is it-
erated more times than it should be because the predicat&gddtions in the extra loop
iterations will become NOPs and the live-out values fromabeect last iteration will be
propagated to dependent instructions via seles. Figure 5.3 illustrates the dynamic
predication process of a loop-type diverge branch (Thegssar enters dpred-mode after
the first iteration and exits after the third iteration).

There is a negative effect of predicating loops: instruddithat source the results
of a previous loop iteration (i.e., loop-carried dependesiccannot be executed until the
loop-type diverge branch is resolved because such ingingctre dependent on select-
1ops. However, we found that the negative effect of this etteculelay is much less
than the benefit of reducing pipeline flushes due to loop tramispredictions. Note that
the dynamic predication of a loop does not provide any peréorce benefit if the branch
predictor iterates the loop fewer times than required byeszirexecution, or if the predictor

has not exited the loop by the time the loop branch is resolved
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5.2.3 DMP vs. Other Branch Processing Paradigms

We compare DMP with five previously proposed mechanisms @dipation and
multipath execution paradigms: dynamic-hammock-predatioa[43], software predica-
tion [3, 58], wish branches, selective/limited dual-pate@ition (dual-path) [32, 27], and
multipath/PolyPath execution (multipath) [63, 45]. Finste classify control-flow graphs
(CFGs) into five different categories to illustrate the elifnces between these mechanisms

more clearly.

Figure 5.4 shows examples of the five different CFG types p&rammock (Fig-
ure 5.4a) isanf orif-el se structure that does not have any nested branches inside
the hammock. Nested hammock (Figure 5.4b) i$ Binel se structure that has multiple
levels of nested branches. Frequently-hammock (Figu® 4 CFG that becomes a sim-
ple hammock if we consider only frequently executed patlugp(Figure 5.4d) is a cyclic
CFG { or ,do- whi | e, orwhi | e structure). Non-merging control-flow (Figure 5.4e) is a
CFG that does not have a control-flow merge point even if wesiclem only frequently ex-
ecuted path$.Figure 5.5 shows the frequency of branch mispredictionstdeach CFG
type. Table 5.1 summarizes which blocks are fetched/pagelicin different processing
models for each CFG type, assuming that the branch in blockhaid to predict.

Dynamic-hammock-predication can predicate only simple hammocks which ac-
count for 12% of all mispredicted branches. Simple hammdgkihemselves account for
a significant percentage of mispredictions in only two benatks: vpr (40%) and twolf
(36%). We expect dynamic-hammock-predication will imprdtie performance of these

two benchmarks.

4If the number of static instructions between a branch andakbsest control-flow merge point exceeds
a certain number (T), we consider that the CFG does not hawntrot-flow merge point. T=200 in our
experiments.
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Figure 5.4: Control-flow graphs: (a) simple hammock (b) edstammock (c) frequently-
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Figure 5.5: Distribution of mispredicted branches base@bf® type

Software predication can predicate both simple and nested hammaocks, which in
total account for 16% of all mispredicted branches. Sofenaedication fetches all basic

blocks between an if-converted branch and the correspgrudintrol-flow merge point. For
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Table 5.1: Fetched instructions in different processinglet® (after the branch at A is
estimated to be low-confidence} assume that the loop branch in block A (Figure 5.4d) isipted
taken twice after it is estimated to be low-confidence.

[ Processing model || simple hammock nested hammock [ frequently-hammock [ loop | non-merging |
DMP [B.C,D,EF B,C,D,G,H,I B,C,D,E,H A A B,C can't predicatg
Dynamic-hammock-predicatioh B, C, D, E, F can't predicate can't predicate can't predicate | can't predicatg
Software predication B,C,D,E F B, C, D, E, F, G, H, || usually don't/can’t predicatgcan't predicate | can’t predicatg
Wish branches B,C,D,E F B, C, D, E, F, G, H, || usually don’t/can't predicateA, A, B, C can't predicatg
Dual-path pathl: B, D, E, H pathl: B,D, H, | pathl: B, D, E, H pathl: A, A, B, C| pathl: B ...

path2: C, D, E, H path2: C, G, H, | path2: C,E, H path2: B, C path2: C ...

example, in the nested hammock case (Figure 5.4b), sofpwadication fetches blocks B,
C,D,E, F, G, H,and |, whereas DMP fetches blocks B, C, D, Gnid,JaCurrent compilers
usually do not predicate frequently-hammocks since theh@aa of predicated code would
be too high if these CFGs include function calls, cyclic cohtlow, too many exit points,
or too many instructions [3, 58, 78, 50, 16, 57]. Note thatdmptock formation [51] can
predicate frequently-hammocks at the cost of increased s, but it is not an adaptive
technique because frequently executed basic blocks clamge-time. Even if we assume
that software predication can predicate all frequentlgrhreocks, it could predicate up to

56% of all mispredicted branches.

Wish branches can even predicate loops, which account for 10% of all mispre
dicted branches, in addition to what software predicatian do. The main difference
between wish branches and software predication is that thle lranch mechanism can
selectively predicate each dynamic instance of a branchth Wish branches, a branch
is predicated only if it is hard to predict at run-time, whasewith software predication a
branch is predicated for all its dynamic instances. Thushwranches reduce the overhead
of software predication. However, even with wish brancladisbasic blocks between an
if-converted branch and the corresponding CFM point arehted/predicated. Therefore,

wish branches also have higher performance overhead fegdhbammocks than DMP.
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Note that software predication (and wish branches) canimdite a branch mispre-
diction due to a branch that is control-dependent on andtagi-to-predict branch (e.qg.,
the branch at B is control-dependent on the branch at A inrEi§uib), since it predicates
all the basic blocks within a nested hammock. This benefibigoossible with any of the
other paradigms except multipath, but we found that it piesisignificant performance

benefit in only two benchmarks (3% in twolf, 2% in go).

Selective/limited dual-path executiorfetches from two paths after a hard-to-predict
branch. The instructions on the wrong path are selectivaghi#d when the branch is re-
solved. Dual-path execution is applicable to any kind of Ab&gause the control-flow
does not have to reconverge. Hence, dual-path can potgrdlahinate the branch mis-
prediction penalty for all five CFG types. However, the dpath mechanism needs to
fetch a larger number of instructions than any of the othechmaisms (except multipath)
because it continues fetching from two paths until the hargredict branch is resolved
even though the processor may have already reached a comteglendent point in the
CFG. For example, in the simple hammock case (Figure 5.4dp, etches blocks D, E,
and F only once, but dual-path fetches D, E, and F twice (oocedch path). Therefore,
the overhead of dual-path is much higher than that of DMPailst comparisons of the

overhead and performance of different processing modelpm@vided in Section 5.5.

Multipath execution is a generalized form of dual-path execution in that it fekch
both paths afteeverylow-confidence branch and therefore it can execute alongy ifmaore
than two) different paths at the same time. This increasepithbability of having the cor-
rect path in the processor’s instruction window. Howevaty@ne of the outstanding paths
is the correct path and instructions on every other path avee flushed. Furthermore,
instructions after a control-flow independent point havéédetched/executed separately
for each path (like dual-path but unlike DMP), which causesgrocessing resources to be

wasted for instructions on all paths but one. For examptagihumber of outstanding paths
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is 8, then a multipath processor wastes 87.5% of its fetelalgion resources for wrong-
path/useless instructions even after a control-indepenpleint. Hence, the overhead of
multipath is much higher than that of DMP. In the example dfl@s.1 the behavior of

multipath is the same as that of dual-path because the egamplimes there is only one

hard-to-predict branch to simplify the explanation.

DMP can predicate simple hammocks, nested hammocks, fregtfeartimocks,
and loops. On average, these four CFG types account for 6@#lmainch mispredictions.
The number of fetched instructions in DMP is less than or etyuather mechanisms for
all CFG types, as shown in Table 5.1. Hence, we expect DMHrtorelte branch mispre-
dictions more efficiently (i.e., with less overhead) thaa tither processing paradigms.

5.3 Implementation of DMP
5.3.1 Entering Dynamic Predication Mode

The diverge-merge processor enters dynamic predicatictenjdpred-mode) if a
diverge branch is estimated to be low-confidence at run-tiMéhen the processor enters

dpred-mode, it needs to do the following:

1. The front-end stores the address of the CFM point assatvaith the diverge branch
into a buffer called CFM register. The processor also makhksdiverge branch as
the branch that caused entry into dpred-mode. The BTB isxdetto store diverge
branch type information and CFM information.

2. The front-end forks (i.e., creates a copy of) the returdrass stack (RAS) and the
GHR when the processor enters dpred-mode. In dpred-moelerticessor accesses
the same branch predictor table with two different GHRs (toreeach path) but

5The compiler could also provide a hint bit to indicate thaisibetter to enter dpred-mode regardless
of the confidence estimation. This additional mechanisnaled short-hammockand it will be explained
more in Chapter 6
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only correct path instructions update the table after thmymit. A separate RAS
is needed for each path. The processor forks the registes tdble (RAT) when
the diverge branch is renamed so that each path uses a sepaatfor register
renaming in dpred-mode. This hardware support is similéhécdual-path execution
mechanisms [1].

3. The front-end allocates a predicate register for théaiteti dpred-mode. An instruc-
tion fetched in dpred-mode carries the predicate regigtamtifier (id) with an extra
bit indicating whether the instruction is on the taken or tio#-taken path of the

diverge branch.

5.3.2 Multiple CFM points

DMP can support more than one CFM point for a diverge brancantble the
predication of dynamic hammocks that start from the samedbrdut end at different
control-independent points. The compiler provides midtipFM points. At run-time, the
processor chooses the CFM point reached first on any patleafivierge branch and uses
it to end dpred-mode. To support multiple CFM points, the Cidister is extended to
hold multiple CFM-point addresses.

5.3.3 Exiting Dynamic Predication Mode

DMP exits dpred-mode when either (1) both paths of a divergadh have reached
the corresponding CFM point or (2) a diverge branch is resthlvThe processor marks
the last instruction fetched in dpred-mode (i.e., the lastjgated instruction). The last

predicated instruction triggers the insertion of seleaps after it is renamed.

DMP uses two policies to exit dpred-mode early to increasdbtimefit and reduce

the overhead of dynamic predication:

1. Counter Policy: CFM points are chosen based on frequently executed paths
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determined through compile-time profiling. At run-timegtprocessor might not reach
a CFM point if the branch predictor predicts that a differpath should be executed. For
example, in Figure 5.4c, the processor could fetch blocksdTaln that case, the processor
never reaches the CFM point and hence continuing dynamdiqaon is less likely to
provide benefit. To stop dynamic predication early (beftwediverge branch is resolved)
in such cases, we use a heuristic. If the processor does ach tbe CFM point until
a certain number of instructions (N) are fetched on any ofti paths, it exits dpred-
mode. N can be a single global threshold or it can be chosehdydampiler for each
diverge branch. We found that a per-branch threshold pes/i3% higher performance
than a global threshold because the number of instructixesued to reach the CFM point
varies across diverge branches. After exiting dpred-meaualy,ehe processor continues to

fetch from only the predicted direction of the diverge bianc

2. Non-preemptive Policy: DMP fetches only two paths at the same time. If the
processor encounters another low-confidence diverge biduming dpred-mode, it has two
choices: it either treats the branch as a normal (non-d@jdoganch or exits dpred-mode
for the earlier diverge branch and enters dpred-mode folatee branch. We found that a
low-confidence diverge branch seen on the predicted patlpifed-mode-causing diverge
branch usually has a higher probability to be mispredidbed the dpred-mode-causing di-
verge branch. Moreover, dynamically predicating the latartrol-flow dependent diverge
branch usually has less overhead than predicating theeedilierge branch because the
number of instructions inside the CFG of the later brancimalker (since the later branch
is usually a nested branch of the previous diverge brandmgréfore, our DMP implemen-
tation exits dpred-mode for the earlier diverge branch amers dpred-mode for the later

diverge branch.

Figure 5.6 shows an example of non-preemptive policy. Asstirat the processor

enters dpred-mode when it fetches diverge branch A. Laterptocessor fetches diverge
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branch D that also has low-confidence. At that moment, thegasor has already fetched
blocks B, C, and G. With non-preemptive policy, the procesgds dpred-mode for branch
A and re-enters dpred-mode for diverge branch D. The proced®cates a new predicate
id register for diverge branch D and then predicates insivas with the new predicate id.
Right before the processor enters dpred-mode for the divergnch D, it creates a check-
point for the register alias table, GHR, RAS, and PC addrsssaated with path-C. The
instructions on path-C that are older than the checkpoifitsil be sent to the pipeline.
When branch A is resolved and if path-C is the correct pattthalinstructions on path-
C will have TRUE predicate values and all the instructionspath-B will have FALSE
predicate values. Similar to the loop mechanism that wildbesecribed in Section 5.3.6,
predicate ids that are generated later than the predicéte diverge branch C will broad-
cast FALSE values. The processor restores the checkpaiotiased with path-C and then
restarts fetch. If path-B is correct and path-C is wrongtradlinstructions on path-C would

have FALSE predicate values.

Note that the storing/restoring of checkpoints on path Gledge happen even in
the baseline processor to support recovery from branchredggions. The processor has
to create a checkpoint regardless of whether it enters dm@de again or not. Hence,

non-preemptive policy does not add significant extra hardwaerhead to the pipeline.

Diverge Branch A

pa'th/B/W—C

B C

Diverge Branch [ 'G

Figure 5.6: Control-flow graph (CFG) example for non-preéwgopolicy

A\
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5.3.4 Selectop Mechanism

Selectuops are inserted when the processor reaches the CFM poirdtbrphths.
Selectrops choose data values that were produced from the two ph#hdiverge branch
so that instructions after the CFM point receive correcadatues from selegtops. Our
selecty.op generation mechanism is similar to Wang et al.’s [79]. Ewesv, our scheme is
simpler than theirs because it needs to compare only two RAJenerate the selepbps.
A possible implementation of our scheme is as follows:

When a diverge branch that caused entry into dpred-modéesathe renaming
stage, the processor forks the RAT. The processor uses ftieoetit RATS, one for each
path of the diverge branch. We extend the RAT with one exttgdMi-modified-) per
entry to indicate that the corresponding architecturaisteg has been renamed in dpred-
mode. Upon entering dpred-mode, all M bits are cleared. \dmearchitectural register is

renamed in dpred-mode, its M bit is set.

