
Demand-Only Broadcast: Reducing Register File and Bypass Power
in Clustered Execution Cores

Mary D. Brown and Yale N. Patt

High Performance Systems Group
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas 78712-0240

TR-HPS-2004-001
May, 2004

Demand-Only Broadcast: Reducing Register File and Bypass Power
in Clustered Execution Cores

Mary D. Brown Yale N. Patt

Electrical and Computer Engineering
The University of Texas at Austin�

mbrown,patt � @ece.utexas.edu

Abstract

The register file and result bypass network are large sources of power consumption in high-performance
processors. This paper introduces a technique called Demand-Only Broadcast that reduces the power con-
sumption of these structures in a clustered execution core. With this technique, an instruction’s result is only
broadcast to remote clusters if it is needed by dependants in those clusters. Demand-Only Broadcast was eval-
uated using a performance–power simulator of a high-performance clustered processor which already employs
techniques for reducing register file and instruction window power. By eliminating 59% of the register file writes
and data bypasses, the total processor power consumption (including the hardware needed by this mechanism)
is reduced by 10%, while having less than a 1% impact on performance.

Previously published techniques for prohibiting inter-cluster result broadcast in clustered execution cores
use a partitioned physical register file (vs. a replicated register file) to reduce area and access time. Register
values are forwarded between clusters using dedicated hardware or copy instructions. Copy instructions could
be inserted either dynamically by hardware or statically by the compiler. These instructions lower IPC because
they take window space, register file ports, and scheduling resources away from real instructions performing
useful work. This paper compares Demand-Only Broadcast to a previously proposed clustered architecture
which has a partitioned physical register file with the same access latency as the Demand-Only physical register
file, and twice as many scheduling window entries as the Demand-Only processor. Demand-Only Broadcast
reduces the number of copy instructions by a factor of 13, and results in a 10% higher IPC and 4% lower power
consumption than the processor with a partitioned register file.

1. Introduction

Many high-performance processors use large instruction windows to exploit instruction-level parallelism. Be-

cause a large window has a long access latency, the window may be partitioned into clusters to reduce the minimum

access latency. Clustering reduces the minimum communication delays while potentially increasing the worst-case

communication delays. By placing dependent instructions in the same cluster, most of the worst-case communi-

cation delays can be avoided, resulting in an overall performance improvement. Clustering the execution core

does not necessarily reduce power dissipation, however, because many structures may be replicated in each clus-

ter. This paper investigates the power and performance of clustered execution cores and introduces Demand-Only

Broadcast, a technique for reducing the power consumption in a clustered execution core.

Some clustered microarchitectures, such as the Alpha 21264 [8], replicate the physical register file in order to

reduce its access latency. By duplicating the register file and cutting the number of read ports to each copy in

1

half, the area, and thus the access latency, is reduced. Another advantage of duplicating the register file is that by

placing one copy in each cluster in close close proximity to the cluster’s functional units, the time between register

file access and execution may be reduced.

In a processor with a replicated register file, an instruction’s result must be broadcast to all clusters, even though

it may never be needed in some clusters. With Demand-Only Broadcast, a producer instruction’s result is only

broadcast to the functional units and register file in a remote cluster if the instruction has a consumer in that cluster

at the time that the producer’s tag is broadcast to that cluster. The power consumption of the register file and

bypass network can be significantly reduced by limiting the number of remote-cluster broadcasts and register file

writes. If a consumer is fetched and issued to a remote cluster after the producer executed and the producer’s result

was not written to the remote cluster, then a copy instruction must be inserted to broadcast the producer’s result to

the remote cluster.

This paper evaluates the power and performance of Demand-Only Broadcast in a 4-cluster processor capable

of executing up to 16 instructions per cycle. When compared to a baseline clustered processor with a replicated

register file, Demand-Only Broadcast reduces the number of register file writes and tag broadcasts by 59%. While

both of these models have the same register file latency, the total power consumption is reduced by 13% while

having less than a 1% impact on IPC.

We also evaluate our baseline and Demand-Only models when using banked register files to reduce the access

latency and power, and compare the processors with banked register files to another clustered processor that

uses a partitioned register file to reduce latency and power. While holding the cycle time constant, Demand-

Only Broadcast has an IPC within 1% of the IPC of the baseline processor with the banked register file, and 8%

above the processor with a partitioned register file. Using Demand-Only Broadcast reduces total processor power

consumption by 10% compared to just using a banked register file, and the power consumption with Demand-Only

Broadcast is 4% lower than that of the processor with a partitioned register file.

Section 2 discusses related clustering techniques which limit result broadcast. Section 3 explains the baseline

processor which is used to evaluate Demand-Only Broadcast, and Section 4 describes its implementation. Sec-

tions 5 and 6 explain the experimental framework in which the processor models are evaluated and the results, and

Section 7 concludes.

2. Related Work

Several processor paradigms have sought to decentralize the execution core and limit the communication be-

tween clusters. We will limit our discussion to microarchitectures which implement sequential ISAs [15].

2

2.1. Multiscalar Processors

In the Multiscalar processing paradigm [17], a program’s instruction stream is divided into tasks which are

executed concurrently on several processing units. Each processing unit contains its own physical register file.

Because there may be data dependences between the tasks, the processor must support register result forwarding

and memory dependence detection between the processing units. Because each task is a contiguous portion of a

program’s dynamic instruction stream, only the live-out register values from a task must be forwarded to successive

tasks executing on other processing units. The compiler can identify the instructions that may produce live-out

register values, and inserts instructions called release instructions into the code indicating that the values may be

forwarded to other processing units.

2.2. Clustered Microarchitectures

There are several microarchitectures which use a centralized instruction fetch unit but send instructions to one

of several execution clusters based on data dependencies. One example which uses a centralized register file is

the PEWs [10] (Parallel Execution Windows) microarchitecture. A PEWs processor contains several execution

windows that are connected in a ring. Buffers between each adjacent pew hold register values that need to be

broadcast to other pews. Only one value can be forwarded between adjacent pews per cycle. Demand-Only

Broadcast, however, does not require forwarding buffers and does not place any restrictions on the number of

values forwarded per cycle.

