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Abstract
This paper proposes a new processor architecture for handling hard-to-predict branches, the diverge-merge processor (DMP). The goal of

this paradigm is to eliminate branch mispredictions due to hard-to-predict dynamic branches by dynamically predicating them without requiring
ISA support for predicate registers and predicated instructions. To achieve this without incurring large hardware cost and complexity, the
compiler provides control-flow information by hints and the processor dynamically predicates instructions only on frequently executed program
paths. The key insight behind DMP is that most control-flow graphs look and behave like simple hammock (if-else) structures when only
frequently executed paths in the graphs are considered. Therefore, DMP can dynamically predicate a much larger set of branches than simple
hammock branches.

Our evaluations show that DMP outperforms a baseline processor with an aggressive branch predictor by 19.3% on average over SPEC
integer 95 and 2000 benchmarks, through a reduction of 38% in pipeline flushes due to branch mispredictions, while consuming 9.0% less
energy. We also compare DMP with previously proposed predication and dual-path/multipath execution paradigms in terms of performance,
complexity, and energy consumption, and find that DMP is the highest performance and also the most energy-efficient design.

1. Introduction
State-of-the-art high performance processors employ deep pipelines to extract instruction level parallelism (ILP) and to support high clock

frequencies. In the near future, processors are expected to support a large number of in-flight instructions [29, 41, 10, 7, 13] to extract both

ILP and memory-level parallelism (MLP). As shown by previous research [26, 39, 40, 29, 41], the performance improvement provided by both

pipelining and large instruction windows critically depends on the accuracy of the processor’s branch predictor. Branch predictors still remain

imperfect despite decades of intensive research in branch prediction. Hard-to-predict branches not only limit processor performance but also

result in wasted energy consumption.

Predication has been used to avoid pipeline flushes due to branch mispredictions by converting control dependencies into data dependen-

cies [2]. With predication, the processor fetches instructions from both paths of a branch but commits only results from the correct path,

effectively avoiding the pipeline flush associated with a branch misprediction. However, predication has the following problems/limitations:

1. It requires significant support (i.e. predicate registers and predicated instructions) in the instruction set architecture (ISA).

2. Statically predicated code incurs the performance overhead of predicated execution regardless of whether a branch is easy to predict or

hard to predict at run-time. The overhead of predicated code is twofolds: (i) the processor always has to fetch instructions from both paths

of an if-converted branch, (ii) the processor cannot execute predicated instructions or instructions that are dependent on them until the

predicate value is resolved, causing additional delay in execution. Previous research showed that predicated execution sometimes hurts

processor performance due to this overhead [9, 21].

3. A large subset of control-flow graphs are usually not converted to predicated code because either the compiler cannot if-convert (i.e.

predicate) them or the overhead of predicated execution is high. A control-flow graph that has a function call, a loop, too many exit points,

or too many instructions between an entry point and an exit point are examples [2, 31, 27, 9, 43, 30].

Several approaches were proposed to solve these problems/limitations. Dynamic-hammock-predication [22] was proposed to predicate

branches without ISA support. However, dynamic-hammock-predication can predicate only simple hammock branches (simple if-else structures

∗This work was done while the author was with UT-Austin.
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with no nested branches), which account for only a small subset of the mispredicted branches [22]. Wish branches [21] were proposed to reduce

the overhead of predicated execution. However, wish branches inherit the limitations of software predication (1 and 3 above) with the exception

that they can be applied to loop branches.

Our goal in this paper is to devise a comprehensive technique that overcomes the three problems/limitations of predication so that more

processors can employ predicated execution to reduce the misprediction penalty due to hard-to-predict branches.

We propose a new processor architecture, called the Diverge-Merge Processor (DMP). DMP dynamically predicates not only simple but

also complex control-flow graphs without requiring predicate registers and predicated instructions in the ISA and without incurring large

hardware/energy cost and complexity. The key mechanism of DMP is that it dynamically predicates instructions only on frequently executed

control-flow paths and only if a branch is hard-to-predict at run-time. Dynamically predicating only the frequently executed paths allows

DMP to achieve two benefits at the same time: 1) the processor can reduce the overhead of predicated execution since it does not need

to fetch/execute all instructions that are control-dependent on the predicated branch, 2) the processor can dynamically predicate a large set of

control-flow graphs because a complex control-flow graph can look and behave like a simple hammock structure when only frequently executed

paths are considered.

Figure 1 shows a control-flow graph example to illustrate the key insight behind DMP. In software predication, if the compiler estimates

that the branch at block A is hard-to-predict, it would convert blocks B, C, D, E, F, and G to predicated code and all these blocks would be

executed together even though blocks D, F, and G are not frequently executed at run-time [30].1 In contrast, DMP considers frequently executed

paths at run-time, so it can dynamically predicate only blocks B, C, and E. To simplify the hardware, DMP uses some control-flow information

provided by the compiler. The compiler identifies and marks suitable branches as candidates for dynamic predication. These branches are

called diverge branches. The compiler also selects a control-flow merge (or reconvergence) point corresponding to each diverge branch. In

this example, the compiler marks the branch at block A as a diverge branch and the entry of block H as a control-flow merge (CFM) point.

Instead of the compiler specifying which blocks are predicated (and thus fetched), the processor decides what to fetch/predicate at run-time. If a

diverge branch is estimated to be low-confidence at run-time, the processor follows and dynamically predicates both paths after the branch until

the CFM point. The processor follows the branch predictor outcomes on the two paths to fetch only the frequently executed blocks between a

diverge branch and a CFM point.
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Figure 1. Control-flow graph (CFG) example: (a) source code (b) CFG (c) possible paths (hammocks) that can be predicated by DMP

The compiler could predicate only blocks B, C, and E based on profiling [28] rather than predicating all control-dependent blocks. Unfor-

tunately, frequently executed paths change at run-time (depending on the input data set and program phase), and code predicated for only a

1If the compiler does not predicate all basic blocks between A and H because one of the branches is easy-to-predict, then the remaining easy-to-predict branch
is likely to become a hard-to-predict branch after if-conversion. This problem is called misprediction migration [3, 38]. Therefore, the compiler (e.g. ORC [30])
usually predicates all control-flow dependent basic blocks inside a region (the region is A,B,C,D,E,F,G and H in this example.). This problem can be mitigated
with reverse if-conversion [45, 4] or by incorporating predicate information into the branch history register [3].
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few paths can hurt performance if other paths turn out to be frequently executed. In contrast, DMP determines and follows frequently executed

paths at run-time and therefore it can flexibly adapt its dynamic predication to run-time changes (Figure 1c shows the possible hammock-shaped

paths that can be predicated by DMP for the example control-flow graph). Thus, DMP can dynamically predicate hard-to-predict instances of

a branch with less overhead than static predication and with minimal support from the compiler. Furthermore, DMP can predicate a much

wider range of control-flow graphs than dynamic-hammock-predication [22] because a control-flow graph does not have to be a simple if-else

structure to be dynamically predicated; it just needs to look like a simple hammock when only frequently executed paths are considered.

Our evaluation shows that DMP improves performance by 19.3% over a baseline processor that uses an aggressive 64KB branch predictor,

without significantly increasing maximum power requirements. DMP reduces the number of pipeline flushes by 38%, which results in a 23%

reduction in the number of fetched instructions and a 9.0% reduction in dynamic energy consumption. This paper provides a detailed description

and analysis of DMP as well as a comparison of its performance, hardware complexity, and power/energy consumption with several previously

published branch processing paradigms.