When the last predicated instruction reaches the registerming stage, the select-
pop insertion logic compares the two RATSf the M bit is set for an architectural reg-
ister in either of the two RATSs, a selegbtp is inserted to choose, according to the predi-
cate register value, between the two physical registeligrass to that architectural reg-
ister in the two RATs. A selectop allocates a new physical registéiR,.,,) for the
architectural register. Conceptually, the operation ofeled1.0p can be summarized
asPR,..=(predi cat e_regi st er val ue) ?PRy: PRyr, wherePR;( PRyr) Is the
physical register assigned to the architectural registéhe RAT of the taken (not-taken)
path.

A selectuop is executed when the predicate value and the selectedesoperand

5This comparison is actually performed incrementally ewéne a register is renamed in dpred-mode so
that no extra cycles are wasted for selgop generation. We simplify the explanation by describirasiif it
happens at once at the end of dpred-mode.
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are ready. As a performance optimization, a selex-does not wait for a source register
that will not be selected. Note that the sel@op generation logic operates in parallel with
work done in other pipeline stages and its implementatiossdwt increase the pipeline

depth of the processor.

5.3.5 Handling Loop Branches

Loop branches are treated differently from non-loop braschOne direction of
a loop branch is the exit of the loop and the other directioanie more iteration of the
loop. When the processor enters dpred-mode for a loop bramdir one path (the loop
iteration direction) is executed and the processor wiltliethe same static loop branch
again. Entering dpred-mode for a loop branch always imghesexecution of one more

loop iteration.

The processor enters dpred-mode for a loop if the loop-typerge branch is low
confidence. When the processor fetches the same static taaptbagain during dpred-
mode, it exits dpred-mode and inserts seleaps. If the branch is predicted to iterate the
loop once more, the processor enters dpred-mode again wliffeeent predicate register
id’, regardless of the confidence of the branch prediction. Herolvords, once the proces-
sor dynamically predicates one iteration of the loop, ittcares to dynamically predicate
the iterations until the loop is exited by the branch preatictThe processor stores the pred-
icate register ids associated with the same static loopchrama small buffer and these are
later used when the branch is resolved as we will describeeati® 5.3.6. If the branch
is predicted to exit the loop, the processor does not entexddmode again but it starts to

fetch from the exit of the loop after inserting seleaips.

’DMP has a limited number of predicate registers (32 in our ejodNote that these registers are not
architecturally visible.
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5.3.6 Resolution of Diverge Branches

When a diverge branch that caused entry into dpred-modsaéved, the processor
does the following:

1. It broadcasts the predicate register id of the divergadiravith the correct branch
direction (taken or not-taken). Instructions with the sgimedicate id and the same
direction are said to be predicated-TRUE and those with #imespredicate id but
different direction are said to be predicated-FALSE.

2. If the processor is still in dpred-mode for that predicaggister id, it simply exits
dpred-mode and continues fetching only from the corredt patdetermined by the
resolved branch. If the processor has already exited dpredke, it does not need to
take any special action. In either case, the pipeline is nehéd.

3. If aloop-type diverge branch exits the loop (i.e., resdlas not-taken in a backward
loop), the processor also broadcasts the predicate idisatbee assigned for later
loop iterations along with the correct branch direction amsecutive cycle$. This
ensures that the selegtps after each later loop iteration choose the correctdive-
values.

DMP flushes its pipeline for any mispredicted branch thatraiticause entry into
dpred-mode, such as a mispredicted branch that was fetoltgted-mode and turned out
to be predicated-TRUE.

5.3.7 Instruction Execution and Retirement

Dynamically predicated instructions are executed justdither instructions (except

for store-load forwarding described in Section 5.3.8).c8ithese instructions depend on

8Note that only one predicate id needs to be broadcast pex bgdause selegteps from a later iteration
cannot anyway be executed before the selexs from the previous iteration are executed (since sglepts
of the later iteration are dependent on the selamts of the previous iteration).
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the predicate value only for retirement purposes, they eaexecuted before the predicate
value (i.e., the diverge branch) is resolved. If the pret@icalue is known to be FALSE, the

processor does not need to execute the instructions oaédloesources for them. Nonethe-
less, all predicated instructions consume retirementwatitd. When a predicated-FALSE

instruction is ready to be retired, the processor simplgdréhe physical register (along

with other resources) allocated for that instruction andsdoot update the architectural
state with its result®. The predicate register associated with dpred-mode isgetbavhen

the last predicated instruction is retired.

5.3.8 Load and Store Instructions

Dynamically predicated load instructions are executed liormal load instruc-
tions. Dynamically predicated store instructions are seftite store buffer with their pred-
icate register id. As one would expect, a predicated statruntion is not sent further
down the memory system (i.e., into the caches) until it isvkméo be predicated-TRUE.
The processor drops all predicated-FALSE store requedtsis,TDMP requires the store
buffer logic to check the predicate register value beforelgey a store request to the mem-

ory system.

DMP requires support in the store-load forwarding logic. eTorwarding logic
should check not only the addresses but also the predicgisteeids. The logic can
forward from: (1) a non-predicated store to any later lo&]),d predicated store whose
predicate register value is known to be TRUE to any later |@ad3) a predicated store

whose predicate register is not ready to a later load witlséimee predicate register id (i.e.,

%In a high performance out-of-order processor, when anuostn is ready to be retired, the processor
frees the physical register allocated by the previousuesitsn that wrote to the same architectural register.
This is exactly how physical registers are freed in DMP fan+4poedicated and predicated-TRUE instructions.
The only difference is that a predicated-FALSE instrucfiees the physical register allocated by itself (since
that physical register will not be part of the architectistte) rather than the physical register allocated by
the previous instruction that wrote to the same architetnagister.
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on the same dynamically predicated path). If forwardingas possible, the load waits.
Note that this mechanism and the structures to support itheresame as the store-load
forwarding mechanism in dynamic-hammock-predicatior.[4#31 out-of-order execution
processor that implements software predication or wisimdiras also requires the same

support in the store buffer and store-load forwarding logic

5.3.9 Interrupts and Exceptions

DMP does not require any special support for handling iofs or exceptions.
When the pipeline is flushed before servicing the interrupgxaeption, any speculative
state, including DMP-specific state is also flushed. Therroisneed to save and re-
store predicate registers, unlike software predicatiome Pprocessor restarts in normal
mode right after the last architectural retired instructadter coming back from the inter-
rupt/exception service. Exceptions generated by preelicBALSE instructions are simply
dropped.

5.3.10 Hardware Complexity Analysis

DMP increases hardware complexity compared to currentgasmrs but is an en-
ergy efficient design as we will show in Section 5.5.5. Som#hefhardware required for
DMP already exists in current processors. For examplecsglgps are similar to CMOV
operations and complexop generation and insertion schemes are already impleghente
in Xx86 processors. Table 5.2 summarizes the additionalwearl support required for
DMP and the other processing models. DMP requires slightyerhardware support than
dynamic-hammock-predication and dual-path but much less multipath.
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Table 5.2: Hardware support required for different branobcpssing paradigmgm+1) is
the maximum number of outstanding paths in multipath.

[Hardware

[DMP

| Dynamic-hammock [ Dual-path/Multipath | Software predication |Wish branches |

Fetch support

CFM registers, +1 P(
round-robin fetch

fetch both paths
in simple hammock

+1/m PC
round-robin fetch

selection between
branch/predicated cod

Hardware-generated
predicate/path IDs

required

required

required (path IDs)

Branch pred. suppor

+1 GHR, +1 RAS

+1/m GHR, +1/m RAS-

BTB support

mark diverge br./CFM

mark hammaock br.

mark wish branches

Confidence estimato

required

optional (performance

Yequired

required

Decode support

CFM point info

predicated instruction

spredicated instruction

Rename support +1 RAT +1 RAT +1/m RAT
Predicate registers | required required - required required
Selectu.op generationrequired required optional (performancg)optional (performance

LD-ST forwarding

check predicate

check predicate

check path IDs

check predicate

check predicate

Branch resolution

check flush/no flush
predicate id broadca

{:heck flush/no flush

check flush/no flush

check flush/no flush

Retirement

check predicate

check predicate

selective flush

check predicate

check predicate

5.3.11

ISA Support for Diverge Branches

This section presents an example of how the compiler casfeadiverge branch

and CFM point information to the hardware through simple ifications in the ISA. Di-

verge branches are distinguished with two bits in the ISAmibh instruction format. The

first bit indicates whether or not the branch is a diverge tiheand the second bit indicates

whether or not a branch is of loop-type. If a branch is a digdrganch, the following\ bits

in the program code are interpreted as the encoding for swcaged CFM points. A CFM

point address can be encoded as a relative address fromvérgelbranch address or as an

absolute address without the most significant bits. Sindd @&ints are located close to a

diverge branch we found that 10 bits are enough to encode@&akhpoint selected by our

compiler algorithm. The ISA could dedicate a fixed numbernydéb to encode CFM points

or the number of bytes can vary depending on the number of Céiktgfor each diverge

branch. We allow a maximum of three CFM points per divergentina To support early

exit (Section 5.3.3), the compiler also udegxtra bits to encode the maximum distance

between a branch and its CFM poiitié a scaled 4-bit value in our implementation).
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5.4 Methodology
5.4.1 Simulation Methodology

The evaluation is done with an execution-driven simulaidi jof a processor that

implements the Alpha ISA. An aggressive, 64KB branch pitedis used in the baseline

processor. The parameters of the baseline processor axa smdable 5.3. A less aggres-

sive processor is also modeled to evaluate the DMP conceptanfiguration similar to

today’s processors. Table 5.4 shows the parameters ofshatgressive processor that are

different from the baseline processor.

Table 5.3: Baseline processor configuration

Front End

64KB, 2-way, 2-cycle I-cache
fetches up to 3 conditional branches but fetch ends at thepfieslicted-taken branch
8 RAT ports

Branch Predictors

64KB (64-bit history, 1021-entry) perceptron branch pcéali [36]
4K-entry BTB; 64-entry return address stack
minimum branch misprediction penalty is 30 cycles

Execution Core

8-wide fetch/issue/execute/retire

512-entry reorder buffer; 128-entry load-store queue; ptiysical registers
scheduling window is partitioned into 8 sub-windows of 64riexs each
4-cycle pipelined wake-up and selection logic [76, 8]

On-chip Caches

L1 D-cache: 64KB, 4-way, 2-cycle, 2 Id/st ports
L2 cache: 1MB, 8-way, 8 banks, 10-cycle, 1 port; LRU replaeetand 64B line size

Buses and Memon

y300-cycle minimum memory latency; 32 banks
32B-wide core-to-memory bus at 4:1 frequency ratio; busrey: 40-cycle round-trip

Prefetcher

Stream prefetcher with 32 streams and 16 cache line prefigtdnce (lookahead) [7]

DMP Support

2KB (12-hit history, threshold 14) enhanced JRS confidestmator [35, 30]

32 predicate registers; 3 CFM registers (also see Table 5.2)

The experiments are run using the 12 SPEC CPU 2000 integehbenks and
five of the eight SPEC 95 integer benchmatkJable 5.5 shows the characteristics of the

—_—

10Gcc, vortex, and perl in SPEC 95 are not included becausevatsions of these benchmarks are in-
cluded in SPEC CPU 2000.
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Table 5.4: Less aggressive baseline processor configaratio

Fetches up to 2 conditional branches but fetch ends at thefedicted-taken branch;
4 RAT ports

16KB (31-bit history, 511-entry) perceptron branch préai¢36]; 1K-entry BTB
32-entry return address stack; minimum branch mispreafigiienalty is 20 cycles
4-wide fetch/issue/execute/retire; 128-entry reordéidnu64-entry scheduling window
48-entry load-store queue; 128 physical registers; 3ecgipelined wake-up and selection logi
Buses and Memory200-cycle minimum memory latency; bus latency: 20-cyclanatrip

Front End

Branch Predictors

Execution Core

Cc

benchmarks on the baseline processor. All binaries are tednfor the Alpha ISA with
the -fast optimizations. We use a binary instrumentatianh tisat marks diverge branches
and their respective CFM points after profiling. The benctk®are run to completion
with a reduced input set [46] to reduce simulation time. Irttad IPC (retired Instructions
Per Cycle) performance results shown in the rest of the datsen for DMP, instructions
whose predicate values are FALSE and selaxts inserted to support dynamic predication

do not contribute to the instruction count.

5.4.2 Modeling of Other Branch Processing Paradigms

5.4.2.1 Dynamic-Hammock-Predication

Klauser et al. [43] discussed several design configurafimndynamic-hammock-
predication. We chose the following design configuratidme forovide the best perfor-
mance: (1) Simple hammock branches are marked by the cartipiteigh profiling, (2) A
confidence estimator is used to decide when to predicate@esimmmmock.

5.4.2.2 Dual-path

Several design choices for dual-path processors were peab{82, 27, 45, 1].
The dual-path processor we model fetches instructions fnem paths of a low confi-

dence branch using a round-robin scheme. To give prioritthéopredicted path (since
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Table 5.5: Characteristics of the benchmarks:total nunobeetired instructions (Insts),
number of static diverge branches (Diverge Br.), numbetldatatic branches (All br.), in-
crease in code size with diverge branch and CFM informatodg sized), IPC, potential
IPC improvement with perfect branch prediction (PBP IREin both baseline processor
and less aggressive processor.