In the Multicluster Architecture [6], the physical register file, scheduling window, and functional units are

partitioned into clusters. Each cluster is assigned a subset of the architectural registers. If an instruction’s register

operands must be read from or written to more than one cluster, copies of the instruction must be inserted into

more than one cluster. These extra instructions must contend with regular instructions for scheduling window

write ports, register file ports, execution cycles, and space within the instruction window. Hence they may lower

IPC, although the Multicluster paradigm benefits from a higher clock frequency compared to a centralized core.

In the architecture described by Canal, Parcerisa, and González [5, 13], each cluster contains a partition of

the physical register file and scheduling window, as well as a subset of the functional units. While dependent

instructions within the same cluster can execute in back-to-back cycles, inter-cluster forwarding takes two or more

cycles. Instructions write their register results only to the partition of the physical register file in their local cluster.

If an instruction needs a source operand that resides in a remote cluster, a special copy instruction must be inserted

into the remote cluster. Only copy instructions may forward register values between clusters. By limiting the

number of copy instructions that can be executed in a cycle, the number of register file write ports and global

3

bypass paths can be reduced. This will reduce the register file and scheduling window access times and increase

the clock frequency. Furthermore, since the entire register file is not replicated across clusters, each partition can

have fewer entries than if the entire register file were replicated, which further reduces the register file access time.

However, as with the Multicluster paradigm, the copy instructions may lower IPC.

The clustered architecture described by Zyuban and Kogge [21] also uses a partitioned physical register file.

However, rather than using copy instructions to broadcast results, dedicated hardware is used to support copy

operations. Each cluster has a scheduling window for determining when values are ready to be copied to another

cluster. This window is similar to a traditional scheduling window except that it may be smaller, and only 1 source

is needed per operation, while real instructions may have 2 (or more) operands. Each cluster also has a CAM

to hold results that were broadcast from other clusters, rather than using extra physical register file entries as in

the architecture described by Canal, Parcerisa, and González. Their technique assumes that a regular instruction

can wake up, arbitrate for execution, and broadcast its tag to a copy operation which then wakes up, arbitrates

for execution, and broadcasts its tag to a dependent instruction in another cluster, all within one clock cycle.

Demand-Only Broadcast does not add any additional latency to the scheduling logic.

3. Processor Overview

The baseline processor used for this paper is a 15-stage superscalar processor with an execution core partitioned

into 4 clusters, each capable of executing 4 instructions per cycle. The pipeline is shown in Figure 1. The dark lines

separate the in-order and out-of-order stages of the pipeline, and the shaded stages denote the operations that are

local to each cluster. Each cluster holds one fourth of the scheduling window entries, and like the Alpha 21264 [8],

each cluster contains a copy of the physical register file. Figure 2(a) shows an overview of the execution core.

Instructions are fetched and decoded in the first 4 cycles. In the next 6 cycles, instructions are renamed, steered to

a cluster, and issued1. The renaming logic maps an instruction’s architectural source registers to physical registers.

After the instruction’s source registers have been renamed, the instruction is steered to a cluster and its destination

register is assigned a physical register. The steering mechanism will be described in more detail in Section 3.3.

After instructions are steered to a particular cluster, they are issued (i.e. inserted into the cluster’s scheduling

window). The issue operation is discussed in Section 3.2. After an instruction becomes ready and is selected for

execution, it reads the register file and then executes. The scheduling logic is discussed in Section 3.1.

Figure 2(b) shows the contents of one cluster. Each cluster contains a Busy-Bit Table [19], the scheduling

window and scheduling logic, a copy of the register file, four functional units, and bypass logic for both data

and tags. While our simulation model assumes all-purpose functional units, Demand-Only broadcast can be

1In this paper, issue means insert into a scheduling window.

4

DEP ANL/
STEER

DEP ANL/
STEER

DEP ANL/
STEER

DEP ANL/
STEER

FETCH FETCH DEC DEC

WAKEUP/
SELECT

RF READ RF READ EXEC RETIREISSUE
ROUTING
DELAY

Figure 1. pipeline

generalized for processors with special-purpose functional units.

Because it takes one cycle to forward data across one cluster, there will be 1 cycle bubble between the execution

of an instruction in cluster 0 and a dependant in cluster 1; there will be 2 bubbles between the execution of an

instruction in cluster 0 and a dependant in cluster 2; and so on. The data cache is replicated in order to reduce the

number of read ports and hence load access latency. Stores must write data to both copies, but loads read from

only the closest cache.

C
L

U
ST

E
R

 3

C
L

U
ST

E
R

 2

C
L

U
ST

E
R

 1

C
L

U
ST

E
R

 0

DCACHE DCACHE

(copy 0) (copy 1)

STEER

RENAME,

DECODE,

FETCH

ICACHE

(a) Execution Core

(copy)
TABLE

SCHED

muxes

FU 0

FU 1

FU 3

inter−

Busy−Bit

bypass

result

tagsWINDOW

BUSY−BIT

inter−
cluster
latches

cluster

latches

FU 2

SELECT

latches

inter−cluster

tag broadcast

result broadcast
inter−cluster

REGISTER FILE (copy)

(b) One Cluster

Figure 2. Execution Core and Cluster Overview

3.1. Scheduling Operation

The scheduling logic uses conventional wakeup and select logic described by Palacharla, Jouppi, and Smith [12].