2. The Diverge-Merge Concept
2.1. The Basic Idea

The compiler identifies conditional branches with control flow suitable for dynamic predication as diverge branches. A diverge branch is

a branch instruction after which the execution of the program usually reconverges at a control-independent point in the control-flow graph, a

point we call the control-flow merge (CFM) point. In other words, diverge branches result in hammock-shaped control flow based on frequently

executed paths in the control-flow graph of the program but they are not necessarily simple hammock branches that require the control-flow

graph to be hammock-shaped. The compiler also identifies a CFM point associated with the diverge branch. Diverge branches and CFM points

are conveyed to the microarchitecture through modifications in the ISA, which are described in Section 3.13.

When the processor fetches a diverge branch, it estimates whether or not the branch is hard to predict using a branch confidence estimator.

If the diverge branch has low confidence, the processor enters dynamic predication mode (dpred-mode). In this mode, the processor fetches

both paths after the diverge branch and dynamically predicates instructions between the diverge branch and the CFM point. On each path, the

processor follows the branch predictor outcomes until it reaches the CFM point. After the processor reaches the CFM point on both paths, it

exits dpred-mode and starts to fetch from only one path. If the diverge branch is actually mispredicted, then the processor does not need to flush

its pipeline since instructions on both paths of the branch are already fetched and the instructions on the wrong path will become NOPs through

dynamic predication.

In this section, we describe the basic concepts of the three major mechanisms to support diverge-merge processing: instruction fetch support,

select-µops, and loop branches. A detailed implementation of DMP is described in Section 3.

2.1.1. Instruction Fetch Support In dpred-mode, the processor fetches instructions from both directions (taken and not-taken paths) of

a diverge branch using two program counter (PC) registers and a round-robin scheme to fetch from the two paths in alternate cycles. On each

path, the processor follows the outcomes of the branch predictor. Note that the outcomes of the branch predictor favor the frequently executed

basic blocks in the control flow graph. The processor uses a separate global branch history register (GHR) to predict the next fetch address on

each path, and it checks whether the predicted next fetch address is the CFM point of the diverge branch.2 If the processor reaches the CFM

point on one path, it stops fetching from that path and fetches from only the other path. When the processor reaches the CFM point on both

paths, it exits dpred-mode.

2When the predicted next fetch address is the CFM point of the diverge branch, the processor considers that it has reached the CFM point.
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2.1.2. Select-µops Instructions after the CFM point should have data dependencies on instructions from only the correct path of a diverge

branch. Before the diverge branch is executed, the processor does not know which path is correct. Instead of waiting for the resolution of

the diverge branch, the processor inserts select-µops to continue renaming/execution after exiting dpred-mode. Select-µops are similar to the

φ-functions in the static single-assignment (SSA) form [14] in that they “merge” the register values produced on both sides of the hammock.3

Select-µops ensure that instructions dependent on the register values produced on either side of the hammock are supplied with the correct data

values that depend on the correct direction of the diverge branch. After inserting select-µops, the processor can continue fetching and renaming

instructions. If an instruction fetched after the CFM point is dependent on a register produced on either side of the hammock, it sources (i.e.

depends on) the output of a select-µop. Such an instruction will be executed after the diverge branch is resolved. However, instructions that

are not dependent on select-µops are executed as soon as their sources are ready without waiting for the resolution of the diverge branch.

Figure 2 illustrates the dynamic predication process. Note that instructions in blocks C, B, and E, which are fetched during dpred-mode, are

also executed before the resolution of the diverge branch.

H

A

C

E

B

select−uop   pr43 = p1? pr13 : pr33
select−uop   pr40 = p1? pr20 : pr30
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Figure 2. An example of how the instruction stream in Figure 1b is dynamically predicated: (a) fetched blocks (b) fetched assembly
instructions (c) instructions after register renaming
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Figure 3. An example of how a loop-type diverge branch is dynamically predicated: (a) CFG (b) fetched assembly instructions (c)
instructions after register renaming

2.1.3. Loop Branches DMP can dynamically predicate loop branches. The benefit of dynamically predicating loop branches using DMP

is very similar to the benefit of wish loops [21]. The key mechanism to predicate a loop-type diverge branch is that the processor needs to

predicate each loop iteration separately. This is accomplished by using a different predicate register for each iteration and inserting select-µops

3Select-µops handle the merging of only register values. We explain how memory values are handled in Section 3.10.
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after each iteration. Select-µops choose between live-out register values before and after the execution of a loop iteration, based on the outcome

of each dynamic instance of the loop branch. Instructions that are executed in later iterations and that are dependent on live-outs of previous

predicated iterations source the outputs of select-µops. Similarly, instructions that are fetched after the processor exits the loop and that are

dependent on registers produced within the loop source the outputs of select-µops so that they receive the correct source values even though

the loop branch may be mispredicted. The pipeline does not need to be flushed if a predicated loop is iterated more times than it should be

because the predicated instructions in the extra loop iterations will become NOPs and the live-out values from the correct last iteration will be

propagated to dependent instructions via select-µops. Figure 3 illustrates the dynamic predication process of a loop-type diverge branch (The

processor enters dpred-mode after the first iteration and exits after the third iteration).

There is a negative effect of predicating loops: instructions that source the results of a previous loop iteration (i.e. loop-carried dependencies)

cannot be executed until the loop-type diverge branch is resolved because such instructions are dependent on select-µops. However, we found

that the negative effect of this execution delay is much less than the benefit of reducing pipeline flushes due to loop branch mispredictions.

Note that the dynamic predication of a loop does not provide any performance benefit if the branch predictor iterates the loop fewer times than

required by correct execution, or if the predictor has not exited the loop by the time the loop branch is resolved.

2.2. DMP vs. Other Branch Processing Paradigms

We compare DMP with five previously proposed mechanisms in predication and multipath execution paradigms: dynamic-hammock-

predication [22], software predication [2, 31], wish branches [21], selective/limited dual-path execution (dual-path) [18, 15], and multi-

path/PolyPath execution (multipath) [33, 24]. First, we classify control-flow graphs (CFGs) into five different categories to illustrate the

differences between these mechanisms more clearly.

Figure 4 shows examples of the five different CFG types. Simple hammock (Figure 4a) is an if or if-else structure that does not have

any nested branches inside the hammock. Nested hammock (Figure 4b) is an if-else structure that has multiple levels of nested branches.

Frequently-hammock (Figure 4c) is a CFG that becomes a simple hammock if we consider only frequently executed paths. Loop (Figure 4d)

is a cyclic CFG (for, do-while, or while structure). Non-merging control-flow (Figure 4e) is a CFG that does not have a control-flow

merge point even if we consider only frequently executed paths.4 Figure 5 shows the frequency of branch mispredictions due to each CFG type.

Table 1 summarizes which blocks are fetched/predicated in different processing models for each CFG type, assuming that the branch in block

A is hard to predict.