: : baseline processdgress aggressive processor
Insts | Diverge br.| All br | Code sizeA [PC| PBPIPCA [ IPC]  PBP IPCA
gzip || 249M 84 1.6K 0.12% 2.02 90% 1.77 39%
vpr 76M 434 4.2K 0.35% 150 229% 1.39 84%
gcc 83M 1245 |29.5K| 0.23% 1.25 96% 0.98 46%
mcf 111M 62 1.4K 0.1% 0.45| 113% 0.52 58%
crafty (| 190M 192 5.1K 0.13% 2.54 60% 1.76 27%
parser | 255M 37 3.7K 0.03% 150 137% 1.36 65%
eon 129M 116 49K 0.01% 3.26 21% 2.05 9%
perlbmk || 99M 92 9.4K 0.03% 2.27 15% 1.36 7%
gap | 404M 79 4.6K 0.03% 2.88 15% 2.03 9%
vortex || 284M 250 13K 0.09% 3.37 16% 1.73 8%
bzip2 || 316M 74 1.4K 0.11% 1.48 94% 1.39 46%
twolf || 101M 235 4.7K 0.16% 2.18| 112% 1.71 46%
compress| 150M 16 0.6K 0.02% 2.18 139% 1.79 50%
go 137M 117 7.7K 0.08% 0.97| 227% 0.86 101%
ijpeg || 346M 48 2K 0.04% 2.73 93% 2.05 37%
li 248M 18 1.2K 0.02% 2.15 60% 1.69 34%
m88ksim|| 145M 158 1.7K 0.13% 3.27 24% 2.10 12%

the branch predictor is more likely to predict a correct diien), the processor fetches
twice as many instructions from the predicted path as froendther path [1]. This is
accomplished by fetching from the other path every thirdleycThe configuration of
the confidence estimator is optimized to maximize the bewéfdual-path (13-bit his-
tory, threshold 4). Most of the previous evaluations of epath processors increased
the fetch/rename/execution bandwidth to support two patt@wvever, in our model, the
baseline, dynamic-hammock-predication, dual-path, ipatlh, and DMP have the same

amount of fetch/rename/execution bandwidth in order twiplefair comparisons.
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5.4.2.3 Multipath

The modeled multipath processor starts fetching from bathgevery timeit en-
counters a low-confidence branch, similar to PolyPath [#8 maximum number of out-
standing paths is 8, which we found to perform best among 8, &6, or 32 outstanding
paths. The processor fetches instructions from each awlistg path using a round-robin

scheme.

5.4.2.4 Limited Software Predication

Since the Alpha ISA does not support full predication, we eiddnited soft-
ware predicatioft with the following modifications in the DMP mechanism: (1)iaedge
branch is always (i.e., statically) converted into pretBidacode and eliminated from the
program, (2) only simple and nested hammocks are convamtedredicate code, (3) all
basic blocks (instructions) between a diverge branch aadC#M point of the branch are
fetched/predicated, (4) there is no branch mispredictietwben the diverge branch and
the CFM point since all blocks are predicated, (5) a sel@®gt-mechanism [79] (similarly
to DMP) is employed so that predicated instructions can leewed before the predicate

value is ready.

5.4.2.5 Wish Branches

We model wish branches similarly to limited software prediicn except that: (1)
the processor decides whether or not to predicate basedearotifidence of branch pre-
diction (same as in DMP), (2) the processor can predicatemgtsimple and nested ham-

mocks but also loop branches, (3) a wish branch is not elirathixom the program.

e call it limited software predication, because our sofavaredication does not model the compiler
optimization effect on if-conversion
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5.4.3 Power Model

We incorporated the Wattch infrastructure [7] into our @relccurate simulator.
The power model is based on 100nm technology. The frequerecgssume is 4GHz for
the baseline processor and 1.5GHz for the less aggressigegsor. We use the aggressive
CC3 clock-gating model in Wattch: unused units dissipatly @0% of their maximum
power when they are not accessed [7]. All additional stmestand instructions required
by DMP are faithfully accounted for in the power model: thenfidence estimator, one
more RAT/RAS/GHR, selegtop generation/execution logic, additional microcode 8eld
to support select:ops, additional fields in the BTB to mark diverge branchestarchche
CFM points, predicate and CFM registers, and modificatiortsandle load-store forward-
ing and instruction retirement. Forking of tables and itieerof selectx.ops are modeled

by increasing the dynamic access counters for every relestarcture.

5.4.4 Compiler Support for Diverge Branch and CFM Point Sel&tion

Diverge branch and CFM point candidates are determineddb@s@ combination
of CFG analysis and profiling. Simple hammocks, nested hatksy@nd loops are found
by the compiler using CFG analysis. To determine frequemdisnmocks, the compiler
finds CFM point candidates (i.e., post-dominators) congidehe portions of a program'’s
control-flow graph that are executed during the profiling.rédnbranch in a suitable CFG
is marked as a possible diverge branch if it is responsibleatdeast 0.1% of the total
number of mispredictions during profiling. A CFM point caddie is selected as a CFM
point if it is reached from a diverge branch for at least 30%h# dynamic instances
of the branch during the profiling run and if it is within 12@8t instructions from the
diverge branch. The thresholds used in compiler heuristiesletermined experimentally.
A detailed evaluation will be presented in Chapter 6. We uketrain input sets to collect

profiling information.
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5.5 Results

5.5.1 Performance of the Diverge-Merge Processor

Figure 5.7 shows the performance improvement of dynammrhack-predication,
dual-path, multipath, and DMP over the baseline proce33$w.average IPC improvement
over all benchmarks is 3.5% for dynamic-hammock-predicgt#.8% for dual-path, 8.8%
for multipath!? and 19.3% for DMP. DMP improves the IPC by more than 20% on vpr
(58%), mcf (47%), parser (26%), twolf (31%), compress (23&b)d ijpeg (25%). A sig-
nificant portion (more than 60%) of branch mispredictionshiese benchmarks is due to
branches that can be dynamically predicated by DMP as wasrshoFigure 5.5. Mcf
shows additional performance benefit due to the prefetchifegt caused by predicated-
FALSE instructions. In bzip2, even though 87% of misprdadits are due to frequently-
hammocks, DMP improves IPC by only 12.2% over the baselinestftequently-hammocks
in bzip2 have more than one CFM point and the run-time heatisted by DMP to decide
which CFM point to use for dynamic predication (Section B)3loes not work well for
bzip2.

Dynamic-hammock-predication provides over 10% perforoeammprovement on
vpr and twolf because a relatively large portion of mispegidns is due to simple ham-
mocks. The performance benefit of dual-path is higher thah @ah dynamic-hammock-
predication but much less than that of DMP, even though gati-is applicable to any kind
of CFG. This is due to two reasons. First, dual-path fetcHasger number of instructions

from the wrong path compared to dynamic-hammock-predicsand DMP, as was shown

2Klauser et al. [43] reported average 5% performance impnare for dynamic-hammock-predication,
Farrens et al. [27] reported average 7% performance impnew for dual-path (with extra execution re-
sources to support dual-path), and Klauser and Grunwald§pbrted average 9.3% performance improve-
ment for PolyPath (multipath) with a round-robin fetch stiee The differences between their and our results
are due to different branch predictors, machine configomnatiand benchmarks. Our baseline branch predic-
tor is much more accurate than those in previous work.
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Figure 5.7: Performance improvement provided by DMP vs. adyic-hammock-
predication, dual-path, and multipath execution

in Table 5.1. Figure 5.8 shows the average number of fetch@tgmpath instructions

per each entry into dynamic-predication/dual-path modthéndifferent processors. On
average, dual-path fetches 134 wrong-path instructioms;iwis much higher than 4 for

dynamic-hammock-predication, and 20 for DMP (note that @iverhead is incurred even if
the low-confidence branch turns out to be correctly predict&econd, dual-path is appli-
cable to one low-confidence branch at a time. While a dudil-paicessor is fetching from

two paths, it cannot perform dual-path execution for andih@-confidence branch. How-

ever, DMP can diverge again if another low confidence divergach is encountered after
the processor has reached the CFM point of a previous divaayech and exited dpred-
mode. For this reason, we found that dual-path cannot reasicgany pipeline flushes due
to branch mispredictions as DMP. As Figure 5.9 shows, da#t-peduces pipeline flushes
by 18% whereas DMP reduces them by 38%.
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Figure 5.8: Fetched wrong-path instructions per entry ayoamic-predication/dual-path
mode (i.e., per low-confidence branch)

Multipath performs better than or similarly to DMP on gzimog and go. In these
benchmarks more than 40% of branch mispredictions are doertamerging control flow
that cannot be predicated by DMP but can be eliminated byipait. Multipath also per-
forms better than dual-path execution on average becaiseapplicable to multiple out-
standing low-confidence branches. On average, multipdtices pipeline flushes by 40%,
similarly to DMP. However, because multipath has very higbrbead (200 wrong-path
instructions per low-confidence branch, as shown in Figu8g &s average performance

improvement is much less than that of DMP.

5.5.2 Comparisons with Software Predication and Wish Brankes

Figure 5.10 shows the execution time reduction over thelimestor limited soft-
ware predication and wish branches. Since the number otita@instructions is different
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in limited software predication and wish branches, we ugeetkecution time metric for
performance comparisons. Overall, limited software pration reduces execution time by
3.8%, wish branches by 6.4%, and DMP by 13.0%. In most bendtsn@ish branches
perform better than predication because they can selgctveble predicated execution
at run-time, thereby reducing the overhead of predicatidish branches perform signif-
icantly better than limited software predication on vprgga, and ijpeg because they can
be applied to loop branches.

There are some differences between results of Chapter 4hancksults of Chap-
ter 5 in the benefit of software predication and wish branchiée differences are due to
the following: (1) our baseline processor already emplo3¥s which provide the per-
formance benefit of predication for very small basic blogk$,|SA differences (Alpha vs.
IA-64), (3) in our model of software predication, there islenefit due to compiler opti-

mizations that can be enabled with larger basic blocks idipaged code, (4) since wish

100



= [imited software predicatio
=wish branches

Execution time normalized to the baseline

N
1
1N
n
1
11
1]
11
11
1

Figure 5.10: DMP vs. limited software predication and wisarithes

branches dynamically reduce the overhead of software gadn, they allow larger code
blocks to be predicated, but we could not model this effectbse Alpha ISA/compiler
does not support predication.

Even though wish branches perform better than limited so#vpredication, there
is a large performance difference between wish brancheDédnB. The main reason is
that DMP can predicate frequently-hammocks, the majoritynspredicted branches in
many benchmarks as shown in Figure 5.5. Only parser doesawet tmany frequently-
hammocks, so wish branches and DMP perform similarly fa& bleinchmark. Figure 5.11
shows the performance improvement of DMP over the basdlibdiP is allowed to dy-
namically predicate: (1) only simple hammocks, (2) simphel maested hammocks, (3)
simple, nested, frequently-hammocks, and (4) simple edestequently-hammocks and
loops. There is a large performance provided by the preidicatf frequently-hammocks

as they are the single largest cause of branch mispredsctidance, DMP provides large
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performance improvements by enabling the predication ofideswrange of CFGs than

limited software predication and wish branches.
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Figure 5.11: DMP performance when different CFG types areadyically predicated

5.5.3 Analysis of the Performance Impact of Enhanced DMP Mdtanisms

Figure 5.12 shows the performance improvement providedeyehhanced mech-
anisms in DMP.Single-cfmsupports only a single CFM point for each diverge branch
without any enhancements. Single-cfm by itself providegi%d IPC improvement over
the baseline processaviultiple-cfmsupports more than one CFM point for each diverge
branch as described in Section 5.3.2. Multiple-cfm incesathe performance benefit of
DMP for most benchmarks because it increases the probyadfilieaching a CFM point in
dpred-mode and, hence, the likelihood of success of dynpreidication. Mcfm-counter
supports multiple CFM points and also adopts @wminter Policy(Section 5.3.3). Counter

Policy improves performance significantly in twolf, comgse and go; three benchmarks
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that have a high fraction of large frequently-hammock CF®&me the branch predictor
sometimes deviates from the frequently executed pafledin-counter-nonpralso adopts
the non-preemptive PolicgSection 5.3.3) to exit dpred-mode early, increasing théope
mance benefit of DMP to 19.3%. Non-preemptive Policy is berafior vpr, mcf, twolf,
compress, and go benchmarks. In these benchmarks, mangealiwanches are control-
flow dependent (i.e., nested) on other diverge branches;@mtdol-flow dependent diverge
branches are more likely to be mispredicted.
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Figure 5.12: Performance impact of enhanced DMP mechanisms

5.5.4 Sensitivity to Microarchitecture Parameters
5.5.4.1 Evaluation on the Less Aggressive Processor

Figure 5.13 shows the performance benefit for dynamic-hackrpoedication, dual-
path, multipath, and DMP on the less aggressive baselirepsor and Figure 5.14 shows
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Figure 5.13: Performance comparison of DMP versus othexdygms (hardware oriented)
on the less aggressive processor

the execution time reduction over the less aggressive ibader limited software predica-
tion, wish branches, and DMP. Since the less aggressivegsocincurs a smaller penalty
for a branch misprediction, improved branch handling has [gerformance potential than
in the baseline processor. However, DMP still provides 7LB@improvement by reducing
pipeline flushes by 30%, whereas dynamic-hammock-pradicadual-path and multipath
improve IPC by 1.6%, 1.5%, and 1.3% respectively. Limiteftvgare predication reduces
execution time by 1.0%, wish branches by 2.9%, and DMP by 5.7%

5.5.4.2 Effect of a Different Branch Predictor

We also evaluate DMP with a recently developed branch piedi©-GEHL [68].
The O-GEHL predictor requires a complex hashing mechangsimdex the branch pre-
dictor tables, but it effectively increases the global lotahistory length. As Figure 5.15
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Figure 5.14: Performance comparison of DMP versus othexdigms (compiler oriented)
on the less aggressive processor

shows, replacing the baseline processor’s perceptrongioedvith a more complex, 64KB
O-GEHL branch predictor (OGEHL-base) provides 13.8% penmnce improvement, which
is smaller than the 19.3% performance improvement provigednplementing diverge-
merge processing (perceptron-DMP). Furthermore, using®@Wth an O-GEHL predictor
(OGEHL-DMP) improves the average IPC by 13.3% over OGEH&eband by 29% over
our baseline processor. Hence, DMP still provides largéopmance benefits when the
baseline processor’s branch predictor is more complex aoré @ccurate.

Figure 5.16 shows the effect of replacing the baseline msmes perceptron predic-
tor with a less complex 16KB gshare branch predictor (gstié&#B). DMP with a 16KB
gshare branch predictor provides 20.3% performance ingmant, which is slightly better
than the 19.3% with a perceptron branch predictor (peroepddKB). Even if DMP em-
ploys a larger gshare branch predictor (32KB, 64KB), thégserance benefit of DMP is
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Figure 5.15: DMP performance with different branch prealist

not reduced even though actual IPC performance is improlied.results show that DMP
is effective at reducing the branch misprediction penalthwther branch predictors.