The scheduling window holds instructions that are waiting to execute. Each entry holds the physical register num-

bers (SRC TAG) and Ready (R) bits for an instruction’s source operands. A portion of one entry is shown in

5

Figure 3. An instruction’s Ready bits are set when its source operands’ tags have been broadcast, and it requests

execution after all of its Ready bits are set. The Destination Tag Array holds the destination physical register num-

ber for each instruction in the window. When an instruction is selected for execution, the select logic accesses the

portion of the window holding the destination tags to broadcast the instruction’s destination tag to the scheduling

window. The instruction is deallocated from the scheduling window after it executes.

= OR

=

RSRC TAG 2

= OR

SRC TAG 1 DEST TAG

Tag 1
Destination Tag Buses

=

R

Tag 16

LOGIC
SELECT

Request

Execution

iEntry

Figure 3. One Scheduling Window Entry

The number of entries in the scheduling window is half the number of entries in the instruction window (i.e. the

maximum number of issued but non-retired instructions). Our simulations showed that using more entries (up to as

many as the instruction window will allow) improved IPC by less than 2%, but the IPC started to drop rapidly when

the size was further decreased. To save power, the scheduling window is non-compacting – that is, instructions

stay in the same location for the duration of the time they are in the window. While oldest-first selection logic is

not used, previous work has shown that the selection priority has little effect on IPC [4]. Since an instruction’s

consumers may reside in any cluster, it broadcasts its destination tag and result to its local cluster in addition to all

other clusters. Because instructions are scheduled for execution several cycles before they execute, their tags are

broadcast several cycles before their data is broadcast.

3.2. Instruction Issue

When an instruction is first placed into the scheduling window, it must know if its source operands are ready.

The Busy-Bit Table (BBT) is used to determine this. This table, which is indexed by physical register number,

indicates which instructions have already broadcast their destination tags to the local cluster. When an instruction

is issued, it reads the BBT entries corresponding to the physical registers of its source operands, as well as the tag

buses. If the BBT entry of a source operand is set or its tag is broadcast in that cycle, then the instruction sets

6

the Ready bit of that source operand. If the BBT entry is clear and the tag is not broadcast in that cycle, then the

Ready bit of that source operand is not set.

Each cluster has its own copy of the BBT because different clusters will receive an instruction’s tag broadcast

in different cycles. The BBT has two read ports for every instruction that can be issued to the local scheduling

window in a given cycle. Since up to 16 instructions may broadcast their tag in a given cycle, 16 bits of the table

may be set in a given cycle. Since up to 16 new issued instructions are assigned physical destination registers each

cycle, 16 bits may be cleared in a cycle. Any arbitrary number of bits may be cleared in the event of a branch

misprediction. For the purposes of measuring the power consumption of the BBT, we assume just two additional

wordlines are needed per bit to support the setting and clearing operations. The physical register numbers for each

instruction are decoded and ORed together before updating the BBT.

Since up to four instructions may execute in a given cluster in one cycle, each copy of the physical register file

has 8 read ports (two per instruction). In our baseline, the register file has 16 write ports, although Section 3.4 will

discuss how the number of write wordlines is reduced.

3.3. Instruction Steering

The performance of a clustered processor is sensitive to the steering mechanism used [2, 13]. Most steering

algorithms try to address two adverse goals: (1) minimizing inter-cluster communication and (2) load balancing

in order to effectively use all of the processor’s resources. We have experimented with using combinations of

several heuristics including Modulo-N [2, 5], dependence-based [12], predicted Last-Source-Ready [18], and the

DCOUNT threshold [13]. With the Modulo-N heuristic, the first N instructions in program order are assigned to

cluster 0, the next N instructions are assigned to cluster 1, and so on. With dependence-based steering, instructions

are steered to the clusters which hold their source operands. Predicted Last-Source-Ready is a form of dependence-

based steering in which, if an instruction has two source operands, it is steered to the cluster of the source operand

that is predicted to be available last. The DCOUNT metric is a function of a processor’s load imbalance. If this

metric exceeds a threshold, then a load-balancing heuristic overrides a dependence-based heuristic.

Our baseline processor limits the number of instructions that can be written into a given cluster in one cycle.

This steering limitation reduces the number of write ports to the scheduling window (thus reducing scheduling

latency and power) and also serves to load-balance the clusters. When limiting the number of write ports to four or

six per cluster, additional load-balancing heuristics such as DCOUNT did not improve IPC for either our baseline

processor or the other processors discussed in Section 5.

For this paper, we use a dependence-based steering algorithm. An instruction’s cluster preference is the cluster

7

which holds its register source operand. If an instruction has two operands, the first is used by default.2 If it has

no source operands, its cluster preference is assigned according to a Modulo-4 heuristic. This algorithm, while

not optimal, performed the best of all of the viable steering heuristics we studied on all of the models discussed

in Section 5. The cluster containing the source operand is identified by an additional 2 bits in the Register Alias

Table of the processor without the banked register file, and by the most significant two bits of the physical register

number in the processor with the banked register file. The steering logic also keeps track of the number of free

scheduling window ports and entries (and physical register file entries in the case of the banked register file). If

any of these resources are not available in the desired cluster, the instruction is steered to the closest cluster.

We also examined the effects of stalling issue if an instruction could not be placed with its source operand

because of one of the necessary resources (i.e. a port or a window slot) was unavailable. Stalling issue because

of unavailable scheduling window write ports severely hurt IPC in all of the SPECint2000 benchmarks. Stalling

because of a full window or register file helped slightly in a few benchmarks, but for the average of the suite, IPC

was lowered. Hence our steering logic does not stall issue unless an instruction cannot be placed in any cluster.

3.4. A Banked Register File

In this paper, we evaluate Demand-Only Broadcast using the baseline machine described above, as well as with

a machine with a banked register file. In both models, the register file is replicated in all four clusters.

For this paper, we have chosen just one method of register file banking, although Demand-Only Broadcast can

be used with other types of banked register files as well[1]. The method we use is similar to the Register Write

Specialization first described by Seznec et al [16]. This paper will provide an overview of the method.