Frequently executed path

A

B C

A

F

E

D

A

C

F

E

D

A

C

AA

GG D E

EE

(a) 

(e)

BB

(b)

B C

ED F

H

I

B C

ED F

H

I

F G

(d)

C

L

A

B

(c)

BB

F

AA

D

CC

DG

H

Not frequently executed path

Figure 4. Control-flow graphs: (a) simple hammock (b) nested hammock (c) frequently-hammock (d) loop (e) non-merging control flow

Dynamic-hammock-predication can predicate only simple hammocks which account for 12% of all mispredicted branches. Simple ham-

mocks by themselves account for a significant percentage of mispredictions in only two benchmarks: vpr (40%) and twolf (36%). We expect

4If the number of static instructions between a branch and the closest control-flow merge point exceeds a certain number (T), we consider that the CFG does
not have a control-flow merge point. T=200 in our experiments.
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Table 1. Fetched instructions in different processing models (after the branch at A is estimated to be low-confidence) We assume that the
loop branch in block A (Figure 4d) is predicted taken twice after it is estimated to be low-confidence.
Processing model simple hammock nested hammock frequently-hammock loop non-merging
DMP B, C, D, E, F B, C, D, G, H, I B, C, D, E, H A, A, B, C can’t predicate
Dynamic-hammock-predication B, C, D, E, F can’t predicate can’t predicate can’t predicate can’t predicate
Software predication B, C, D, E, F B, C, D, E, F, G, H, I usually don’t/can’t predicate can’t predicate can’t predicate
Wish branches B, C, D, E, F B, C, D, E, F, G, H, I usually don’t/can’t predicate A, A, B, C can’t predicate

path1: B, D, E, F path1: B, D, H, I path1: B, D, E, H path1: A, A, B, C path1: B ...Dual-path
path2: C, D, E, F path2: C, G, H, I path2: C, E, H path2: B, C path2: C ...

dynamic-hammock-predication will improve the performance of these two benchmarks.

Software predication can predicate both simple and nested hammocks, which in total account for 16% of all mispredicted branches.

Software predication fetches all basic blocks between an if-converted branch and the corresponding control-flow merge point. For example,

in the nested hammock case (Figure 4b), software predication fetches blocks B, C, D, E, F, G, H, and I, whereas DMP fetches blocks B, C,

D, G, H, and I. Current compilers usually do not predicate frequently-hammocks since the overhead of predicated code would be too high

if these CFGs include function calls, cyclic control-flow, too many exit points, or too many instructions [2, 31, 43, 27, 9, 30]. Note that

hyperblock formation [28] can predicate frequently-hammocks at the cost of increased code size, but it is not an adaptive technique because

frequently executed basic blocks change at run-time. Even if we assume that software predication can predicate all frequently-hammocks, it

could predicate up to 56% of all mispredicted branches.

Wish branches can predicate even loops, which account for 10% of all mispredicted branches, in addition to what software predication

can do. The main difference between wish branches and software predication is that the wish branch mechanism can selectively predicate

each dynamic instance of a branch. With wish branches, a branch is predicated only if it is hard to predict at run-time, whereas with software

predication a branch is predicated for all its dynamic instances. Thus, wish branches reduce the overhead of software predication. However,

even with wish branches, all basic blocks between an if-converted branch and the corresponding CFM point are fetched/predicated. Therefore,

wish branches also have higher performance overhead for nested hammocks than DMP.

Note that software predication (and wish branches) can eliminate a branch misprediction due to a branch that is control-dependent on another

hard-to-predict branch (e.g. branch at B is control-dependent on branch at A in Figure 4b), since it predicates all the basic blocks within a nested

hammock. This benefit is not possible with any of the other paradigms except multipath, but we found that it provides significant performance

benefit only in two benchmarks (3% in twolf, 2% in go).
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Selective/limited dual-path execution fetches from two paths after a hard-to-predict branch. The instructions on the wrong path are

selectively flushed when the branch is resolved. Dual-path execution is applicable to any kind of CFG because the control-flow does not have

to reconverge. Hence, dual-path can potentially eliminate the branch misprediction penalty for all five CFG types. However, the dual-path

mechanism needs to fetch a larger number of instructions than any of the other mechanisms (except multipath) because it continues fetching

from two paths until the hard-to-predict branch is resolved even though the processor may have already reached a control-independent point in

the CFG. For example, in the simple hammock case (Figure 4a), DMP fetches blocks D, E, and F only once, but dual-path fetches D, E, and F

twice (once for each path). Therefore, the overhead of dual-path is much higher than that of DMP. Detailed comparisons of the overhead and

performance of different processing models are provided in Section 5.

Multipath execution is a generalized form of dual-path execution in that it fetches both paths after every low-confidence branch and

therefore it can execute along many (more than two) different paths at the same time. This increases the probability of having the correct path in

the processor’s instruction window. However, only one of the outstanding paths is the correct path and instructions on every other path have to

be flushed. Furthermore, instructions after a control-flow independent point have to be fetched/executed separately for each path (like dual-path

but unlike DMP), which causes the processing resources to be wasted for instructions on all paths but one. For example, if the number of

outstanding paths is 8, then a multipath processor wastes 87.5% of its fetch/execution resources for wrong-path/useless instructions even after

a control-independent point. Hence, the overhead of multipath is much higher than that of DMP. In the example of Table 1 the behavior of

multipath is the same as that of dual-path because the example assumes there is only one hard-to-predict branch to simplify the explanation.

DMP can predicate simple hammocks, nested hammocks, frequently-hammocks, and loops. On average, these four CFG types account for

66% of all branch mispredictions. The number of fetched instructions in DMP is less than or equal to other mechanisms for all CFG types, as

shown in Table 1. Hence, we expect DMP to eliminate branch mispredictions more efficiently (i.e. with less overhead) than the other processing

paradigms.

3. Implementation of DMP
3.1. Entering Dynamic Predication Mode

The diverge-merge processor enters dynamic predication mode (dpred-mode) if a diverge branch is estimated to be low-confidence at run-

time. When the processor enters dpred-mode, it needs to do the following:

1. The front-end stores the address of the CFM point associated with the diverge branch into a buffer called CFM register. The processor

also marks the diverge branch as the branch that caused entry into dpred-mode.

2. The front-end forks (i.e. creates a copy of) the return address stack (RAS) and the GHR when the processor enters dpred-mode. In

dpred-mode, the processor accesses the same branch predictor table with two different GHRs (one for each path) but only correct path

instructions update the table after they commit. A separate RAS is needed for each path. The processor forks the register alias table (RAT)

when the diverge branch is renamed so that each path uses a separate RAT for register renaming in dpred-mode. This hardware support is

similar to the dual-path execution mechanisms [1].

3. The front-end allocates a predicate register for the initiated dpred-mode. An instruction fetched in dpred-mode carries the predicate

register identifier (id) with an extra bit indicating whether the instruction is on the taken or the not-taken path of the diverge branch.

3.2. Short Hammocks

Frequently-mispredicted hammock branches with few instructions before the CFM point are good candidates to be always predicated, even

if the confidence on the branch prediction is high. The reason for this heuristic is that while the cost of mispredicting a short-hammock

branch is high (flushing mostly control-independent instructions that were fetched after the CFM point), the cost of dynamic predication of a
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short-hammock branch is low (useless execution of just the few instructions on the wrong-path of the branch). Therefore, always predicating

short-hammock diverge branch candidates with very low dynamic predication cost is a reasonable trade-off.

3.3. Multiple CFM points

DMP can support more than one CFM point for a diverge branch to enable the predication of dynamic hammocks that start from the same

branch but end at different control-independent points. The compiler provides multiple CFM points. At run-time, the processor chooses the

CFM point reached first on any path of the diverge branch and uses it to end dpred-mode. To support multiple CFM points, the CFM register is

extended to hold multiple CFM-point addresses.

3.4. Return CFM points

Some function calls are ended by different return instructions on the taken and not-taken paths of a diverge branch. In this case, the CFM

point is the instruction executed after the return, whose address is not known at compile time because it depends on the caller position. We

introduce a special type of CFM point called return CFM to handle this case. When a diverge branch includes a return CFM, the processor does

not look for a particular CFM point address to end dpred-mode, but for the execution of a return instruction.

3.5. Exiting Dynamic Predication Mode

DMP exits dpred-mode when either (1) both paths of a diverge branch have reached the corresponding CFM point or (2) a diverge branch is

resolved. The processor marks the last instruction fetched in dpred-mode (i.e. the last predicated instruction). The last predicated instruction

triggers the insertion of select-µops after it is renamed.

