
Performance-Aware Speculation Control Using Wrong Path Usefulness Prediction

Chang Joo Lee Hyesoon Kim Onur Mutlu‡ Yale N. Patt

High Performance Systems Group
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas 78712-0240

‡Computer Architecture Group
Microsoft Research
One Microsoft Way

Redmond, WA 98052

TR-HPS-2006-010
December 2006

This page is intentionally left blank.

Performance-Aware Speculation Control Using Wrong Path Usefulness Prediction

Chang Joo Lee Hyesoon Kim Onur Mutlu§ Yale N. Patt
Department of Electrical and Computer Engineering

The University of Texas at Austin
{cjlee, hyesoon, patt}@ece.utexas.edu

§Microsoft Research
onur@microsoft.com

Abstract
Fetch gating mechanisms have been proposed to gate the processor pipeline to reduce the wasted energy consumption due to

wrong-path (i.e. mis-speculated) instructions. These schemes assume thatall wrong-path instructions are useless for processor
performance and try to eliminate the execution of all wrong-path instructions. However, wrong-path memory referencescan be
useful for performance by providing prefetching benefits for later correct-path operations. Therefore, eliminating wrong-path
instructions without considering the usefulness of wrong-path execution can significantly reduce performance as wellas increase
overall energy consumption.

This paper proposes a comprehensive, low-cost speculationcontrol mechanism that takes into account the usefulness ofwrong-
path execution, while effectively reducing the energy consumption due to useless wrong-path instructions. One component of the
mechanism is a simple, novel wrong-path usefulness predictor (WPUP) that can accurately predict whether or not wrong-path
execution will be beneficial for performance. The other component is a novel branch-count based fetch gating scheme thatrequires
very little hardware cost to detect if the processor is on thewrong path. The key idea of our speculation control mechanism is
to gate the processor pipeline only if (1) the number of outstanding branches is above a dynamically-determined threshold and
(2) the WPUP predicts that wrong-path execution will not be beneficial for performance. Our results show that our proposal
eliminates most of the performance loss incurred by fetch gating mechanisms that assume wrong-path execution is useless, thereby
both improving performance (by up to 15.4%) and reducing energy consumption (by up to 4.5%) while requiring very little (51-byte)
hardware cost.

1.. Introduction

Current high performance processors use speculative execution through branch prediction to maximize the number

of useful instructions in the pipeline. If speculative execution turns out to be incorrect, the pipeline is flushed. Flushed

wrong-path instructions unnecessarily consume power/energy unless they are useful for performance.

In order to reduce the wasted power/energy due to wrong-pathinstructions, several fetch gating mechanisms have

been proposed [16, 4, 13, 2, 7, 8]. These mechanisms decide whether or not to gate (i.e. stall) the fetch engine of the

processor based on branch prediction confidence [11], performance monitoring, or instruction utilization rates. They

explicitly or implicitly assume that wrong-path instructions are NOT useful for performance and hence eliminating their

fetch/execution will always save energy. However,NOT all wrong path instructions are useless. Previous research

has shown that some wrong-path instructions can be very beneficial for performance because they might prefetch into

caches data and instructions that are later needed by correct-path instructions [21, 18]. Thus, the execution of wrong-path

instructions can not only improve performance but also leadto energy savings through reduced execution time.1 With

increasing memory latencies and instruction window sizes,the positive performance impact of wrong-path instructions

becomes more salient [18]. Therefore, effective fetch gating mechanisms need to take into account the usefulness of

wrong-path instructions.

1In contrast, gating the fetch engine when wrong-path instructions are useful would have the opposite effect: it would reduce performance and
could increase energy consumption.

1

-40
-35
-30
-25
-20
-15
-10
-5
0
5

10
15
20

D
el

ta
 (

%
)

IPC
Total Energy

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

AVG

Figure 1. Change in retired instruction per cycle (IPC) perf ormance and energy consumption with ideal fetch gating

Figure 1 shows the performance and energy consumption of an “ideal” fetch gating scheme that immediately gates the

fetch engine when a mispredicted branch is fetched, using oracle information. This scheme is impossible to implement,

but shows the potential of previously proposed fetch gatingschemes. Ideal fetch gating improves performance of most

benchmarks (by 2.3% on average excludingmcf andparser).2 Furthermore, ideal fetch gating results in significant

energy savings for most benchmarks (18.0% on average excluding mcf). However, two benchmarks show opposite,

undesirable behavior even with ideal fetch gating. Formcf, ideal fetch gating both reduces performance (by 29.5%)

and increases energy consumption (by 15.0%). Forparser, ideal fetch gating also reduces performance (by 5.3%) but

saves energy (by 27.9%). As shown in [18], these two benchmarks take advantage of wrong-path memory references. In

mcf, since many (36.9% of) wrong-path instances (or episodes) prefetch a large number of useful wrong-path L2 cache

misses for later correct-path instructions (99.8% of L2 misses generated on the wrong path are useful), eliminating all

wrong-path operations reduces both performance and energyefficiency. On the other hand, few (2.0% of) wrong-path

episodes have significant prefetching benefits (37.3% of L2 misses generated on the wrong path are useful) inparser

while many others do not. Therefore, ideal fetch gating reduces performance inparserbut it still improves overall energy

efficiency.

Because the performance benefit of wrong-path memory references is significant for some applications, a speculation

control (e.g. fetch gating) scheme that does not take into account the prefetching benefits of wrong-path instructions

can hurt overall performance and result in increased energyconsumption. As such, the net effect of speculation control

can be exactly opposite of what it is designed to achieve (i.e. reduced energy consumption). In order to overcome this

problem, the goal of this paper is to proposenew speculation control techniques that predict the usefulness of wrong-path

episodeson top of a fetch gating mechanism that is implemented with low hardware cost. If a wrong-path episode is

predicted to be useful for performance, the proposed mechanism does not gate the fetch engine.

Previously proposed fetch gating mechanisms [16, 2, 7, 8] have one other important limitation. They require a

significant amount of additional hardware to decide whetheror not to gate the fetch engine. For example [16, 2] require

a branch confidence estimator, [7] requires significant changes to critical and power-hungry pipeline structures such

as the instruction scheduler, and [8] requires a large (4KB)wrong-path predictor. The additional hardware not only

2Performance improvement of ideal fetch gating is mainly dueto the elimination of the cache pollution caused by wrong-path memory refer-
ences [18].

2

increases the complexity of the processor but also consumesboth dynamic and static energy, which can offset the energy

savings from fetch gating. Therefore, simple and more power/energy-efficient speculation control mechanisms are very

desirable. To this end, we propose a fetch gating technique that does not require large hardware structures or significant

modifications to critical portions of the pipeline. The key insight of our technique is that the probability of having at least

one mispredicted branch instruction in the pipeline increases as the number of outstanding branch instructions increases.

As such, branch-count based fetch gating gates the pipelineif the number of branch instructions in the pipeline exceeds

a threshold value, which is determined based on the current branch misprediction rate. We show that simply adjusting

thenumber of outstanding conditional branchesbased on branch prediction accuracy is effective at reducing the number

of wrong-path instructions, without requiring costly confidence estimation or wrong-path prediction hardware.

Contributions: We make four major contributions in this paper:

1. We show that ignoring the performance benefits of wrong-path execution and thus using speculation control assum-

ing wrong-path execution is always useless can significantly degrade performance and increase energy consumption.

We describe via code examples why it makes sense to take into account the performance benefits of wrong-path

execution.

2. We introduce the concept ofwrong path usefulness prediction (WPUP)and propose two low-cost WPUP mecha-

nisms that can be used with any previously proposed speculation control scheme. To our knowledge, no previously

proposed speculation control scheme explicitly takes intoaccount the usefulness of wrong-path instructions. We

show that our new WPUP mechanisms eliminate almost all of theperformance loss due to fetch gating, while

requiring very little (only 45-byte) hardware cost.

3. We propose a new fetch gating mechanism,branch-count based fetch gating, that achieves the performance and

energy benefits of previously proposed fetch gating schemes, while requiring much smaller hardware (only 44-bit)

cost. The key idea of branch-count based fetch gating is to gate the pipeline if the number of branch instructions

in the pipeline exceeds a threshold value, which is determined based on the current branch misprediction rate. As

such, branch-count based fetch gating does not require a confidence estimator, a wrong-path predictor, or significant

changes to pipeline structures.

4. We combine WPUP and branch-count based fetch gating to provide a comprehensive speculation control scheme

that is aware of the benefits of wrong-path instructions. We show that our combined proposal provides the best

performance and energy efficiency, while requiring very little (51-byte) hardware cost.

Our evaluations show that our comprehensive speculation control proposal that requires only 51 bytes of storage

significantly reduces the performance loss incurred by fetch gating mechanisms that assume wrong-path execution is

useless. On a relatively conservative processor with an 11-stage pipeline, our proposal improves performance by up to

8.1%, and reduces energy consumption by up to 4.1% compared to a previously proposed fetch gating scheme [16]. On

a more aggressive baseline processor with a 30-stage pipeline, our proposal improves performance by up to 15.4% and

4.7% on average. As such, our proposal shows the value of taking into account the benefits of wrong-path execution, a

3

concept largely ignored by previous research in speculation control.

2.. Motivation: Benefits of Wrong-Path Execution

Wrong-path instructions affect execution of the correct path by changing the state of the processor’s memory subsys-

tem. Wrong-path memory references generated by the wrong-path instructions or the prefetcher can be beneficial for

performance if they fetch cache lines that will later be needed by instructions on the correct program path. On the other

hand, wrong-path memory references can be detrimental to performance if they fetch cache lines that will not be needed

by instructions on the correct program path, if they fetch cache lines that evict the cache lines that will be needed by

correct-path instructions, or if they tie up bandwidth and resources in the processor or the memory system that are needed

to service the correct-path references. Previous research[18, 19] has shown that both positive and negative effects of

wrong-path memory references are mainly due to the changes (prefetching or pollution) they cause in the L2 cache (as

opposed to the changes they cause in L1 instruction/data caches and other memory system resources). Therefore, we

focus our analyses on effects of wrong-path execution on theL2 cache.