Although potentially 16 instructions can write back to each register file in a given cycle, the register file is

divided into four banks in order to reduce the number of write ports. All instructions residing in a given cluster

will write to the same bank, and no other instructions will write to that bank. For example, in our baseline

configuration there are 512 physical registers. All instructions in the first cluster are assigned a physical register

number between 0 and 127; all instructions in the second cluster are assigned a physical register number between

128 and 255, and so on. Because only four instructions from each cluster may execute in a cycle, only four write

wordlines will be needed for each bank. All four banks are stacked vertically, which means that the width of the

register file is still determined by the total number of write and read ports: 16 and 8, respectively. The height of the

banked register file is reduced because each bit cell has only 4 write wordlines rather than the 16 that are needed in

2For instructions with two source operands, random operand selection and Last-Source-Ready prediction did not significantly improve
IPC. Knowledge of whether or not a source operand was “Ready” would further complicate the steering logic, and it would require adding
additional ports to the BBTs.

8

the unified register file. As in the baseline, instructions must still write their results to all four copies of the register

file. Using a banked register file adds an additional constraint on cluster assignment: if all physical registers in

a particular bank have been allocated, no instructions may be steered to that cluster, even if there is room in the

scheduling window. Our simulations show that this style of register file banking affects IPC by less than 1% while

greatly reducing the power consumption and/or access latency.

4. Demand-Only Broadcast Implementation

When using Demand-Only Broadcast, an instruction does not broadcast its result to the register file and func-

tional units in another cluster unless that cluster holds a consumer when the instruction’s tag is broadcast. Each

cluster keeps track of which physical registers are needed by instructions within the cluster. The Busy-Bit Table is

extended to hold this information. Rather than just 1 bit for each entry, there are two: the “Broadcast bit” indicates

if the tag has been broadcast, and the “Use bit” indicates if there are any instructions within the cluster requiring

that physical register.

When an instruction is first placed into the cluster, it reads the BBT entries corresponding to its source operands

as the baseline does. The Broadcast bits indicate if the source operands’ tags have been broadcast, and the Use bits

indicate if there are older instructions in the same cluster requiring the results of those instructions. The instruction

sets the Use bits of those entries as well as the Use bit for the entry of its own destination physical register number.

When an instruction broadcasts its tag to a cluster, it sets the Broadcast bit for that instruction’s destination

register, just as in the baseline machine. Additionally, it reads out the value of the Use bit. If the Use bit is set, the

instruction’s result will be broadcast to the register file and functional units in this cluster. If the Use bit is not set,

the broadcast will be blocked.

Normally, the instruction’s data would be broadcast N cycles after its tag is broadcast (assuming N is the number

of pipeline stages between the scheduling logic and the final execution stage). When the Use bit is read, it will

enable the latch for the data result bus N cycles later. Because the value of N is generally at least as long as the

minimum number of cycles for the register file access plus execution (5 cycles in the Intel Pentium 4 [9]), there is

plenty of time to set the controls to gate the data broadcast and prevent the register file write.

Table 1 gives an example in which an instruction A in Cluster 0 produces a value needed by instruction B,

which is issued to Cluster 3. In this example, an instruction’s result is broadcast 2 cycles after its destination tag.

BBT-0[A] refers to the entry of the Busy-Bit Table in Cluster 0 corresponding to A’s destination register, and

BBT-3[A] refers to A’s entry in the Busy-Bit Table in Cluster 3. In cycle 2, instruction B is issued to Cluster 3,

and it reads and updates the BBT entry for instruction A, and it sets the Use bit for its own entry. In cycle 3, A’s tag

is broadcast to Cluster 3. By this time, BBT-3[A].use has been set, so A’s result will be broadcast 2 cycles later.

9

Cycle Initial state: A is in Cluster 0’s scheduling window.
BBT-0[A].use = 1.

0 A is selected and broadcasts tag to Cluster 0.
Set BBT-0[A].broadcast = 1.

2 A’s data is broadcast to Cluster 0.
B is issued to Cluster 3. Set BBT-3[A].use = 1.

3 A’s tag is broadcast to Cluster 3. Set BBT-3[A].broadcast to 1.
BBT-3[A].use was 1, so don’t block broadcast. B wakes up.

4 B is selected.

Table 1. Timing for an inter-cluster broadcast.

4.1. Copy Instructions

When an instruction is first issued, the instruction producing its source operand may have already executed, and

failed to write its result to the register file. This would have happened in the example above if instruction B were

issued after cycle 3. In this situation, a copy instruction will be required to re-broadcast the result. The broadcast

instruction will be inserted into the cluster that produced the source operand (although it could actually be inserted

into any cluster that didn’t block the broadcast). The copy instruction will read the register file and re-broadcast

the physical register destination tag and the data, similar to a MOVE instruction with the same physical source and

destination register.

In order to detect if a copy instruction is needed, when an instruction is first issued and reads the BBT entry of

its source operand, it must read out the old value before it is set, like a scoreboard. If the Use bit is clear and the

Broadcast bit is set, then a copy instruction must be inserted.

Insertion of Copy Instructions

Each cluster creates a bit-vector specifying which physical registers require copy instructions to re-broadcast the

data. All instructions issued to a cluster may set bits of its bit-vector. If an instruction reads a 1 for the Broadcast

bit and a 0 for the Use bit of one of its source operands, the corresponding bit of the bit-vector is set.

The bit vectors from all four clusters are ORed together to form the Copy Request Vector. This vector specifies

all physical registers requiring a copy instruction. The Copy Request Vector is later used by the steering logic

to insert copy instructions. Assuming all instructions could have at most 2 source operands, up to 32 bits of this

vector could be set each cycle if 16 instructions are issued per cycle. A priority circuit is used to pick up to four

physical registers per cluster for which to create copy instructions. The steering logic will then clear the selected

bits of this vector and insert copy instructions for the selected physical registers.