DMP employs two policies to exit dpred-mode early to increase the benefit and reduce the overhead of dynamic predication:

1. Counter Policy: CFM points are chosen based on frequently executed paths determined through compile-time profiling. At run-time,

the processor might not reach a CFM point if the branch predictor predicts that a different path should be executed. For example, in Figure 4c,

the processor could fetch blocks C and F. In that case, the processor never reaches the CFM point and hence continuing dynamic predication

is less likely to provide benefit. To stop dynamic predication early (before the diverge branch is resolved) in such cases, we use a heuristic. If

the processor does not reach the CFM point until a certain number of instructions (N) are fetched on any of the two paths, it exits dpred-mode.

N can be a single global threshold or it can be chosen by the compiler for each diverge branch. We found that a per-branch threshold provides

2.3% higher performance than a global threshold because the number of instructions executed to reach the CFM point varies across diverge

branches. After exiting dpred-mode early, the processor continues to fetch from only the predicted direction of the diverge branch.

2. Yield Policy: DMP fetches only two paths at the same time. If the processor encounters another low-confidence diverge branch during

dpred-mode, it has two choices: it either treats the branch as a normal (non-diverge) branch or exits dpred-mode for the earlier diverge branch

and enters dpred-mode for the later branch. We found that a low-confidence diverge branch seen on the predicted path of a dpred-mode-causing

diverge branch usually has a higher probability to be mispredicted than the dpred-mode-causing diverge branch. Moreover, dynamically

predicating the later control-flow dependent diverge branch usually has less overhead than predicating the earlier diverge branch because the

number of instructions inside the CFG of the later branch is smaller (since the later branch is usually a nested branch of the previous diverge

branch). Therefore, our DMP implementation exits dpred-mode for the earlier diverge branch and enters dpred-mode for the later diverge

branch.

3.6. Select-µop Mechanism

Select-µops are inserted when the processor reaches the CFM point on both paths. Select-µops choose data values that were produced

from the two paths of a diverge branch so that instructions after the CFM point receive correct data values from select-µops. Our select-µop
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generation mechanism is similar to Wang et al.’s [44]. However, our scheme is simpler than theirs because it needs to compare only two RATs

to generate the select-µops. A possible implementation of our scheme is explained below.

When a diverge branch that caused entry into dpred-mode reaches the renaming stage, the processor forks the RAT. The processor uses two

different RATs, one for each path of the diverge branch. We extend the RAT with one extra bit (M -modified-) per entry to indicate that the

corresponding architectural register has been renamed in dpred-mode. Upon entering dpred-mode, all M bits are cleared. When an architectural

register is renamed in dpred-mode, its M bit is set.

When the last predicated instruction reaches the register renaming stage, the select-µop insertion logic compares the two RATs.5

If the M bit is set for an architectural register in either of the two RATs, a select-µop is inserted to choose, according to the pred-

icate register value, between the two physical registers assigned to that architectural register in the two RATs. A select-µop allo-

cates a new physical register (PRnew) for the architectural register. Conceptually, the operation of a select-µop can be summarized as

PRnew=(predicate register value)?PRT:PRNT , where PRT(PRNT) is the physical register assigned to the architectural regis-

ter in the RAT of the taken (not-taken) path.

A select-µop is executed when the predicate value and the selected source operand are ready. As a performance optimization, a select-µop

does not wait for a source register that will not be selected. Note that the select-µop generation logic operates in parallel with work done in

other pipeline stages and its implementation does not increase the pipeline depth of the processor.

3.7. Handling Loop Branches

Loop branches are treated differently from non-loop branches. One direction of a loop branch is the exit of the loop and the other direction is

one more iteration of the loop. When the processor enters dpred-mode for a loop branch, only one path (the loop iteration direction) is executed

and the processor will fetch the same static loop branch again. Entering dpred-mode for a loop branch always implies the execution of one

more loop iteration.

The processor enters dpred-mode for a loop if the loop-type diverge branch is low confidence. When the processor fetches the same static

loop branch again during dpred-mode, it exits dpred-mode and inserts select-µops. If the branch is predicted to iterate the loop once more, the

processor enters dpred-mode again with a different predicate register id6, regardless of the confidence of the branch prediction. In other words,

once the processor dynamically predicates one iteration of the loop, it continues to dynamically predicate the iterations until the loop is exited

by the branch predictor. The processor stores the predicate register ids associated with the same static loop branch in a small buffer and these

are later used when the branch is resolved as we will describe in Section 3.8. If the branch is predicted to exit the loop, the processor does not

enter dpred-mode again but it starts to fetch from the exit of the loop after inserting select-µops.

3.8. Resolution of Diverge Branches

When a diverge branch that caused entry into dpred-mode is resolved, the processor does the following:

1. It broadcasts the predicate register id of the diverge branch with the correct branch direction (taken or not-taken). Instructions with the

same predicate id and the same direction are said to be predicated-TRUE and those with the same predicate id but different direction are

said to be predicated-FALSE.

2. If the processor is still in dpred-mode for that predicate register id, it simply exits dpred-mode and continues fetching only from the correct

path as determined by the resolved branch. If the processor has already exited dpred-mode, it does not need to take any special action. In

either case, the pipeline is not flushed.

5This comparison is actually performed incrementally every time a register is renamed in dpred-mode so that no extra cycles are wasted for select-µop
generation. We simplify the explanation by describing it as if it happens at once at the end of dpred-mode.

6DMP has a limited number of predicate registers (32 in our model). Note that these registers are not architecturally visible.
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3. If a loop-type diverge branch exits the loop (i.e. resolved as not-taken in a backward loop), the processor also broadcasts the predicate id’s

that were assigned for later loop iterations along with the correct branch direction in consecutive cycles.7 This ensures that the select-µops

after each later loop iteration choose the correct live-out values.

DMP flushes its pipeline for any mispredicted branch that did not cause entry into dpred-mode, such as a mispredicted branch that was

fetched in dpred-mode and turned out to be predicated-TRUE.

3.9. Instruction Execution and Retirement

Dynamically predicated instructions are executed just like other instructions (except for store-load forwarding described in Section 3.10).

Since these instructions depend on the predicate value only for retirement purposes, they can be executed before the predicate value (i.e. the

diverge branch) is resolved. If the predicate value is known to be FALSE, the processor does not need to execute the instructions or allocate

resources for them. Nonetheless, all predicated instructions consume retirement bandwidth. When a predicated-FALSE instruction is ready to

be retired, the processor simply frees the physical register (along with other resources) allocated for that instruction and does not update the

architectural state with its results.8 The predicate register associated with dpred-mode is released when the last predicated instruction is retired.

3.10. Load and Store Instructions

Dynamically predicated load instructions are executed like normal load instructions. Dynamically predicated store instructions are sent to

the store buffer with their predicate register id. However, a predicated store instruction is not sent further down the memory system (i.e. into

the caches) until it is known to be predicated-TRUE. The processor drops all predicated-FALSE store requests. Thus, DMP requires the store

buffer logic to check the predicate register value before sending a store request to the memory system.

DMP requires support in the store-load forwarding logic. The forwarding logic should check not only the addresses but also the predicate

register ids. The logic can forward from: (1) a non-predicated store to any later load, (2) a predicated store whose predicate register value

is known to be TRUE to any later load, or (3) a predicated store whose predicate register is not ready to a later load with the same predicate

register id (i.e. on the same dynamically predicated path). If forwarding is not possible, the load waits. Note that this mechanism and structures

to support it are the same as the store-load forwarding mechanism in dynamic-hammock-predication [22]. An out-of-order execution processor

that implements software predication or wish branches also requires the same support in the store buffer and store-load forwarding logic.