We first provide a brief analysis of the usefulness of wrong-path memory references to motivate why speculation

control techniques should be aware of the usefulness of wrong-path execution. Table 1 shows the number of L2 cache

misses for each benchmark in the SPEC CPU 2000 integer suite and Figure 2 shows the distribution of total L2 cache

misses based on whether the miss is generated on the wrong path and whether or not the cache line allocated in the L2

cache is used by a correct-path memory instruction with the processor model described in Section 4..Correct-path miss

indicates the number of L2 cache misses that are generated bycorrect-path instructions.Unused, partially used, and

used wrong-path missindicate the number of L2 cache misses that are generated by wrong-path instructions but never

used, used when missing cache lines are still outstanding inthe miss status holding registers (MSHRs) (i.e. not in the

L2 cache yet), and used when the cache lines are in the L2 cache, respectively. In other words,partially usedandused

wrong-path misses together quantify the useful prefetching effect of wrong-path memory references into the L2 cache.
Benchmark gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

L2 data misses 37407 2250 14374 4576397 20947 139112 694 43047 1076502 99205 245810 825
Total L2 misses 38427 4916 53824 4577214 25300 141214 4598 45720 1083592 115601 246765 3841

L2 Misses per 1K Inst 0.301 0.130 1.026 36.611 0.306 1.478 0.063 0.913 4.459 0.857 1.164 0.048
Memory intensive? No No Yes Yes No Yes No Yes Yes Yes Yes No

Table 1. Number of L2 cache misses for SPEC2000 integer bench marks (A benchmark is memory intensive if L2 MPKI> 0.5)

0

10

20

30

40

50

60

70

80

90

100

L2
 C

ac
he

 M
is

s
(%

)

Correct-path miss
Unused wrong-path miss
Partially used wrong-path miss
Used wrong-path miss

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

Figure 2. Normalized L2 cache miss breakdown

Clearly, a larger numberunusedwrong-path misses indicates a larger amount of disturbance(pollution) caused by

4

wrong-path memory references in the L2 cache. Hence, if a processor correctly gates wrong-path instructions, it can

potentially achieve performance improvement as well as power/energy savings if the fraction of unused cache lines is

large. This is the case for most benchmarks exceptmcf andparser. For example, forgcc, the performance improvement

of fetch gating can be significant (11.9% in Figure 1) becausemany wrong-path L2 cache misses are never used (23.4%

out of all cache misses).

On the other hand, a larger number ofused/partially-usedmisses indicates that wrong-path instructions are prefetching

useful data into the L2 cache. Formcf, most of the wrong-path misses are used (99.8% of all wrong-path misses are

either used or partially-used). Due to the large number of total L2 cache misses (almost all of which are useful), ideally

eliminating wrong-path instructions hurts performance significantly in mcf as shown in Figure 1. Forparser, wrong-

path misses are frequently used (37.3% of all misses areused/partially-usedwrong-path misses). However, ideally

eliminating all wrong-path instructions induces less performance degradation than seen inmcf. This is becauseparser

has a higher portion ofunusedwrong-path misses (14.2% of all misses) and a smaller numberof total L2 cache misses

thanmcf.

Our Goal: Thus, wrong-path instructions are not always harmful to performance as commonly (and perhaps implic-

itly) assumed by previous speculation control schemes. On the contrary, they can be quite beneficial for performance.

Therefore, it is important to distinguish when wrong-path references are beneficial for performance in order to design a

more intelligent, performance-aware speculation controlmechanism that does not gate the fetch engine when wrong-path

memory references provide prefetching benefits. Note that the hardware cost for the mechanism must be small enough

to guarantee that the achieved energy savings is not offset by the energy consumption of the additional hardware. Our

goal in this paper is to design such a low-cost speculation control technique that is aware of the usefulness of wrong-path

execution.

Motivation for Detecting Wrong-Path Usefulness in the MSHRs: We observe in Figure 2 thatpartially used

wrong-path missesaccount for a significant portion of the total number of useful wrong-path misses (used+ partially

used wrong-path miss) for both mcf andparser (66.6% and 37.5% respectively), the only two memory-intensive ap-

plications where wrong-path misses significantly affect the L2 cache. As such, MSHRs [15], bookkeeping registers

where outstanding misses are buffered until they are fully serviced by the memory system, can be a good candidate for

detecting the usefulness of wrong-path execution by detecting partially-usedwrong-path misses. It is also more cost-

effective to track the usefulness of a wrong-path referencewithin MSHRs than within the L2 cache because MSHRs

have much fewer entries than the L2 cache. Therefore, the wrong-path usefulness predictors (WPUP) we will propose

use the MSHRs to detect whether a wrong-path memory reference is useful for later correct-path instructions and use

this information to train the WPUP structures dynamically.

2.1. Why Can Wrong-Path Execution Be Useful?

We briefly describe two code examples to provide insights into why wrong-path execution can provide prefetching

benefits for correct-path execution. We found that there aretwo major code constructs that lead to prefetching benefits

5

 // ...

 while (node) {

 }

 //....

}
 node = node−>child;
 // control−flow independent point (reconvergence point)

 }

 // ...

BB 1

BB2

BB4

BB5

BB6

 node_t *node;
 // initialize node

 if (node−>orientation == UP) { // mispredicted branch

Load A
Load B

Load B
Load A

Load D

Store C

BB3

Store C

 node−>potential= node−>basic_arc−>cost

 node−>potential= node−>pred−>potential
 else { /* == DOWN */

 − node−>basic_arc−>cost;

 + node−>pred−>potential;

Load
..........

Br BB4

BB 2

Jmp BB5

Load A

Store C

Load B
............

BB 3

............
Load D
............

Jmp BB1

BB 5

............
BB 6

Br BB6
BB 1

Load A

Store C

Load B
............

Not taken path

BB 4

Taken path

Figure 3. An example of wrong-path prefetching from mcf (mcfutil.c)

on the wrong path: (1)Hammocks:control-flow hammocks that use the same data on both sides of the hammock, (2)

Control-flow independence:control-flow independent program portions that are executed twice, once before a mispre-

diction and once after.3

Figure 3 shows a program segment frommcfand its control flow graph that takes advantage of wrong-pathprefetching

due to bothhammocksandcontrol-flow independence. The conditional branch instruction in basic block (BB) 2 isa

frequently mispredicted branch. The load and store instructions (Load A, BandStore C) in both BB3 and BB4 refer to

the same load and store addresses. Therefore, regardless ofwhether or not the branch in BB2 is mispredicted, the cache

lines for the data of the loads and the store in either BB 3 or 4 are touched. Hence, the basic block that is executed on

the wrong path of the branch in BB2alwaysprovides prefetching benefits (due to the fact that same datais used on both

sides of a hammock).

Note that in Figure 3 the load instruction in BB5 (Load D) is control-independent of the branch in BB2. Moreover, the

data address of the load is not dependent on any operation in BB3 or BB4. Hence,Load Dloads the same data regardless

of the direction of the branch at BB2. If the branch at BB2 is mispredicted, the miss generated byLoad D(executed on

the wrong path) would later be needed when the processor recovers from the misprediction and executesLoad Don the

correct path. Hence, wrong-path execution of a control-independent program portion can provide prefetching benefits

for its later correct-path execution.

Figure 4 shows a code section from theput into match table function of theparserbenchmark to illustrate a

control-flow hammock structure that causes a useful wrong-path memory reference. This function adds a node to the

appropriate (left or right) hash table depending on the value of thedir (direction) parameter passed to the function

(lines 4-7). Depending on the value ofdir, two different functions are called. The arguments passed to the called

functions,m andt[h], are the same regardless of the value ofdir. In other words, instructions in theif block (line

3We refer the interested readers to Mutlu et al. [18] for a detailed analysis of code structures that cause wrong-path prefetching benefits. Our
characterization of the code constructs that lead to prefetching benefits on the wrong path is a subset of the code constructs described in [18].

6

5) and instructions in theelse block (line 7) use the same data. Therefore, when the branch of theif statement (line

4) is mispredicted, a wrong-path load instruction generates a request fort[h]. Shortly after the mispredicted branch is

resolved and the processor starts execution on the correct path, a correct-path load instruction will generate a request for

the exact same data, which would already be in the cache or in flight.
1: void put_into_match_table (... , t, dir, ...) {
2: // compute h
3: // initialize m
4: if (dir == 1) {
5: t[h] = add_to_right_table_list(m, t[h]);
6: } else {
7: t[h] = add_to_left_table_list(m, t[h]);
8: }
9: }Figure 4. Example of wrong-path prefetching from parser(fast-match.c)

In our analysis, we found that most of the code structures that take advantage of the prefetching effect of wrong-path

instructions are repeatedly executed (e.g. the code structures in Figures 3 and 4 are located and called within frequently-

executed loop bodies). Therefore, it is conceivable to design a history based prediction mechanism that estimates the

usefulness of wrong-path execution. The goal of the WPUP mechanism we will propose in the next section is to detect

useful wrong-path prefetching provided by frequently-executed code structures (similar to those shown in Figures 3

and 4), and to disable fetch gating when wrong-path execution is predicted to provide prefetching benefits.