Copy instructions are not inserted until at least five cycles after the consumer instructions requiring the re-

broadcast have been issued. This 5-cycle delay is due partially to the fact that the steering logic may have already

10

begun to steer instructions that will be issued within the next 3 cycles, and we assume there is a 2-cycle delay

between the issue logic and the steering logic.

The example in Table 2 illustrates the copy insertion timing. When instruction A broadcasts its tag to Cluster

3, the Use bit of its BBT entry is clear, so its data broadcast will be blocked 2 cycles later. When instruction B is

issued to this cluster and reads the BBT, it must request a copy instruction because the Use bit of A’s BBT entry

was clear while its Broadcast bit was set. Instruction B then resets the Broadcast bit and sets the Use bit of this

entry. By cycle 6, a bit of the Copy Request Vector corresponding to A’s destination has been set and the steering

logic inserts a copy instruction. In cycle 9, the copy instruction is issued into cluster 0.

Cycle Initial: A is in Cluster 0.
BBT-0[A].use is 1, BBT-3[A].use is 0.

0 A is selected and broadcasts tag to Cluster 0.
BBT-0[A].broadcast = 1.

3 A’s tag broadcast to Cluster 3. Set BBT-3[A].broadcast.
Block result broadcast (2 cycles later).

4 B is issued to cluster 3. BBT-3[A].use = 1 and
BBT-3[A].broadcast = 0. Request copy.

6 CRV[A] is set.
9 Copy-A is issued (automatically awake) and selected for execution.
12 Copy-A broadcasts tag in Cluster 3; B wakes up.

Set BBT-3[A].broadcast.
13 B is selected and broadcasts its tag to Cluster 3.

Table 2. Timing for Copy Instruction Insertion.

Not only do copy instructions delay the execution of their dependants, but they may take resources away from

real instructions performing useful work. They occupy issue ports, possibly causing instructions in the renaming

stage to be stalled or steered to an undesired cluster. They will also occupy space in the scheduling window before

they are executed, although they do not remain in the window long because they are already “Ready” when they

are placed in the window. They may also prevent a real instruction from being selected for execution as soon as

possible, since copy instructions must be selected and access the physical register file like regular instructions. This

extra demand on the hardware resources may lower IPC and consume power. However, because copy instructions

are only inserted if an instruction’s source operand was steered to a different cluster and that operand was already

broadcast and it was not written to the local physical register file, copy instructions are rarely needed and impact

the IPC by less than 1%. Section 6 will show power and performance results.

5. Experimental Framework

We have measured the IPC and per-cycle power consumption for five processor models: the baseline processor

with a replicated, but not banked, register file (BASE-UNI), the baseline processor with a replicated, banked register

11

file (BASE-BANKED), processors which use Demand-Only broadcast with and without banked register files (DO-

BANKED and DO-UNI) and a model similar to the Parcerisa and González [13] paradigm which uses a partitioned

register file (PART). Section 5.1 will explain the model with the partitioned register file, and Section 5.2 will

discuss our power and performance simulators and provide more details about the machine models.

5.1. Partitioned Register File Model

The machine model with a partitioned register file is a 16-wide, 4-clustered microarchitecture just like the Base-

line. The fundamental difference is that the physical register file is partitioned rather than completely replicated,

with each cluster holding one fourth of the entries. When instructions execute, they broadcast their result only to

the cluster in which they reside. Likewise, when instructions are selected for execution, their destination tag is

only broadcast to the local cluster.

Copy instructions must be used to forward data from one cluster to another. Copy instructions are the only

instructions that broadcast tags and data from one cluster to another. By limiting the number of copy instructions

that can be executed, the number of register file write ports and data and tag buses can be reduced. Excluding

copy instructions, each cluster needs 4 tag buses and write ports, assuming only 4 instructions per cluster finish

execution per cycle. By assuming each cluster can execute at most 1 copy to each remote cluster per cycle, each

cluster will need a total of 7 write ports and buses: 4 for regular instructions and 3 for copy instructions. Like the

results reported by Parcerisa et al. [14], our simulations showed that adding more bypass buses and ports did not

significantly help IPC. However, further reduction in the number of ports would complicate the scheduling logic

because multiple clusters would have to arbitrate for the ports and buses.

When a copy instruction is executed, the value it is copying will be available in two physical registers in different

clusters. Since an architectural register may be valid in more than one cluster, the Register Alias Table keeps track

of up to four mappings for each architectural register. When an instruction retires, all valid physical register entries

belonging to the previous instance of the instruction’s architectural destination register must be deallocated.

In this paradigm, instructions do not need to read the BBT before determining if a copy instruction must be

inserted to receive a source operand. Instructions determine if a copy instruction is needed after they have been

assigned to a cluster. If an instruction is steered to a cluster which does not have a valid physical register mapping

for one of its source operands, then a copy instruction is needed. In order to avoid any bias towards the Demand-

Only model, we will assume that the PART model can issue a copy instruction in the same cycle as the instruction

requiring the copy. Note that this is an aggressive assumption because according to the steering algorithm used,

the subsequent instructions cannot be assigned to clusters until after the copy instruction and instruction requiring

12

the copy have been assigned to clusters. When the instruction is steered and updates its RAT entry, the RAT entry

of the register being copied is also updated to indicate that it has a valid mapping in the cluster to which the

dependent instruction was steered.

Because values may reside in more than one register file partition, each partition should have more than one

fourth of the physical register file entries that the Baseline model has in order to prevent the processor from running

out of physical register entries too frequently. We chose to use physical register file partitions with 224 entries.

This number was selected for two reasons: (1) it is scaled linearly from the configuration used by Parcerisa et

al. [14] (the 4-cluster model has 1.74 times as many entries as the 1-cluster model); (2) further decrease in the size

caused an IPC degradation in a few benchmarks, while further increase did not noticeably affect IPC.