5.5.4.3 Effect of Confidence Estimator

Figure 5.17 shows the performance of dynamic-hammockigaédn, dual-path,
multipath and DMP with 512B, 2KB, 4KB, and 16KB confidencdraators and a per-
fect confidence estimator. Our baseline employs a 2KB erdthdRS confidence estima-
tor [35], which has 14% PVN~ accuracy) and 70% SPEG-(coverage) [30}2 Even
with a 512-byte estimator, DMP still provides 18.4% perfame improvement. The ben-

efit of dual-path/multipath increases significantly with exfpct estimator because dual-

13These numbers are actually lower than what was previousiighed [30] because our baseline branch
predictor uses a different algorithm and has a much highestiption accuracy than that of [30].
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path/multipath has very high overhead as shown in Figuredn8 a perfect confidence
estimator eliminates the incurrence of this large overifeadorrectly-predicted branches.
However, even with a perfect estimator, dual-path/multigeas less potential than DMP
because (1) dual-path is applicable to one low-confidenaedbr at a time (as explained
previously in Section 5.5.1), (2) the overhead of dual-pratlitipath is still much higher

than that of DMP for a low-confidence branch because dudlApatitipath executes the
same instructions twice/multiple times after a contralependent point in the program.

Figure 5.18 shows the accuracy and the coverage of the canédsstimator along
with the performance improvement of DMP when we vary theshotd (N) of the con-
fidence estimator. When N increases, branches are morg ligdbe estimated as low
confidence [35], so the accuracy decreases but the covaraggmses. Since the accu-
racy does not drop as fast as the coverage improves, DMRsasuhe best performance
improvement when the coverage of the confidence estimatbeikighest.
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Figure 5.18: Confidence estimator thresholds
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Our evaluation employs a JRS confidence estimator. Figa&@ ghows the perfor-
mance improvement with a perceptron confidence estimajoif# results show that the
perceptron based confidence estimator provides 9.11%rpsafice improvement, which
is much less than when the DMP employs the JRS confidenceagstint he main reason
is that the perceptron confidence estimator has lower acgarad lower coverage than the
JRS confidence estimator. Our experiments show that thepieon predictor has 5-10%
accuracy with 20-30% coverage when used with our baselbraisch predictor.
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Figure 5.19: DMP with a perceptron based confidence estimato

5.5.5 Power Analysis

Figure 5.20 (left) shows the average increase/reducti@toldMP in the number
of fetched/executed instructions, maximum power, eneagg, energy-delay product com-
pared to the baseline. Even though DMP has to fetch instmgfirom both paths of every

dynamically predicated branch, the total number of fetdhsttuctions decreases by 23%
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because DMP reduces pipeline flushes and thus eliminatdstttteof many wrong-path
instructions. DMP executes 1% more instructions than tiselbee due to the overhead of

selecty.ops and predicated-FALSE instructions.
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Figure 5.20: Power consumption comparison of DMP with basgbrocessor (left) and
less aggressive baseline processor (right)

Due to the extra hardware required to support DMP, maximumwepaonsump-
tion increases by 1.4%. However, because of the reductiteteched instructions, energy
consumption is reduced by 9.0%. Moreover, energy-delagiypgbdecreases by 22.3% be-
cause of both the performance improvement and energy riedud¢ience, although DMP
increases hardware complexity, it actually increasesggrefficiency by reducing pipeline
flushes due to branch mispredictions. DMP is an energy-effiaesign even in the less

aggressive processor configuration as Figure 5.20 (rigiotys.

Table 5.7 provides a power/energy comparison of the brarmtegsing paradigms.
DMP reduces energy consumption and energy-delay produchmeore than other ap-

proaches while it increases the maximum power requirensigiistly more than the most
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Table 5.6: Power and energy comparison of different bramobgssing paradigms
Baseline processor

DMP |dyn-ham|dual-patimultipathl SW-pred wish br.

Max powerA 1.4% | 1.1% 1.2% 6.5% 0.1% | 0.4%

EnergyA -9.0%| -0.7% | -2.2% 4.7% | -1.5% | -2.9%

Energyx DelayAl[[-22.3% -0.9% | -7.0% | -4.3% | -1.8% | -6.1%

Table 5.7: Power and energy comparison of different bramobgssing paradigms in less
aggressive baseline processor

Less aggressive baseline processor
DMP |dyn-ham|dual-pathmultipathl SW-pred wish br.
Max powerA | 0.9%| 0.8% 0.8% 4.3% 0.1% | 0.4%
EnergyA -5.6%| -0.8% | 1.1% 3.7% | -0.1% | -1.5%
Energyx DelayA||-9.7%| -0.5% | 0.5% 2.2% 1.2% | -2.1%

relevant hardware techniques (dynamic-hammock-predicatnd dual-path). Note that
multipath significantly increases both maximum power anetgyconsumption due to the

extra hardware to support many outstanding paths.

5.5.6 The Diverge-Merge Processor Design Configuration

5.5.6.1 Selecjtop vs. Conditional Expression Mechanism

DMP uses the selegtep mechanism to effectively execute dynamic predicated in-
structions. Predicated instructions (instructions fettlluring dpred-mode) can be ex-
ecuted before predicate value is known. Dynamic predinat@n also be implemented
using C-style conditional expressions [74]. For examplgl) r 1=r 2+r 3 instruction is
convertedtotheiop r1l = (pl) ? (r2+r3) : r1,whichis similarto a select-
pop. If the predicate is TRUE, the instruction performs thenpatation and stores the
result into the destination register. If the predicate i4 B&, the instruction simply moves

the old value of the destination register into its destoratiegister. With the C-style condi-
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tional expression mechanism, the processor can reducevéinkead of selectops (gen-
eration of selecj:ops and execution of selegtps). However, not all instructions fetched
during dpred-mode can be executed until the diverge braasblved. The processor also
needs to support one more register read port to support g of the old value from

the destination register.

Figure 5.21 shows the performance difference between tiondl expression mech-
anism and selegtop mechanism. Since the execution delay due to predicas¢diations
is not high in most benchmarks, both mechanisms show sipgidiormance benefit except
in mcf. Mcf is a memory-limited benchmark. In mcf, criticadstructions that generate
L2 cache miss requests cannot be executed until the predresiie is ready if the pro-
cessor employs the conditional expression mechanism. re€Bigts in significant delay
in handling L2 misses, which reduces memory level paraltelithereby leading to the
significant performance degradation. These results shawift processor cannot afford
a selectwop generation mechanism, converting predicated instmstto conditional ex-
pressions could be useful. However, in that case, the cempdeds to be aware of long
latency operations when generating code for the DMP pracegb other words, if the
instructions between a diverge branch and the CFM point are tikely to generate cache
misses, it is better not to mark the branch as a diverge braxote that this problem also

exists in generating predicated code for an out-of-ordecgssor.)

5.5.6.2 Fetch Mechanisms

DMP fetches instructions from both paths in a round-robimnea during dynamic
predication mode. An alternative design option is to fetoe-path first until the CFM
point and the other path next instead of fetching from twdpam alternate cycles. This
mechanism is callefetch-one-by-one The benefit of fetch-one-by-one is that the pro-
cessor does not require two active register alias tabledwodeturn address stacks. In
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Figure 5.21: Select:op vs. conditional expression

fetch-one-by-one, when the processor enters dynamicgatoln mode, it creates a check-
point of the register alias table and fetches the predicéh first (this is the path predicted
to be followed by the branch predictor). When the processaches the CFM point on the
predicted path, it restores the checkpoint and starts ifggdihom the other path. It fetches
from the other path until it reaches the CFM point again. Aftet, the processor inserts
selecty.ops by comparing two register alias tables (one is the aotigister alias table and
the other is stored in the checkpoint). Figure 5.22 showspdréormance benefit com-
parison of fetch-one-by-one and round-robin schemes hFate-by-one performs slightly
worse than the round-robin scheme. However, fetch-one#wystill provides 17.7% per-
formance improvement. Hence, fetch-one-by-one could bhaldesdesign option if design
constraints prohibit the maintenance of two active regiatias tables and return address

stacks at the same time.
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Figure 5.22: Different fetch mechanisms

5.5.7 DMP Analysis

Table 5.8 summarizes the important dynamic predicationarsidtistics. Useful
dpred-modeshows how often dpred-mode is useful, i.e., the fractionmed-mode in-
stances initiated by an actually-mispredicted branch. félselts show that about 20% of
the dpred-mode instances are useful. The usefulness okd-tipode instance is strongly
dependent on the accuracy of the confidence estimator. Asd-18 shows, the accu-
racy of the confidence estimator is about 20%. This explaihg wseful dpred-mode is
approximately 20%.

Merge probabilityshows how often both paths merge at the same CFM point. On
average, 58.7% dpred-mode instances result in both pattisnget the same CFM point.
However, benchmark that see significant performance benrefitch as vpr, mcf, twolf, i,

and ijpeg— have more than 70% merge probability. Hence jmportant for the compiler
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to choose candidate “hammocks” that are likely to merge.

average select:opsshows the average number of selgops generated for each
dynamic dpred-mode. On average about 7 selegts are generated. Hence, the overhead
of selectuops is not significant compared to the instructions savedtdw eliminated

pipeline flush.

Table 5.8: Characteristics of dpred-mode
| | useful dpred-modpemerge probability average seleqtops|

gzip 20.1 % 37.8% 14.33
vpr 22.6 % 71.7 % 5.17
gcc 17.7 % 40.3 % 7.00
mcf 17.7 % 78.9 % 3.22
crafty 13.4% 49.9 % 7.67
parser 18.3% 50.3 % 5.78
eon 15% 50.2 % 3.69
perlomk 20.2% 60.9 % 7.17
gap 234 % 48.7 % 6.49
vortex 15.3% 59.2 % 5.43
bzip2 21.2% 19.6 % 13.98
twolf 20.2 % 77.5% 4.86
compress 21.5% 68.5 % 10.24
go 19.6 % 42.7 % 9.13
ijpeg 34.3% 81.8% 6.70

li 26.3% 70.7 % 8.65
m88ksim 15.6 % 90.1 % 2.22
amean 20.2% 58.7 % 7.16

5.5.8 Diverge-Merge Processor and Pipeline Gating

Pipeline gating mechanism was proposed to save energy bigirgdthe specula-
tive instruction fetch [52]. The processor stops the frent if there is a certain number

of low-confidence branch instructions inside the pipelifieis pipeline gating mechanism

115



can be applied to the diverge-merge processor also. If tisemecertain number of low-
confidence non-diverge branches inside the pipeline, thegssor gates the front-end just
as in the original pipeline gating mechanism. Figure 5.28shthe performance improve-
ment and energy consumption of pipeline gating on top of DpPthis the number of
low-confidence branches in the pipeline, which triggerstoeessor gates the pipeline. As
pg-th increases, the energy consumption reduction becologsr to that of DMP without
pipeline gating. pg-th 15 shows the best Energy-Delay-trbeduction.
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Figure 5.23: Pipeline gating mechanisms on DMP

These results show that pipeline gating reduces energyogtson at the cost of
moderate performance loss whereas DMP can reduce energyroption while at the
same time increasing performance. However, both mechanism be used together to
achieve the best energy-delay product.
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5.6 Summary

This chapter proposed the diverge-merge processor (DMRhaefficient archi-
tecture for compiler-assisted dynamic predicated exenutbMP dynamically predicates
hard-to-predict instances of statically-selected digdsganches. The major contributions

of the diverge-merge processing concept are:

1. DMP enables the dynamic predication of branches thaltiestcomplex control-flow
graphsrather than limiting dynamic predication to simple hammabc&nches. The
key insight is that most control-flow graphs look and behake $imple hammock
(if-else) structures when only frequently executed paththe graphs are consid-
ered. Therefore, DMP can eliminate branch mispredictiarestd a much larger set
of branches than previous predication techniques suchfasase predication and
dynamic hammock predication.

2. DMP concurrently overcomes the three major limitatiohsaftware predication
(described in Section 5.1).

3. DMP eliminates branch misprediction flushes much moreiefftly (i.e., with less
instruction execution overhead) than alternative apgreacespecially dual-path and

multipath execution (as shown in Table 5.1 and Figure 5.8).

Our results show that DMP outperforms an aggressive baseliocessor with a
very large branch predictor by 19.3% while consuming 9.0%s lenergy. Furthermore,
DMP provides higher performance and better energy-effagighan dynamic hammock
predication, dual-path/multipath execution, softwaredication, and wish branches.

Furthermore, diverge-merge processor increases thecaplty of predication in

4 major ways:

1. It significantly reduces the ISA support required for pcated execution by elimi-

nating the need for ISA-visible predicate registers andlisgged instructionsThis
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would enable more processors to support predicated exatutgardless of the ISA
they implement.

. It makes the benefits of predicated execution applicabkelarge set of CFGs, es-
pecially complex code structures, with less overhead thaticspredication. This
enables complex applications with large, complicated CRE&benefit from predi-
cated execution.

. It makes predicated execution adaptive to run-time Wbrdyehavior, which elimi-
nates the performance degradation sometimes caused lnalkygbredicated code.
Unlike static predication or hyperblocks, the decision dfiet paths are predicated
and when they are predicated is not statically fixed by thepil@m This enables
more applications to benefit from predicated executioneeisly those with branch
phase behavior and whose run-time behavior differs sigmtig from profile-time
behavior.

. It makes code generation for predicated execution simpdeause the compiler
does not need to decide, without run-time information, \Wwhitancheshould be
if-converted. This simplifies the compile-time profiling and cost-bengfidlgsis
schemes required for predication.
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Chapter 6

Compiler Algorithms for the Diverge-Merge Processor
Architecture

6.1 Introduction

In the DMP architecture, branches that can be dynamicadigipated (i.e.diverge
branche$ and the corresponding control-flow convergence/mergetpdCFM-point9 are
identified by the compiler and conveyed to the hardware tindbe ISA. A diverge branch
can be part of either a simple hammock or a frequently-hankmddow the compiler
selects diverge branches and CFM points and how the pracassoses when to predicate
them at run-time are critical factors that determine thégrerance of dynamic predication
in a DMP processor. This chapter describes the compiler aofilipg algorithms for a
DMP processor and explores the tradeoffs involved in thegdes these algorithms. This
chapter evaluates the impact of these algorithms on themeaihce of a DMP processor

and provides insights into what is important to considehmdesign of such algorithms.

