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Abstract

Fetch gating mechanisms have been proposed to gate thesgrmcgipeline to reduce the wasted energy consumption due to
wrong-path (i.e. mis-speculated) instructions. Theseses assume thatl wrong-path instructions are useless for processor
performance and try to eliminate the execution of all wrgragh instructions. However, wrong-path memory refererczes be
useful for performance by providing prefetching benefitsldter correct-path operations. Therefore, eliminatingong-path
instructions without considering the usefulness of wrpati execution can significantly reduce performance as aglhcrease
overall energy consumption.

This paper proposes a comprehensive, low-cost speculetiotiol mechanism that takes into account the usefulneasariy-
path execution, while effectively reducing the energy aomion due to useless wrong-path instructions. One coegoof the
mechanism is a simple, novel wrong-path usefulness pardi@é{PUP) that can accurately predict whether or not wroragtp
execution will be beneficial for performance. The other congmt is a novel branch-count based fetch gating schemeebaires
very little hardware cost to detect if the processor is onwreng path. The key idea of our speculation control mechmaris
to gate the processor pipeline only if (1) the number of @umding branches is above a dynamically-determined thieshnd
(2) the WPUP predicts that wrong-path execution will not lemédficial for performance. Our results show that our proposa
eliminates most of the performance loss incurred by fet¢inganechanisms that assume wrong-path execution is sséheseby
both improving performance (by up to 15.4%) and reducinggyneonsumption (by up to 4.5%) while requiring very littiel (byte)
hardware cost.

1. Introduction

Current high performance processors use speculative Baadhrough branch prediction to maximize the number
of useful instructions in the pipeline. If speculative exiééan turns out to be incorrect, the pipeline is flushed. Rads
wrong-path instructions unnecessarily consume powenggnaless they are useful for performance

In order to reduce the wasted power/energy due to wrong-pathuctions, several fetch gating mechanisms have
been proposed [16, 4, 13, 2, 7, 8]. These mechanisms decieldn@rtor not to gate (i.e. stall) the fetch engine of the
processor based on branch prediction confidence [11], pe&ioce monitoring, or instruction utilization rates. They
explicitly or implicitly assume that wrong-path instruatis are NOT useful for performance and hence eliminatinig the
fetch/execution will always save energy. HowevdQT all wrong path instructions are useless. Previous research
has shown that some wrong-path instructions can be venfibedor performance because they might prefetch into
caches data and instructions that are later needed by t@a#tinstructions [21, 18]. Thus, the execution of wrgragh
instructions can not only improve performance but also keaenergy savings through reduced execution tinWwith
increasing memory latencies and instruction window sites positive performance impact of wrong-path instrucdion
becomes more salient [18]. Therefore, effective fetchngathechanisms need to take into account the usefulness of

wrong-path instructions.

!In contrast, gating the fetch engine when wrong-path intins are useful would have the opposite effect: it wouttlice performance and
could increase energy consumption.
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Figure 1. Change in retired instruction per cycle (IPC) perf  ormance and energy consumption with ideal fetch gating

Figure 1 shows the performance and energy consumption aflaal” fetch gating scheme that immediately gates the
fetch engine when a mispredicted branch is fetched, usiag®information. This scheme is impossible to implement,
but shows the potential of previously proposed fetch gatittiemes. Ideal fetch gating improves performance of most
benchmarks (by 2.3% on average excludingf andparsei.? Furthermore, ideal fetch gating results in significant
energy savings for most benchmarks (18.0% on average emrglnacf). However, two benchmarks show opposite,
undesirable behavior even with ideal fetch gating. Fmf ideal fetch gating both reduces performance (by 29.5%)
and increases energy consumption (by 15.0%). dgeoser, ideal fetch gating also reduces performance (by 5.3%) but
saves energy (by 27.9%). As shown in [18], these two bendksriake advantage of wrong-path memory references. In
mcf, since many (36.9% of) wrong-path instances (or episodesgfech a large number of useful wrong-path L2 cache
misses for later correct-path instructions (99.8% of L2sassgenerated on the wrong path are useful), eliminating all
wrong-path operations reduces both performance and emrdfigiency. On the other hand, few (2.0% of) wrong-path
episodes have significant prefetching benefits (37.3% of is3@s generated on the wrong path are usefubairser
while many others do not. Therefore, ideal fetch gating cediyperformance iparserbut it still improves overall energy
efficiency.

Because the performance benefit of wrong-path memory mefeeeis significant for some applications, a speculation
control (e.g. fetch gating) scheme that does not take intowad the prefetching benefits of wrong-path instructions
can hurt overall performance and result in increased enssggumption. As such, the net effect of speculation control
can be exactly opposite of what it is designed to achieve @duced energy consumption). In order to overcome this
problem, the goal of this paper is to propesav speculation control techniques that predict the usefs of wrong-path
episodeon top of a fetch gating mechanism that is implemented with hardware cost. If a wrong-path episode is

predicted to be useful for performance, the proposed mésimatoes not gate the fetch engine.

Previously proposed fetch gating mechanisms [16, 2, 7, 8¢ lmme other important limitation. They require a
significant amount of additional hardware to decide whetinerot to gate the fetch engine. For example [16, 2] require
a branch confidence estimator, [7] requires significant gharto critical and power-hungry pipeline structures such

as the instruction scheduler, and [8] requires a large (4WB)ng-path predictor. The additional hardware not only

2performance improvement of ideal fetch gating is mainly ttuthe elimination of the cache pollution caused by wrontipaemory refer-
ences [18].



increases the complexity of the processor but also consbotbslynamic and static energy, which can offset the energy
savings from fetch gating. Therefore, simple and more ptewergy-efficient speculation control mechanisms are very
desirable. To this end, we propose a fetch gating technitatedbes not require large hardware structures or significan
modifications to critical portions of the pipeline. The kegight of our technique is that the probability of havingestdt
one mispredicted branch instruction in the pipeline insesaas the number of outstanding branch instructions isesea
As such, branch-count based fetch gating gates the pipélime number of branch instructions in the pipeline exceeds
a threshold value, which is determined based on the curranich misprediction rate. We show that simply adjusting
thenumber of outstanding conditional brancHessed on branch prediction accuracy is effective at redutie number

of wrong-path instructions, without requiring costly cat#nce estimation or wrong-path prediction hardware.

Contributions: We make four major contributions in this paper:

1. We show that ignoring the performance benefits of wrontp-pgecution and thus using speculation control assum-
ing wrong-path execution is always useless can signifigaletjrade performance and increase energy consumption.
We describe via code examples why it makes sense to take dntiuat the performance benefits of wrong-path

execution.
2. We introduce the concept wofrong path usefulness prediction (WPUdd propose two low-cost WPUP mecha-

nisms that can be used with any previously proposed spé&muladntrol scheme. To our knowledge, no previously
proposed speculation control scheme explicitly takes @attwount the usefulness of wrong-path instructions. We
show that our new WPUP mechanisms eliminate almost all ofpréormance loss due to fetch gating, while

requiring very little (only 45-byte) hardware cost.
3. We propose a new fetch gating mechanismanch-count based fetch gatinthat achieves the performance and

energy benefits of previously proposed fetch gating schewlgite requiring much smaller hardware (only 44-bit)
cost. The key idea of branch-count based fetch gating ist®tha pipeline if the number of branch instructions
in the pipeline exceeds a threshold value, which is detethivased on the current branch misprediction rate. As
such, branch-count based fetch gating does not requirefaleane estimator, a wrong-path predictor, or significant

changes to pipeline structures.
4. We combine WPUP and branch-count based fetch gating tadera comprehensive speculation control scheme

that is aware of the benefits of wrong-path instructions. Wansthat our combined proposal provides the best

performance and energy efficiency, while requiring vemydi{51-byte) hardware cost.

Our evaluations show that our comprehensive speculatiotraoproposal that requires only 51 bytes of storage
significantly reduces the performance loss incurred byhfgiating mechanisms that assume wrong-path execution is
useless. On a relatively conservative processor with astdde pipeline, our proposal improves performance by up to
8.1%, and reduces energy consumption by up to 4.1% compauegreviously proposed fetch gating scheme [16]. On
a more aggressive baseline processor with a 30-stagermpelir proposal improves performance by up to 15.4% and

4.7% on average. As such, our proposal shows the value ofgakio account the benefits of wrong-path execution, a
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concept largely ignored by previous research in speculatmtrol.

2. Motivation: Benefits of Wrong-Path Execution

Wrong-path instructions affect execution of the corre¢hpay changing the state of the processor's memory subsys-
tem. Wrong-path memory references generated by the wrattgipstructions or the prefetcher can be beneficial for
performance if they fetch cache lines that will later be reekldy instructions on the correct program path. On the other
hand, wrong-path memory references can be detrimentakforpgnce if they fetch cache lines that will not be needed
by instructions on the correct program path, if they fetcbhealines that evict the cache lines that will be needed by
correct-path instructions, or if they tie up bandwidth aeslaurces in the processor or the memory system that aredheede
to service the correct-path references. Previous res¢ag;H 9] has shown that both positive and negative effects of
wrong-path memory references are mainly due to the chamyefe{ching or pollution) they cause in the L2 cache (as
opposed to the changes they cause in L1 instruction/dateesaand other memory system resources). Therefore, we
focus our analyses on effects of wrong-path execution oh2heache.