The scheduling window in this model is smaller than in the other models because there are only 7 tag buses

per window rather than 16. The number of scheduling window entries was increased from 64 per cluster to 96

per cluster to account for the copy instructions. While the smaller window may allow the clock frequency to be

increased, we will assume the clock frequency remains constant in order to make a fair comarison of the power

consumption.

5.2. Power and Performance Models

Our simulator is a cycle-accurate, execution-driven processor which models mispredicted-path effects and ex-

ecutes the Alpha ISA. Our power model is based on the Wattch framework [3], although it has been heavily

modified to work with our processor simulator and accurately represent our processor models. The functions for

estimating the power of the basic processor building blocks (arrays, CAMS, some combinational logic and wires,

and clock distribution) are taken from Wattch, although the method of access counting has been modified. This

section discusses the major changes to Wattch.

First, most of the access counters have been changed from those present in the original Wattch framework. Our

model distinguishes between different types of accesses to many structures. For example, data cache reads and

writes do not consume equal amounts of power. The largest difference is due to the fact that the cache is duplicated

in order to reduce the access latency by halving the number of read ports to each copy. A write, from either a store

instruction or a cache-line fill, must update both copies of the cache.

In the register file, writes also have a disproportionate power dissipation compared to reads [20]. The primary

discrepancy is that conventional register file bit cells have two bit lines for each write port and one bit line for each

read port [7]. As a result, we model reads and writes as different types of accesses.

We have made some assumptions about the floorplanning of the execution core in order to model the power

13

dissipation of the result bypass network. Within each cluster, all functional units are stacked vertically as shown

in Figure 2 so that the data bitlines are interleaved. The register file sits directly above the functional units, muxes,

and the latches which hold data being read to and written from the register file, in addition to the data that was

broadcast from other clusters. The width of each cluster is a function of both functional unit area estimates [11]

as well as the maximum number of bitlines at any point in the datapath for wide-issue clusters. We conservatively

assume that this width is constrained by width of the register file. In the baseline configuration, the result bus from

each functional unit runs vertically within its own cluster to the register file write latch, as well as horizontally to

the other clusters and then vertically across all other stacks as well. In the model with the partitioned register file,

the result buses run to only the local physical register file and bypass muxes.

Some of the additional units in our power model not present in Wattch include a 32-entry Memory Request

Buffer that holds memory requests that miss in the L1 instruction and data caches (each entry supporting up to 4

piggy-backed instructions), multi-ported instruction and Level-2 caches (as well as a duplicated data cache), and

logic for inserting copy instructions. The processor configurations that are the same for all of our models are listed

in Table 3, and those that depend on the model are listed in Table 4. All of the units listed, as well as 15 pipeline

stages, were modeled with Wattch. A conditional clocking style similar to that of CC3 in Wattch is used: an

array’s power dissipation scales linearly with the number of ports used, except that all units dissipate at least 10%

of their maximum every cycle, even when they are not accessed or fewer than 10% of the ports are accessed.

Instruction Cache 64KB 4-way set associative, 64B line size
2 ports, 2-cycle directory and data access,

Branch Predictor hybrid 64K-entry gshare/PAs, 4096-entry 4-way BTB, 32-entry RAS
Decode, Rename, Steer 16 instructions per cycle, 6 cycles
Issue and Execution Width 16 general-purpose functional units
Data Cache 2 copies, 64KB, 4-way set associative, 64B line size

2 read ports, 2 write ports (per copy). 3-cycle loads
Instruction Window 512 instructions in-flight
Unified L2 Cache 1MB, 8-way, 64B lines, 10-cycle access

2 banks each with 1 read, 1 write port, contention is modeled
Main Memory 32 banks, 100 cycles access (minimum)

Table 3. Common Processor Configurations

6. Results

We have evaluated the five models with both 4 and 6 issue ports per cluster on the SPECint2000 benchmarks

using modified input sets to reduce simulation time. The average power estimates shown in this section are based

on “per-cycle” power estimates, although not all configurations may run with the same cycle time. Because

the BASE-UNI and DO-UNI models have larger register files, they may run with at a lower frequency than the

14

BASE-UNI BASE-BANKED DO-UNI DO-BANKED PART

PHYS. REG. FILE
entries, per cluster 512 512 512 512 384
entries, entire core 512 512 512 512 1536
write wordlines 16 4 16 4 7
write bitlines (dual rail) 16 16 16 16 7
read ports 8 8 8 8 8
SCHED WINDOW
num entries (per cluster) 64 64 64 64 128
tag buses 16 16 16 16 7
source tag size (bits) 9 9 9 9 9
RAT entry size (in bits) 11 9 11 9 40
BBT
num entries, per cluster 512 512 512 512 384
entry size (bits) 1 1 2 2 1
num decoders 40 40 40 40 31

Table 4. Model-Specific Processor Configurations (assuming 4 issue ports per cluster)

other models (assuming a non-pipelined register file). In addition, the configurations with 4 issue ports have

different scheduling window latencies than the configurations with 6 ports so they may run at different frequencies.

However, we show all per-cycle results within the same graph to save space.

The average per-cycle power dissipation for each model relative to the Baseline is shown in Figure 4. The

numbers at the top of each bar are the harmonic means of the IPC for that model. Each bar shows the contribution of

each of the processor units to the total processor power consumption. The components that are not directly affected

by our technique fall under the “other” category, although they may be indirectly affected by modifications in the

program behavior. The components are shown in the order listed in the graph’s legend. The bottom two categories

measure all dynamic power consumption due to result broadcasts and register file writes. The bottom category,

“Network Broadcast”, is the power consumption of the horizontal data buses running between the clusters. In

the Demand-Only models, all results are broadcast across the entire network bypass, although the PART model

only broadcasts the results of copy instructions across the network. The next component, “Cluster Broadcast”,

is the power consumption for broadcasting a result within a stack of functional units and writing this result back

to the register file. The power dissipation in this category is dominated by the register file write, not the bypass

buses. In the BASE-UNI model, the register file write accounts for about 85% of this component. The “PRF

Read” component includes all dynamic power consumption for the register file reads, in addition to the power

consumption when the register file is not accessed at all (i.e. the “turnoff” power). The power consumption of

the logic for inserting copy instructions was less than 0.2% of the total power consumption. Almost all of the

BBT power dissipation is from the decoders, not the BBT array itself, which is just a few bit-vectors. The PART

model had a higher power dissipation than the DO-BANKED model because the rename logic had to keep track of

15

four mappings per architectural register. It does benefit from having far fewer scheduling tag broadcasts, though.