6.2 Compiler Algorithms for DMP Architectures

The compiler marks the diverge branches and their reseCiM points in a DMP
binary. At run-time, the processor decides whether or nariter dpred-mode based on
the confidence estimation for a diverge branch. The hardWwaserelatively more accu-
rate dynamic information on whether or not a diverge brasdikely to be mispredicted.

However, it is difficult for the hardware to determine (1) t6€M point of a branch, (2)
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whether or not dynamically predicating a diverge branch quovide performance ben-
efit. The performance benefit of dynamic predication is gjlpdependent on the number
of instructions between a diverge branch and its correspgn@FM points (similarly to

static predication [58, 51, 78, 53]). In frequently-hamk®ahe probability that both paths
after a diverge branch reach a CFM point is another factdrdatermines whether or not
dynamically predicating the diverge branch would provigaéfit. Since the compiler has
easy access to both CFG information and profiling data tones#i frequently executed
paths, it can estimate which branches and CFM points woulgbbd candidates to be dy-
namically predicated. Thus, in this section, we developgilgralriven compiler algorithms

to solve the following new problems introduced by DMP preces:

1. DMP introduces a new CFG concept: frequently-hammoclesdgvelop a compiler
algorithm to find frequently-hammocks and their correspogdCFM points.

2. DMP requires the selection of diverge branches and qooreing CFM points that
would improve performance when dynamically predicated. deelop compiler
algorithms to determine which branches should be selecelivarge branches and
which CFM point(s) should be selected as corresponding CeMtfs). Simple
algorithms and heuristics are developed in this sectionamdore detailed cost-

benefit model is presented in Section 6.3.

6.2.1 Diverge Branch Candidates

There are four types of diverge branches based on the CFG tigpg belong to:
simple hammock (Figure 5.4a), nested hammock (Figure Sfrguently-hammock (Fig-
ure 5.4c), and loop (Figure 5.4d). The descriptions of eakls @/pes are explained in
Section 5.2.3.

We also classify CFM points into two categories: exact angr@pmate. Exact

CFM pointsare those that are always reached from the correspondiegggibranch, in-
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dependently of the actually executed control-flow pathsvben the branch and the CFM
point. In other words, an exact CFM point is the immediatetqlmsninator (IPOSDOM)

of the diverge branchApproximate CFM pointare those that are reached from the corre-
sponding diverge branch only on the frequently-executetdspaSimple and nested ham-
mocks and single-exit loops have only exact CFM points. #eatly-hammocks have

approximate CFM points.

6.2.2 Algorithm to Select Simple/Nested Hammock Diverge Biches and Exact

CFM Points

Algorithm 1 (Alg-exact) describes how to find and select damgnd nested ham-
mock diverge branches that have exact CFM points. Simplenasted hammocks have
strictly one exact CFM point, which is the IPOSDOM of the lrlan We use Cooper et
al.'s algorithm [22] to find the IPOSDOM. Our algorithm usée number of instructions
and the number of conditional branches between the brantih@&nCFM point to select
diverge branches among the possible candidates.

Algorithm 1 Finding and selecting simple/nested-hammock divergedbres and exact
CFM points (Alg-exact)
for each conditional branchB do
Computel POSDOM (B) of B
num_instr < maximum number of static instructions on any path frabh to
IPOSDOM (B)
num_cbr «— maximum number of conditional branches on any path fr@nto
IPOSDOM (B)
if (num_instr < MAX_INSTR) and pum_cbr < M AX_CBR)then
mark B as a diverge branch candidate witt¥' M/ = ITPOSDOM (B)
end if
end for

This algorithm eliminates candidates that can reconvenfjeafter a large number
of instructions (/ AX _INSTR) on any path. This is because the benefit of DMP pro-
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cessors comes from fetching and possibly executing insngfollowing the CFM point
after dynamically predicating both paths of a diverge bran8uch control-independent
instructions do not have to be flushed when the diverge braoksolved. If either the
taken or the not-taken path of the diverge branch is too ltimg,processor’s instruction
window is likely to be filled before reaching the CFM pointeteby reducing the potential
benefit of DMP. Additionally, instructions on the wrong paftthe dynamically-predicated
branch consume machine resources, increasing the ovedfgamedication. Therefore, a
branch with a potentially long wrong path before the CFM pdir., a branch that has a
large number of instructions between itself and its CFM pagnot a good candidate for
dynamic predication and is not selected as a diverge braypoubalgorithm.

Alg-exact also eliminates candidates with a large numbeaoflitional branches
(M AX_CBR) on any path from the branch to the CFM point. DMP can enteedpr
mode for only one branch at a time. Limiting the number of gbadal branches that
are allowed between a diverge branch and its CFM point redtioe likelihood of an-
other low-confidence branch occurring on a predicated p&ince the number of con-
ditional branches is correlated with the number of insinng, we conservatively use
MAX CBR = MAX_INSTR/10 in all experiments. We experiment with different
values forM AX _INSTR.

6.2.3 Algorithm to Select Frequently-hammock Diverge Braches and Approximate
CFM Points

Algorithm 2 (Alg-freq) describes our algorithm for finding@selecting frequently-
hammock diverge branches and their approximate CFM poiftte. algorithm uses edge

profiling information to determine frequently executedhsat

While traversing the CFG to compute paths after a brancly,diréctions (taken/not-
taken) that were executed with at led$t N_E X EC'_P RO B during the profiling run are
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followed. This threshold (set to 0.001) eliminates the exgtion of extremely infrequently
executed paths during the search for paths that merge at Cieldligcing the processing

time of the algorithm.

Algorithm 2 Finding and selecting frequently-hammock diverge brasemsl approximate
CFM points (Alg-freq)
1: for eachconditional branciB executed during profilingo
2. ComputelPOSDOM (B) of B
3: With a working list algorithm, compute all paths startingorfr B, up to reaching
IPOSDOM (B) or MAX_INSTR instructions orM AX _CBR conditional branches,
following only branch directions with profiled frequeney M IN _EXEC_PROB.
4:  for eachbasic blockX reached on both the taken and the not-taken directiois axd

5: pr(X) <« edge-profile-based probability 6f being reached on the taken direction/®f
6: pnT(X) < edge-profile-based probability 6f being reached on the not-taken direction
of B
7: probability of merging at X «— pp(X) * pn7(X)
8: if (probability of merging at X > MIN_MFERGE_PROB) then
9: add.X as a CFM point candidate fd?
10: end if
11:  end for

12:  select up toMAX_CFM CFM point candidates forB, the ones with the highest
probability of merging at X
13: end for

In additiontoM AX _INSTRandM AX _CBR, the algorithm for selecting frequently-
hammocks uses the probability of merging at each CFM padini ¥ _M ERGE_PRO B)
and the number of CFM points{AX _CF M). The CFM point candidates with the high-
est probability of being reached on both paths during thdilprg run are selected by
our algorithm because dynamic predication provides moretieif both paths of a di-
verge branch reach a corresponding CFM péitiitthe profiled probability of reaching a
CFM point candidate is lower than a threshal {N_M ERGE_P RO B), the CFM point

1if both paths after the dynamically-predicated divergenbrado not merge at a CFM point, DMP could
still provide performance benefit. In that case, the benefitld/be similar to that of dual-path execution [32].
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candidate is not selected as a CFM point. Selecting mul@#& points for a diverge
branch increases the likelihood that the predicated pdtbhs adiverge branch will actu-
ally reconverge and thus increases the likelihood that ayog@redication would provide
performance benefits. Since we found that using three CFlt®@ enough to get the full
benefit of our algorithms, we sét AX CFM = 3.

6.2.3.1 A chain of CFM Points

Figure 6.1 shows a possible CFG with two CFM point candidafeand D, for
the branch at A. The DMP processor stops fetching from onk wdien it reaches the
first CFM point in dpred-mode. Since the taken path of therdwdranch candidate at A
always reaches C before it reaches D, even if both C and D leted as CFM points, dy-
namic predication would always stop at C. D would never behred by both dynamically-
predicated paths of the branch at A in dpred-mode, and thogsthg D as a CFM point
does not provide any benefit if C is chosen as a CFM point. Thexegthe compiler should
choose either C or D as a CFM point, but not both. In general , GFM point candidate
is on any path to another CFM point candidate, we call theedidatesa chain of CFM
points The compiler identifies chains of CFM point candidates dasethe list of paths
from the diverge branch to each CFM point candidate, geeéray Alg-freq. Then, the
compiler conservatively chooses only one CFM point in th&ichthe one with the highest

probability of merging’

2When there is a chain of CFM points, theobability of merging at X in Alg-freq has to be modified
to compute the probability of both paths of the diverge bhaactually mergingat X for the first time,
instead of justeachingX. For the diverge branch candidate A in Figure @Agbability of merging at C
=pr(C) * pn7(C) =1 % P(BC) = P(BC), where P(BC) is the edge probability from B to C. In contrast,
probability of merging at D = pr(D) x pyr(D) = P(CD) %+ P(BE) because if the not-taken path of the
branch at A takes BC, the actual merging point would be C austd D.
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Figure 6.1: Example of a chain of CFM points

6.2.4 Short Hammocks

Frequently-mispredicted hammock branches with few isions before the CFM
point are good candidates to bévayspredicated, even if the confidence on the branch
prediction is high. The reason for this heuristic is that lrlihe cost of mispredicting a
short-hammock branch is high (flushing mostly control-ipeledent instructions that were
fetched after the CFM point), the cost of dynamic predicabba short-hammock branch
is low (useless execution of just the few instructions onwheng-path of the branch).
Therefore, always predicating short-hammock diverge titactandidates with very low
dynamic predication cost is a reasonable trade-off. Oueempents found that always
predicating hammocks that execute fewer than 10 instmstan each path, that have a
probability of merging of at least 95%, and that have a branidprediction rate of at least

5% provides the best performance.

Note that, with this heuristic, diverge branch-CFM pointrpdhat are identified
asshort hammockare always predicated, unlike regular hammocks. Thergéorg other
CFM point candidates found for the same diverge branch thatod qualify as short ham-

mocks are not selected as CFM points.
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6.2.5 Return CFM Points

Some function calls are ended by different return instnrgion the taken and not-
taken paths of a diverge branch. In this case, the CFM potheigstruction executed after
the return, whose address is not known at compile time becawukepends on the caller
position. We introduce a special type of CFM point caltetiirn CFMto handle this case.
When a diverge branch includes a return CFM, the processs dot look for a particular
CFM point address to end dpred-mode, but for the executi@refurn instruction.

6.3 Compile-Time Cost-Benefit Analysis of Dynamic Predicabn

In the basic algorithms presented in Section 6.2 (Alg-eaacdtAlg-freq), the com-
piler uses several simple heuristics to select diverge dirasm and CFM points that are
likely to provide performance benefit during dynamic predien. These algorithms re-
quire the MAX _INSTR, MAX _CBR, and MIN_M FERGFE_PROB thresholds to be
optimized. Determining an effective combination of theaeapeters may require several
iterations. In this section, we present an analytical testefit model to select diverge
branches and CFM points whose dynamic predication is likelge beneficial for over-
all performance. The cost-benefit model still uses Alg-éxad Alg-freq to find diverge
branch and CFM point candidates, but instead of filteringdmates with the compile-
time fixed MIN_MFERGE_PROB, MAX_ INSTR, and MAX _CBR parameters, it

performs a profile-driven cost-benefit analyis.

3In order to use Alg-exact and Alg-freq, the compiler stilleds values forM/ AX_INSTR and
M AX _CBR because these parameters also decide the compiler scofie fGFG analysis. In our cost-
benefit model, we us#/AX_INSTR = 200 and M AX _CBR = 20, which we found to be large enough
to enable the analysis of all CFGs that can profit from dynagmeédication.
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6.3.1 Simple/Nested Hammocks

During dpred-mode, DMP always incurs some performancehaaat in terms of
execution cycles. The overhead of dynamic predicatigmdd_overhead) is due to the
fetch and possible execution of useless (i.e., wrong-ga#tjuctions. We describe how
a profiling compiler can model the overhead of dynamic praihcn and make decisions
as to whether or not dynamically predicating a branch ircston would be beneficial for

performance.

There are two cases for which the cost of dynamic predicadfaa branch is dif-
ferent. First, if a diverge branch would actually have beerrectly predicted, entering
dpred-mode for that branch results only in overhega-¢d_overhead) without providing
any benefit. Second, if a diverge branch would actually haenbmispredicted, entering
dpred-mode for that branch results in both overhe&ddd_overhead) and performance
benefit that is equivalent to saving the branch mispredicgienalty {nisp_penalty cy-
cles). Hence, the overall cost of dynamic predicati@méd_cost) in terms of cycles can

be computed as:

dpred_cost = dpred_overhead x P(enter_dpred_corr_pred)

+(dpred_overhead — misp_penalty) x P(enter_dpred_misp) (6.1)
P(enter_dpred_corr_pred) = 1— Acc.Conf (6.2)
P(enter_dpred_misp) = Acc_Conf (6.3)

dpred_overhead : Overhead of dynamic predication in cycles,

P(enter_dpred_corr_pred) : Probability of entering dpred-mode when a branch is cor-
rectly predicted,
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P(enter_dpred_misp) : Probability of entering dpred-mode when a branch is mispre-
dicted,

misp_penalty : Machine-specific branch misprediction penalty in cycles a

Acc_Conf : The accuracy of the confidence estimator (i.e., the fraaifdow-confidence
branches that are actually mispredicted).