3.. Performance-Aware Speculation Control: WPUP and Branch-count Based Fetch Gating

Our performance-aware speculation control technique consists of two prediction components as shown in Figure 5:

1. a wrong-path usefulness predictor (WPUP)and 2. a newfetch gating scheme: branch-count based fetch gating.

The fetch gating scheme predicts if the processor is on the wrong path. WPUP predicts whether wrong-path execution

would provideusefulprefetching benefits. The speculation control scheme gatesthe fetch engine only if the processor

is predicted to be on the wrong pathandwrong-path is predictednot to provide prefetching benefits.4

WPUP

Useful

Performance−aware speculation control

Fetch Gating

Look up

Fetch Engine

Gate enable Branch count

Figure 5. Performance-aware speculation control mechanis m

3.1. Wrong Path Usefulness Prediction (WPUP)

We propose two techniques to detect the usefulness of wrong-path episodes. These mechanisms work at different

granularities: 1.Branch PC-based WPUPis a fine-grained scheme that predicts wrong-path usefulness for each mispre-

dicted or wrong-path branch instruction, 2.Phase-based WPUPpredicts wrong-path usefulness in a more coarse-grained

4This mechanism can simply be implemented by looking up the both predictors in parallel and ANDing the predictions. In ourimplementation,
to reduce power/energy consumption, WPUP is looked up only when the fetch gating scheme predicts that the processor is onthe wrong-path.

7

fashion during different program phases.

3.1.1. Branch Program Counter(PC)-based Wrong Path Usefulness Prediction Branch PC-based WPUP uses a

set-associative cache structure (WPUP cache) to store the PCs of branches that lead to useful wrong-path prefetches.5

For example, the branch in BB2 in Figure 3 will lead to useful prefetches (loads in BB3 or BB4, and BB5) if it is

mispredicted. When the processor encounters such a useful mispredicted or wrong-path branch, it trains the WPUP

cache with the program counter of the branch. The fetch engine keeps track of the PC of the latest branch instruction

in a register (LBPC) by updating it whenever a branch is fetched. When the fetch gating mechanism decides to gate

the fetch engine, the fetch engine looks up the WPUP cache with the PC of the latest fetched branch. If the PC of the

fetched branch is present in the WPUP cache, then the processor predicts that the wrong path of the fetched branch (if

mispredicted) would provide prefetching benefits and therefore, discards the gating decision.

In contrast to conventional cache structures, the WPUP cache does not require a data store. The tag store contains

the tags (higher bits of the PC) of the branches that are foundto provide wrong-path prefetching benefits along with the

LRU replacement information.

Detecting the Usefulness of Wrong-Path Memory References:

In order to knowexactlywhether or not a wrong-path memory reference is useful and tofind the corresponding latest

branch PC that resulted in the useful wrong-path reference,the processor either requires separate storage or needs to store

the PC address of the mispredicted branch that caused the wrong-path memory request along with each L2 cache line.

Unfortunately, the amount of this extra information can be prohibitive. For example, assuming a 1024-line cache, storing

a 16-bit partial PC address with each L2 cache line would require 2KB extra storage to detect the latest branch PC that

leads to wrong-path useful memory references. In order to eliminate the need for such extra storage, we propose a simple

scheme that detects the usefulness of wrong-path memory references using the existing MSHRs [15] and extending them

with a few additional fields. Since MSHRs have a small number of entries, storing information with each MSHR entry

is more cost-effective than storing the same information with each L2 cache line.6

The WPUP mechanism uses the L2 MSHRs to detect useful branches that will train the predictor. The scheme detects

two properties: (1) whether an outstanding cache miss in theMSHRs is generated by a wrong-path instruction and (2)

whether it is useful (i.e. used by a correct-path instruction while the miss is being serviced). If a wrong-path miss in the

MSHRs is determined to be useful, the branch that lead to the wrong-path miss is marked as useful in the WPUP cache

(i.e. the PC of the branch is inserted into the WPUP cache).

Hardware Support: As described below, we augment several hardware structuresin a conventional out-of-order

processor to support the detection of branches that result in wrong-path prefetches. Note that, to reduce hardware cost,

5Note that most fetch gating mechanisms do not knowexactly which branchamong all fetched conditional branches is mispredicted. Therefore,
it is difficult to keep track of only the PC of the mispredicted(or wrong-path causing) branch in the fetch engine to look upthe WPUP cache with.
For example, if branch A is fetched and later branch B is fetched on the predicted path of branch A, the fetch engine does notknow whether branch
A or branch B is mispredicted until they are resolved later. For this reason, in the WPUP cache, we decide to keep track of the PC of thelatest
branchfetched before a useful wrong-path memory instruction is fetched.

6Our experiments show that detecting useful wrong-path memory references using both MSHRs and L2 cache lines only negligibly (by 0.01%)
improves the performance of our WPUP mechanisms.

8

we use the lower 16 bits of the PC to identify a branch instruction, instead of its full 64-bit PC:7

1. Fetch engine:

(a) Latest branch PC register (LBPC, 16 bits): is added to thefetch engine. It stores the PC of the latest

fetched/predicted branch.

2. Inter-stage pipeline latches (decode, rename, and issue):

(a) Branch PC field (BPC, 16 bits): A branch PC is associated with every instruction packet fetched in the fetch

stage, indicating the youngest branch before the packet. This field is used to send the latest branch PC of the

packet through the pipeline.

3. Load/store queue (LSQ) entries:

(a) Branch PC field (BPC, 16 bits): A branch PC is associated with every load/store instruction, indicating the

youngest branch before the load/store. This field in the LSQ stores the latest branch PC at the time the load or

store was fetched.

4. L2 MSHRs:

(a) Branch PC field (BPC, 16 bits): stores the latest branch PCfrom the branch PC field of the LSQ entry of an

L2-miss-causing load/store instruction.

(b) Branch ID field (BID, 10 bits): stores the branch ID from the branch ID field of the LSQ entry of an L2-miss-

causing memory instruction. Branch ID is conventionally used for branch misprediction recovery in some

out-of-order execution processors.

(c) Wrong Path field (WP, 1 bit): is set when the correspondingmemory request is known to be generated on the

wrong path (when a branch older than or equal to the associated branch in the MSHR entry is resolved and

found to be mispredicted).

Operation:

When a branch is fetched, LBPC is updated with the PC of the branch. This LBPC is transferred through the front-

end pipeline stages (i.e. using the BPC field in each pipelinelatch) along with the corresponding instruction packet.

Both BPC and branch ID are recorded in the LSQ when an entry is allocated for a load/store, and are transferred to

the L2 MSHRs if the load/store’s memory request misses in theL2 cache. Once a branch is resolved as mispredicted,

the corresponding branch ID is sent to both the L2 MSHRs and the branch misprediction recovery mechanism. The ID

of the mispredicted branch is used to search the MSHRs for entries that are allocated after the resolved mispredicted

branch. The MSHR control logic compares the ID of the resolved branch to the branch ID fields of the MSHR entries.

If the resolved branch ID is older than the branch ID of the MSHR entry, the MSHR entry is known to be allocated on

7We found that using only 16 bits of the PC does not affect the performance of our proposed speculation control scheme.

9

the wrong path and its WP field is set.8 With this mechanism, a wrong-path memory request can be detected as long as

it has not been fully serviced before the mispredicted branch is resolved. We found that this scheme can detect 94% of

all wrong-path L2 cache misses.

Whenever an outstanding wrong-path MSHR entry is hit (i.e. matched) by a later memory request to the same cache

line, our mechanism estimates that the MSHR entry is useful for correct-path instructions. Thus, the WPUP cache is

updated with the BPC (Branch PC) field stored in the MSHR.9 Note that this scheme is inexact in the sense that the later

memory request to the same cache line may not necessarily be generated by a correct-path instruction. However, we

have found (and our evaluation shows) that this simplification does not affect the performance of WPUP.10

If the fetch gating mechanism (described in Section 3.2) predicts that the processor is on the wrong path, the processor

accesses the WPUP cache with the current LBPC. If there is a hit in the WPUP cache, the processor does not gate the

fetch engine, predicting that wrong path would provide prefetching benefits. Otherwise, the processor gates the fetch

engine to save power/energy. Unlike conventional caches, the LRU information in the WPUP cache is not updated on a

hit because frequent lookups by the fetch engine do not mean that the corresponding branch results in useful wrong-path

prefetches.

Note that none of the additional hardware changes made to support wrong-path usefulness detection significantly

increase the complexity of the structures they augment. Theonly time-critical structure that is augmented is the LSQ.

However, the branch PC field added to each LSQ entry is used only for bookkeeping and therefore it does not participate

in the content-addressable search of the LSQ entries.

3.1.2. Phase-based Wrong Path Usefulness PredictionFigure 6 shows the phase behavior of wrong-path usefulness

for each 100K-cycle interval ofmcf over the whole execution time. There are two distinct phasesfor the usefulness of

wrong-path references. Until 75M cycles, wrong-path episodes do not result in useful memory references. In contrast,

after 75M cycles, wrong-path episodes result in very usefulreferences. We found that this phase behavior is due to

execution of large loops whose bodies result in wrong-path prefetching benefits as discussed in Section 2.1. Loops that

provide wrong-path prefetching benefits are executed in some phases, while others that do not are executed in other

phases. As such, it might not be necessary to distinguish wrong-path usefulness on a per-branch basis because branches

that do not provide wrong-path prefetching benefits might not be executed during the same phase as branches that do. To

exploit such phase behavior in wrong-path usefulness, we would like to design a mechanism that can estimate wrong-path

usefulness based on coarse-grained phase behavior.