We first provide a brief analysis of the usefulness of wroathpmemory references to motivate why speculation
control techniques should be aware of the usefulness ofgvpath execution. Table 1 shows the number of L2 cache
misses for each benchmark in the SPEC CPU 2000 integer sudt€igure 2 shows the distribution of total L2 cache
misses based on whether the miss is generated on the wrdmgnmhivhether or not the cache line allocated in the L2
cache is used by a correct-path memory instruction with tbegssor model described in Section Lorrect-path miss
indicates the number of L2 cache misses that are generatedrigct-path instructionsUnused, partially usedand
used wrong-path misadicate the number of L2 cache misses that are generateddrngvpath instructions but never
used, used when missing cache lines are still outstandittgeimiss status holding registers (MSHRS) (i.e. not in the
L2 cache yet), and used when the cache lines are in the L2 cadpctively. In other wordpartially usedandused

wrong-path misses together quantify the useful prefetgkifect of wrong-path memory references into the L2 cache.

Benchmark gzip vpr gce mcf crafty | parser | eon | perlbmk gap vortex bzip2 | twolf
L2 data misses 37407 | 2250 | 14374 | 4576397 | 20947 | 139112 | 694 43047 | 1076502 | 99205 | 245810 825
Total L2 misses 38427 | 4916 | 53824 | 4577214 | 25300 | 141214 | 4598 | 45720 | 1083592| 115601 | 246765 | 3841
L2 Misses per 1K Inst|| 0.301 | 0.130 | 1.026 | 36.611 | 0.306 | 1.478 | 0.063 | 0.913 4.459 0.857 1.164 | 0.048
Memory intensive? No No Yes Yes No Yes No Yes Yes Yes Yes No
Table 1. Number of L2 cache misses for SPEC2000 integer bench  marks (A benchmark is memory intensive if L2 MPK} 0.5)
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Figure 2. Normalized L2 cache miss breakdown

Clearly, a larger numbennusedwrong-path misses indicates a larger amount of disturb§pakution) caused by
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wrong-path memory references in the L2 cache. Hence, if aggsmr correctly gates wrong-path instructions, it can
potentially achieve performance improvement as well asguemergy savings if the fraction of unused cache lines is
large. This is the case for most benchmarks exoggtandparser. For example, fogcg the performance improvement

of fetch gating can be significant (11.9% in Figure 1) becamasy wrong-path L2 cache misses are never used (23.4%
out of all cache misses).

On the other hand, a larger numbenusked/partially-usedhisses indicates that wrong-path instructions are priefiegc
useful data into the L2 cache. Forcf most of the wrong-path misses are used (99.8% of all wrath-misses are
either used or partially-used). Due to the large number il o2 cache misses (almost all of which are useful), ideally
eliminating wrong-path instructions hurts performanangicantly in mcf as shown in Figure 1. Fqgrarser, wrong-
path misses are frequently used (37.3% of all missesuseg/partially-usedvrong-path misses). However, ideally
eliminating all wrong-path instructions induces less parfance degradation than seemef This is becausparser
has a higher portion ainusedwvrong-path misses (14.2% of all misses) and a smaller nuittetal L2 cache misses
thanmcf

Our Goal: Thus, wrong-path instructions are not always harmful tdgrarance as commonly (and perhaps implic-
itly) assumed by previous speculation control schemes.h@rcontrary, they can be quite beneficial for performance.
Therefore, it is important to distinguish when wrong-paferences are beneficial for performance in order to design a
more intelligent, performance-aware speculation comrethanism that does not gate the fetch engine when wroig-pat
memory references provide prefetching benefits. Note tleahardware cost for the mechanism must be small enough
to guarantee that the achieved energy savings is not offstitebenergy consumption of the additional hardware. Our
goal in this paper is to design such a low-cost speculatiotrobtechnique that is aware of the usefulness of wrong-pat
execution.

Motivation for Detecting Wrong-Path Usefulness in the MSHRs: We observe in Figure 2 thatartially used
wrong-path misseaccount for a significant portion of the total number of us@ftong-path missesuged+ partially
used wrong-path mi¥dor both mcf and parser (66.6% and 37.5% respectively), the only two memory-iniiensp-
plications where wrong-path misses significantly affee 2 cache. As such, MSHRs [15], bookkeeping registers
where outstanding misses are buffered until they are fdtyised by the memory system, can be a good candidate for
detecting the usefulness of wrong-path execution by detppartially-usedwrong-path misses. It is also more cost-
effective to track the usefulness of a wrong-path referamitkin MSHRs than within the L2 cache because MSHRs
have much fewer entries than the L2 cache. Therefore, thagvpath usefulness predictors (WPUP) we will propose
use the MSHRs to detect whether a wrong-path memory referisnaseful for later correct-path instructions and use

this information to train the WPUP structures dynamically.

2.1. Why Can Wrong-Path Execution Be Useful?

We briefly describe two code examples to provide insights iy wrong-path execution can provide prefetching

benefits for correct-path execution. We found that therewvaoemajor code constructs that lead to prefetching benefits
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Taken path —
Not taken path - - =

node_t *node;
Z initialize node

BB 1 while (node) {

[BBZ if (node—>orientation == UP) { // mispredicted brarﬂ

StoreC node—>potential= node—>basic_arc->codtoad A
+ node—>pred—>potentidlpad B ‘
BB3 }
else { /* == DOWN */
StoreC node—>potential= node—>pred—>potentidloadB| [ | || s
B - node—>basic_arc—>cdstad A

Load A

BB4 }
/I control-flow independent point (reconvergence
node = node—>child; Load D
BB5}

[BBG I.... ]

Figure 3. An example of wrong-path prefetching from  MCf (mcfutil.c)
on the wrong path: (1Hammocks:control-flow hammocks that use the same data on both siddsedfammock, (2)
Control-flow independencecontrol-flow independent program portions that are exettigce, once before a mispre-
diction and once afte?.

Figure 3 shows a program segment framfand its control flow graph that takes advantage of wrong-pegfetching
due to bothhammocksand control-flow independenceThe conditional branch instruction in basic block (BB) 2ais
frequently mispredicted branch. The load and store insbus (Load A, BandStore G in both BB3 and BB4 refer to
the same load and store addresses. Therefore, regardiebeibier or not the branch in BB2 is mispredicted, the cache
lines for the data of the loads and the store in either BB 3 ar4@uched. Hence, the basic block that is executed on
the wrong path of the branch in BB&2waysprovides prefetching benefits (due to the fact that sameislatsed on both
sides of a hammock).

Note that in Figure 3 the load instruction in BB5o@d D) is control-independent of the branch in BB2. Moreover, the
data address of the load is not dependent on any operatioB3roBBB4. Hencel.oad Dloads the same data regardless
of the direction of the branch at BB2. If the branch at BB2 ispnédicted, the miss generatedlyyad D (executed on
the wrong path) would later be needed when the processoveesfrom the misprediction and executasad Don the
correct path. Hence, wrong-path execution of a controbpmhdent program portion can provide prefetching benefits
for its later correct-path execution.

Figure 4 shows a code section from gt _i nt o_mat ch_t abl e function of theparserbenchmark to illustrate a
control-flow hammock structure that causes a useful wraatgF-memory reference. This function adds a node to the
appropriate (left or right) hash table depending on the ealithedi r (direction) parameter passed to the function
(lines 4-7). Depending on the value df r, two different functions are called. The arguments paseditid¢ called

functions,mandt [ h] , are the same regardless of the valugliof . In other words, instructions in thef block (line

3We refer the interested readers to Mutlu et al. [18] for a itdeaanalysis of code structures that cause wrong-pattefuieing benefits. Our
characterization of the code constructs that lead to preiieg benefits on the wrong path is a subset of the code catstiescribed in [18].