For the 4-port configurations, the power consumption for the DO-BANKED model is 10% lower than that of the

BASE-BANKED model, and 4% lower than that of the PART model. The power consumption of the DO-UNI model

is 13% lower than that of the BASE-UNI model.

BASE-UNI, 4
-port

BASE-BANKED, 4-port

DO-UNI, 4
-port

DO-BANKED, 4-port

PART, 4-port

BASE-UNI, 6
-port

BASE-BANKED, 6-port

DO-UNI, 6
-port

DO-BANKED, 6-port

PART, 6-port

Machine Configurations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
el

at
iv

e
P

ow
er

 C
on

su
m

pt
io

n

other
Rename
PRF (Read)
Copy Insertion
BBT
Scheduling Window
Cluster Broadcast
Network Broadcast

SPECint2000 IPC HMEAN:
2.19 2.17 2.18 2.17 1.97 2.25 2.24 2.24 2.23 2.04

Figure 4. Relative Power Consumption

Figure 5 shows the IPC of each benchmark for each of the five models using 4 issue ports per cluster. On

average, the Baseline processor with a monolithic register file has an IPC less than 1% higher than the model with

a banked register file, and the processor with Demand-Only Broadcast has an IPC within 1% of the Baseline with

a banked register file. The IPC of DO-BANKED is, on average, 10% higher than the IPC of PART, despite the fact

that PART has more scheduling window and register file entries. The discrepancy is due to the fact that the copy

instructions increase the length of the data dependence chains. The only benchmark that overcomes this limitation

and clearly benefits from having a unified physical register file is gap. The power consumption for each individual

benchmark, relative to the average power consumption of the Baseline, is shown in Figure 6.

6.1. Effect of Copy Instructions

Copy instructions lower the IPC of the DO-BANKED and PART models. In the PART model, every cluster in

which an instruction’s result is consumed (other than its own) requires a copy. Figure 7 shows the number of

clusters in which a result is consumed. The first bar for each benchmark represents the DO-BANKED model with

16

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

BASE-UNI, 4-port
DO-UNI, 4-port
BASE-BANKED, 4-port
DO-BANKED, 4-port
PART, 4-port

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

Figure 5. IPC on the SPECint2000 Benchmarks

gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolf
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

R
el

at
iv

e
P

ow
er

 C
on

su
m

pt
io

n

other
Rename
PRF (Read)
Copy Insertion
BBT
Scheduling Window
Cluster Broadcast
Network Broadcast

Figure 6. Power consumption relative to BASE-UNI average. Models (4 issue ports), from left to right:
1) BASE-UNI, 2) BASE-BANKED, 3) DO-UNI, 4) DO-BANKED, 5) PART

4 issue ports per cluster; the second bar is the PART model. The third and four bars are the DO-BANKED and PART

models, respectively, with six ports. Half the time, a result is only needed in its own cluster. On average, with the

Demand-Only technique, there are 1.6 register file writes per architected register destination, compared to 4 in the

Baseline model. Note that this metric does not represent the number of copy instructions for the Demand-Only

model because copy instructions are not always needed when a consumer resides in a different cluster from its

producer. The percentages at the top of each pair of bars represent the fraction of copy instructions that are needed

in the DO-BANKED model relative to the PART model for the 4-port and 6-port configurations. For example, in

gzip, the DO-BANKED, 4-port model requires 6% as many copy instructions as the PART 4-port model.

17

gzip vpr gcc mcf crafty parser eon perl gap vortex bzip2 twolf

SPECint2000 Benchmarks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
of

 R
es

ul
ts

1 cluster
2 clusters
3 clusters
4 clusters

Ratio of Copies :
 6% 5% 6% 5% 9% 8% 5% 4% 9% 7% 6% 5% 10% 8% 10% 9% 7% 6% 14%11% 5% 3% 7% 6%

Figure 7. Number of clusters in which result is used. Models: 1) DO-BANKED, 4-port, 2) PART, 4-port,
3) DO-BANKED, 6-port, 4) PART, 6-port

6.2. Scheduling Window Write Ports

There are many instructions that cannot be placed in the same cluster as their source operand because there are

no available write ports to the desired scheduling window. Additional write ports will make the scheduler slower,

but it will increase the chance that instructions can be placed near their source operands. This is apparent from

comparing the 4-port and 6-port configurations in Figure 7. Figure 8 shows the IPC for all benchmarks using

the BASE-BANKED, DO-BANKED, and PART models, using 4 or 6 write ports per cluster. On average, the IPC

improves by 2.9%, 3.2%, and 3.3%, respectively, when increasng from 4 to 6 ports per cluster.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

In
st

ru
ct

io
ns

 p
er

 C
yc

le

BASE-BANKED, 4-port
DO-BANKED, 4-port
PART, 4-port
BASE-BANKED, 6-port
DO-BANKED, 6-port
PART, 6-port

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

Figure 8. Effect of the number of issue ports on IPC.