The compiler decides to select a branch as a diverge brartiel dost of dynamic
predication, as determined using Equation (6.1), is leas ttero (i.e., if the benefit of

dynamic predication is positive in terms of execution cglle
Select a branch as a diverge branchtijifed_cost < 0 (6.4)

Note that the probability of entering dpred-mode when a thais correctly pre-
dicted versus when it is mispredicted is a function of theuaacy of the hardware con-
fidence estimator [35]. Confidence estimator accuracy (eéfas the percentage of low-
confidence branches that are actually mispredicted, M, [B0]) is usually between 15%-
50% and is dependent on confidence estimator parameterastiofthreshold values used
in the design [30]. In the calculation of the cost of dynamiedication, the compiler can
use the average accuracy of the confidence estimator bast cet of profiled bench-
marks or it can obtain the accuracy of the confidence estinfateach individual applica-
tion and use that per-application accuracy. In our analygsompiler uses one accuracy
value (Acc_.Conf = 40%) for all applicationst

6.3.1.1 Estimation of the Overhead of Dynamic Predication

To calculate the overhead of dynamic predicatidpréd_overhead), the com-
piler first estimates the number of instructions fetchedveen a diverge branch candi-

“Note that there is a trade-off between coverage (of misptedibranches) and accuracy in confidence
estimators. We found that the cost-benefit model is not Bea$d reasonable variations iice_Con f values
(20%-50%).
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date and the corresponding CFM poi¥ (dpred_insts)). The compiler can estimate
N (dpred_insts) in three different ways: (1) based on the most frequentleeted two
paths (using profile data), (2) based on the longest pathdegtwhe diverge branch can-
didate and the CFM point, (3) based on the average numbeswiiagtions obtained using
edge profile data. Equations 6.5-6.11 show how the compélleutatesN (dpred_insts)
with these three different methods using the example pteden Figure 5.1. Note that
the most frequently executed paths are shaded in Figurdrbthhe equations, N(X) is the
number of instructions in block X, and P(XY) is the edge ptubg from basic block X
to Y.° In this chapter, we evaluate methods 2 and 3.

N(dpred_insts) = N(BH)+ N(CH) (6.5)

N(BH): Estimated number of insts from block B to the beginning ofckl H
N(CH): Estimated number of insts from block C to the beginning ottkiH

SEdge profiling assumes that the direction taken by a brangidispendent of the direction taken by a
previous branch, which is not always accurate. However, seesaalge profiling due to its simplicity and short
run-time.
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(Method 1) Based on the most frequently-executed two paths:

N(BH) = N(B)+ N(E) (6.6)
N(CH) = N(C) (6.7)

(Method 2) Based on the longest possible path:

N(BH) = MAX{N(B)+ N(D)+ N(F),
N(B)+ N(D)+ N(E),N(B)+ N(E)} (6.8)
N(CH) = N(C)+ N(G) (6.9)

(Method 3) Based on the edge profile data (i.e., average nuohlogstructions)

N(BH) = N(B)+ P(BE)+ N(E)+ P(BD) « P(DE) = N(E)
+P(BD) % N(D) + P(BD) « P(DF)  N(F) (6.10)
N(CH) = N(C)+ P(CG)*N(G) (6.11)

Because not all of the instructions fetched in dpred-modeuseless, the com-
piler also estimates the number of instructions that areadgt useful (i.e., those that
are on the correct path). The number of instructions on thieecbpath in dpred-mode
(N (use ful_dpred_insts)) is calculated as followsV (BH) and N (C'H) can be calculated

with any of above three methods.

N(useful_dpred_insts) = P(AB) * N(BH) + P(AC) « N(CH) (6.12)
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Once the compiler has computdd dpred_insts) and N (use ful _dpred_insts), it can cal-

culatedpred_overhead. We calculatelpred_overhead in terms of fetch cycles. The actual
cost of dynamic predication is the sum of its fetch overheadi execution overhead. Un-
fortunately, modeling the execution overhead is very cocapéd in an out-of-order pro-
cessor due to the dataflow-based dynamic execution (whaphiress an analytical model
of benchmark-dependent data dependence behavior as veethaslel of dynamic events
that affect execution). Furthermore, DMP does not execrgdipated-FALSE instructions
after the predicate value is known, so the execution overleéikely not as high as the
fetch overhead. Therefore, we model only the fetch overloédginamic predication in our
cost-benefit analysis. The overhead of dynamically preitigaa branch in terms of fetch

cycles is thus calculated as:

N(useless_dpred_insts) = N(dpred_insts) — N(useful_dpred_insts) (6.13)
dpred_overhead = N (useless_dpred_insts)/fw (6.14)

fw: Machine-specific instruction fetch width
useless_dpred_insts: Useless instructions fetched during dpred-mode

Combining Equation (6.14) with Equations (6.1) and (6.4kgius the final equa-
tion used by the compiler to decide whether or not a branchldhme selected as a diverge

branch:

Select a branch as a diverge branch if

{(N(useless_dpred_insts)/ fw) — misp_penalty} x P(enter_dpred_misp) +
{N(useless_dpred_insts)/ fw} x P(enter_dpred_corr_pred) < 0 (6.15)
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6.3.2 Frequently-hammocks

The overhead of predicating frequently-hammocks is uguatjher than that of
predicating simple or nested hammocks. With a frequendiysmock, the processor might
not reach the corresponding CFM point during dpred-modethén case, the processor
wastes half of the fetch bandwidth to fetch useless instrastuntil the diverge branch is
resolved. On the other hand, if the processor reaches the @M in dpred-mode, the
predication overhead of frequently-hammocks is the santbatsof simple/nested ham-
mocks, as calculated in Equation (6.14). Therefore, we hiséailowing equation to cal-

culate the dynamic predication overhead of a frequentiywhack:

dpred_overhead = {1 — P(merge)} = {branch_resol_cycles/2} +
P(merge) x {N(useless_dpred_insts)/fw} (6.16)

P(merge): The probability of both paths after the candidate brancihging at the CFM
point (based on edge profile data)

branch_resol_cycles: The time (in cycles) between when a branch is fetched andhithe

is resolved (i.e.mmisp_penalty)

The resultingdpred_overhead is plugged into Equations (6.1) and (6.4) to deter-
mine whether or not selecting a frequently-hammock brarsch diverge branch would be

beneficial for performance.

6.3.3 Diverge Branches with Multiple CFM Points

So far, we have discussed how the compiler selects diveageehes assuming that
there is only one CFM point for each diverge branch. Howewelrequently-hammocks,
there are usually multiple CFM point candidates for a brangfter reducing the list of
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CFM point candidates according to Section 6.2.3.1, thetmast of dynamically predicat-
ing a diverge branch with multiple CFM points is computeduasing all CFM points §;)

are independent:

dpred_overhead =
{Z N (useless_dpred_insts(X;)) * P(merge at X;)}/ fw +

{1- Z P(merge at X;)} * {branch_resolution_cycles/2} (6.17)

N (useless_dpred_insts(z)): useless_dpred_insts assuminge is the only CFM

point of the diverge branch candidate

If the diverge branch candidate satisfies Equations (6.d)(ém) after using the
dpred_overhead developed in Equation (6.17), the branch is selected aseagdisbranch
with its reduced list of CFM points.

6.3.4 Limitations of the Model

Note that we make the following assumptions to simplify tleastruction of the

cost-benefit analysis model:

1. The processor can fetghw ( fetchwidth) number of instructions all the time. There
are no I-cache misses or fetch breaks.

2. During dpred-mode, the processor does not encountehandiverge branch or a
branch misprediction.

3. When the two predicated paths of a diverge branch do najenealf of the fetched
instructions are useful. This is not always true becaus@tbeessor may reach the

CFM point on one path. In that case, the processor would fietsthuctions only
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from the path that did not reach the CFM point, which may or matybe the useful
path.
4. The overhead of the selegbps is not included in the model. We found that this

overhead is negligible; on average less than 1 fetch cyeesmiry into dpred-mode.

Especially the first three assumptions do not always holdthacefore limit the
accuracy of the model. However, accurate modeling of thiesigations requires fine-
grain microarchitecture-dependent, application-depahdand dynamic-event-dependent
information to be incorporated into the model, which wouighgficantly complicate the

model.

6.4 Diverge Loop Branches

DMP dynamically predicates low-confidence loop-type diesghbranches to reduce
the branch misprediction penalty in loops. If a mispredidtgward (i.e., non-loop) branch
is successfully dynamically predicated, performance kkiély improve. However, this is
not necessarily true for loop branches. With dynamicalgdicated loop branches, there
are three misprediction cases (early-exit, late-exit aoebxit; similarly to wish loops.
Only the late-exit case provides performance benefit (sempeHence, the cost-benefit
analysis of loops needs to consider these different misgtied cases. In this section,
we provide a cost-benefit model for the dynamic predicatibtiverge loop branches and

describe simple heuristics to select diverge loop branches

6.4.1 Cost-Benefit Analysis of Loops

The overhead of correctly-predicted caseEntering dpred-mode when a diverge
loop branch is correctly predicted has performance ovefkea to the selegtops inserted

after each dynamically-predicated iteration. We modekibst of selecjzops based on the
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number of fetch cycles they consume as shown below:

dpred_overhead = N (select_uops) x dpred_iter [ fw (6.18)

N (select_uops): The number of selegtops inserted after each iteration
dpred_iter: The number of loop iterations during dpred-mode

Misprediction case 1 (Early-exit): During dpred-mode, if the loop is iterated
fewer times than it should be, the processor needs to extfruteop at least one more time,
so it flushes its pipeline. Hence, the early-exit case hag thiel overhead of selegtops
and no performance benefit. The overhead is calculated the say as in the correctly
predicted case (Equation (6.18)).

Misprediction case 2 (Late-exit): During dpred-mode, if the loop is iterated a few
times more than it should be, the misprediction case is @¢d#ite-exit. Late exit is the
only case for which the dynamic predication of a loop branavides performance benefit
because the processor is able to fetch useful control-gradgnt instructions after the loop
exit. In this case, the overhead is due to the cost of seleps and extra loop iterations
(that will become NOPs). However, instructions fetcheeratfthe processor exits the loop
are useful and therefore not included in the overhead. Thehead of the late-exit case is

thus calculated as follows:

dpred_overhead = N (loop_body) * dpred_extra_iter/fw +
N (select_uops) = dpred_iter/ fw (6.19)

N (loop-body): The number of instructions in the loop body

dpred_extra_iter: The number of extra loop iterations in dpred-mode
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Misprediction case 3 (No-exit): If the processor has not exited a dynamically-
predicated loop until the loop branch is resolved, the pgsoe flushes the pipeline just
like in the case of a normal loop branch misprediction. Herice no-exit case has only

overhead, which is the cost of seleatps as calculated in Equation (6.18).

Thus, the total cost of dynamically predicating a loop is:

dpred_cost = dpred_overhead(corr_pred) x P(enter_dpred_corr_pred)
+ dpred_overhead(early_exit) x P(early_exit)
+ dpred_overhead(late_exit) x P(late_exit)
+ dpred_overhead(no_exit) x P(no_exit)

— misp_penalty x P(late_exit) (6.20)

dpred_overhead(X): dpredoverhead of case X

6.4.2 Heuristics to Select Diverge Loop Branches

According to the cost-benefit model presented in Sectiori Gthe cost of a diverge
loop branch increases with (1) the number of instructionth@&loop body, (2) the number
of selectyops (We found this is strongly correlated with the loop boidg (3) the average
number of dynamically-predicated loop iteration®ed_iter), (4) the average number
of extra loop iterationsdpred_extra_iter) in the late-exit case, and (5) the probability
of a dynamic predication case other than late-exit. Unfaataly, a detailed cost-benefit
analysis of each dynamic predication case requires theatmh of per-branch profiling
data obtained by emulating the behavior of a DMP processopalticular, determining
the probability of each misprediction case, the number ofdyically predicated iterations,

and the number of extra iterations in the late-exit caseiregither profiling on a DMP
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processor (with specialized hardware support for prof)lmmgemulating a DMP processor’s
behavior in the profiler. Since such a profiling scheme is awopcal due to its cost, we use
simple heuristics that take into account the insights dged in the cost-benefit model
to select diverge loop branches. These heuristics do nettsalloop branch as a diverge

branch if any of the following is true:

1. Ifthe number of instructions in the loop body is greatant8T AT IC _LOOP_SIZE.

2. If the average number of executed instructions from tlog lentrance to the loop
exit (i.e., the average number of instructions in the loogybtimes the average loop
iteration count) based on profile data is greater thanNAMIC_LOOP_SIZE.

We found that there is a strong correlation between the geenamber of loop it-
erations andlpred_extra_iter. Hence, this heuristic filters branches with relatively
high dpred_overhead for the late-exit case based on Equation (6.19).

3. If the average number of loop iterations (obtained throppfiling) is greater than

LOOP_ITER. We found that when a branch has high average number of loop

iterations, it has highP(no_exit).

In this chapter, we us€T'ATIC _LOOP_SIZE =30, DY NAMIC_LOOP_SIZE =
80, andLOOP_ITER = 15, which we empirically determined to provide the best perfor

mance.

6.5 Methodology

6.5.1 Control-flow Analysis and Selection of Diverge BranciCandidates

We developed a binary analysis toolset to analyze the defhdk@ graphs, imple-
ment the selection algorithms presented in Section 6.2,eaathiate the diverge branch
candidates using the cost-benefit model developed in $sc8@B and 6.4. The result of
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our analysis is a list of diverge branches and CFM points ihaittached to the binary
and passed to a cycle-accurate execution-driven perfarensimulator that implements a

diverge-merge processor.

A limitation of our toolset is that the possible targets oflinect branches/calls
are not available because our tool does not perform data ffalysis. Therefore, we
cannot exploit possible diverge branches whose takem#keta paths encounter indirect
branches/calls before reaching a CFM point. Implementimgtechniques in an actual
compiler can overcome this limitation because a compilex $@urce-level information

about the targets of indirect branches/calls.

6.5.2 Simulation Methodology

Simulation Methodology is described in Section 5.4. Thecbemarks are run to
completion with a reduced input set [46] to reduce simutatime. Section 6.6.3 presents
results obtained when the train input sets are used for pr@filAll other sections present

results with the reduced input set used for profiling.

6.6 Results
6.6.1 Diverge Branch Selection Algorithms

Figure 6.2 and 6.3 show the performance improvement of DMA different di-
verge branch selection algorithms. Figure 6.2 shows thispeance impact of adding the
results of each selection algorithm one by one cumulativAlg-exact (exact), Alg-freq
(exact+freq), short hammocks (exact+freg+short), re@FiV points (exact+freq+short+ret),

and loops (exact+freq+short+ret+lodpAll algorithms use thresholds that are empirically

Sexact+freq+short+ret+loop is callgdl-best-heurin the rest of the chapter, standing for “all techniques,
with the best empirically-determined thresholds, and gisiauristics to select diverge branches.”
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Figure 6.2: Performance improvement of DMP with Alg-exaatl #&lg-freq selection al-
gorithms

determined to provide the best performance.