5) and instructions in thel se block (line 7) use the same data. Therefore, when the branitteo f statement (line
4) is mispredicted, a wrong-path load instruction generateequest fot [ h] . Shortly after the mispredicted branch is
resolved and the processor starts execution on the corétta correct-path load instruction will generate a retjiees

the exact same data, which would already be in the cache agli.fl

void put_into_match_table (... , t, dir, ...) {
/1 conmpute h
/] initialize m
if (dir == 1) {
t[h] = add_to_right_table_list(m t[h]);
} else {
t[h] = add_to_left_table_ list(m t[h]);

ocxNoakoNR

}
Rigure 4. Example of wrong-path prefetching from parser (fast-match.c)

In our analysis, we found that most of the code structurest#tk@ advantage of the prefetching effect of wrong-path
instructions are repeatedly executed (e.g. the code gtegin Figures 3 and 4 are located and called within fredyent
executed loop bodies). Therefore, it is conceivable togteai history based prediction mechanism that estimates the
usefulness of wrong-path execution. The goal of the WPUPhardasm we will propose in the next section is to detect
useful wrong-path prefetching provided by frequently@xed code structures (similar to those shown in Figures 3

and 4), and to disable fetch gating when wrong-path exetigipredicted to provide prefetching benefits.
3. Performance-Aware Speculation Control: WPUP and Branb-count Based Fetch Gating

Our performance-aware speculation control techniqueistsnef two prediction components as shown in Figure 5:
1. awrong-path usefulness predictor (WPU&)d 2. a newfetch gating scheme: branch-count based fetch gating
The fetch gating scheme predicts if the processor is on tlemgvpath. WPUP predicts whether wrong-path execution
would provideusefulprefetching benefits. The speculation control scheme gagefetch engine only if the processor

is predicted to be on the wrong paahdwrong-path is predictedotto provide prefetching benefifs.

Performance—aware speculation control

I
! !
l Look up l
I - I
l Fetch Gating WPUP !
I - I
! hal |
I D Ve ]

Gate enablg Branch count
Y

Fetch Engine

Figure 5. Performance-aware speculation control mechanis m
3.1. Wrong Path Usefulness Prediction (WPUP)

We propose two techniques to detect the usefulness of wpattyepisodes. These mechanisms work at different
granularities: 1Branch PC-based WPUR a fine-grained scheme that predicts wrong-path usefsifioeegach mispre-

dicted or wrong-path branch instruction,Rhase-based WP Ugtredicts wrong-path usefulness in a more coarse-grained

4This mechanism can simply be implemented by looking up ttie predictors in parallel and ANDing the predictions. In fmplementation,
to reduce power/energy consumption, WPUP is looked up ohlsnithe fetch gating scheme predicts that the processortieeomrong-path.



fashion during different program phases.

3.1.1. Branch Program Counter(PC)-based Wrong Path Usefukss Prediction Branch PC-based WPUP uses a
set-associative cache structure (WPUP cache) to store@eePbranches that lead to useful wrong-path prefetéhes.
For example, the branch in BB2 in Figure 3 will lead to useftdfptches (loads in BB3 or BB4, and BB5) if it is
mispredicted. When the processor encounters such a uséfptedicted or wrong-path branch, it trains the WPUP
cache with the program counter of the branch. The fetch engieps track of the PC of the latest branch instruction
in a register (LBPC) by updating it whenever a branch is fetchWhen the fetch gating mechanism decides to gate
the fetch engine, the fetch engine looks up the WPUP cachetidt PC of the latest fetched branch. If the PC of the
fetched branch is present in the WPUP cache, then the pagasslicts that the wrong path of the fetched branch (if
mispredicted) would provide prefetching benefits and thoees discards the gating decision.

In contrast to conventional cache structures, the WPUPecdols not require a data store. The tag store contains
the tags (higher bits of the PC) of the branches that are ftmpdovide wrong-path prefetching benefits along with the
LRU replacement information.

Detecting the Usefulness of Wrong-Path Memory References:

In order to knowexactlywhether or not a wrong-path memory reference is useful afiddathe corresponding latest
branch PC that resulted in the useful wrong-path referahegyrocessor either requires separate storage or neetdsdo s
the PC address of the mispredicted branch that caused thmyvpath memory request along with each L2 cache line.
Unfortunately, the amount of this extra information can behibitive. For example, assuming a 1024-line cache, rstori
a 16-bit partial PC address with each L2 cache line wouldire@KB extra storage to detect the latest branch PC that
leads to wrong-path useful memory references. In ordelitqirhte the need for such extra storage, we propose a simple
scheme that detects the usefulness of wrong-path mememngrefes using the existing MSHRs [15] and extending them
with a few additional fields. Since MSHRs have a small numlb@ntries, storing information with each MSHR entry
is more cost-effective than storing the same informatiothach L2 cache ling.

The WPUP mechanism uses the L2 MSHRs to detect useful bratizdwewill train the predictor. The scheme detects
two properties: (1) whether an outstanding cache miss itM8e&IRs is generated by a wrong-path instruction and (2)
whether it is useful (i.e. used by a correct-path instructidnile the miss is being serviced). If a wrong-path miss i th
MSHRs is determined to be useful, the branch that lead to tbagvpath miss is marked as useful in the WPUP cache
(i.e. the PC of the branch is inserted into the WPUP cache).

Hardware Support: As described below, we augment several hardware structarasconventional out-of-order

processor to support the detection of branches that resultong-path prefetches. Note that, to reduce hardware cost

SNote that most fetch gating mechanisms do not kesectly which branclamong all fetched conditional branches is mispredictecra@fore,
it is difficult to keep track of only the PC of the mispredict@d wrong-path causing) branch in the fetch engine to lookhepVPUP cache with.
For example, if branch A is fetched and later branch B is fetihn the predicted path of branch A, the fetch engine doesmaet whether branch
A or branch B is mispredicted until they are resolved latar fhis reason, in the WPUP cache, we decide to keep tracked? @ of thelatest
branchfetched before a useful wrong-path memory instructiontisted.

50ur experiments show that detecting useful wrong-path nmgnederences using both MSHRs and L2 cache lines only niégfigoy 0.01%)
improves the performance of our WPUP mechanisms.



we use the lower 16 bits of the PC to identify a branch insionctnstead of its full 64-bit PC:
1. Fetch engine:

(a) Latest branch PC register (LBPC, 16 bits): is added tof¢gheh engine. It stores the PC of the latest
fetched/predicted branch.

2. Inter-stage pipeline latches (decode, rename, and)issue

(a) Branch PC field (BPC, 16 bits): A branch PC is associatdd aviery instruction packet fetched in the fetch
stage, indicating the youngest branch before the packes. figd is used to send the latest branch PC of the
packet through the pipeline.

3. Load/store queue (LSQ) entries:

(a) Branch PC field (BPC, 16 bits): A branch PC is associatéld ewery load/store instruction, indicating the
youngest branch before the load/store. This field in the Lt®gs the latest branch PC at the time the load or

store was fetched.
4. L2 MSHRs:

(a) Branch PC field (BPC, 16 bits): stores the latest brancifr&®®@ the branch PC field of the LSQ entry of an

L2-miss-causing load/store instruction.

(b) Branch ID field (BID, 10 bits): stores the branch ID fronethranch 1D field of the LSQ entry of an L2-miss-
causing memory instruction. Branch ID is conventionallgdigor branch misprediction recovery in some

out-of-order execution processors.

(c) Wrong Path field (WP, 1 bit): is set when the correspondiggmory request is known to be generated on the
wrong path (when a branch older than or equal to the assddmtanch in the MSHR entry is resolved and

found to be mispredicted).

Operation:

When a branch is fetched, LBPC is updated with the PC of thedbraThis LBPC is transferred through the front-
end pipeline stages (i.e. using the BPC field in each pipdditatn) along with the corresponding instruction packet.
Both BPC and branch ID are recorded in the LSQ when an entrildeaded for a load/store, and are transferred to
the L2 MSHRs if the load/store’s memory request misses irLtheache. Once a branch is resolved as mispredicted,
the corresponding branch ID is sent to both the L2 MSHRs aadbtanch misprediction recovery mechanism. The ID
of the mispredicted branch is used to search the MSHRs foiesrthat are allocated after the resolved mispredicted
branch. The MSHR control logic compares the ID of the resblvench to the branch ID fields of the MSHR entries.
If the resolved branch ID is older than the branch ID of the NRSéhtry, the MSHR entry is known to be allocated on

"We found that using only 16 bits of the PC does not affect thitopmance of our proposed speculation control scheme.



the wrong path and its WP field is sewvith this mechanism, a wrong-path memory request can beetas long as
it has not been fully serviced before the mispredicted brascesolved. We found that this scheme can detect 94% of
all wrong-path L2 cache misses.

Whenever an outstanding wrong-path MSHR entry is hit (i.atained) by a later memory request to the same cache
line, our mechanism estimates that the MSHR entry is usefutdrrect-path instructions. Thus, the WPUP cache is
updated with the BPC (Branch PC) field stored in the MSH¥Rte that this scheme is inexact in the sense that the later
memory request to the same cache line may not necessarilgrimajed by a correct-path instruction. However, we
have found (and our evaluation shows) that this simplificatioes not affect the performance of WPYP.

If the fetch gating mechanism (described in Section 3.2Jipte that the processor is on the wrong path, the processor
accesses the WPUP cache with the current LBPC. If there isia thie WPUP cache, the processor does not gate the
fetch engine, predicting that wrong path would provide etetfiing benefits. Otherwise, the processor gates the fetch
engine to save power/energy. Unlike conventional cached, RU information in the WPUP cache is not updated on a
hit because frequent lookups by the fetch engine do not nieditite corresponding branch results in useful wrong-path
prefetches.