18

Figure 9 shows the percentage of instructions with at least one source operand that are placed in their desired

cluster: the cluster containing their first source operand. Note that most instructions get their top steering prefer-

ence in the models with the fewest copy instructions (or no copy instructions, in the case of BASE-BANKED), since

copy instructions occupy issue ports. This demonstrates that copy instructions can have a negative-feedback effect:

because copy instructions occupy scheduling window write ports, they cause other instructions to be steered to an

undesired cluster, thus creating even more copy instructions.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

%
 I

ns
t.

 w
/ R

eg
 S

rc
s

in
 D

es
ir

ed
 S

ta
ge BASE-BANKED, 4-port

DO-BANKED, 4-port
PART, 4-port
BASE-BANKED, 6-port
DO-BANKED, 6-port
PART, 6-port

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

Figure 9. Effect of the number of issue ports on steering.

7. Conclusion

This paper has demonstrated that the physical register file is a large source of power consumption in clustered

processors, and Demand-Only Broadcast is an effective technique for reducing this power. This technique was

evaluated in a 16-wide clustered processor, although it is applicable in clustered processors with narrower issue

widths as well. In a processor with 4 clusters, it reduces the number of register writes from 4 to 1.6 per register-

updating instruction. It reduces total processor power consumption of a high-performance clustered processor by

10% while impacting IPC by less than 1%.

8 Acknowledgements

We would like to thank members of the HPS research group, Antonio González, and anonymous reviewers for

their comments and insights on previous drafts of this paper. This work was supported in part by donations from

Intel, an IBM Ph.D. Fellowship, and a UT College of Engineering Doctoral Fellowship.

19

References

[1] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi. Reducing the complexity of the register file in dynamic
superscalar processors. In Proceedings of the 34th Annual ACM/IEEE International Symposium on Microarchitecture,
pages 237–248, Dec. 2001.

[2] A. Baniasadi and A. Moshovos. Instruction distribution heuristics for quad-cluster, dynamically-scheduled, superscalar
processors. In Proceedings of the 33th Annual ACM/IEEE International Symposium on Microarchitecture, pages 337–
347, Dec. 2000.

[3] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for architectural-level power analysis and optimizations.
In Proceedings of the 27th Annual International Symposium on Computer Architecture, pages 83–94, June 2000.

[4] M. Butler and Y. Patt. An investigation of the performance of various dynamic scheduling techniques. In Proceedings
of the 25th Annual ACM/IEEE International Symposium on Microarchitecture, 1992.

[5] R. Canal, J.-M. Parcerisa, and A. Gonz ález. Dynamic cluster assignment mechanisms. In Proceedings of the Sixth
IEEE International Symposium on High Performance Computer Architecture, Feb. 2000.

[6] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The multicluster architecture: Reducing cycle time through
partitioning. In Proceedings of the 30th Annual ACM/IEEE International Symposium on Microarchitecture, pages
149–159, Dec. 1997.

[7] K. I. Farkas, N. P. Jouppi, and P. Chow. Register file design considerations in dynamically scheduled processors. In
Proceedings of the Fourth IEEE International Symposium on High Performance Computer Architecture, pages 40–51,
1998.

[8] B. A. Gieseke, R. L. Allmon, D. W. Bailey, B. J. Benschneider, S. M. Britton, J. D. Clouser, H. R. F. III, J. A. Farrell,
M. K. Gowan, C. L. Houghton, J. B. Keller, T. H. Lee, D. L. Leibholz, S. C. Lowell, M. D. Matson, R. J. Matthew,
V. Peng, M. D. Quinn, D. A. Priore, M. J. Smith, and K. E. Wilcox. A 600MHz superscalar RISC microprocessor with
out-of-order execution. In 1997 IEEE International Solid-State Circuits Conference Digest of Technical Papers, pages
176–178, Feb. 1997.

[9] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel. The microarchitecture of the intel
pentium 4 processor. Intel Technology Journal, Q1, 2001.

[10] G. A. Kemp and M. Franklin. PEWs: A decentralized dynamic scheduler for ILP processing. In Int. Conference on
Parallel Processing, pages 239–246, 1996.

[11] S. Palacharla, N. P. Jouppi, and J. E. Smith. Quantifying the complexity of superscalar processors. Technical Report
TR-96-1328, Computer Sciences Department, University of Wisconsin - Madison, Nov. 1996.

[12] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective superscalar processors. In Proceedings of the 24th
Annual International Symposium on Computer Architecture, 1997.

[13] J.-M. Parcerisa and A. Gonz ález. Reducing wire delay penalty through value prediction. In Proceedings of the 33th
Annual ACM/IEEE International Symposium on Microarchitecture, pages 317–326, 2000.

[14] J.-M. Parcerisa, J. Sahuquillo, A. Gonz ález, and J. Duato. Efficient interconnects for clustered microarchitectures. In
Proceedings of the 2002 ACM/IEEE Conference on Parallel Architectures and Compilation Techniques, 2002.

[15] B. R. Rau and J. A. Fisher. Instruction-level parallel processing: History, overview, and perspective. The Journal of
Supercomputing, 7:9–50, 1993.

[16] A. Seznec, E. Toullec, and O. Rochecouste. Register write specialization register read specialization: A path to
complexity-effective wide-issue superscalar processors. In Proceedings of the 35th Annual ACM/IEEE International
Symposium on Microarchitecture, pages 383–394, 2002.

[17] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors. In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 414–425, 1995.

[18] J. Stark, M. D. Brown, and Y. N. Patt. On pipelining dynamic instruction scheduling logic. In Proceedings of the 33th
Annual ACM/IEEE International Symposium on Microarchitecture, 2000.

[19] K. C. Yeager. The MIPS R10000 superscalar microprocessor. In Proceedings of the 29th Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture, pages 28–41, 1996.

[20] V. V. Zyuban and P. M. Kogge. The energy complexity of register files. In Proceedings of the 1998 International
Symposium on Low Power Electronic Design, pages 305–310, 1998.

[21] V. V. Zyuban and P. M. Kogge. Inherently low-power high-performance superscalar architectures. IEEE Transactions
on Computers, 50(3):268–286, Mar. 2001.

20