According to Figure 6.2 the performance benefit of DMP insesaas we cumula-
tively employ our diverge branch selection techniquesniggiist Alg-exact, DMP provides
a performance improvement of 3.1%. However, when all ountegies are used, the per-
formance improvement of DMP increases to 20.6%. Figure 6odiges insight into the
performance increases by showing the number of pipelinbélsis the baseline processor
and in DMP. As we employ more and more of the proposed brarlebtgen algorithms, the
number of pipeline flushes due to branch mispredictionsedesms. These results demon-
strate that the proposed mechanisms are effective at sgjeliverge branches that provide

performance benefits when dynamically predicated.

As shown in Figure 6.2, selecting frequently-hammocks {#g]) improves aver-

age performance by 11% on top of Alg-exact. Hence, the seteat frequently-hammocks
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Figure 6.3: Performance improvement of DMP with cost-berafalysis based selection
algorithms

is the largest contributor to the performance of dynamidjpation. Always predicating
short hammocks improves performance by 3.0% on average yanwbke than 4% in vpr
(14%), mcf (15%) and twolf (4%). Vpr and twolf have many shibammocks that are
highly mispredicted and, thus, always predicating thenvigies significant improvements.
In mcf, the most highly mispredicted branch is a short hamaiwanch whose predication
provides a 15% performance benefit. Including return CFM{soimproves performance
by 0.9% on average and by more than 3% in twolf (8.3%) and @3%4R. Twolf and go have
many hammocks inside function calls that merge at differetirn instructions. Those
hammocks cannot be diverge branches without the return Géivt pechanism. Finally,
selecting diverge loop branches using the heuristics de=stin Section 6.4 provides an
additional 2.2% average performance improvement, esiheaiagzip (6.3%) and parser

(17%). Parser has a frequently-executed small loop in wairchput word is compared to
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Figure 6.4: Pipeline flushes due to branch mispredictionkarbaseline and DMP

a word in the dictionary. The exit branch of this loop is fregtly mispredicted (because
the lengths of the input words are not predictable), andefioee its dynamic predication

results in a large performance benefit.

Figure 6.3 shows the performance improvement of DMP if wetheecost-benefit
analysis developed in Section 6.3 to select diverge bramcftee compiler uses two differ-
ent methods to calculate the overhead of dynamic preditatmngest path (cost-long),
method 2 in Section 6.3.1.1, and edge-profile-based avaratie (cost-edge), method
3 in Section 6.3.1.1. The cost-edge method provides sjidhither performance than
the cost-long method because cost-edge calculates theeakof dynamic predication
more precisely. Figure 6.2 also shows the performance itnpfaadding each algorithm
in sequence with the edge-profiling based cost-benefit aisalplways predicating short

hammocks (cost-edge+short), return CFM points (cost-eslyert+ret), and diverge loops
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(cost-edge+short+ret+loop)Using all these optimizations in conjunction with cost-edg
results in 20.4% performance improvement over the basglineessor. Therefore, we
conclude that using cost-benefit analysis (which does mptire the optimization of any

thresholds) to determine diverge branches can provideaime performance provided by

using optimized threshold-based heuristics in conjumotith Alg-exact and Alg-freq.

6.6.1.1 Effect of Optimizing Branch Selection Thresholds

Figure 6.5 shows the performance improvement for differddtv_M ERGE_PROB
and M AX _INSTR thresholds when the compiler uses only Alg-exact and AdgrfiThe
results show that it is better to choose lowéi N_M FRGE_PRO B when the number of
instructions between a diverge branch and the CFM is less3basince the overhead of
entering dpred-mode for these small hammocks is relatiogly WhenM AX _INSTR is
100 or 200l M IN _M ERGE_P RO B=5% results in the best average performance. On av-
erage, MAX_INSTR=50, MAX _CBR=5, andMIN_MFERGE_PROB=1% provides
the best performance, so we used these thresholds for &t experiments that do not
use the cost-benefit model to select diverge branches. Usitogp small (e.g., 10) or
too large (e.g., 200) threshold value fof AX I NST R hurts performance. A too small
MAX _INSTR value prevents many mispredicted relatively large hammadickm being
dynamically predicated, thereby reducing the performamatential. Atoo largé\/ AX_INSTR
value causes the selection of very large hammocks thatdiihgtruction window in dpred-

mode, which significantly reduces the benefit of dynamic ijoeetbn.

Note that not selecting the best thresholds results in arageeerformance loss of
as much as 3.7%. Therefore, optimizing the thresholds usedriheuristic-based selection

algorithms is important to obtain the best performance.sTiservation also argues for

‘cost-edge+short+ret+loop is calléd-best-cosin the rest of the dissertation.
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Figure 6.5: Performance improvement of DMP with differentNMMERGE_PROB and
MAX _INSTR heuristics

the use of the analytical cost-benefit model that does natineghe optimization of any

thresholds to provide equivalent performance.

Another conclusion from Figure 6.5 is that selecting onlgsh CFM points with
a large merging probability\/ IN_M ERGE_PROB = 90%) provides most of the per-
formance benefit in DMP. Adding CFM point candidates with Bkenamerge probabilities
incrementally improves average performance by at most 3fsddecting candidates with
a merge probability lower than 30% provides only negligitiéss than 0.1%) benefit. Thus,
DMP gains most of its performance from the frequently exedyiaths in which control-
flow is very likely to merge at a control-independent pointhisTresult can be used to
optimize (i.e., reduce) the number of CFM points supportethie DMP ISA.
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6.6.2 Comparisons with Other Diverge Branch Selection Algathms

Since there is no previous work on compilation for DMP preogs, we compare
our algorithms with several simple algorithms to selecedie branches. Figure 6.6 com-
pares the performance of six different algorithms: Elery-br This is the extreme case
where all branches in the program are selected as divergeltea, (2Random-5050%
of all branches are randomly selected, KByh-BP-5 All branches that have higher than
5% misprediction rate during the profiling run are seleci@d,mmediate All branches
that have an IPOSDOM are selected. I{5lse Only if and if-else branches with no inter-
vening control-flow are selected, (8)l-best-heur Our best-performing algorithm. Note
that for the simple algorithms (1), (2) and (3), not all briaes have corresponding CFM
points® If there is no CFM point for a low-confidence diverge brandtgrt the processor
stays in dpred-mode until the branch is resolved, and arfpmeance benefit would come

from dual-path execution.

Figure 6.6 shows thd&very-br, High-BP-5 andimmediateare the best-performing
simple algorithms for selecting diverge branches with agerperformance improvements
of 6.5%, 4.3% 6.4% respectively. However, none of theseradhgorithms provide as
large performance improvements as our technique, whichidugs average performance
by 20.6%. We conclude that our algorithms are very effeaivielentifying good diverge

branch candidates.

Note thatEvery-br, High-BP-5 andimmediateshow relatively large performance
improvements in benchmarks where a large percentage of iby@edicted branches are
simple hammock branches (e.g., eon, perlomk, and li). Omigcdc does one simple al-
gorithm Every-b) perform almost as well as our scheme. Gcc has very complé&xsCF

8If a branch has an IPOSDOM, the IPOSDOM is selected as the C&ikt ;m the explored simple
algorithms.
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Figure 6.6: Performance improvement of DMP with alterregimple algorithms for se-
lecting diverge branches

(that usually do not result in frequently-hammocks), sadhare few diverge branch can-
didates. Gcc also has a very high branch misprediction &%).( Every-brallows the
processor to enter dpred-mode fdt low-confidence branchesvhich covers 50% of all
mispredicted branches. TherefoEg/ery-brprovides a similar performance improvement
as that of entering dpred-mode for only carefully selecteshbhes, which covers only 23%
of all mispredicted branches.

6.6.3 Input Set Effects

We developed the algorithms and heuristics in previousaesty profiling and
evaluating with the same input set to exclude the effectqpfitrset variations on the
evaluation. In this experiment, we use the same algorithmaiste same heuristic val-

ues developed in the previous sections, but we profile wightthin input set to select
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diverge branches and CFM points. Figure 6.7 shows the DMf@peance when the pro-
filing input set is the same as the run-time input senf¢ versus when the profiling input
set is different from the run-time input setiff). The compiler uses the best performing
heuristic-based optimization&l{-best-heur-sameAll-best-heur-diff and the cost-benefit

model with all optimizationsAll-best-cost-samell-best-cost-diif.
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Figure 6.7: Performance improvement of DMP when a differeptit set is used for pro-
filing

Figure 6.7 shows that the performance improvement provide®MP is 19.8%
(both All-best-heur-difland All-best-cost-diff when different input sets are used for profil-
ing and actual runs. These improvements are only very §id@t5%) lower than when
the same input set is used for profiling and actual runs. Ongzip does profiling with the
same input set significantly outperform profiling with a difént input set (by 6.4%) when
the compiler useéll-best-heurto select diverge branches. Hence, we find that DMP per-

formance is not significantly sensitive to differences ia gofile-time and run-time input

146



sets.

18000000
16000000 =Only-run
14000000 - Either-ru_n-train
= Only-train
12000000 = Ejther-run-traif

10000006

8000006

Dynamic number of diverge branches

Figure 6.8: Dynamic diverge branches selected by differgnit sets (only run-time, only
train, or either input)Left bar: profiling with run-time input, Right bar: profilingith train input

Figure 6.8 shows whether or not the compiler finds the samaf sidterge branches
across input sets. We classify diverge branches into thmaepg: (1)Only-run branches
that are selected only when the compiler uses the run-tipug set (MinneSPEC's reduced
input set [46]) for profiling, (2Only-train: branches that are selected only when the com-
piler uses a different input set (SPEC’s train input set)daofiling, (3) Either-run-train
branches that are selected when the compiler uses eithérgapfor profiling. The bars in
Figure 6.8 show the classification of diverge branches whspeactively the run-time (left)

and train (right) input sets are used for profiling.

More than 74% of all dynamic diverge branches in all benclkare selected
when either input set is used for profiling. Thus, most of tiveidje branches identified by

profiling with different input sets are the same. Only gap%2@as more than 20% and
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mcf (14%), crafty (13%), vortex (13%), bzip2 (16%) and ijd&8%) have more than 10%
of all dynamic diverge branches that are classifed as eithigrrunor only-train. However,
even with differences of 10-20% in the dynamic diverge bhescselected by profiling with
different input sets, only mcf (1%) and crafty (1.6%) showrenthan 1% IPC degradation
when a different input set is used for profiling. This is duetw@m major reasons: (1)
programs have similar sets of highly mispredicted statenbhes across different input
sets [10], (2) even though a branch may be marked as a diveagelbby the compiler, only
low-confidence diverge branches are actually predicatadhatime; therefore the selection
of a slightly different set of branches with different profd input sets does not necessarily
mean that the set of dynamically predicated branches w#ldpeificantly different.

We can make the following conclusions based on our results:

1. Our diverge branch selection algorithms are not sigmtigesensitive to differences
in the profiling input set.

2. The dynamic nature of predication in the DMP architecturggates the effects of
changing the profiling input set by selectively enteringetpmode and dynamically

choosing which CFM points to use at run-time.

6.7 Summary

This chapter presented and evaluated new code generagoritiams for dynamic
predication in the diverge-merge processor (DMP) architec The proposed algorithms
select branches that are suitable and profitable for dynpreidication based on profiling
information. We explored diverse heuristics to select hawkrand loop diverge branches
and corresponding control-flow merge (CFM) points, and sapimizations based on
program characteristics: always-predicating short haska@nd return CFM points. We
also proposed a new profile-driven analytical cost-benafdi@hto select branches that are
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profitable for dynamic predication.

Our results show that, with the proposed branch selectigorihms, a DMP pro-
cessor outperforms an aggressive baseline processor 6%620In contrast, the best-
performing alternative branch selection algorithm resirta performance increase of only

4 5% over the baseline.
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Chapter 7

Conclusions and Future Research Directions

7.1 Conclusions

Branch misprediction penalty is an important performamoéér and a major rea-
son of wasted energy in high-performance processors. ¢aaln has been used to avoid
pipeline flushes due to branch mispredictions by conveogrol dependencies into data
dependencies. However, predication has three major limits/problems: adaptivity, com-
plex CFG, and ISA, as Chapter 1 showed. This dissertatiopgsed and evaluated the

adaptive predicated execution paradigm to solve these timéations/problems.

The adaptive predicated execution paradigm provides aehoithe hardware: the
choice of whether or not to use predicated execution for elgalamic instance of a branch
instruction. This dissertation proposed two mechanisnmimpement the adaptive predi-

cated execution paradigm, wish branches and the diverggenpeocessor architecture.

Chapter 4 proposed wish branches and evaluated the perioenteenefit of wish
branches. Wish branches are a set of new control flow ingbnsst that combine both
branch prediction and predicated execution. With wish tin@s, the compiler generates
code that can be executed either as normal branch code oediEgted code. At run-
time, the hardware chooses between normal branch code adicgted code based on
the run-time branch behavior. Hence, wish branches proaidgtivity to predicated code
to dynamically eliminate the overhead of predicated exeautFurthermore, wish loops
provide a mechanism to exploit predicated execution to gedhe branch misprediction

penalty for backward (loop) branches. The results in Chragptghow that wish branches
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improve the average execution time of nine SPEC INT 2000 lraacks on an aggressive
out-of-order superscalar processor by 14.2% compared nditonal branch prediction

and by 13.3% compared to the best performing predicated ciodey .

Although wish branches can provide the adaptivity to pretdid code, wish branches
still need the predicated ISA support. Furthermore, thegitencannot convert most com-
plex CFGs to wish branches because wish branch code is gedetastatic (compilation)
time. Hence, to enable adaptive predicated execution inpnedicated ISA and to over-
come the complex CFG problem of software predicated exacu@hapter 5 proposed the
diverge-merge processor (DMP) and evaluated its perfocen@enefit.

In DMP, instead the compiler produces a predicated versi@ode, the processor
dynamically predicates instructions. The compiler pregdontrol-flow information (a
diverge branch and the corresponding control-flow mergatpoo simplify the hardware
used for dynamically predicating the code. If a diverge bhais hard-to-predict at run-
time, the processor dynamically predicates the instrastibetween the diverge branch
and the control-flow merge point. Hence, hard-to-predienibhes can be executed as
predicated code at run-time without requiring full supdort predication in the ISA. The
diverge-merge processor can dynamically predicate a hrédrfeequently executed paths
of the branch look/behave like a simple hammock even tholigledntrol flow graph is not
a really hammock. Hence, DMP can also overcome the compl€xéblem. The results
showed that about 66% of dynamic mispredicted branches ealymamically predicated
in DMP.