3.11. Interrupts and Exceptions

DMP does not require any special support for handling interrupts or exceptions. When the pipeline is flushed before servicing the interrupt

or exception, any speculative state, including DMP-specific state is also flushed. There is no need to save and restore predicate registers, unlike

software predication. The processor restarts in normal mode right after the last architectural retired instruction after coming back from the

interrupt/exception service. Exceptions generated by predicated-FALSE instructions are simply dropped.

3.12. Hardware Complexity Analysis

DMP increases hardware complexity compared to current processors but it is an energy efficient design as we will show in Section 5.5.

Some of the hardware required for DMP is already present in current processors. For example, select-µops are similar to CMOV operations

and complex µop generation and insertion schemes are already implemented in x86 processors. Table 2 summarizes the additional hardware

7Note that only one predicate id needs to be broadcast per cycle because select-µops from a later iteration cannot anyway be executed before the select-µops
from the previous iteration are executed (since select-µops of the later iteration are dependent on the select-µops of the previous iteration).

8In a current out-of-order processor, when an instruction is ready to be retired, the processor frees the physical register allocated by the previous instruction
that wrote to the same architectural register. This is exactly how physical registers are freed in DMP for non-predicated and predicated-TRUE instructions. The
only difference is that a predicated-FALSE instruction frees the physical register allocated by itself (since that physical register will not be part of the architectural
state) rather than the physical register allocated by the previous instruction that wrote to the same architectural register.
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support required for DMP and the other processing models. DMP requires slightly more hardware support than dynamic-hammock-predication

and dual-path but much less than multipath.

Table 2. Hardware support required for different branch processing paradigms. (m+1) is the maximum number of outstanding paths in multipath.
Hardware DMP Dynamic-hammock Dual-path/Multipath Software predication Wish branches

CFM registers, +1 PC fetch both paths +1/m PC selection betweenFetch support
round-robin fetch in simple hammock round-robin fetch

-
branch/predicated code

Hardware-generated
predicate/path IDs

required required required (path IDs) - -

Branch pred. support +1 GHR, +1 RAS - +1/m GHR, +1/m RAS - -
BTB support mark diverge br./CFM mark hammock br. - - mark wish branches
Confidence estimator required optional (performance) required - required
Decode support CFM point info - - predicated instructions predicated instructions
Rename support +1 RAT +1 RAT +1/m RAT -
Predicate registers required required - required required
Select-µop generation required required - optional (performance) optional (performance)
LD-ST forwarding check predicate check predicate check path IDs check predicate check predicate

check flush/no flushBranch resolution
predicate id broadcast

check flush/no flush check flush/no flush - check flush/no flush

Retirement check predicate check predicate selective flush check predicate check predicate

3.13. ISA Support for Diverge Branches

We present an example of how the compiler can transfer diverge branch and CFM point information to the hardware through simple

modifications in the ISA. Diverge branches are distinguished with two bits in the ISA’s branch instruction format. The first bit indicates

whether or not the branch is a diverge branch and the second bit indicates whether or not a branch is of loop-type. If a branch is a diverge

branch, the following N bits in the program code are interpreted as the encoding for the associated CFM points. A CFM point address can be

encoded as a relative address from the diverge branch address or as an absolute address without the most significant bits. Since CFM points

are located close to a diverge branch we found that 10 bits are enough to encode each CFM point selected by our compiler algorithm. The ISA

could dedicate a fixed number of bytes to encode CFM points or the number of bytes can vary depending on the number of CFM points for

each diverge branch. We allow maximum 3 CFM points per diverge branch. To support early exit (Section 3.5), the compiler also uses L extra

bits to encode the maximum distance between a branch and its CFM point (L is a scaled 4-bit value in our implementation).

4. Methodology
4.1. Simulation Methodology

We use an execution-driven simulator of a processor that implements the Alpha ISA. An aggressive, 64KB branch predictor is used in the

baseline processor. The parameters of the baseline processor are shown in Table 3.

Table 3. Baseline processor configuration
Front End 64KB, 2-way, 2-cycle I-cache; fetches up to 3 conditional branches but fetch ends at the first predicted-taken branch; 8 RAT ports

64KB (64-bit history, 1021-entry) perceptron branch predictor [20]; 4K-entry BTBBranch Predictors
64-entry return address stack; minimum branch misprediction penalty is 30 cycles
8-wide fetch/issue/execute/retire; 512-entry reorder buffer; 128-entry load-store queue; 512 physical registersExecution Core
scheduling window is partitioned into 8 sub-windows of 64 entries each; 4-cycle pipelined wake-up and selection logic

On-chip Caches L1 D-cache: 64KB, 4-way, 2-cycle, 2 ld/st ports; L2 cache: 1MB, 8-way, 8 banks, 10-cycle, 1 port; LRU replacement and 64B line size
Buses and Memory 300-cycle minimum memory latency; 32 banks; 32B-wide core-to-memory bus at 4:1 frequency ratio; bus latency: 40-cycle round-trip
Prefetcher Stream prefetcher with 32 streams and 16 cache line prefetch distance (lookahead) [42]
DMP Support 2KB (12-bit history, threshold 14) enhanced JRS confidence estimator [19, 17]; 32 predicate registers; 3 CFM registers (also see Table 2)

We also model a less aggressive (base2) processor to evaluate the DMP concept in a configuration similar to today’s processors. Table 4

shows the parameters of the less aggressive processor that are different from the baseline processor.

The experiments are run using the 12 SPEC CPU 2000 integer benchmarks and 5 SPEC 95 integer benchmarks.9 Table 5 shows the

9Gcc, vortex, and perl in SPEC 95 are not included because later versions of these benchmarks are included in SPEC CPU 2000.
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Table 4. Less aggressive baseline processor (base2) configuration
Front End Fetches up to 2 conditional branches but fetch ends at the first predicted-taken branch; 4 RAT ports

16KB (31-bit history, 511-entry) perceptron branch predictor [20]; 1K-entry BTBBranch Predictors
32-entry return address stack; minimum branch misprediction penalty is 20 cycles

Execution Core 4-wide fetch/issue/execute/retire; 128-entry reorder buffer; 64-entry scheduling window; 48-entry load-store queue
128 physical registers; 3-cycle pipelined wake-up and selection logic

Buses and Memory 200-cycle minimum memory latency; bus latency: 20-cycle round-trip

characteristics of the benchmarks on the baseline processor. All binaries are compiled for the Alpha ISA with the -fast optimizations. We use a

binary instrumentation tool that marks diverge branches and their respective CFM points after profiling. The benchmarks are run to completion

with a reduced input set [25] to reduce simulation time. In all the IPC (retired Instructions Per Cycle) performance results shown in the rest of

the paper for DMP, instructions whose predicate values are FALSE and select-µops inserted to support dynamic predication do not contribute

to the instruction count.