We can simply detect the phase behavior of wrong-path usefulness using a counter (wrong-path usefulness counter -

WPUC) and the MSHR-based wrong-path usefulness detection mechanism described in Section 3.1.1. We use a time-

8Depending on the choice a microarchitecture makes in handling wrong-path memory requests, this mechanism might already be implemented
in current processors. A processor that cancels wrong-pathmemory requests after a branch misprediction resolution requires a similar mechanism
to detect and invalidate wrong-path memory requests.

9If the corresponding set in the WPUP cache is full, the LRU entry in the set is overwritten.
10We found that if a wrong-path memory request is later referenced by another memory request while in the MSHR, the latter request is very

likely (with 95% probability) on the correct path.

10

0 250 500 750 1000 1250 1500 1750 2000
Time (x 100K cycles)

0

100

200

300

400

500

600

700

800

N
um

be
r

of
 u

se
fu

l w
or

ng
-p

at
h

re
fe

re
nc

es

Figure 6. Phase behavior of wrong-path usefulness for mcf

interval of 100K cycles to update and reset the WPUC counter in order to detect the phase behavior of wrong-path

usefulness. At the beginning of a time-interval, WPUC is reset to 0. During a time-interval, WPUC is incremented by

1 whenever a wrong-path MSHR is hit by a later memory request.At the beginning of the next time interval, the value

of WPUC is tested. If the value of WPUC is greater than a certain threshold (phase wpup threshold), the processor

disables the fetch gating mechanism in the interval, predicting that the wrong-path episodes in the interval would be

useful for performance.

This mechanism is advantageous because it does not require ahardware structure similar to the WPUP cache used

in PC-based WPUP. All it requires is a simple hardware counter in addition to the support in the MSHRs required

for detecting useful wrong-path requests. Note, however, that this is a coarser-grained WPUP scheme than the branch

PC-based WPUP and hence may mispredict finer grained changesin wrong-path usefulness behavior. Nevertheless,

we found that in most cases wrong-path usefulness is a coarse-grained function of program phase behavior rather than

branch PC addresses: in other words, phase-based WPUP can outperform PC-based WPUP because it can better predict

the usefulness of wrong-path memory references for the SPEC2000 integer benchmarks.

3.2. Fetch Gating Mechanism: Branch-count Based Fetch Gating

We propose a low-cost fetch gating mechanism which leverages the observation that the probability of having a

mispredicted branch instruction increases as the number ofoutstanding unresolved branch instructions in the pipeline

increases. This mechanism requires (1) a count register that counts the number of outstanding branch instructions (branch

count register, BCR) and (2) logic modifications in the branch resolution unit. Once a branch instruction is fetched (or

decoded), the processor increments BCR by 1. When a branch instruction is resolved in the branch resolution unit, the

processor decrements BCR by 1. If the BCR value is larger thana certain threshold T at any given time, the fetch engine

stops fetching instructions. Due to the phase behavior of branch misprediction rate [23], a constant threshold value for

T can inhibit correct-path instruction fetches significantly (if T is too low) or miss opportunities to remove wrong-path

instruction fetches (if T is too high). Therefore, we adjustthe threshold T dynamically based on the average branch

prediction accuracy in a given time interval. If the averagebranch prediction accuracy is high, then T is set to a high

value. Setting T to a high value makes it more difficult to gatethe pipeline, which is desirable when the prediction

11

accuracy is high. If the average branch prediction accuracyis low, T is set to a low value. Setting T to a low value makes

it easier to gate the pipeline, which is desirable when the prediction accuracy is low. For example, if branch prediction

accuracy is 99% in an interval, the threshold is set to 18 on our baseline processor. If branch prediction accuracy is

95%, the threshold is set to 13. In our study, we use 7 discretevalues for T depending on the branch prediction accuracy

(shown later in Table 5). These threshold values are determined empirically through simulation.

4. Methodology

4.1. Simulation Methodology

We use an execution-driven simulator of a processor that implements the Alpha ISA to evaluate our proposal. Our

processor faithfully models the fetch and execution of wrong-path instructions and branch misprediction recoveries that

occur on both the correct path and the wrong path. The memory system models bandwidth limitations, port contention,

bank conflicts, and queuing effects at every level in the memory hierarchy. The baseline processor does not invalidate

any memory requests from wrong-path instructions so that the wrong-path memory requests are eventually serviced and

installed into the cache.11 Our baseline processor includes a very aggressive stream prefetcher that was shown to improve

the performance of our system significantly [24].The parameters of the baseline processor are shown in Table 2.

Front End 64KB, 4-way, 2-cycle I-cache; can fetch up to 2 branches, 11-stage pipeline (fetch, decode and rename)
hybrid branch predictor: 64K-entry gshare [17] and 64K-entry PAs predictor [26] with 64K-entry selectorBranch predictors
4K-entry BTB; 64-entry return address stack; minimum branch misprediction penalty: 11 cycles

Execution core 8-wide fetch/issue/execute/retire; 128-entry reorder buffer; 32-entry load-store queue; 128 physical registers
L1 D-cache: 64KB, 4-way, 2-cycle, 2 read ports, 1 write port;On-chip Caches
L2 unified cache: 1MB, 8-way, 8 banks, 10-cycle, 1 port, LRU replacement and 64B line size, 32 L2 MSHRs
300-cycle minimum memory latency; 32 memory banks; 32B-wide core-to-memory bus at 4:1 frequency ratio;Buses and memory
bus latency: 40-cycle round-trip

Prefetcher stream prefetcher with 32 streams and 16 cache line prefetchdistance (lookahead) [25]
Table 2. Baseline processor configuration

We modified the Wattch power model [5] and augmented it to our simulator for power/energy simulation. We used a

0.10µm process technology at 1.2VVdd and 2GHz clock frequency. We model the power consumption of all processor

units faithfully so that the energy benefits of our speculation control mechanism is not over-estimated. Additional

hardware structures used by the evaluated techniques (e.g.WPUP cache structure, confidence estimator) are faithfully

modeled in the power model. All our experiments use Wattch’saggressive clock-gating (CC3) option, where the power

consumption of units is scaled linearly with port usage but unused portions of units still consume 10% of their maximum

power.

We also model a more aggressive processor that is able to perform runahead execution [20] to evaluate the effect of

our speculation control mechanism. Table 3 shows the parameters of this aggressive processor.

We use the SPEC 2000 integer benchmarks compiled for the Alpha ISA with -fast optimizations and profiling

feedback enabled. The benchmarks are run to completion witha reduced input set [14] to reduce simulation time.

Table 4 shows the baseline performance (in terms of retired Instructions Per Cycle - IPC), branch prediction accuracy

11Previous studies [21, 22, 18] have shown that this option provides better baseline performance than squashing wrong-path requests when a
mispredicted branch is resolved.

12

Branch predictors minimum branch misprediction penalty: 30 cycles (30-stagefront end pipeline)
Execution core 512-entry reorder buffer; 128-entry load-store queue; 512physical registers; 512-byte runahead cache for runahead mode

Buses and memory 400-cycle minimum memory latency; bus latency: 50-cycle round-trip
Table 3. Aggressive processor configuration

of the evaluated benchmarks, and the fraction of fetched/executed instructions that are on the wrong path. Table 1 have

already shown information about the memory behavior of the evaluated benchmarks. All results presented in this paper

are normalized to the baseline unless otherwise specified.
Benchmark gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

Performance (IPC) 2.38 1.98 1.59 0.59 2.83 1.97 3.23 2.59 2.76 3.21 1.75 2.34
Branch prediction accuracy (%) 94.17 92.22 94.95 96.89 96.12 95.65 98.87 99.96 98.94 99.52 92.08 94.91

fraction of wrong path among all fetched inst. (%) 41.87 60.24 44.96 35.22 37.06 48.94 16.27 0.37 19.32 9.41 49.62 48.72
fraction of wrong path among all executed inst. (%) 14.21 26.17 14.73 10.06 10.48 17.39 4.79 0.09 4.75 2.23 17.23 14.16

Table 4. Characteristics of baseline processor for SPEC200 0 integer benchmarks

5.. Results

5.1. Evaluation of the Branch-count Based Fetch Gating Mechanism

Figure 7 shows the change in performance and energy consumption with ideal (ideal), Manne’s (fg-manne), and our

branch-count based fetch gating mechanisms (fg-br). We used 14 as the miss distance counter (MDC) threshold for

a 4K-entry, 4bit-MDC JRS confidence estimator [11] and 3 as the gating threshold for Manne’s fetch gating (These

thresholds were optimized to favor Manne’s scheme). The thresholds used for branch-count based fetch gating as a

function of the branch prediction accuracy are shown in Table 5. Branch prediction accuracy is measured and evaluated

every 100K cycles.

As shown in Figure 7, the average performance and energy savings our branch-count based fetch gating scheme

provides are better than Manne’s fetch gating even though our scheme requires significantly less hardware cost (i.e.

no need for a confidence estimator). This is because the accuracy and the coverage of our branch-count based fetch

gating mechanism are higher (15.5% and 29.3% respectively)than those of Manne’s fetch gating (13.2% and 19.9%

respectively).12 Our mechanism achieves better energy savings forvpr, gcc, mcf, crafty, parserandtwolf. Overall, the

energy savings of the branch-count based scheme is higher than Manne’s (by 0.6%) while its performance loss is lower

(by 0.2%). Hence, the branch-count based fetch gating scheme more efficiently eliminates wrong-path instructions than

Manne’s scheme by eliminating the hardware cost and design complexity introduced by a confidence estimator.
Branch prediction accuracy 99%+ 97-99% 95-97% 93-95% 90-93% 90-85% 85% -

Threshold 18 16 13 12 11 7 3
Table 5. Branch-count based fetch gating configuration

Figure 7 also shows that we cannot expect fetch gating to savesignificant energy ineon, perlbmk, gap, andvortex.