Note that none of the additional hardware changes made toosiuprong-path usefulness detection significantly
increase the complexity of the structures they augment. oty time-critical structure that is augmented is the LSQ.
However, the branch PC field added to each LSQ entry is usgdartbookkeeping and therefore it does not participate

in the content-addressable search of the LSQ entries.

3.1.2. Phase-based Wrong Path Usefulness Predictidfigure 6 shows the phase behavior of wrong-path usefulness
for each 100K-cycle interval ahcf over the whole execution time. There are two distinct phésethe usefulness of
wrong-path references. Until 75M cycles, wrong-path egésodo not result in useful memory references. In contrast,
after 75M cycles, wrong-path episodes result in very useftdrences. We found that this phase behavior is due to
execution of large loops whose bodies result in wrong-patifieching benefits as discussed in Section 2.1. Loops that
provide wrong-path prefetching benefits are executed inesphrases, while others that do not are executed in other
phases. As such, it might not be necessary to distinguishgvpath usefulness on a per-branch basis because branches
that do not provide wrong-path prefetching benefits mightx@oexecuted during the same phase as branches that do. To
exploit such phase behavior in wrong-path usefulness, waddike to design a mechanism that can estimate wrong-path
usefulness based on coarse-grained phase behavior.

We can simply detect the phase behavior of wrong-path use$slusing a counter (wrong-path usefulness counter -

WPUC) and the MSHR-based wrong-path usefulness detectmmamism described in Section 3.1.1. We use a time-

8Depending on the choice a microarchitecture makes in hagelfrong-path memory requests, this mechanism might afreadmplemented
in current processors. A processor that cancels wrong+pathory requests after a branch misprediction resolutigoires a similar mechanism
to detect and invalidate wrong-path memory requests.

%If the corresponding set in the WPUP cache is full, the LRUyeintthe set is overwritten.

%We found that if a wrong-path memory request is later refegenby another memory request while in the MSHR, the lattguest is very
likely (with 95% probability) on the correct path.
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Figure 6. Phase behavior of wrong-path usefulness for ~ Mcf
interval of 100K cycles to update and reset the WPUC coumnterrder to detect the phase behavior of wrong-path
usefulness. At the beginning of a time-interval, WPUC ietés 0. During a time-interval, WPUC is incremented by
1 whenever a wrong-path MSHR is hit by a later memory requiisthe beginning of the next time interval, the value
of WPUC is tested. If the value of WPUC is greater than a cerfaieshold ghase_wpup_threshold), the processor
disables the fetch gating mechanism in the interval, ptedjachat the wrong-path episodes in the interval would be
useful for performance.

This mechanism is advantageous because it does not requ@laare structure similar to the WPUP cache used
in PC-based WPUP. All it requires is a simple hardware caumteddition to the support in the MSHRs required
for detecting useful wrong-path requests. Note, howebet, this is a coarser-grained WPUP scheme than the branch
PC-based WPUP and hence may mispredict finer grained chamge®ng-path usefulness behavior. Nevertheless,
we found that in most cases wrong-path usefulness is a egaasged function of program phase behavior rather than
branch PC addresses: in other words, phase-based WPUPtpanform PC-based WPUP because it can better predict

the usefulness of wrong-path memory references for the SEIBQG integer benchmarks.

3.2. Fetch Gating Mechanism: Branch-count Based Fetch Gaty

We propose a low-cost fetch gating mechanism which leveraige observation that the probability of having a
mispredicted branch instruction increases as the numbeutstanding unresolved branch instructions in the pigelin
increases. This mechanism requires (1) a count registecaliats the number of outstanding branch instructiongtira
count register, BCR) and (2) logic modifications in the braresolution unit. Once a branch instruction is fetched (or
decoded), the processor increments BCR by 1. When a brasthigtion is resolved in the branch resolution unit, the
processor decrements BCR by 1. If the BCR value is largerdhaartain threshold T at any given time, the fetch engine
stops fetching instructions. Due to the phase behavioraridir misprediction rate [23], a constant threshold value fo
T can inhibit correct-path instruction fetches signifidarif T is too low) or miss opportunities to remove wrong-pat
instruction fetches (if T is too high). Therefore, we adjtist threshold T dynamically based on the average branch
prediction accuracy in a given time interval. If the averdganch prediction accuracy is high, then T is set to a high

value. Setting T to a high value makes it more difficult to g pipeline, which is desirable when the prediction
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accuracy is high. If the average branch prediction accuisalow, T is set to a low value. Setting T to a low value makes
it easier to gate the pipeline, which is desirable when tgliotion accuracy is low. For example, if branch prediction
accuracy is 99% in an interval, the threshold is set to 18 anbaseline processor. If branch prediction accuracy is
95%, the threshold is set to 13. In our study, we use 7 disgadtees for T depending on the branch prediction accuracy

(shown later in Table 5). These threshold values are deteirempirically through simulation.

4. Methodology
4.1. Simulation Methodology

We use an execution-driven simulator of a processor thalements the Alpha ISA to evaluate our proposal. Our
processor faithfully models the fetch and execution of wgrath instructions and branch misprediction recovehes t
occur on both the correct path and the wrong path. The menysites models bandwidth limitations, port contention,
bank conflicts, and queuing effects at every level in the mgrherarchy. The baseline processor does not invalidate
any memory requests from wrong-path instructions so thattong-path memory requests are eventually serviced and
installed into the cach¥: Our baseline processor includes a very aggressive stregfgtgmer that was shown to improve

the performance of our system significantly [24].The paramseof the baseline processor are shown in Table 2.

Front End 64KB, 4-way, 2-cycle I-cache; can fetch up to 2 branchesstagie pipeline (fetch, decode and rename)

hybrid branch predictor: 64K-entry gshare [17] and 64KreRAs predictor [26] with 64K-entry selector

4K-entry BTB; 64-entry return address stack; minimum bramisprediction penalty: 11 cycles

Execution core | 8-wide fetch/issue/execute/retire; 128-entry reorddfgou32-entry load-store queue; 128 physical registerg

L1 D-cache: 64KB, 4-way, 2-cycle, 2 read ports, 1 write port;

L2 unified cache: 1MB, 8-way, 8 banks, 10-cycle, 1 port, LRplaeement and 64B line size, 32 L2 MSHRS

300-cycle minimum memory latency; 32 memory banks; 32Benidre-to-memory bus at 4:1 frequency ratjo;

bus latency: 40-cycle round-trip

Prefetcher stream prefetcher with 32 streams and 16 cache line predisténce (lookahead) [25]
Table 2. Baseline processor configuration

Branch predictors

On-chip Caches

IS

Buses and memory

We modified the Wattch power model [5] and augmented it to oaukator for power/energy simulation. We used a
0.1Qum process technology at 1.2¥;; and 2GHz clock frequency. We model the power consumptiorl gracessor
units faithfully so that the energy benefits of our specalatcontrol mechanism is not over-estimated. Additional
hardware structures used by the evaluated techniques\W&P@IP cache structure, confidence estimator) are faithfully
modeled in the power model. All our experiments use Wattabigressive clock-gating (CC3) option, where the power
consumption of units is scaled linearly with port usage utsed portions of units still consume 10% of their maximum
power.

We also model a more aggressive processor that is able torpertinahead execution [20] to evaluate the effect of
our speculation control mechanism. Table 3 shows the pdexmef this aggressive processor.

We use the SPEC 2000 integer benchmarks compiled for theaAllgA with - f ast optimizations and profiling
feedback enabled. The benchmarks are run to completionavitduced input set [14] to reduce simulation time.

Table 4 shows the baseline performance (in terms of retmsttuctions Per Cycle - IPC), branch prediction accuracy

"previous studies [21, 22, 18] have shown that this optioniges better baseline performance than squashing wrotigrpquests when a
mispredicted branch is resolved.
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Branch predictors | minimum branch misprediction penalty: 30 cycles (30-staget end pipeline)

Execution core | 512-entry reorder buffer; 128-entry load-store queue; pliysical registers; 512-byte runahead cache for runahealdm

Buses and memory 400-cycle minimum memory latency; bus latency: 50-cyclenabtrip
Table 3. Aggressive processor configuration

of the evaluated benchmarks, and the fraction of fetched{ged instructions that are on the wrong path. Table 1 have
already shown information about the memory behavior of treduated benchmarks. All results presented in this paper

are normalized to the baseline unless otherwise specified.