Table 5. Characteristics of the benchmarks: baseline IPC, potential IPC improvement with perfect branch prediction (PBP IPC ∆), total number of
retired instructions (Insts), number of static diverge branches (Diverge Br.), number of all static branches (All br.), increase in code size with diverge branch and
CFM information (Code size ∆), base2 processor IPC (IPC base2), potential IPC improvement with perfect branch prediction on the base2 processor (PBP IPC
∆ base2). perl, comp, m88 are the abbreviations for perlbmk, compress, and m88ksim respectively.

gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolf comp go ijpeg li m88
Base IPC 2.02 1.50 1.25 0.45 2.54 1.50 3.26 2.27 2.88 3.37 1.48 2.18 2.18 0.97 2.73 2.15 3.27

PBP IPC ∆ 90% 229% 96% 113% 60% 137% 21% 15% 15% 16% 94% 112% 139% 227% 93% 60% 24%
Insts (M) 249 76 83 111 190 255 129 99 404 284 316 101 150 137 346 248 145

Diverge br. 84 434 1245 62 192 37 116 92 79 250 74 235 16 117 48 18 158
All br. (K) 1.6 4.2 29.5 1.4 5.1 3.7 4.9 9.4 4.6 13 1.4 4.7 0.6 7.7 2 1.2 1.7

Code size ∆(%) 0.12 0.35 0.23 0.1 0.13 0.03 0.01 0.03 0.03 0.09 0.11 0.16 0.02 0.08 0.04 0.02 0.13
IPC base2 1.77 1.39 0.98 0.52 1.76 1.36 2.05 1.36 2.03 1.73 1.39 1.71 1.79 0.86 2.05 1.69 2.10

PBP IPC ∆ base2 39% 84% 46% 58% 27% 65% 9% 7% 9% 8% 46% 46% 50% 101% 37% 34% 12%

4.2. Modeling of Other Branch Processing Paradigms

4.2.1. Dynamic-Hammock-Predication Klauser et al. [22] discussed several design configurations for dynamic-hammock-predication.

We chose the following design configurations that provide the best performance: (1) Simple hammock branches are marked by the compiler

through profiling, (2) A confidence estimator is used to decide when to predicate a simple hammock.

4.2.2. Dual-path Several design choices for dual-path processors were proposed [18, 15, 24, 1]. The dual-path processor we model fetches

instructions from two paths of a low confidence branch using a round-robin scheme. To give priority to the predicted path (since the branch

predictor is more likely to predict a correct direction), the processor fetches twice as many instructions from the predicted path as from the

other path [1]. This is accomplished by fetching from the other path every third cycle. The configuration of the confidence estimator is

optimized to maximize the benefit of dual-path (13-bit history, threshold 4). Most of the previous evaluations of dual-path processors increased

the fetch/rename/execution bandwidth to support two paths. However, in our model, the baseline, dynamic-hammock-predication, dual-path,

multipath, and DMP have the same amount of fetch/rename/execution bandwidth in order to provide fair comparisons.

4.2.3. Multipath The modeled multipath processor starts fetching from both paths every time it encounters a low-confidence branch, simi-

larly to PolyPath [24]. The maximum number of outstanding paths is 8, which we found to perform best among 4, 6, 8, 16, or 32 outstanding

paths. The processor fetches instructions from each outstanding path using a round-robin scheme.

4.2.4. Limited Software Predication Since the Alpha ISA does not support full predication, we model limited software predication 10

with the following modifications in the DMP mechanism: (1) a diverge branch is always (i.e. statically) converted into predicated code and

eliminated from the program, (2) only simple and nested hammocks are converted into predicate code, (3) all basic blocks (instructions) between

10we call it limited software predication, because our software predication does not model compiler’s optimization effect on if-conversion
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a diverge branch and the CFM point of the branch are fetched/predicated, (4) there is no branch misprediction between the diverge branch and

the CFM point since all blocks are predicated, (5) a select-uop mechanism [44] (similarly to DMP) is employed so that predicated instructions

can be executed before the predicate value is ready.

4.2.5. Wish Branches We model wish branches similarly to limited software predication except that: (1) the processor decides whether or

not to predicate based on the confidence of branch prediction (same as in DMP), (2) the processor can predicate not only simple and nested

hammocks but also loop branches, (3) a wish branch is not eliminated from the program.

4.3. Power Model

We incorporated the Wattch infrastructure [5] into our cycle-accurate simulator. The power model is based on 100nm technology. The

frequency we assume is 4GHz for the baseline processor and 1.5GHz for the less aggressive processor. We use the aggressive CC3 clock-gating

model in Wattch: unused units dissipate only 10% of their maximum power when they are not accessed [5]. All additional structures and

instructions required by DMP are faithfully accounted for in the power model: the confidence estimator, one more RAT/RAS/GHR, select-µop

generation/execution logic, additional microcode fields to support select-µops, additional fields in the BTB to mark diverge branches and to

cache CFM points, predicate and CFM registers, and modifications to handle load-store forwarding and instruction retirement. Forking of tables

and insertion of select-µops are modeled by increasing the dynamic access counters for every relevant structure.

4.4. Compiler Support for Diverge Branch and CFM Point Selection

Diverge branch and CFM point candidates are determined based on a combination of CFG analysis and profiling. Simple hammocks,

nested hammocks, and loops are found by the compiler using CFG analysis. To determine frequently-hammocks, the compiler finds CFM

point candidates (i.e. post-dominators) considering the portions of a program’s control-flow graph that are executed during the profiling run. A

branch in a suitable CFG is marked as a possible diverge branch if it is responsible for at least 0.1% of the total number of mispredictions during

profiling. A CFM point candidate is selected as a CFM point if it is reached from a diverge branch for at least 30% of the dynamic instances of

the branch during the profiling run and if it is within 120 static instructions from the diverge branch. The thresholds used in compiler heuristics

are determined experimentally. We used the train input sets to collect profiling information.

5. Results
5.1. Performance of the Diverge-Merge Processor

Figure 6 shows the performance improvement of dynamic-hammock-predication, dual-path, multipath, and DMP over the baseline proces-

sor. The average IPC improvement over all benchmarks is 3.5% for dynamic-hammock-predication, 4.8% for dual-path, 8.8% for multipath,11

and 19.3% for DMP. DMP improves the IPC by more than 20% on vpr (58%), mcf (47%), parser (26%), twolf (31%), compress (23%), and

ijpeg (25%). A significant portion (more than 60%) of branch mispredictions in these benchmarks is due to branches that can be dynamically

predicated by DMP as was shown in Figure 5. Mcf shows additional performance benefit due to the prefetching effect caused by predicated-

FALSE instructions. In bzip2, even though 87% of mispredictions are due to frequently-hammocks, DMP improves IPC by only 12.2% over

the baseline. Most frequently-hammocks in bzip2 have more than one CFM point and the run-time heuristic used by DMP to decide which

CFM point to use for dynamic predication (Section 3.3) does not work well for bzip2.

Dynamic-hammock-predication provides over 10% performance improvement on vpr and twolf because a relatively large portion of mis-

predictions is due to simple hammocks. The performance benefit of dual-path is higher than that of dynamic-hammock-predication but much

11Klauser et al. [22] reported average 5% performance improvement for dynamic-hammock-predication, Farrens et al. [15] reported average 7% performance
improvement for dual-path (with extra execution resources to support dual-path), and Klauser and Grunwald [23] reported average 9.3% performance improve-
ment for PolyPath (multipath) with a round-robin fetch scheme. The differences between their and our results are due to different branch predictors, machine
configurations, and benchmarks. Our baseline branch predictor is much more accurate than those in previous work.
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Figure 6. Performance improvement provided by DMP vs. dynamic-hammock-predication, dual-path, and multipath execution
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Figure 7. Fetched wrong-path instructions per entry into dynamic-predication/dual-path mode (i.e. per low-confidence branch)

less than that of DMP, even though dual-path is applicable to any kind of CFG. This is due to two reasons. First, dual-path fetches a larger

number of instructions from the wrong path compared to dynamic-hammock-predication and DMP, as was shown in Table 1. Figure 7 shows

the average number of fetched wrong-path instructions per each entry into dynamic-predication/dual-path mode in the different processors. On

average, dual-path fetches 134 wrong-path instructions, which is much higher than 4 for dynamic-hammock-predication, and 20 for DMP (note

that this overhead is incurred even if the low-confidence branch turns out to be correctly predicted). Second, dual-path is applicable to one

low-confidence branch at a time. While a dual-path processor is fetching from two paths, it cannot perform dual-path execution for another

low-confidence branch. However, DMP can diverge again if another low confidence diverge branch is encountered after the processor has

reached the CFM point of a previous diverge branch and exited dpred-mode. For this reason, we found that dual-path cannot reduce as many

pipeline flushes due to branch mispredictions as DMP. As Figure 8 shows, dual-path reduces pipeline flushes by 18% whereas DMP reduces

them by 38%.