Even the ideal fetch gating scheme reduces energy consumption by only 6.8%, 0.3%, 7.1%, and 3.9% respectively in

these benchmarks. Because the branch prediction accuracy is very high (98.9%, 99.9%, 98.9% and 99.5% respectively as

12Accuracy of fetch gating is calculated by dividing the number of fetch-gated cycles when the processor is actually on thewrong path by the
total number of fetch-gated cycles. Coverage of fetch gating is calculated by dividing the number of fetch-gated cycleswhen the processor is
actually on the wrong path by the total number of cycles when the processor is on the wrong path.

13

-30

-25

-20

-15

-10

-5

0

5

10

15

IP
C

 D
el

ta
(%

)

ideal
fg-manne
fg-br

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

hm
ea

n -40
-35
-30
-25
-20
-15
-10
-5
0
5

10
15
20

E
ne

rg
y

de
lta

 (
%

)

ideal
fg-manne
fg-br

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

am
ea

n

Figure 7. Performance and energy consumption of branch-cou nt based fetch gating and Manne’s fetch gating

shown in Table 4), these benchmarks do not fetch or execute asmany wrong-path instructions as the other benchmarks

do, as shown in Table 4. Therefore, realistic fetch gating mechanisms achieve almost no energy savings for these

benchmarks.

Note that both our and Manne’s fetch gating mechanisms result in significant performance loss inmcf ((∼9%) and

parser((∼5%) because neither of the schemes takes into account the usefulness of wrong-path references. This short-

coming also results in increased energy consumption inmcf with both schemes due to the increased execution time.

Next, we present results when our wrong-path usefulness prediction techniques are used in conjunction with the fetch

gating schemes to make speculation control performance-aware.

5.2. Evaluation of Wrong Path Usefulness Prediction Mechanisms

As we showed in Section 5.1, both idealized and realistic fetch gating mechanisms hurt performance significantly

for mcf andparser. We apply our WPUP techniques to the branch-count based fetch gating mechanism to recover the

performance loss.

5.2.1. Branch PC-Based Wrong Path Usefulness PredictionFigure 8 shows the change in performance and energy

consumption when branch PC-based WPUP is used in conjunction with branch-count based fetch gating. We vary the

size of the WPUP cache from 8 to 128 entries and fix its associativity to 4. As the number of WPUP cache entries

increases up to 32,mcf’s performance improves compared to the fetch gating mechanism without a WPUP.13 With a

32-entry WPUP cache, a wrong-path usefulness predictor improves performance by 8.0% onmcf while also reducing

energy consumption by 3.4%. Hence, utilizing WPUP eliminates almost all the performance loss incurred inmcf due to

fetch gating.

Note that for benchmarks other thanmcf, PC-based WPUP does not significantly affect performance orenergy con-

sumption. This is because wrong-path execution in these benchmarks (other thanparser) does not provide significant

prefetching benefits. Inparser, we found that PC-based WPUP does not work well because the usefulness of wrong-path

memory references is not a function of which branches are mispredicted but rather a function of program phase behavior.

5.2.2. Phase-based Wrong Path Usefulness PredictionFigure 9 shows the change in performance and energy

consumption when phase-based WPUP is used in conjunction with branch-count based fetch gating. We vary the

13For the baseline configuration, a 32-entry WPUP cache is optimal for performance and energy savings. A larger WPUP cache leads to storing
some stale branches that do not lead to useful wrong-path references any more, which results in incorrect prediction of some useless wrong-path
episodes as useful. One other way of overcoming this “information staleness” problem is to flush the WPUP cache periodically.

14

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1

IP
C

 d
el

ta
 (

%
)

fg-br
8-entry wpup
16-entry wpup
32-entry wpup
64-entry wpup
128-entry wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

hm
ea

n -12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3

E
ne

rg
y

de
lta

 (
%

)

fg-br
8-entry wpup
16-entry wpup
32-entry wpup
64-entry wpup
128-entry wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

am
ea

n

Figure 8. Performance and energy consumption with branch PC -based WPUP

phase wpup threshold from 5 to 20. For comparison, we also show the performance andenergy consumption of

the best-performing PC-based WPUP with a 32-entry WPUP cache.

Phase-based WPUP improves the performance ofmcf andparsersignificantly compared to fetch gating without a

WPUP. With aphase wpup threshold of 5, performance improves by 8.8% formcf and by 3.1% forparser. Phase-

based WPUP eliminates almost all of the negative performance impact of fetch gating inmcf. On average, the best phase-

based WPUP reduces the performance degradation of fetch gating from -3.7% to -0.9%. Formcf, energy consumption

also reduces by 2.3% compared to branch-count based fetch gating without a WPUP.

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1

IP
C

 d
el

ta
 (

%
)

fg-br
phase5-wpup
phase10-wpup
phase15-wpup
phase20-wpup
fg-br-pc-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

hm
ea

n -12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3

E
ne

rg
y

de
lta

 (
%

)

fg-br
phase5-wpup
phase10-wpup
phase15-wpup
phase20-wpup
fg-br-pc-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

am
ea

n

Figure 9. Performance and energy consumption with phase-ba sed WPUP

Results with variousphase wpup thresholds show the trade-off between performance and energy consumption for

parser. As the threshold increases, performance decreases and energy savings increases because a larger threshold

reduces the likelihood that a wrong-path episode is predicted to be useful. Inparser, the energy reduction obtained due

to the execution time improvement caused by useful wrong-path references does not outweigh the energy increase due

to the execution of more wrong-path instructions. Hence, as fewer and fewer wrong-path episodes are predicted to be

useful (i.e. as the threshold increases), energy consumption reduces because the fetch engine is gated to prevent the

execution of wrong-path instructions.

Why does Phase-based WPUP Perform Better than PC-Based WPUP? The average performance of phase-based

WPUP is higher than that of the PC-based WPUP, mainly becausewrong-path usefulness is better predictable using

program phase behavior rather than branch PCs in theparserandmcfbenchmarks. This is because phase-based WPUP

also takes into account the L2-miss behavior in a given interval whereas PC-based WPUP has no notion of either phases

or L2-miss behavior in phases. If no wrong-path L2 misses happen in an interval, wrong-path periods arenot predicted

as useful by the phase-based scheme whereas they may be predicted as useful by the PC-based scheme because the

PC-based scheme relies only on the past behavior of the wrong-path periods caused by a branch instruction.

15

Even though phase-based WPUP saves slightly less energy, itis simpler to implement than PC-based WPUP be-

cause it does not require a cache structure. Since phase-based WPUP provides higher performance while requiring less

complexity, we believe it provides a better implementationtrade-off than the PC-based WPUP.

5.2.3. Effect of Wrong Path Usefulness Prediction on Manne’s Fetch Gating TechniqueOur WPUP techniques can

be used in conjunction with not only our branch-count based fetch gating scheme but also other fetch gating mechanisms.

We evaluate the WPUP techniques with Manne’s fetch gating mechanism. Figure 10 shows the performance and energy

consumption of Manne’s fetch gating without a WPUP (fg-manne), with the PC-based WPUP (fg-manne-pc-wpup) and

with the phase-based WPUP (fg-manne-phase-wpup). We used a 32-entry, four-way set-associative cache structure for

the PC-based WPUP configuration and aphase wpup threshold of 20 for the phase-based configuration.

Phase-based WPUP improves both the performance and energy savings of Manne’s fetch gating mechanism. Inmcf

performance improves by 9.8% while energy consumption reduces by 2.8%. Inparser, performance improves by 1.5%

while energy consumption increases by 1.3%. With phase-based WPUP, the average performance loss of Manne’s fetch

gating scheme is reduced to only -1.2% from -3.9% while its energy savings are preserved. We conclude that employing

wrong-path usefulness prediction is also effective at improving the performance of Manne’s fetch gating.

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1

IP
C

 d
el

ta
 (

%
)

fg-manne
fg-manne-pc-wpup
fg-manne-phase-wpup
fg-br-pc-wpup
fg-br-phase-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

hm
ea

n -12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3

E
ne

rg
y

de
lta

 (
%

)

fg-manne
fg-manne-pc-wpup
fg-manne-phase-wpup
fg-br-pc-wpup
fg-br-phase-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

am
ea

n

Figure 10. Manne’s fetch gating scheme with WPUP

Figure 10 also shows that our branch-count based fetch gating mechanism with WPUP achieves better overall energy

efficiency than Manne’s fetch gating mechanism with WPUP. This is because branch-count based fetch gating achieves

better energy efficiency (without WPUP) as we discussed in Section 5.1. Compared to Manne’s fetch gating mechanism

without a WPUP, our proposed techniques (branch-count based fetch gating with PC-based WPUP) provide up to 8.1%

(2.5% on average) performance improvement along with up to 4.1% (1.0% on average) reduction in energy consumption.

5.3. Effect on Fetched and Executed Instructions

Figure 11 shows the reduction in fetched and executed instructions using our and Manne’s schemes. Branch-count

based fetch gating removes fetched and executed instructions by 11.0% and 1.4% on average respectively while Manne’s

fetch gating does so by 9.8% and 2.1% respectively. This explains why branch-count based fetch gating achieves better

energy-efficiency as shown in Section 5.1.14

When WPUP is used in conjunction with branch-count based fetch gating, fetched and executed instructions reduce

by 8.6% and 1.1% on average (up to 22.5% and 4.49%), respectively. Hence, using WPUP slightly increases the fetched
14Note that the reduction in executed instructions is much lower than that in fetched instructions in both fetch gating schemes. This is natural

because many wrong-path instructions are flushed before they are executed, as Table 4 also shows.

16

and executed instructions (especially inmcf andparser) because it disables fetch gating for useful wrong-path episodes.