Chapter 5 also compared DMP with five major previously-psgzbbranch pro-
cessing paradigms, both qualitatively in terms of funatidy and complexity and quan-
titatively in terms of performance benefits and energy/pogasumption. DMP is able
to predicate a much larger set of CFGs that cause mispredgcthan dynamic hammock
predication, software predication, wish branches, and-gath execution because DMP
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enables the predication of frequently-hammocks. The teshlowed that DMP has much
less overhead than dual-path/multipath execution pamagligecause DMP does not exe-
cute control-independent instructions multiple timeserdfore, the average IPC improve-
ment over all benchmarks is 3.5% for dynamic hammock preidicas.8% for dual-path,
8.8% for multipath, and 19.3% for DMP. Conventional softev@redication reduces ex-
ecution time by 3.8%, wish branches by 6.4%, and DMP by 13.0%lP provides the
best energy efficiency and energy-delay product (EDP) amatiqmradigms, reducing en-
ergy consumption by 9% and improving EDP by 22.3% due to a 38¥ation in pipeline
flushes. Even on a less aggressive processor with a sholingigad a small instruction
window, DMP improves performance by 7.8% while improvingfEEBy 9.7%.

Finally, the dissertation also presented the code geoeratigorithms for DMP
architecture in Chapter 6. The algorithms select branchatsare suitable and profitable
for dynamic predication based on profiling information aradresponding control-flow
merge (CFM) points. We also developed a new profile-drivaatydical cost-benefit model

to select branches that are profitable for dynamic predinati

Based on the results presented in this dissertation, weueetihat the adaptive pred-

icated execution has three major advantages:

1. The adaptive predicated execution overcomes the thrgar m@blems/limitations
of predicated execution: adaptivity, complex CFG and ISA.

2. Wish branches in Chapter 4 provide the hardware with acehioi use branch predic-
tion or predicated execution for each dynamic instance ohadh.

3. DMP in Chapter 5 eliminates branch misprediction flusheshmmore efficiently
(i.e., with less instruction execution overhead) tharraliive approaches, especially

dual-path and multipath execution.
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Hence, we conclude that the adaptive predicated executicadigm provides a

high performance and energy efficient mechanism to redwerinch misprediction penalty.

7.2 Future Research Directions
7.2.1 Wish Branch Generation Algorithms

The next step of wish branch research is to develop compderithms and heuris-
tics to decide which branches should be converted to wisthdhes. For example, an input-
dependent branch, whose accuracy varies significantly tveghinput data set of the pro-
gram, is the perfect candidate to be converted to a wish hraBimce an input-dependent
branch is sometimes easy-to-predict and sometimes hgpcetiict depending on the input
set, the compiler is more apt to convert such a branch to a lrshch rather than predi-
cating it or leaving it as a normal branch. Similarly, if thenepiler can identify branches
whose prediction accuracies significantly change depgnoimthe program phase or the
control-flow path leading to the branch, it would be more aptanvert them into wish
branches.

Other compile-time heuristics or profiling mechanisms thatld lead to higher-
quality wish branch code are also an area of future work. Kample, if the compiler
can determine that converting a branch into a wish branchsighificantly reduce code
optimization opportunities as opposed to predicatingticould be better off predicating
the branch. This optimization would eliminate the casesrela@sh branch code performs
worse than conventionally predicated code due to reduagoksior code optimization.

Similarly, if the compiler can take into account the execntdelay due to the data
dependencies on predicates when estimating the execiurtierof wish branch code on an
out-of-order processor, it can perform a more accurate-lgesefit analysis to determine

what to do with a branch. Such heuristics will also be usefiglenerating better predicated
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code for out-of-order execution processors.

7.2.2 Diverge-Merge Processor

The proposed DMP mechanism still requires some ISA suppdrtost-efficient
hardware mechanism to detect diverge branches and CFMspatinin-time would elimi-
nate the need to change the ISA. Developing such mecharsgpastiof the future work.

The cost of implementing the diverge-merge processor cbaldeduced in other
processing paradigms such as Simultaneous Multithrea@@MT). SMT processors al-
ready support multiple fetch mechanisms and multiple aggnaming mechanisms, which

will reduce the cost of implementing DMP.

On the compiler side, future research can focus on the exjpbor of more accu-
rate cost-benefit models. In particular, the proposed castenfor loop diverge branches
in Chapter 6 requires the profiler to collect DMP-specificomfiation. It is worth while
to examine techniques that can make the cost model for sejelciop branches imple-
mentable. Besides static cost-benefit models, explorafidgnamic profiling mechanisms
that collect feedback on the usefulness of dynamic predicat run-time and accordingly

enable/disable dynamic predication is another promisuggae for future research.
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Appendix A

Input Dependent Branches

One of the motivations of this dissertation is that branckprediction rate changes
depending on an input to a program, program phase [69, 78]aatontrol-path [13, 12]
that leads to a branch. Sherwood and Calder [69] showedtbaterage program’s branch
misprediction rate has time varying behavior. Chappell, [13] quantitatively analyzed
branch misprediction rate characteristics depending ognam paths. However, not many
researchers have shown how much individual branch’s mitsgtien rate is dependent on

input sets. Hence, this appendix discusses input depehdemthes.

A.1 Input Dependent Branches

We classify a conditional branch as input-dependent ifriéslction accuracy changes
by a certain threshold value across two input sets. We setlingshold to be 5% in our
analysis. For example, if the prediction accuracy of a bnanstruction is 80% with one
input set and 85.1% with another, this branch is considerée &an input-dependent branch
since the delta, 5.1%, is greater than the threshold, 5%.

A.2 Frequency and Characteristics of Input-Dependent Brarghes

Figure A.1 shows the dynamic and static fraction of condaidoranches that show
input-dependent behavior. Train and reference input settheE SPEC INT 2000 bench-

marks were used to identify the input-dependent branches.b@seline branch predictor
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is a 4KB gshare branch predictor. The dynamic fraction iaioietd by dividing the number
of dynamic instances of all input-dependent branches bytineber of dynamic instances
of all branch instructions, using the reference input séie Henchmarks are sorted by the
dynamic fraction of input-dependent branches, in descendiider from left to right The
data shows that there are many branches that show more thabh&8lute change in pre-
diction accuracy between the train and reference input ddtse than 10% of the static
branches in bzip2, gzip, twolf, gap, crafty, and gcc are trggpendent branches. Note
that this data is obtained using only two input sets to defir@eset of input-dependent
branches.

0.50
' == dynamic fraction
== static fraction

0.40

0.301

0.20-

0.101

Fraction of input-dependent branches

0.00-
bzip2 gzip twolf gap crafty parser mcf gcc  vpr vortexperlbomk eon

Figure A.1: The fraction of input-dependent branches @siain and reference input sets)

Figure A.2 shows whether or not all input-dependent brasee hard-to-predict.

INote that input-dependence is a property aftatic branch. Input-dependence cannot be defined for a
dynamic instance of a branch, since the dynamic instancebodirech is executed only once. We show the
dynamic fraction of input-dependent branches in Figureta.firovide insight into the execution frequency
of input-dependent branches. All other results in this pajpe based ostatic branches
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This figure displays the distribution of all input-depentleranches based on their predic-
tion accuracy. Input-dependent branches are classifiedsintcategories based on their
prediction accuracy using the reference input set. The stadavs that a sizable fraction
of input-dependent branches are actually relatively eagyedict (i.e., have a prediction
accuracy of greater than 95%) in many of the benchmarks. BEwerraction of input-
dependent branches with a prediction accuracy greater3B& -which is a very strict
accuracy threshold- is significant for gap (19%), vortex 886c (7%), crafty (6%), twolf
(4%), and parser (4%). Hence, not all input-dependent iemare hard-to-predict. There
are many input-dependent branches that are relatively-teagyedict.

1.0
= 0-70%
0.95 1 [ =70-80%
0.8 - =80-90%
= 90-95%
0.7 T [ ==95-00%
0.6 L | | ===99-100%

Distribution of input-dependent branches
o
(6]

bzip2 gzip twolf gap crafty parser mcf gcc  vpr vortexperlomk eon

Figure A.2: The distribution of input-dependent branchasdal on their branch prediction
accuracy

Figure A.3 shows whether or not all hard-to-predict brarscaee input-dependent.
We classify all branches into six categories based on thewliption accuracy. The fig-
ure presents the fraction of input-dependent branchesadh eategory. For example, in
bzip2, 75% of branches with a prediction accuracy lower tfi@%o are input-dependent

and only 10% of branches with a prediction accuracy betw&e@3% are input-dependent.
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In general, the fraction of input-dependent branches as®s as the prediction accuracy
decreases. Thus, branches with a low prediction accuraeynare likely to be input-
dependent. However, many branches with a low predictionracy are actually not input-
dependent. For example, in gzip only half of the branchels avjprediction accuracy lower

than 70% are input-dependent.

1.0

0.9 = 99-100%

0.8 = 95-99%
=90-95%

0.7 =80-90%

0.64 =70-80%
=0-70%

0.5+

0.4+

0.3+

0.2+

Fraction of input-dependent branches

0.1+

BN Y| (-

bzip2 gzip twolf gap crafty parser mcf gcc  vpr vortexperlomk eon

0.0-

Figure A.3: The fraction of input-dependent branches ifed&nt prediction accuracy cat-
egories

We also measure the overall branch misprediction rate tmaathe correlation
between the overall branch misprediction rate differermress input sets and the fraction
of input-dependent branches. Table A.1 shows the averagemisprediction rate for
each input set. Some benchmarks that have a small diffenetice overall branch mispre-
diction rate between the two input sets, such as eon andrplerlalso have a small frac-
tion of input-dependent branches (as can be seen in Figure &or these benchmarks,
profiling with multiple input sets and computing the averdganch prediction accuracy

would correctly indicate that there are not many input-aejeat branches. In contrast,
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even though twolf and crafty have a small difference in oNdranch prediction accuracy
across the two input sets, they have a high number of inpogaident branches. So, just
comparing the overall branch misprediction rate acrosatispts does not provide enough

information to judge whether or not a benchmark has manytidppendent branches.

Table A.1: Average branch misprediction rates of the evalli@rograms (%)

[ Input Data Sef] bzip2] gzip [ twolf | gap] crafty [ parser] mcf] gcc| vpr [ vortex] perlomk] eon |
train 19 | 75| 164 |57 124 | 91 | 78|7.3|11.2| 0.8 5.1 12.2
reference 83 | 65|157|39| 118| 89 |6.6|24|111| 04 5.1 12.1

A.3 Examples of Input-Dependent Branches

What kind of branches are sometimes easy to predict and soesehard to pre-
dict? We provide two examples to show the code structuresimginput-dependent branch
behavior.

One example of an input-dependent branch is a branch thaksliata types. A
branch in the gap benchmark, which is shown on line 5 in Figu#e checks whether or
not the data type of a variable (hd) is an integer. The prograecutes different functions
depending on the data type of the variable. The mispredictite of this branch is 10%
with the train input set, but it is 42% with the reference inpat. With the train input
set, the variable is an integer for 90% of the time, so thertakée of the branch is 90%.
Hence, even a simple predictor achieves 90% accuracy fobthach. In contrast, with
the reference input set, approximately half of the time theable is of non-integer type
and therefore the branch misprediction rate increases%a 4zap is a math program that
can compute using different types of data. It uses a nom@ntdata type to store values
greater thar2®. The reference input set contains a large fraction of valbiasare greater

than23°, which are stored in variables of a non-integer data typecointrast, most input
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data values in the train input set are smaller th&#nand they are stored as integers. This

results in very different behavior across input sets foridtanch that checks the type of the

input data.

1 :TypHandl e Sum ( TypHandl e hd ) {

2 /1 initialize hdL and hdR using hd

3 ...

4 /'l input-dependent br. checks the type of hd (line 5)
5 : if ( (long)hdL & (long)hdR & T_INT ) {

6 : /1l use integer sumfunction for integer type

7 result = (long)hdL + (long)hdR - T_INT;

8 ov = (int)result;

9 : If(((OV << l) >>1) :zov)

10: return (TypHandl e) ov; // return integer sum
11: }

13: // call a special SUM function for non-integer type
14: return SUM hdL, hdR);
15:}

Figure A.4: An input-dependent branch frayap

The prediction behavior of a loop branch is strongly depahda what determines
the number of loop iterations. If the loop iteration coundetermined by input data, the
prediction behavior of the loop branch is dependent on tpatiset. If the iteration count
is a large number, then the branch is easy to predict, whérdesiteration count is small,
the branch can be hard to predict. For example, some loop&igzip benchmark execute
for different number of iterations depending on the comgias level, which is specified
as a parameter to the program. Figure A.5 shows an exampkbiBmch on line 25 is a
loop exit branch. The exit condition is defined on line 18 gpacklevelandmaxchain
packlevelis the compression level amdaxchainis the value that determines the number
of loop iterationsmax chainhas a higher value at higher compression levels, as shown on

lines 9-13. At compression level 1, the loop iterates 4 tirmued the prediction accuracy

161



of the branch is 75% (3/4) without a specialized loop prexticBut, at compression level
9, the loop iterates 4096 times, so the prediction accur&dhieobranch is very close to
100% (4095/4096). Therefore, the branch is input-depenolerthe input parameter that

specifies the compression level.

1. typedef struct config {

2: i nt good_I| engt h;

3: int max_| azy;

4: int nice_length;

5: i nt max_chai n;

6: } config;

7

8: local config config_table[10] = {

9: [+ 1 =/ {4, 4, 8, 4}, // mn conpression |evel
10: /1 ...

11: /* 4 =/ {4, 4, 16, 16},

12: /] ...

13. [+ 9 */ {32, 258, 258, 4096} // max conpression | evel
14: },;

15:

16: /*x* |nitialization code begin *xx/

17: /'l max chain length is read fromthe config table
18: max_chai n_l ength = confi g_tabl e[ pack_I evel ]. max_chai n;
19: unsi gned chai n_|l ength = max_chai n_| engt h;

19: /*x* Initialization code end **x/

20:

21: do {

22: ...

23: /'l input-dependent |oop exit branch (line 25)

24: '} while ((cur_match = prev[cur_match & WWASK]) > |imt
25: &% --chain_length I'= 0);

Figure A.5: An input-dependent loop exit branch frgmi p
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