Multipath performs better than or similarly to DMP on gzip, gcc, and go. In these benchmarks more than 40% of branch mispredictions are

due to non-merging control flow that cannot be predicated by DMP but can be eliminated by multipath. Multipath also performs better than dual-

path execution on average because it is applicable to multiple outstanding low-confidence branches. On average, multipath reduces pipeline

flushes by 40%, similarly to DMP. However, because multipath has very high overhead (200 wrong-path instructions per low-confidence branch,

as shown in Figure 7), its average performance improvement is much less than that of DMP.
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Figure 8. % reduction in pipeline flushes

5.2. Comparisons with Software Predication and Wish Branches

Figure 9 shows the execution time reduction over the baseline for limited software predication12 and wish branches. Since the number

of executed instructions is different in limited software predication and wish branches, we use the execution time metric for performance

comparisons. Overall, limited software predication reduces execution time by 3.8%,wish branches by 6.4%, and DMP by 13.0%. In most

benchmarks, wish branches perform better than predication because they can selectively enable predicated execution at run-time, thereby

reducing the overhead of predication. Wish branches perform significantly better than limited software predication on vpr, parser, and ijpeg

because they can be applied to loop branches.
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Figure 9. DMP vs. limited software predication and wish branches

There are some differences between previous results [21] and our results in the benefit of software predication and wish branches. The

differences are due to the following: (1) our baseline processor already employs CMOVs which provide the performance benefit of predication

for very small basic blocks, (2) ISA differences (Alpha vs. IA-64), (3) in our model of software predication, there is no benefit due to compiler

optimizations that can be enabled with larger basic blocks in predicated code, (4) since wish branches dynamically reduce the overhead of

software predication, they allow larger code blocks to be predicated, but we could not model this effect because Alpha ISA/compiler does not

support predication.

Even though wish branches perform better than limited software predication, there is a large performance difference between wish branches

and DMP. The main reason is that DMP can predicate frequently-hammocks, the majority of mispredicted branches in many benchmarks as

shown in Figure 5. Only parser does not have many frequently-hammocks, so wish branches and DMP perform similarly for this benchmark.

12We call our software predication model “limited software predication” because we do not model compiler optimization effects enabled via if-conversion.
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Figure 10 shows the performance improvement of DMP over the baseline if DMP is allowed to dynamically predicate: (1) only simple ham-

mocks, (2) simple and nested hammocks, (3) simple, nested, frequently-hammocks, and (4) simple, nested, frequently-hammocks and loops.

There is a large performance provided by the predication of frequently-hammocks as they are the single largest cause of branch mispredictions.

Hence, DMP provides large performance improvements by enabling the predication of a wider range of CFGs than limited software predication

and wish branches.
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Figure 10. DMP performance when different CFG types are dynamically predicated

5.3. Analysis of the Performance Impact of Enhanced DMP Mechanisms

Figure 11 shows the performance improvement provided by the enhanced mechanisms in DMP. Single-cfm supports only a single CFM

point for each diverge branch without any enhancements. Single-cfm by itself provides 11.4% IPC improvement over the baseline processor.

Multiple-cfm supports more than one CFM point for each diverge branch as described in Section 3.3. Multiple-cfm increases the performance

benefit of DMP for most benchmarks because it increases the probability of reaching a CFM point in dpred-mode and, hence, the likelihood

of success of dynamic predication. Mcfm-counter supports multiple CFM points and also adopts the Counter Policy (Section 3.5). Counter

Policy improves performance significantly in twolf, compress, and go; three benchmarks that have a high fraction of large frequently-hammock

CFGs where the branch predictor sometimes deviates from the frequently executed paths. Mcfm-counter-yield also adopts the Yield Policy

(Section 3.5) to exit dpred-mode early, increasing the performance benefit of DMP to 19.3%. Yield Policy is beneficial for vpr, mcf, twolf,

compress, and go benchmarks. In these benchmarks, many diverge branches are control-flow dependent (i.e. nested) on other diverge branches,

and control-flow dependent diverge branches are more likely to be mispredicted.
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Figure 11. Performance impact of enhanced DMP mechanisms
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5.4. Sensitivity to Microarchitecture Parameters
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Figure 12. Performance comparison of DMP versus other paradigms on the less aggressive processor

5.4.1. Evaluation on the Less Aggressive Processor Figure 12 (left) shows the performance benefit for dynamic-hammock-

predication, dual-path, multipath, and DMP on the less aggressive baseline processor and Figure 12 (right) shows the execution time reduction

over the less aggressive baseline for limited software predication, wish branches, and DMP. Since the less aggressive processor incurs a smaller

penalty for a branch misprediction, improved branch handling has less performance potential than in the baseline processor. However, DMP

still provides 7.8% IPC improvement by reducing pipeline flushes by 30%, whereas dynamic-hammock-predication, dual-path and multipath

improve IPC by 1.6%, 1.5%, and 1.3% respectively. Limited software predication reduces execution time by 1.0%, wish branches by 2.9%, and

DMP by 5.7%.

5.4.2. Effect of a Different Branch Predictor We also evaluate DMP with a recently developed branch predictor, O-GEHL [36]. The

O-GEHL predictor requires a complex hashing mechanism to index the branch predictor tables, but it effectively increases the global branch

history length. As Figure 13 shows, replacing the baseline processor’s perceptron predictor with a more complex, 64KB O-GEHL branch

predictor (OGEHL-base) provides 13.8% performance improvement, which is smaller than the 19.3% performance improvement provided by

implementing diverge-merge processing (perceptron-DMP). Furthermore, using DMP with an O-GEHL predictor (OGEHL-DMP) improves

the average IPC by 13.3% over OGEHL-base and by 29% over our baseline processor. Hence, DMP still provides large performance benefits

when the baseline processor’s branch predictor is more complex and more accurate.
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Figure 13. DMP performance with different branch predictors

5.4.3. Effect of Confidence Estimator Size Figure 14 shows the performance of dynamic-hammock-predication, dual-path, multipath

and DMP with 512B, 2KB, 4KB, and 16KB confidence estimators and a perfect confidence estimator. Our baseline employs a 2KB enhanced
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JRS confidence estimator [19], which has 14% PVN (' accuracy) and 70% SPEC (' coverage) [17].13 Even with a 512-byte estimator, DMP

still provides 18.4% performance improvement. The benefit of dual-path/multipath increases significantly with a perfect estimator because dual-

path/multipath has very high overhead as shown in Figure 7, and a perfect confidence estimator eliminates the incurrence of this large overhead

for correctly-predicted branches. However, even with a perfect estimator, dual-path/multipath has less potential than DMP because (1) dual-path

is applicable to one low-confidence branch at a time (as explained previously in Section 5.1), (2) the overhead of dual-path/multipath is still

much higher than that of DMP for a low-confidence branch because dual-path/multipath executes the same instructions twice/multiple times

after a control-independent point in the program.
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Figure 14. Effect of confidence estimator size on performance