Even so, the reduction in fetched instructions is significant, leading to the energy savings shown in previous sections.

-30

-25

-20

-15

-10

-5

0

F
et

ch
ed

 In
st

ru
ct

io
n

R
ed

uc
tio

n
(%

)

fg-manne
fg-manne-pc-wpup
fg-manne-phase-wpup
fg-br
fg-br-pc-wpup
fg-br-phase-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

am
ea

n -6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

E
xe

cu
te

d
In

st
ru

ct
io

n
R

ed
uc

tio
n

(%
)

fg-manne
fg-manne-pc-wpup
fg-manne-phase-wpup
fg-br
fg-br-pc-wpup
fg-br-phase-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

am
ea

n

Figure 11. Reduction of fetched (left) and executed (right) instructions

5.4. Effect on the Usefulness of Wrong-Path Episodes

We provide more insight into the performance improvement provided by wrong-path usefulness prediction by analyz-

ing wrong-path usefulness with and without our techniques.To quantify wrong-path usefulness, we define a new metric,

Useful wrong-path L2 cache Misses Per Wrong-path episode(UMPW) as follows:

UMPW =
Total Number of Useful Wrong Path L2 Cache Misses

Total Number of Wrong Path Episodes

UMPW quantitatively shows the efficiency of wrong-path episodes.15 If wrong-path prefetching is not salient in an

application, UMPW for that application will be close to zero. For an application that takes advantage of wrong-path

prefetching, a fetch gating mechanism that does not take into account the usefulness of wrong-path execution might

reduce the number of useful wrong-path L2 misses by executing fewer wrong-path instructions. Therefore, such a

scheme that is unaware of wrong-path usefulness would decrease UMPW and therefore performance. On the other hand,

a performance-aware speculation control scheme can increase UMPW (and hence performance) by allowing wrong path

execution to occur when it is predicted to be useful and useful L2 misses to be generated on the wrong path. The

larger the increase in UMPW a speculation control mechanismprovides, the higher the performance improvement it can

achieve.

Table 6 shows the UMPWs for the baseline and the baseline withour mechanisms (branch-count based fetch gating,

PC-based WPUP, and phase-based WPUP).16 As expected, the UMPWs of all the benchmarks except formcf andparser

are close to zero and show very little change with our mechanisms, since these benchmarks have very little wrong-path

prefetching effect. In contrast, the UMPW formcf drops from 1.124 to 0.991 when the branch-count based fetch gating

is applied to the baseline, resulting in a 9% performance loss (as shown in Figure 7). However, both PC-based WPUP and

phase-based WPUP recover the loss in UMPW to 1.114 and 1.123 respectively. The improvement in UMPW explains

15Note that this metric is not perfect because it does not take into account the criticality and latency of useful wrong-path L2 cache misses. We
only use it to provide insight with a single easy-to-understand metric. The actual performance improvement depends notonly on the change in
the number of useful wrong-path L2 misses, but also on their timing, criticality, and whether or not their latencies are hidden. However, defining a
metric -separate from absolute performance- that takes into account all these aspects is very difficult.

16Note that useful L2 instruction misses are omitted in the calculation of the UMPWs, since our mechanisms target only useful wrong-path L2
data references. In the examined benchmarks, L2 instruction misses are not a bottleneck since the instruction working set sizes of most of the
SPEC CPU2000 benchmarks fit in our baseline 64KB instructioncache.

17

why wrong-path usefulness prediction improves performance significantly formcf in Figures 8 and 9. A similar effect is

observed forparserwith phase-based WPUP, which improves the UMPW metric compared to branch-count based fetch

gating. We conclude that wrong-path usefulness predictionimproves performance by increasing UMPW.

Benchmark gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf
base 0.000 0.000 0.002 1.124 0.001 0.022 0.000 0.011 0.001 0.005 0.007 0.000
fg-br 0.000 0.000 0.001 0.991 0.001 0.020 0.000 0.010 0.001 0.004 0.007 0.000

fg-br-pc-wpup 0.000 0.000 0.001 1.114 0.001 0.020 0.000 0.010 0.001 0.005 0.007 0.000
fg-br-phase-wpup 0.000 0.000 0.001 1.123 0.001 0.022 0.000 0.010 0.001 0.004 0.007 0.000

Table 6. Useful wrong-path L2 caches misses per wrong-path e pisode (UMPW)

5.5. Effect on the Energy-Delay Product

Figure 12 shows the (Energy-Delay Product) EDP comparison of different WPUP prediction techniques when they

are employed with branch-count based and Manne’s fetch gating schemes. The highest savings in EDP is provided by

combining our branch-count based fetch gating with branch PC-based WPUP, which results in a 2.1% decrease in EDP

compared to the baseline. Note that schemes that do not take into account wrong-path usefulness (both Manne’s scheme

and branch-count based fetch gating scheme without WPUP) donot result in significant savings in EDP; in fact Manne’s

scheme without WPUP increases EDP by 0.6%. We conclude that our wrong-path usefulness prediction techniques are

very effective at not only improving performance but also finding the right balance between energy consumption and

performance.

-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

E
ne

rg
y-

de
la

y
pr

od
uc

t d
el

ta
 (

%
)

fg-br
fg-br-pc-wpup
fg-br-phase-wpup
fg-manne
fg-manne-pc-wpup
fg-manne-phase-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

am
ea

n

Figure 12. Energy-delay product of speculation control mec hanisms

5.6. Hardware Cost and Power/Energy Consumption of Our Speculation Control Techniques

Table 7 shows the hardware cost of the two proposed WPUP techniques. The WPUP mechanisms do not add signif-

icant combinational logic complexity to the processor. Combinational logic is required for the update of WP-bits in the

MSHRs and the update of WPUP cache and WPUC. None of the required logic is on the critical path of the processor.17

The storage overhead of PC-based WPUP is only 260 bytes, which is less than 0.16% of the baseline front-end size

(assuming a 64KB I-cache + 64KB branch predictor + 4K-entry BTB). The overhead of phase-based WPUP is almost

negligible: only 45 bytes.

Table 8 shows the hardware cost, power, and energy comparisons of Manne’s fetch gating scheme (fg-manne) and our

branch-count based fetch gating scheme with PC-based/phase-based WPUP (fg-br-pc-wpup/fg-br-phase-wpup). The

17We varied the latency of the WPUP training mechanism from 1 to500 cycles. The performance difference is negligible.

18

PC-based WPUP Phase-based WPUP

Fetch engine LBPC 16 bits -
Front-end inter-stage latches BPC 16 bits * 11 stages -

LSQ BPC 16 bits * 32 entries -
BPC 16 bits * 32 entries

MSHR BID 10 bits * 32 entries
BID 10 bits * 32 entries

WP 1 bit * 32 entries
WP 1 bit * 32 entries

Training storage WPUP cache(13bits (addr) + 1bit (V) + 2 bits (LRU)) * 32 entriesWPUC 5 bits
Total hardware cost 260 bytes 45 bytes

Table 7. Hardware cost of wrong-path usefulness predictors

total hardware cost of our two schemes is 266 bytes/51 bytes,which is much less than 2049 bytes, the cost offg-

manne.18 With a much smaller hardware cost, our schemes are able to predict the usefulness of wrong-path instructions

and provide better performance. Furthermore, the confidence estimator in Manne’s scheme is accessed much more

frequently than the WPUP in our scheme, requiring 0.15 accesses per every instruction because every branch should

access the confidence estimator. However, our WPUP is accessed 0.07 times per instruction because it needs to be

accessed only when the processor is predicted to be on the wrong path. Due to reduced hardware cost and reduced

access counts to hardware structures, the extra hardware needed by our techniques (fg-br-pc-wpup/fg-br-phase-wpup)

consumes only 27%/1.3%, 15%/0.8%, and 16%/0.9% of the maximum power, average power, and average energy of

those of Manne’s scheme. We conclude that our speculation control technique provides improved performance and

energy-efficiency at very low hardware and energy cost.
Hardware cost Dynamic access

Fetch-gating WPUP Total frequency
Max. power Avg. power Avg. energy

fg-manne br.count (8bits) + confidence (2048B) - 2049B 0.15/inst 94.54mW 30.16mW 1.40mJ
fg-br-pc-wpup br.count (8bits) + bpred.accuracy (36 bits)260B 266B 0.07/inst 25.13mW 4.55mW 0.22mJ

fg-br-phase-wpup br.count (8bits) + bpred.accuracy (36 bits)45B 51B 0.07/inst 1.20mW 0.24mW 0.01mJ

Table 8. Hardware cost, power and energy consumption compar ison of Manne’s and our speculation control schemes

5.7. Effect on a More Aggressive Processor

Table 9 shows gating thresholds for branch-count based fetch gating for the more aggressive processor and Figure 13

shows the performance and energy impact of our schemes and Manne’s scheme on the more aggressive processor con-

figuration. As the performance impact of wrong-path memory references becomes more salient on a processor with a

large instruction window [18], fetch gating without WPUP results in even more significant performance degradation. For

example, Manne’s fetch gating results in an average performance loss of 5.1% in the more aggressive processor. Com-

pared to Manne’s scheme, our speculation control mechanismwith branch-count based fetch gating and phase-based

WPUP improves performance by up to 15.4% (4.7% on average) while increasing energy consumption by only 1.2%

on average. The EDP reduction of our speculation control mechanism is 4.1% while that of Manne’s fetch gating is

2.8%. Note that this is a good performance/energy trade-off[10]. Hence, our speculation control scheme becomes more

18Hardware cost of branch-count based fetch gating: Branch counters (br.count) are used for counting the number of outstanding branches
in our fetch gating scheme, and the number of outstanding low-confidence branches in Manne’s scheme. They are 8-bit counters because the
maximum number of instructions in the processor is not more than2

8. Branch-count based fetch gating also requires two 18-bit counters (that
store the number of correctly predicted branches and the number of total branches in an interval) in order to measure branch prediction accuracy.
Because we use 100K-cycle intervals and the baseline processor can fetch up to two branches per cycle, 18 bit counters aresufficient.