Benchmark gzip vpr gce mcf | crafty | parser| eon | perlomk | gap | vortex | bzip2 | twolf
Performance (IPC) 238 | 198 | 159 | 059 | 2.83 1.97 3.23 2.59 2.76 321 175 | 2.34
Branch prediction accuracy (%) 94.17 | 92.22 | 9495| 96.89 | 96.12 | 95.65 | 98.87 | 99.96 | 98.94 | 99.52 | 92.08 | 94.91

fraction of wrong path among all fetched inst. (%] 41.87 | 60.24 | 44.96 | 35.22 | 37.06 | 48.94 | 16.27 0.37 19.32 | 9.41 | 49.62 | 48.72

fraction of wrong path among all executed inst. (%) 14.21 | 26.17 | 14.73 | 10.06 | 10.48 | 17.39 | 4.79 0.09 4,75 223 | 17.23 | 14.16

Table 4. Characteristics of baseline processor for SPEC200 0 integer benchmarks

5. Results

5.1. Evaluation of the Branch-count Based Fetch Gating Mecimism

Figure 7 shows the change in performance and energy congumvgth ideal {deal), Manne’s {g-manng, and our
branch-count based fetch gating mechanisfgshf). We used 14 as the miss distance counter (MDC) threshold for
a 4K-entry, 4bit-MDC JRS confidence estimator [11] and 3 &sg#ting threshold for Manne’s fetch gating (These
thresholds were optimized to favor Manne’s scheme). Thestiolds used for branch-count based fetch gating as a
function of the branch prediction accuracy are shown in &@&blBranch prediction accuracy is measured and evaluated
every 100K cycles.

As shown in Figure 7, the average performance and energngswur branch-count based fetch gating scheme
provides are better than Manne’s fetch gating even thougtscueme requires significantly less hardware cost (i.e.
no need for a confidence estimator). This is because theascand the coverage of our branch-count based fetch
gating mechanism are higher (15.5% and 29.3% respectittedy) those of Manne’s fetch gating (13.2% and 19.9%
respectively):?2 Our mechanism achieves better energy savingspargcc, mcf, crafty, parseandtwolf. Overall, the
energy savings of the branch-count based scheme is higlreManne’s (by 0.6%) while its performance loss is lower
(by 0.2%). Hence, the branch-count based fetch gating selmeone efficiently eliminates wrong-path instructions than

Manne’s scheme by eliminating the hardware cost and desigiplexity introduced by a confidence estimator.

Branch prediction accuracy 99%+ | 97-99% | 95-97% | 93-95% | 90-93% | 90-85% | 85% -
Threshold 18 16 13 12 11 7 3
Table 5. Branch-count based fetch gating configuration

Figure 7 also shows that we cannot expect fetch gating to Sigmdficant energy ireon, perlbmk, gapandvortex
Even the ideal fetch gating scheme reduces energy consumipfi only 6.8%, 0.3%, 7.1%, and 3.9% respectively in
these benchmarks. Because the branch prediction accsreegyihigh (98.9%, 99.9%, 98.9% and 99.5% respectively as

2pccuracy of fetch gating is calculated by dividing the numbgfetch-gated cycles when the processor is actually omttoeg path by the
total number of fetch-gated cycles. Coverage of fetch gaiincalculated by dividing the number of fetch-gated cyelé®n the processor is
actually on the wrong path by the total number of cycles wihenpgrocessor is on the wrong path.
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Figure 7. Performance and energy consumption of branch-cou nt based fetch gating and Manne'’s fetch gating
shown in Table 4), these benchmarks do not fetch or executeaag wrong-path instructions as the other benchmarks
do, as shown in Table 4. Therefore, realistic fetch gatinghmaisms achieve almost no energy savings for these
benchmarks.

Note that both our and Manne’s fetch gating mechanismstrassignificant performance loss imcf ((~9%) and
parser((~5%) because neither of the schemes takes into account théness of wrong-path references. This short-
coming also results in increased energy consumptiomdhwith both schemes due to the increased execution time.
Next, we present results when our wrong-path usefulnesigtien techniques are used in conjunction with the fetch

gating schemes to make speculation control performaneeeaw

5.2. Evaluation of Wrong Path Usefulness Prediction Mechasms

As we showed in Section 5.1, both idealized and realistichfefating mechanisms hurt performance significantly
for mcf andparser. We apply our WPUP techniques to the branch-count basel fgtitng mechanism to recover the

performance loss.

5.2.1. Branch PC-Based Wrong Path Usefulness PredictioRigure 8 shows the change in performance and energy
consumption when branch PC-based WPUP is used in conjanettb branch-count based fetch gating. We vary the
size of the WPUP cache from 8 to 128 entries and fix its assatyato 4. As the number of WPUP cache entries
increases up to 32ncf's performance improves compared to the fetch gating meéshmwithout a WPUB2 With a
32-entry WPUP cache, a wrong-path usefulness predictoraves performance by 8.0% ancf while also reducing
energy consumption by 3.4%. Hence, utilizing WPUP elimisalenost all the performance loss incurredrnnof due to
fetch gating.

Note that for benchmarks other tharcf PC-based WPUP does not significantly affect performan@nergy con-
sumption. This is because wrong-path execution in thesehvearks (other thaparser) does not provide significant
prefetching benefits. Iparser, we found that PC-based WPUP does not work well because éfielngss of wrong-path

memory references is not a function of which branches arpnaiticted but rather a function of program phase behavior.

5.2.2. Phase-based Wrong Path Usefulness Predictidrigure 9 shows the change in performance and energy

consumption when phase-based WPUP is used in conjunctitnbsénch-count based fetch gating. We vary the

BFor the baseline configuration, a 32-entry WPUP cache ismgpfior performance and energy savings. A larger WPUP cagmisl to storing
some stale branches that do not lead to useful wrong-patrerafes any more, which results in incorrect predictiononfie useless wrong-path
episodes as useful. One other way of overcoming this “infdiom staleness” problem is to flush the WPUP cache perithgica
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Figure 8. Performance and energy consumption with branch PC -based WPUP

phase_wpup_threshold from 5 to 20. For comparison, we also show the performanceemilgy consumption of
the best-performing PC-based WPUP with a 32-entry WPUPecach

Phase-based WPUP improves the performanaaaifand parser significantly compared to fetch gating without a
WPUP. With aphase_wpup_threshold of 5, performance improves by 8.8% forcf and by 3.1% foparser Phase-
based WPUP eliminates almost all of the negative performanpact of fetch gating imct On average, the best phase-
based WPUP reduces the performance degradation of fetrtgdeam -3.7% to -0.9%. Fomcf, energy consumption

also reduces by 2.3% compared to branch-count based feticly gathout a WPUP.
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Figure 9. Performance and energy consumption with phase-ba sed WPUP

Results with variouphase_wpup_thresholds show the trade-off between performance and energy cortgmipr
parser. As the threshold increases, performance decreases amglyesavings increases because a larger threshold
reduces the likelihood that a wrong-path episode is prediti be useful. Iparser, the energy reduction obtained due
to the execution time improvement caused by useful wrorb-peferences does not outweigh the energy increase due
to the execution of more wrong-path instructions. Hencega®&f and fewer wrong-path episodes are predicted to be
useful (i.e. as the threshold increases), energy consamptiduces because the fetch engine is gated to prevent the
execution of wrong-path instructions.

Why does Phase-based WPUP Perform Better than PC-Based WP@H he average performance of phase-based
WPUP is higher than that of the PC-based WPUP, mainly becatuseg-path usefulness is better predictable using
program phase behavior rather than branch PCs ipaingerandmcfbenchmarks. This is because phase-based WPUP
also takes into account the L2-miss behavior in a givenvalavhereas PC-based WPUP has no notion of either phases
or L2-miss behavior in phases. If no wrong-path L2 missepbapn an interval, wrong-path periods aret predicted
as useful by the phase-based scheme whereas they may betgtems useful by the PC-based scheme because the

PC-based scheme relies only on the past behavior of the wratigperiods caused by a branch instruction.
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Even though phase-based WPUP saves slightly less eneiigysimhpler to implement than PC-based WPUP be-
cause it does not require a cache structure. Since phaed-BW&UP provides higher performance while requiring less

complexity, we believe it provides a better implementatiaae-off than the PC-based WPUP.

5.2.3. Effect of Wrong Path Usefulness Prediction on Manne’Fetch Gating Technique Our WPUP technigues can

be used in conjunction with not only our branch-count basg¢ehfgating scheme but also other fetch gating mechanisms.
We evaluate the WPUP techniques with Manne’s fetch gatincharsism. Figure 10 shows the performance and energy
consumption of Manne’s fetch gating without a WPUgthanng, with the PC-based WPURgtmanne-pc-wpupand

with the phase-based WPU®{manne-phase-wplipWe used a 32-entry, four-way set-associative cachetateior

the PC-based WPUP configuration anghase_wpup_threshold of 20 for the phase-based configuration.

Phase-based WPUP improves both the performance and eraiggs of Manne’s fetch gating mechanism.nhef
performance improves by 9.8% while energy consumptiongediy 2.8%. Irparser, performance improves by 1.5%
while energy consumption increases by 1.3%. With phaseeb@#PUP, the average performance loss of Manne’s fetch
gating scheme is reduced to only -1.2% from -3.9% while i&rgy savings are preserved. We conclude that employing

wrong-path usefulness prediction is also effective at maprg the performance of Manne’s fetch gating.
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Figure 10. Manne’s fetch gating scheme with WPUP

Figure 10 also shows that our branch-count based fetchggatéchanism with WPUP achieves better overall energy
efficiency than Manne’s fetch gating mechanism with WPURs Thbecause branch-count based fetch gating achieves
better energy efficiency (without WPUP) as we discussed ai@e5.1. Compared to Manne’s fetch gating mechanism
without a WPUP, our proposed techniques (branch-counibfaseh gating with PC-based WPUP) provide up to 8.1%
(2.5% on average) performance improvement along with uplt#41.0% on average) reduction in energy consumption.