5.5. Power Analysis

Figure 15 (left) shows the average increase/reduction due to DMP in the number of fetched/executed instructions, maximum power, energy,

and energy-delay product compared to the baseline. Even though DMP has to fetch instructions from both paths of every dynamically predicated

branch, the total number of fetched instructions decreases by 23% because DMP reduces pipeline flushes and thus eliminates the fetch of many

wrong-path instructions. DMP executes 1% more instructions than the baseline due to the overhead of select-µops and predicated-FALSE

instructions.
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Figure 15. Power consumption comparison of DMP with the baseline processor (left) and less aggressive baseline processor (right)

Due to the extra hardware required to support DMP, maximum power consumption increases by 1.4%. However, because of the reduction

in fetched instructions, energy consumption is reduced by 9.0%. Moreover, energy-delay product decreases by 22.3% because of both the

performance improvement and energy reduction. Hence, although DMP increases hardware complexity, it actually increases energy-efficiency

13These numbers are actually lower than what was previously published [17] because our baseline branch predictor uses a different algorithm and has a much
higher prediction accuracy than that of [17].
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by reducing pipeline flushes due to branch mispredictions. DMP is an energy-efficient design even in the less aggressive processor configuration

as Figure 15 (right) shows.

Table 6. Power and energy comparison of different branch processing paradigms
Baseline processor Less aggressive baseline processor

DMP dyn-ham. dual-path multipath SW-pred wish br. DMP dyn-ham. dual-path multipath SW-pred wish br.
Max power ∆ 1.4% 1.1% 1.2% 6.5% 0.1% 0.4% 0.9% 0.8% 0.8% 4.3% 0.1% 0.4%

Energy ∆ -9.0% -0.7% -2.2% 4.7% -1.5% -2.9% -5.6% -0.8% 1.1% 3.7% -0.1% -1.5%
Energy × Delay ∆ -22.3% -0.9% -7.0% -4.3% -1.8% -6.1% -9.7% -0.5% 0.5% 2.2% 1.2% -2.1%

Table 6 provides a power/energy comparison of the branch processing paradigms. DMP reduces energy consumption and energy-delay

product much more than other approaches while it increases the maximum power requirements slightly more than the most relevant hard-

ware techniques (dynamic-hammock-predication and dual-path). Note that multipath significantly increases both maximum power and energy

consumption due to the extra hardware to support many outstanding paths.

6. Related Work
6.1. Related Work on Predication

Software predication has been studied intensively to reduce the branch misprediction penalty [27, 32, 43, 6] and to increase instruction-level

parallelism [2]. However, in a real IA-64 implementation, predicated execution was found to provide a small (2%) performance improve-

ment [9]. This small performance gain is due to the overhead and limitations of compile-time predication (described in Section 1), which

sometimes offset the benefit of reducing the pipeline flushes due to branch mispredictions. Kim et al. [21] proposed wish branches to re-

duce the overhead of software predication by combining conditional branching and predication. DMP can predicate a larger set of CFGs than

wish branches and it overcomes the major disadvantage of wish-branches: the requirement for a predicated ISA. Klauser et al. [22] proposed

dynamic-hammock-predication for predicating only simple hammocks without support for predicated instructions in the ISA. DMP builds

on dynamic-hammock-predication, but can predicate a much larger set of CFGs. Hence, as we showed in Section 5, DMP provides better

performance and better energy efficiency.

Hyperblock formation [28] predicates frequently executed basic blocks based on profiling data, and it can predicate more complex CFGs

than nested hammocks by tail duplication and loop peeling. The benefits of hyperblocks are that they increase the compiler’s scope for code

optimization and instruction scheduling (by enlarging basic blocks) in VLIW processors and they reduce branch mispredictions [27]. Unlike

DMP, hyperblocks still require a predicated ISA, incur the overhead of software predication, are not adaptive to run-time changes in frequently

executed control flow paths, and increase the code size [37].

6.2. Related Work on Dual-/Multi-path Execution

Heil and Smith [18] and Farrens et al. [15] proposed selective/limited dual path execution mechanisms. As we showed in Section 5, dual-

path execution does not provide a performance improvement as significant as that of DMP because dual-path execution always wastes half of

the fetch/execution resources even after a control-independent point in the program.

Selective eager execution (PolyPath) was proposed by Klauser et al. [24] as an implementation of multipath execution [33]. Multipath

execution requires more hardware cost and complexity (e.g. multiple RATs/PCs/GHRs/RASs, logic to generate/manage path IDs/tags for

multiple paths, logic to selectively flush the wrong paths, and more complex store-load forwarding logic that can support multiple outstanding

paths) than DMP to keep multiple paths in the instruction window. As we have shown in Section 5.5, multipath execution significantly increases

maximum power and energy consumption without providing as large performance improvements as that of DMP.
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6.3. Related Work on Control Flow Independence

Several hardware mechanisms were proposed to exploit control flow independence [34, 35, 11, 8, 16]. These techniques aim to avoid

flushing the processor pipeline if the processor is known to be at a control-independent point in the program when a mispredicted branch is

resolved. In contrast to DMP, they require complex hardware to remove the control-dependent wrong-path instructions from the processor

and to insert the control-dependent correct-path instructions into the pipeline after a branch misprediction. Hardware is also required to form

correct data dependencies for the inserted correct path instructions. Furthermore, control-independent instructions that are data-dependent on

the inserted or removed instructions have to be re-scheduled and re-executed with the correct data dependencies and after the processor finishes

fetching and renaming the new inserted instructions. The logic required for ensuring correct data dependencies for both control-dependent and

control-independent instructions is complicated as Rotenberg et al. pointed out [34].

Collins et al. [12] introduced dynamic reconvergence prediction, a hardware-based technique to identify control reconvergence points (i.e.

our CFM points) without compiler support. This technique can be combined with DMP (so that CFM points are discovered at run-time rather

than compile-time) and any of the mechanisms that exploit control-flow independence.

7. Conclusion and Future Work
This paper proposed the diverge-merge processor (DMP) as an efficient architecture for compiler-assisted dynamic predicated execution.

DMP dynamically predicates hard-to-predict instances of statically-selected diverge branches. The major contributions of the diverge-merge

processing concept are:

1. DMP enables the dynamic predication of branches that result in complex control-flow graphs rather than limiting dynamic predication to

simple hammock branches. The key insight is that most control-flow graphs look and behave like simple hammock (if-else) structures

when only frequently executed paths in the graphs are considered. Therefore, DMP can eliminate branch mispredictions due to a much

larger set of branches than previous predication techniques such as software predication and dynamic hammock predication.

2. DMP concurrently overcomes the three major limitations of software predication (described in Section 1).

3. DMP eliminates branch misprediction flushes much more efficiently (i.e. with less instruction execution overhead) than alternative

approaches, especially dual-path and multipath execution (as shown in Table 1 and Figure 7).

Our results show that DMP outperforms an aggressive baseline processor with a very large branch predictor by 19.3% while consuming

9.0% less energy. Furthermore, DMP provides higher performance and better energy-efficiency than dynamic hammock predication, dual-

path/multipath execution, software predication, and wish branches.

The proposed DMP mechanism still requires some ISA support. A cost-efficient hardware mechanism to detect diverge branches and

CFM points at run-time would eliminate the need to change the ISA. Developing such mechanisms is part of our future work. The results

presented in this paper are based on our initial implementation of DMP using relatively simple compiler and hardware heuristics/algorithms.

The performance improvement provided by DMP can be increased further by future research aimed at improving these techniques. On the

compiler side, better heuristics and profiling techniques can be developed to select diverge branches and CFM points. On the hardware side,

better confidence estimators are worthy of research since they critically affect the performance benefit of dynamic predication.
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