19

effective in controlling the performance loss due to fetch gating as processors become more aggressive.
Branch prediction accuracy(%)99+ 97-99 95-97 93-95 90-93 90-85 85 -

Threshold 60 50 40 30 20 15 13
Table 9. Branch-count based fetch gating thresholds for a mo re aggressive processor

-16
-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1

IP
C

 d
el

ta
 (

%
)

fg-manne
fg-manne-pc-wpup
fg-manne-phase-wpup
fg-br
fg-br-pc-wpup
fg-br-phase-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

hm
ea

n -13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3

E
ne

rg
y

de
lta

 (
%

)

fg-manne
fg-manne-pc-wpup
fg-manne-phase-wpup
fg-br
fg-br-pc-wpup
fg-br-phase-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

am
ea

n

Figure 13. Change in performance and energy with our specula tion control techniques on a more aggressive processor

5.8. Effect on Runahead Execution

Figure 14 shows the performance and energy impact of our schemes and Manne’s scheme on a runahead execution

processor [9, 20]. The performance and energy results are normalized to when runahead execution is employed on

the more aggressive processor without any fetch gating. Note that, on a processor employing runahead execution, the

performance degradation with both our and Manne’s scheme for mcf is much less than that on a processor without

runahead, since the prefetching effect of runahead execution reduces the positive performance impact of the prefetching

effect of wrong-path execution. Nevertheless, our speculative control mechanism improves performance by up to 2.6%

compared to Manne’s scheme. Hence, we conclude that our techniques are effective on runahead execution processors

as well.

-5

-4

-3

-2

-1

0

1

2

IP
C

 d
el

ta
 (

%
)

fg-manne
fg-manne-pc-wpup
fg-manne-phase-wpup
fg-br
fg-br-pc-wpup
fg-br-phase-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

hm
ea

n -13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3

E
ne

rg
y

de
lta

 (
%

)

fg-manne
fg-manne-pc-wpup
fg-manne-phase-wpup
fg-br
fg-br-pc-wpup
fg-br-phase-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

am
ea

n

Figure 14. Change in performance and energy with our specula tion control techniques on a runahead execution processor

5.9. Comparison with the Just In Time Instruction Delivery Mechanism

We compare our speculation control mechanisms with the JustIn Time (JIT) instruction delivery mechanism [13].

We chose the best-performing JIT configuration in terms of energy-delay product among the 27 configurations we ex-

amined. We set JIT specific parameters, minimum allowed instruction count in the pipeline, maximum instruction count

increment unit, and noise margin to 128, 16 and 5% respectively.

As shown in Figure 15, JIT saves energy by only 1.6% and degrades performance by only 0.8% on average, leading

to an EDP improvement of 0.7%. Note that since JIT adjusts fetch gating decisions based on the monitored IPC changes,

20

it is able to impact performance less than branch-count based fetch gating. On the other hand, branch PC-based and

phase-based WPUP with branch-count based fetch gating saveenergy by 3.4% and 3.0% while degrading performance

by 1.4% and 1.2% respectively, resulting in EDP improvements of 2.1% and 1.7%. Note that both of our mechanisms

save more energy than JIT on most of the benchmarks. These results demonstrate that our mechanisms achieve better

energy efficiency (EDP) than JIT at the expense of slightly higher performance degradation.

-5

-4

-3

-2

-1

0

1

IP
C

 d
el

ta
 (

%
)

jit
fg-br-pc-wpup
fg-br-phase-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

hm
ea

n -12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3

E
ne

rg
y

de
lta

 (
%

)

jit
fg-br-pc-wpup
fg-br-phase-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

am
ea

n

Figure 15. Comparison with Just In Time Instruction Deliver y Mechanism

5.10. Effect of Branch Predictor Type

We evaluate our mechanisms with thegshare[17] andperceptron[12] branch predictors, which are of equal size with

our baseline hybrid predictor. Figure 16 shows the results.Branch-count based fetch gating reduces energy consumption

by 3.0% and 3.3% while degrading performance by 3.5% and 3.8%respectively for the gshare and perceptron predic-

tors. As with the baseline hybrid predictor, fetch gating still significantly degrades performance and increases energy

consumption ofmcf with different predictors. WPUP mechanisms successfully recover the performance degradation of

mcf for the both branch predictors, while also saving energy. Weconclude that our techniques are effective regardless of

the branch predictor type.

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1

IP
C

 d
el

ta
 (

%
)

gshare-fg-br
gshare-fg-br-pc-wpup
gshare-fg-br-phase-wpup
percep-fg-br
percep-fg-br-pc-wpup
percep-fg-br-phase-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

hm
ea

n -12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3

E
ne

rg
y

de
lta

 (
%

)

gshare-fg-br
gshare-fg-br-pc-wpup
gshare-fg-br-phase-wpup
percep-fg-br
percep-fg-br-pc-wpup
percep-fg-br-phase-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

am
ea

n

Figure 16. Effect of various branch predictors

5.11. Effect of Memory Latency

We evaluate the effect of our schemes on machines with different memory latencies by setting the minimum memory

latency to 200, 500, 700.

With increased memory latency inmcf, the energy consumption increase due to branch-count basedfetch gating

worsens becausemcf spends more of its execution time on the wrong path waiting for memory without getting the

prefetching benefits of wrong path execution. However, as Figure 17 shows, our WPUP mechanisms recover most of

the performance loss by enabling wrong-path prefetching. Thus, our techniques work well with a variety of memory

21

latencies.

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2

IP
C

 d
el

ta
 (

%
)

200-fg-br
200-fg-br-pc-wpup
200-fg-br-phase-wpup
500-fg-br
500-fg-br-pc-wpup
500-fg-br-phase-wpup
700-fg-br
700-fg-br-pc-wpup
700-fg-br-phase-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

hm
ea

n -12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5

E
ne

rg
y

de
lta

 (
%

)

200-fg-br
200-fg-br-pc-wpup
200-fg-br-phase-wpup
500-fg-br
500-fg-br-pc-wpup
500-fg-br-phase-wpup
700-fg-br
700-fg-br-pc-wpup
700-fg-br-phase-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

am
ea

n

Figure 17. Effect of various memory latency

5.12. Effect of L2 Cache Size on Our Techniques

Figure 18 shows the effect on our mechanisms as the L2 cache size increases from 1MB to 4MB. Note that 2MB and

4MB cache sizes are very large compared to the working set of the workloads we examine. Indeed, as the L2 cache size

increases the positive performance impact of wrong-path prefetching is reduced. However, fetch gating still degrades

performance formcf by 3.4% and 3.3% and our WPUP mechanisms recover the peformance degradation by 2.1% and

2.0% respectively for processors with 2MB and 4MB L2 caches.Thus a large L2 cache reduces the effectiveness of our

techniques, but our techniques still improve the performance of fetch gating.

We believe that our WPUP mechanisms can still be effective ina CMP system with a larger on-chip last level cache

because: (1) Last level on-chip caches are generally sharedby multiple cores in a CMP, therefore last level on-chip

cache size per core might not increase. (2) Even if an application has no wrong-path prefetching benefits since a large

last level cache eliminates cache misses, due to the dynamicadaptivity of the WPUP mechanisms, fetch gating can still

save energy without degrading performance. (3) Our WPUP mechanisms neither require significant additional hardware

and power/energy nor affect fetch gating’s energy efficiency when there are no wrong-path prefetching benefits.

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1

IP
C

 d
el

ta
 (

%
) fg-br

fg-br-pc-wpup
fg-br-phase-wpup
2M-fg-br
2M-fg-br-pc-wpup
2M-fg-br-phase-wpup
4M-fg-br
4M-fg-br-pc-wpup
4M-fg-br-phase-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

hm
ea

n -12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3

E
ne

rg
y

de
lta

 (
%

)

fg-br
fg-br-pc-wpup
fg-br-phase-wpup
2M-fg-br
2M-fg-br-pc-wpup
2M-fg-br-phase-wpup
4M-fg-br
4M-fg-br-pc-wpup
4M-fg-br-phase-wpup

gz
ip

vp
r

gc
c

m
cf

cr
af

ty

pa
rs

er

eo
n

pe
rlb

m
k

ga
p

vo
rte

x

bz
ip2

tw
olf

am
ea

n

Figure 18. Effect of various L2 cache sizes

6.. Related Work

6.1. Related Work on Fetch Gating and Dynamic Reconfiguration Mechanisms

Fetch (pipeline) gating was first proposed by Manne et al. [16]. Their fetch gating mechanism counts the number of

low confidence branches in the pipeline using a confidence estimator. If the number is more than a certain threshold, the

fetch engine is gated to save power/energy. Our study shows that counting the number of in-flight branches and adjusting

the threshold based on branch prediction accuracy are enough to save energy without losing significant performance and

22

without requiring a separate confidence estimation structure. Furthermore, Manne et al.’s scheme does not take into

account the prefetching effect of wrong-path instructions.