5.3. Effect on Fetched and Executed Instructions

Figure 11 shows the reduction in fetched and executed tgins using our and Manne’s schemes. Branch-count
based fetch gating removes fetched and executed instngdip11.0% and 1.4% on average respectively while Manne’s
fetch gating does so by 9.8% and 2.1% respectively. Thissexplwhy branch-count based fetch gating achieves better
energy-efficiency as shown in Section §%1.

When WPUP is used in conjunction with branch-count basedhfgating, fetched and executed instructions reduce

by 8.6% and 1.1% on average (up to 22.5% and 4.49%), resphctivence, using WPUP slightly increases the fetched

14Note that the reduction in executed instructions is muctelotivan that in fetched instructions in both fetch gatingesebs. This is natural
because many wrong-path instructions are flushed befoyeatteeexecuted, as Table 4 also shows.
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and executed instructions (especiallynef andparsel) because it disables fetch gating for useful wrong-patbaies.

Even so, the reduction in fetched instructions is significkading to the energy savings shown in previous sections.
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Figure 11. Reduction of fetched (left) and executed (right) instructions

5.4. Effect on the Usefulness of Wrong-Path Episodes

We provide more insight into the performance improvemeavijged by wrong-path usefulness prediction by analyz-
ing wrong-path usefulness with and without our techniqgdesguantify wrong-path usefulness, we define a new metric,
Useful wrong-path L2 cache Misses Per Wrong-path epigod&PW) as follows:

Total Number of Useful Wrong Path L2 Cache Misses

UMPW =
Total Number of Wrong Path Episodes

UMPW quantitatively shows the efficiency of wrong-path epliss'® If wrong-path prefetching is not salient in an
application, UMPW for that application will be close to zerBor an application that takes advantage of wrong-path
prefetching, a fetch gating mechanism that does not takeadotount the usefulness of wrong-path execution might
reduce the number of useful wrong-path L2 misses by exaguéwer wrong-path instructions. Therefore, such a
scheme that is unaware of wrong-path usefulness would deetedMPW and therefore performance. On the other hand,
a performance-aware speculation control scheme can setg®PW (and hence performance) by allowing wrong path
execution to occur when it is predicted to be useful and udefumisses to be generated on the wrong path. The
larger the increase in UMPW a speculation control mechapisvides, the higher the performance improvement it can
achieve.

Table 6 shows the UMPWs for the baseline and the baselineawitimechanisms (branch-count based fetch gating,
PC-based WPUP, and phase-based WPOR% expected, the UMPWs of all the benchmarks exceptrfcrandparser
are close to zero and show very little change with our meamasj since these benchmarks have very little wrong-path
prefetching effect. In contrast, the UMPW forcf drops from 1.124 to 0.991 when the branch-count based fettthgy
is applied to the baseline, resulting in a 9% performance(as shown in Figure 7). However, both PC-based WPUP and

phase-based WPUP recover the loss in UMPW to 1.114 and lekp@ctively. The improvement in UMPW explains

Note that this metric is not perfect because it does not tatkegccount the criticality and latency of useful wrongkpaR cache misses. We
only use it to provide insight with a single easy-to-undamst metric. The actual performance improvement dependsnigton the change in
the number of useful wrong-path L2 misses, but also on tiring, criticality, and whether or not their latencies ardden. However, defining a
metric -separate from absolute performance- that takesaiotount all these aspects is very difficult.

Note that useful L2 instruction misses are omitted in thewdation of the UMPWSs, since our mechanisms target onlyulsefong-path L2
data references. In the examined benchmarks, L2 instruatisses are not a bottleneck since the instruction workatgizes of most of the
SPEC CPU2000 benchmarks fit in our baseline 64KB instructamhe.
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why wrong-path usefulness prediction improves perforneasignificantly formcf in Figures 8 and 9. A similar effect is
observed foparserwith phase-based WPUP, which improves the UMPW metric coetht branch-count based fetch

gating. We conclude that wrong-path usefulness prediatimmoves performance by increasing UMPW.

Benchmark gzip vpr gce mcf | crafty | parser| eon | perlomk | gap | vortex | bzip2 | twolf
base 0.000 | 0.000 | 0.002 | 1.124 | 0.001 | 0.022 | 0.000 | 0.011 | 0.001 | 0.005 | 0.007 | 0.000
fg-br 0.000 | 0.000 | 0.001 | 0.991 | 0.001 | 0.020 | 0.000 | 0.010 | 0.001 | 0.004 | 0.007 | 0.000

fg-br-pc-wpup 0.000 | 0.000 | 0.001 | 1.114 | 0.001 | 0.020 | 0.000 | 0.010 | 0.001 | 0.005 | 0.007 | 0.000
fg-br-phase-wpup|| 0.000 | 0.000 | 0.001 | 1.123 | 0.001 | 0.022 | 0.000 | 0.010 | 0.001 | 0.004 | 0.007 | 0.000
Table 6. Useful wrong-path L2 caches misses per wrong-path e pisode (UMPW)

5.5. Effect on the Energy-Delay Product

Figure 12 shows the (Energy-Delay Product) EDP comparigatifierent WPUP prediction techniques when they
are employed with branch-count based and Manne’s fetchgatihemes. The highest savings in EDP is provided by
combining our branch-count based fetch gating with brarcfbRsed WPUP, which results in a 2.1% decrease in EDP
compared to the baseline. Note that schemes that do notrtmkadcount wrong-path usefulness (both Manne’s scheme
and branch-count based fetch gating scheme without WPURYt®@sult in significant savings in EDP; in fact Manne’s
scheme without WPUP increases EDP by 0.6%. We conclude tinatrong-path usefulness prediction techniques are
very effective at not only improving performance but alsalifg the right balance between energy consumption and

performance.
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Figure 12. Energy-delay product of speculation control mec hanisms
5.6. Hardware Cost and Power/Energy Consumption of Our Spadation Control Techniques

Table 7 shows the hardware cost of the two proposed WPUPIitpedsr The WPUP mechanisms do not add signif-
icant combinational logic complexity to the processor. Gamational logic is required for the update of WP-bits in the
MSHRs and the update of WPUP cache and WPUC. None of the eejoigic is on the critical path of the processbr.
The storage overhead of PC-based WPUP is only 260 byteshvidiess than 0.16% of the baseline front-end size
(assuming a 64KB I-cache + 64KB branch predictor + 4K-enfffBB The overhead of phase-based WPUP is almost
negligible: only 45 bytes.

Table 8 shows the hardware cost, power, and energy compargdanne’s fetch gating schenfg{manngand our
branch-count based fetch gating scheme with PC-base@jiized WPUPfg-br-pc-wpupfg-br-phase-wpup The

"We varied the latency of the WPUP training mechanism from30@ cycles. The performance difference is negligible.
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I PC-based WPUP | Phase-based WPUP

Fetch engine LBPC 16 bits -
Front-end inter-stage latchgs BPC 16 bits * 11 stages -
LSQ BPC 16 bits * 32 entries -

BPC 16 bits * 32 entries - -

MSHR BID 10 bits * 32 entries 3\'/'?, 110 g;tf Szgirirr'gf

WP 1 bit * 32 entries
Training storage WPUP cache(13bits (addr) + 1bit (V) + 2 bits (LRU)) * 32 entriggWPUC 5 bits
Total hardware cost 260 bytes 45 bytes

Table 7. Hardware cost of wrong-path usefulness predictors

total hardware cost of our two schemes is 266 bytes/51 bythgsh is much less than 2049 bytes, the costgpf
manne'® With a much smaller hardware cost, our schemes are able dicpthe usefulness of wrong-path instructions
and provide better performance. Furthermore, the configlerstimator in Manne’s scheme is accessed much more
frequently than the WPUP in our scheme, requiring 0.15 ameper every instruction because every branch should
access the confidence estimator. However, our WPUP is aat€s87 times per instruction because it needs to be
accessed only when the processor is predicted to be on thegwrath. Due to reduced hardware cost and reduced
access counts to hardware structures, the extra hardwadedédy our techniques$gtbr-pc-wpugfg-br-phase-wpup
consumes only 27%/1.3%, 15%/0.8%, and 16%/0.9% of the maxripower, average power, and average energy of
those of Manne’s scheme. We conclude that our speculatintratdechnique provides improved performance and

energy-efficiency at very low hardware and energy cost.