Many other fetch gating and dynamic reconfiguration schemeshave also been proposed to reduce energy consump-

tion [4, 6, 7, 13, 2, 8]. Baniasadi et al. [4] and Buyuktosunoglu et al. [6, 7] try to balance the front-end instruction

supply rate and back-end execution rate. Baniasadi et al. point out that if there is enough instruction parallelism in the

pipeline, having more instructions in the pipeline does notnecessarily improve performance. They measure parallelism

using decode/commit rate difference and data dependence count among the instructions being decoded. Adaptive issue

queue (AIQ) [6] resizes the instruction scheduler based on its utilization to reduce power/energy consumption without

significantly hurting performance. Buyuktosunoglu [7] proposes a scheme that performs fetch gating based on the uti-

lization of the instruction scheduler and parallelism of the running application. If parallelism is low and the utilization of

the instruction scheduler is high, the mechanism gates the fetch engine. Aragon et al. [2] extend the idea of fetch gating

to multiple branch prediction confidence levels. If a branchis very low-confidence, the most aggressive fetch gating

scheme is used. If a branch is relatively less low-confidence, the fetch engine is not fully gated but it is throttled so that

it fetches fewer instructions than its maximum bandwidth allows.

Just in time (JIT) instruction delivery [13] dynamically adjusts the total number of instructions (not only branch

instructions) in flight by monitoring IPC performance during certain intervals. BranchTap [1] also dynamically adjusts

the number of instructions in the pipeline to reduce branch misprediction recovery cost in the presence of few global

checkpoints. BranchTap keeps track of the number of low-confidence branches without an associated global checkpoint

and gates the fetch engine if this number is greater than a certain threshold. The threshold is dynamically adjusted based

on IPC during certain time intervals, just like in JIT. Both JIT and BranchTap require a tuning period to search for the

optimal number of instructions in the pipeline to achieve the best performance. If the performance of an application is

not stable for a long time, these mechanisms might not be ableto stabilize, which could result in performance loss. Our

WPUP mechanisms are partially orthogonal to and can be combined with BranchTap and JIT. For example, a combined

mechanism could gate the fetch engine when the number of low-confidence branches without an checkpoint exceeds a

dynamically-determined threshold (as in BranchTap) only if our WPUP mechanism predicts that wrong-path execution

would not be useful.

Collins et al. [8] gate the fetch engine using their dynamic control-flow reconvergence prediction mechanism, utilizing

the observation that a misprediction in their reconvergence mechanism very likely results from the fact that the processor

is on the wrong path. Finally, Armstrong et al. [3] find that unusual or illegal pipeline events are strongly correlated with

branch mispredictions and propose gating the fetch engine when the processor detects such events.

None of these previous works explicitly considers the performance impact of wrong-path memory references. Es-

pecially the positive performance effects of wrong-path execution are ignored in previous works, implicitly assuming

that all wrong-path episodes are useless for performance. Our work improves the state-of-the-art by incorporating the

usefulness of wrong-path execution into fetch gating decisions. Moreover, many of these previously proposed schemes

require either large additional hardware structures (i.e.confidence estimators [16, 2] or wrong-path predictors [8])that

23

increase the complexity of the pipeline or significant changes to time-critical and power-hungry portions of the pipeline

such as the instruction scheduler [4, 6]. We propose branch-count based fetch gating that eliminates the additional large

hardware structures without requiring significant changesto time-critical and power-hungry portions of the pipeline.

Note that our WPUP mechanism can be incorporated into any of the previously proposed fetch gating mechanisms to

make the mechanism performance-aware by taking into account the prefetching effect of wrong-path memory references.

In this paper, we show the effectiveness of WPUP with both ournovel branch-count based fetch gating scheme and

Manne’s confidence estimation based fetch gating scheme.

6.2. Related Work on the Usefulness of Wrong-path Memory References

Pierce et al. [21] study the effect of wrong-path memory references on cache performance using traces generated by

an instrumentation tool. They show that the prefetching effect of wrong-path memory references is more dominant than

their pollution effect for most of the SPEC92 C benchmarks. They also show that wrong-path instructions can prefetch

useful instruction and data cache lines over 50% of the time.

Mutlu et al. [18] examine the effect of wrong-path memory references on the actual performance of a high performance

out-of-order processor using an execution-driven simulator. They show that not modeling wrong-path execution can lead

to errors of up to 10 percent in performance. They find that wrong-path memory references are usually beneficial for

performance in most SPEC2000 benchmarks but detrimental toperformance in a few others. They also point out that

the performance impact of wrong-path memory references gets larger memory latencies and instruction window sizes

increase.

Building on this previous work on identifying the positive performance impact of wrong-path references, we show

that speculation control schemes (i.e. fetch gating mechanisms) that do not take the wrong-path prefetching effect

into account can hurt performance significantly. Unlike previous work that only evaluated the performance impact of

wrong-path memory references, we propose an implementablemechanism that leverages and predicts the usefulness of

wrong-path references in order to increase the performanceand energy-efficiency of fetch gating.

7.. Conclusion

This paper introduces the concept and low-cost implementations of wrong path usefulness prediction (WPUP) and

its application to fetch gating mechanisms to improve the performance and energy-efficiency of speculation control,

which has traditionally assumed that wrong-path executionis alwaysuseless for performance. We challenge this as-

sumption and show that predicting the usefulness of wrong-path periods and not disabling wrong-path execution when

it is estimated to be useful actually results in better performance and better energy-efficiency.

We propose simple PC-based and phase-based WPUP techniquesthat are applicable to previously proposed fetch

gating schemes. In addition, we propose a branch-count based fetch gating scheme that eliminates the need for a

confidence estimator to guess that the processor is likely tobe on the wrong path. As such, we provide a very low-cost,

comprehensive speculation control mechanism that is awareof the benefits of wrong-path execution. Our comprehensive

mechanism significantly reduces the performance degradation of fetch gating while at the same time reducing energy

24

consumption.

We believe the importance of our mechanism will increase because more processors, which will continue to be energy-

constrained in the foreseeable future, are likely to employfetch gating mechanisms to improve energy efficiency. Our

comprehensive proposal provides a very low-cost, performance-aware fetch gating technique that can be easily incorpo-

rated into such processors, improving both performance andenergy efficiency.

References
[1] P. Akl and A. Moshovos. Branchtap: Improving performance with very few checkpoints through adaptive speculation control. In ICS-21,

2006.
[2] J. L. Aragón, J. González, and A. González. Power-aware control speculation through selective throttling. InHPCA-9, 2003.
[3] D. N. Armstrong, H. Kim, O. Mutlu, and Y. N. Patt. Wrong path events: Exploiting unusual and illegal program behavior for early mispre-

diction detection and recovery. InMICRO-37, 2004.
[4] A. Baniasadi and A. Moshovos. Instruction flow-based front-end throttling for power-aware high-performance processors. InISLPED, 2001.
[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-level power analysis and optimizations. InISCA-27, 2000.
[6] A. Buyuktosunoglu, D. H. Albonesi, S. Schuster, D. Brooks, P. Bose, and P. Cook. A circuit level implementation of an adaptive issue queue

for power-aware microprocessor. InProceedings of 11th Great Lakes Symposium on VLSI, 2001.
[7] A. Buyuktosunoglu, T. Karkhanis, D. H. Albonesi, and P. Bose. Energy efficient co-adaptive instruction fetch and issue. InISCA-30, 2003.
[8] J. D. Collins, D. M. Tullsen, and H. Wang. Control flow optimization via dynamic reconvergence prediction. InMICRO-37, 2004.
[9] J. Dundas and T. Mudge. Improving data cache performanceby pre-executing instructions under a cache miss. InICS-11, 1997.

[10] S. Gochman, R. Ronen, I. Anati, A. Berkovits, T. Kurts, A. Naveh, A. Saeed, Z. Sperber, and R. C. Valentine. The Intel Pentium M processor:
Microarchitecture and performance.Intel Technology Journal, 7(2):21–36, May 2003.

[11] E. Jacobsen, E. Rotenberg, and J. E. Smith. Assigning confidence to conditional branch predictions. InMICRO-29, 1996.
[12] D. A. Jiménez and C. Lin. Dynamic branch prediction with perceptrons. InHPCA-7, pages 197–206, 2001.
[13] T. Karkhanis, J. E. Smith, and P. Bose. Saving energy with just in time instruction delivery. InISLPED, 2002.
[14] A. KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEC benchmark workload for simulation-based computer architecture research.

Computer Architecture Letters, 1, June 2002.
[15] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. InISCA-8, 1981.
[16] S. Manne, A. Klauser, and D. Grunwald. Pipeline gating:Speculation control for energy reduction. InISCA-25, pages 132–141, 1998.
[17] S. McFarling. Combining branch predictors. TechnicalReport TN-36, Digital Western Research Laboratory, June 1993.
[18] O. Mutlu, H. Kim, D. N. Armstrong, and Y. N. Patt. An analysis of the performance impact of wrong-path memory references on out-of-order

and runahead execution processors.IEEE Transactions on Computers, 54(12):1556–1571, Dec. 2005.
[19] O. Mutlu, H. Kim, D. N. Armstrong, and Y. N. Patt. Using the first-level caches as filters to reduce the pollution causedby speculative

memory references.International Journal of Parallel Programming, 33(5):529–559, October 2005.
[20] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution: An alternative to very large instruction windows for out-of-order

processors. InHPCA-9, 2003.
[21] J. Pierce and T. Mudge. The effect of speculative execution on cache performance. InIPPS-8, 1994.
[22] J. Pierce and T. Mudge. Wrong-path instruction prefetching. InMICRO-29, 1996.
[23] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing large scale program behavior. In ASPLOS-X, 2002.
[24] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed prefetching: Improving the performance and bandwidth-efficiency of

hardware prefetchers. InHPCA-13, 2007.
[25] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy.POWER4 system microarchitecture.IBM Technical White Paper, Oct. 2001.
[26] T.-Y. Yeh and Y. N. Patt. Alternative implementations of two-level adaptive branch prediction. InISCA-19, 1992.

25