Hardware cost Dynamic acces|
Fetch-gating WPUP]| Total frequency Max power Avg. power) Avg. energy
fg-manne br.count (8bits) + confidence (2048B) 2049B 0.15/inst 94.54mW | 30.16mwW | 1.40mJ

fg-br-pc-wpup || br.count (8bits) + bpred.accuracy (36 bits260B | 266B 0.07/inst 25.13mW | 4.55mwW 0.22mJ
fg-br-phase-wpup br.count (8bits) + bpred.accuracy (36 bitsp5B | 51B 0.07/inst 1.20mwW | 0.24mW 0.01mJ

Table 8. Hardware cost, power and energy consumption compar ison of Manne’s and our speculation control schemes

5.7. Effect on a More Aggressive Processor

Table 9 shows gating thresholds for branch-count basel ggtting for the more aggressive processor and Figure 13
shows the performance and energy impact of our schemes ande¥8escheme on the more aggressive processor con-
figuration. As the performance impact of wrong-path memefgnmrences becomes more salient on a processor with a
large instruction window [18], fetch gating without WPURWB#ts in even more significant performance degradation. For
example, Manne’s fetch gating results in an average pedno® loss of 5.1% in the more aggressive processor. Com-
pared to Manne’s scheme, our speculation control mechawismbranch-count based fetch gating and phase-based
WPUP improves performance by up to 15.4% (4.7% on averagég \witreasing energy consumption by only 1.2%
on average. The EDP reduction of our speculation controlhamism is 4.1% while that of Manne’s fetch gating is

2.8%. Note that this is a good performance/energy tradgtoff Hence, our speculation control scheme becomes more

BHardware cost of branch-count based fetch gatingBranch counters (br.count) are used for counting the nurbeutstanding branches
in our fetch gating scheme, and the number of outstandingclomiidence branches in Manne’s scheme. They are 8-bit emibecause the
maximum number of instructions in the processor is not mbem8. Branch-count based fetch gating also requires two 18¢hinters (that
store the number of correctly predicted branches and thebeuof total branches in an interval) in order to measure ¢hrgrediction accuracy.
Because we use 100K-cycle intervals and the baseline moicean fetch up to two branches per cycle, 18 bit countersufieient.
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effective in controlling the performance loss due to fetekirgy as processors become more aggressive.

Branch prediction accuracy(9%309+| 97-99| 95-97| 93-95| 90-93| 90-85| 85 -
Threshold 60| 50 | 40 | 30 | 20 15 | 13
Table 9. Branch-count based fetch gating thresholds for a mo re aggressive processor
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Figure 13. Change in performance and energy with our specula tion control techniques on a more aggressive processor

5.8. Effect on Runahead Execution

Figure 14 shows the performance and energy impact of oumses@nd Manne’s scheme on a runahead execution
processor [9, 20]. The performance and energy results amaalized to when runahead execution is employed on
the more aggressive processor without any fetch gatinge Mwit, on a processor employing runahead execution, the
performance degradation with both our and Manne’s schementi is much less than that on a processor without
runahead, since the prefetching effect of runahead exmtrdiduces the positive performance impact of the prefetchi
effect of wrong-path execution. Nevertheless, our speisel@aontrol mechanism improves performance by up to 2.6%

compared to Manne’s scheme. Hence, we conclude that ouritems are effective on runahead execution processors

as well.
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Figure 14. Change in performance and energy with our specula tion control techniques on a runahead execution processor

5.9. Comparison with the Just In Time Instruction Delivery Mechanism

We compare our speculation control mechanisms with thelduSime (JIT) instruction delivery mechanism [13].
We chose the best-performing JIT configuration in terms afrgydelay product among the 27 configurations we ex-
amined. We set JIT specific parameters, minimum allowedidogbn count in the pipeline, maximum instruction count
increment unit, and noise margin to 128, 16 and 5% respégtive

As shown in Figure 15, JIT saves energy by only 1.6% and degrpdrformance by only 0.8% on average, leading
to an EDP improvement of 0.7%. Note that since JIT adjusthfgating decisions based on the monitored IPC changes,

20



it is able to impact performance less than branch-countd&steh gating. On the other hand, branch PC-based and
phase-based WPUP with branch-count based fetch gatingesavgy by 3.4% and 3.0% while degrading performance
by 1.4% and 1.2% respectively, resulting in EDP improvermehi2.1% and 1.7%. Note that both of our mechanisms

save more energy than JIT on most of the benchmarks. Theaskésrdemonstrate that our mechanisms achieve better

energy efficiency (EDP) than JIT at the expense of slightijhbr performance degradation.
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Figure 15. Comparison with Just In Time Instruction Deliver y Mechanism
5.10. Effect of Branch Predictor Type

We evaluate our mechanisms with th&hare[17] andperceptron[12] branch predictors, which are of equal size with
our baseline hybrid predictor. Figure 16 shows the resBltanch-count based fetch gating reduces energy consumptio
by 3.0% and 3.3% while degrading performance by 3.5% and 3e&tectively for the gshare and perceptron predic-
tors. As with the baseline hybrid predictor, fetch gating stgnificantly degrades performance and increases gnerg
consumption ofncf with different predictors. WPUP mechanisms successfatpver the performance degradation of
mcf for the both branch predictors, while also saving energy.c@feclude that our techniques are effective regardless of

the branch predictor type.
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Figure 16. Effect of various branch predictors

5.11. Effect of Memory Latency

We evaluate the effect of our schemes on machines with diftenemory latencies by setting the minimum memory
latency to 200, 500, 700.

With increased memory latency imcf the energy consumption increase due to branch-count Hessgd gating
worsens becausacf spends more of its execution time on the wrong path waitimgriemory without getting the
prefetching benefits of wrong path execution. However, gsifei 17 shows, our WPUP mechanisms recover most of

the performance loss by enabling wrong-path prefetchinigusT our techniques work well with a variety of memory
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latencies.
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Figure 17. Effect of various memory latency

5.12. Effect of L2 Cache Size on Our Techniques

Figure 18 shows the effect on our mechanisms as the L2 canhénsireases from 1MB to 4MB. Note that 2MB and
4MB cache sizes are very large compared to the working séteofvbrkloads we examine. Indeed, as the L2 cache size
increases the positive performance impact of wrong-pagiiepehing is reduced. However, fetch gating still degrades
performance fomcf by 3.4% and 3.3% and our WPUP mechanisms recover the pefosamagradation by 2.1% and
2.0% respectively for processors with 2MB and 4MB L2 cacfidmis a large L2 cache reduces the effectiveness of our
techniques, but our techniques still improve the perforoeanf fetch gating.

We believe that our WPUP mechanisms can still be effectivee@MP system with a larger on-chip last level cache
because: (1) Last level on-chip caches are generally shredultiple cores in a CMP, therefore last level on-chip
cache size per core might not increase. (2) Even if an aggithas no wrong-path prefetching benefits since a large
last level cache eliminates cache misses, due to the dyratativity of the WPUP mechanisms, fetch gating can still
save energy without degrading performance. (3) Our WPUFhard@sms neither require significant additional hardware

and power/energy nor affect fetch gating’s energy efficjamhen there are no wrong-path prefetching benefits.
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Figure 18. Effect of various L2 cache sizes

6. Related Work

6.1. Related Work on Fetch Gating and Dynamic Reconfiguratio Mechanisms

Fetch (pipeline) gating was first proposed by Manne et all. [TBeir fetch gating mechanism counts the number of
low confidence branches in the pipeline using a confidenamaitstr. If the number is more than a certain threshold, the
fetch engine is gated to save power/energy. Our study sH@mtsdunting the number of in-flight branches and adjusting

the threshold based on branch prediction accuracy are értowgave energy without losing significant performance and
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without requiring a separate confidence estimation stractérurthermore, Manne et al.'s scheme does not take into
account the prefetching effect of wrong-path instructions

Many other fetch gating and dynamic reconfiguration schelmags also been proposed to reduce energy consump-
tion [4, 6, 7, 13, 2, 8]. Baniasadi et al. [4] and Buyuktosuoogt al. [6, 7] try to balance the front-end instruction
supply rate and back-end execution rate. Baniasadi et @it pot that if there is enough instruction parallelism i th
pipeline, having more instructions in the pipeline doesmextessarily improve performance. They measure paratielis
using decode/commit rate difference and data dependentd among the instructions being decoded. Adaptive issue
queue (AIQ) [6] resizes the instruction scheduler basedsatilization to reduce power/energy consumption without
significantly hurting performance. Buyuktosunoglu [7] poses a scheme that performs fetch gating based on the uti-
lization of the instruction scheduler and parallelism @& thnning application. If parallelism is low and the utilizen of
the instruction scheduler is high, the mechanism gateseticl £ngine. Aragon et al. [2] extend the idea of fetch gating
to multiple branch prediction confidence levels. If a brarchery low-confidence, the most aggressive fetch gating
scheme is used. If a branch is relatively less low-confidetheefetch engine is not fully gated but it is throttled sottha
it fetches fewer instructions than its maximum bandwidtbves.

Just in time (JIT) instruction delivery [13] dynamically jadts the total number of instructions (not only branch
instructions) in flight by monitoring IPC performance dugioertain intervals. BranchTap [1] also dynamically adjust
the number of instructions in the pipeline to reduce bran@spnadiction recovery cost in the presence of few global
checkpoints. BranchTap keeps track of the number of lowfidence branches without an associated global checkpoint
and gates the fetch engine if this number is greater thantaice¢hreshold. The threshold is dynamically adjusted Base
on IPC during certain time intervals, just like in JIT. BotiT &and BranchTap require a tuning period to search for the
optimal number of instructions in the pipeline to achieve lfest performance. If the performance of an application is
not stable for a long time, these mechanisms might not betalsabilize, which could result in performance loss. Our
WPUP mechanisms are partially orthogonal to and can be awdhvith BranchTap and JIT. For example, a combined
mechanism could gate the fetch engine when the number ottaidence branches without an checkpoint exceeds a
dynamically-determined threshold (as in BranchTap) ohbur WPUP mechanism predicts that wrong-path execution
would not be useful.

Coallins et al. [8] gate the fetch engine using their dynanoistool-flow reconvergence prediction mechanism, utiligin
the observation that a misprediction in their reconvergenechanism very likely results from the fact that the preoes
is on the wrong path. Finally, Armstrong et al. [3] find thatignal or illegal pipeline events are strongly correlatethwi
branch mispredictions and propose gating the fetch engivenwhe processor detects such events.

None of these previous works explicitly considers the panence impact of wrong-path memory references. Es-
pecially the positive performance effects of wrong-patbaeiion are ignored in previous works, implicitly assuming
that all wrong-path episodes are useless for performance wOrk improves the state-of-the-art by incorporating the
usefulness of wrong-path execution into fetch gating dess Moreover, many of these previously proposed schemes

require either large additional hardware structures @Ganfidence estimators [16, 2] or wrong-path predictors {84
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increase the complexity of the pipeline or significant clesp time-critical and power-hungry portions of the pipeli
such as the instruction scheduler [4, 6]. We propose braocimt based fetch gating that eliminates the additiongklar
hardware structures without requiring significant chartgesne-critical and power-hungry portions of the pipeline

Note that our WPUP mechanism can be incorporated into artyegbteviously proposed fetch gating mechanisms to
make the mechanism performance-aware by taking into attlo@prefetching effect of wrong-path memory references.
In this paper, we show the effectiveness of WPUP with bothrmwuel branch-count based fetch gating scheme and

Manne’s confidence estimation based fetch gating scheme.

6.2. Related Work on the Usefulness of Wrong-path Memory Refrences

Pierce et al. [21] study the effect of wrong-path memory nefiees on cache performance using traces generated by
an instrumentation tool. They show that the prefetchingafof wrong-path memory references is more dominant than
their pollution effect for most of the SPEC92 C benchmarkseylalso show that wrong-path instructions can prefetch
useful instruction and data cache lines over 50% of the time.

Mutlu et al. [18] examine the effect of wrong-path memonerehces on the actual performance of a high performance
out-of-order processor using an execution-driven sinounlathey show that not modeling wrong-path execution cad lea
to errors of up to 10 percent in performance. They find thatngrpath memory references are usually beneficial for
performance in most SPEC2000 benchmarks but detrimenfa@rformance in a few others. They also point out that
the performance impact of wrong-path memory references Igeger memory latencies and instruction window sizes
increase.

Building on this previous work on identifying the positivengiormance impact of wrong-path references, we show
that speculation control schemes (i.e. fetch gating meshes) that do not take the wrong-path prefetching effect
into account can hurt performance significantly. Unlikeviwas work that only evaluated the performance impact of
wrong-path memory references, we propose an implementadébhanism that leverages and predicts the usefulness of

wrong-path references in order to increase the performandesnergy-efficiency of fetch gating.

7. Conclusion

This paper introduces the concept and low-cost implemiemisiof wrong path usefulness prediction (WPUP) and
its application to fetch gating mechanisms to improve thdgoeance and energy-efficiency of speculation control,
which has traditionally assumed that wrong-path execusaiwaysuseless for performance. We challenge this as-
sumption and show that predicting the usefulness of wraaty-periods and not disabling wrong-path execution when
it is estimated to be useful actually results in better pannce and better energy-efficiency.

We propose simple PC-based and phase-based WPUP techthquase applicable to previously proposed fetch
gating schemes. In addition, we propose a branch-countdbf@éeh gating scheme that eliminates the need for a
confidence estimator to guess that the processor is likdhg ton the wrong path. As such, we provide a very low-cost,
comprehensive speculation control mechanism that is agfdhe benefits of wrong-path execution. Our comprehensive

mechanism significantly reduces the performance deg@adati fetch gating while at the same time reducing energy
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consumption.

We believe the importance of our mechanism will increas@bse more processors, which will continue to be energy-
constrained in the foreseeable future, are likely to empddgh gating mechanisms to improve energy efficiency. Our
comprehensive proposal provides a very low-cost, perfasaaaware fetch gating technique that can be easily ineorpo
rated into such processors, improving both performancesaedgy efficiency.

References
[1] P. Akl and A. Moshovos. Branchtap: Improving performangith very few checkpoints through adaptive speculationtrad. In ICS-21,
2006.
[2] J.L. Aragbn, J. Gonzalez, and A. Gonzalez. Powerfavweantrol speculation through selective throttlingHRCA-9 2003.
[3] D. N. Armstrong, H. Kim, O. Mutlu, and Y. N. Patt. Wrong pa¢vents: Exploiting unusual and illegal program behaviorefarly mispre-
diction detection and recovery. MICRO-37 2004.
[4] A.Baniasadi and A. Moshovos. Instruction flow-basedfrend throttling for power-aware high-performance pssmes. INSLPED 2001.
[5] D.Brooks, V. Tiwari, and M. Martonosi. Wattch: A framewofor architectural-level power analysis and optimizasolnISCA-27 2000.
[6] A.Buyuktosunoglu, D. H. Albonesi, S. Schuster, D. BrepR. Bose, and P. Cook. A circuit level implementation of daysive issue queue
for power-aware microprocessor. Rroceedings of 11th Great Lakes Symposium on MV2(RI1.
[7] A.Buyuktosunoglu, T. Karkhanis, D. H. Albonesi, and Rs®. Energy efficient co-adaptive instruction fetch anddéssnISCA-30 2003.
[8] J.D. Callins, D. M. Tullsen, and H. Wang. Control flow apization via dynamic reconvergence predictionMiCRO-37 2004.
[9] J. Dundas and T. Mudge. Improving data cache performagq@e-executing instructions under a cache mis$Ci8-11, 1997.
[10] S.Gochman, R. Ronen, |. Anati, A. Berkovits, T. Kurts,Maveh, A. Saeed, Z. Sperber, and R. C. Valentine. The letetifm M processor:
Microarchitecture and performandatel Technology Journal7(2):21-36, May 2003.
[11] E.Jacobsen, E. Rotenberg, and J. E. Smith. Assigninfidence to conditional branch predictions NWCRO-29 1996.
[12] D. A.Jiménez and C. Lin. Dynamic branch predictiontwiierceptrons. IHPCA-7, pages 197—-206, 2001.
[13] T. Karkhanis, J. E. Smith, and P. Bose. Saving energly juit in time instruction delivery. IISLPED, 2002.
[14] A. KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEMbkmark workload for simulation-based computer architectresearch.
Computer Architecture Letterd, June 2002.
[15] D. Kroft. Lockup-free instruction fetch/prefetch daeorganization. I'SCA-§ 1981.
[16] S. Manne, A. Klauser, and D. Grunwald. Pipeline gatiBgeculation control for energy reduction.|BCA-25 pages 132-141, 1998.
[17] S. McFarling. Combining branch predictors. TechniRajport TN-36, Digital Western Research Laboratory, Juré819
[18] O.Mutlu, H. Kim, D. N. Armstrong, and Y. N. Patt. An analg of the performance impact of wrong-path memory refezemmm out-of-order
and runahead execution processtEEE Transactions on Computes4(12):1556-1571, Dec. 2005.
[19] O. Mutlu, H. Kim, D. N. Armstrong, and Y. N. Patt. UsingeHirst-level caches as filters to reduce the pollution calmedpeculative
memory referencesnternational Journal of Parallel Programmin@3(5):529-559, October 2005.
[20] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runath@xecution: An alternative to very large instruction windofor out-of-order
processors. IIHPCA-9 2003.
[21] J. Pierce and T. Mudge. The effect of speculative exenwin cache performance. IRPS-§ 1994.
[22] J. Pierce and T. Mudge. Wrong-path instruction préfitg. In MICRO-29 1996.
[23] T. Sherwood, E. Perelman, G. Hamerly, and B. Calderofgtically characterizing large scale program behavibASPLOS-X2002.
[24] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedbackedted prefetching: Improving the performance and bandwédficiency of
hardware prefetchers. HPCA-13 2007.
[25] J. Tendler, S. Dodson, S. Fields, H. Le, and B. SinhadP@WER4 system microarchitectutBM Technical White Pape©Oct. 2001.
[26] T.-Y.Yeh and Y. N. Patt. Alternative implementationistwo-level adaptive branch prediction. IBCA-19 1992.

25



