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Background
• Branch mispredictions still limit single-thread performance 
• Most of these mispredictions come from a small set of problematic 

branches referred to as “hard-to-predict” (H2P) branches 
• Building extremely large predictors or using state-of-the-art neural 

networks at best reduces a third of the mispredictions

• Alternative: Branch Precomputation
• Been around for over 25 years
• Identify H2P branches and instructions in their dependence chains
• Use the chains to compute H2P branch directions faster than the main 

thread
• If the precomputation result arrives by the time the corresponding 

branch is fetched, it is used to override the branch predictor
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Branch Precomputation: Prior Work
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Key considerations: 
accuracy     coverage       timeliness

Compiler techniques

• Create a perfectly accurate but 
heavy-weight helper thread

• Good coverage (>70%)
• Poor timeliness: <20% of 

precomputation results arrive in-
time to override the prediction

Runtime solutions

• Create light-weight dependence 
chains for specific types of control 
flows

• Good timeliness: ~70% of 
precomputation results are timely

• Poor coverage (~30%)

Thus, the tradeoff between coverage and timeliness severely limits performance



A Timely, Efficient, and Accurate 
Precomputation Thread
We use precomputation results that arrive after the branch is fetched but 
before it is executed to issue early pipeline flushes

• Enabled by synchronized timestamps provided the thread construction 
mechanism

Mechanism for generating highly accurate dependence chains (>99.3%) at 
runtime for H2P branches 

• Improves misprediction coverage without hurting timeliness, traces longer 
chains

Our precomputation thread can efficiently execute on-core without delaying 
the main thread significantly 

• Approaches the performance of using a dedicated execution engine or 
separate OoO core

The TEA thread provides a 10.1% performance improvement over a set of SPEC CPU2017 
and GAP benchmarks
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Identifying H2P Branch Chains
• After retirement instructions are 

collected into a Fill Buffer

• Identify frequently mispredicting 
branches via the H2P Table

• Dependence chain instructions 
are traced via a Backward 
Dataflow Walk starting at these 
branches

3 instructions

Key idea: use the control flow sequence generated by the main branch predictor to stitch 
together block cache entries and re-construct the dependence chain at fetch time

2 instructions

24 instructions

Retired instructions
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Constructing the TEA thread

Main Thread TEA Thread

𝐀𝟎	𝐀𝟏	𝐀𝟐 𝐀𝟎
𝐁𝟎	𝐁𝟏 𝑩𝟎
𝑪𝟎…… 𝑪𝟎	𝑪𝟐𝟐	𝑪𝟐𝟑
… … …

… 𝑪𝟐𝟐	𝑪𝟐𝟑

Branch predictor generates 
the fetch address 
sequence: 
A (3), B (2), C (24)

• Both threads inherit the same branch IDs from the branch predictor
• Intermediate branches that are not hard-to-predict need not be precomputed 6



Implementation Overview
8-wide TEA thread frontend

Reservation Stations and Physical 
Registers are partitioned

8-wide main thread frontend

Issue ports 
shared with 
priority given 
to TEA thread

1. Faster fetch 2. Prioritized scheduling 3. No backend stalls due to non-
dependence chain instructions
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Longer dependence chains improve timeliness as it allows the TEA thread to begin earlier



Thank you
Aniket Deshmukh, Chester Cai, Yale Patt

HPS Research Group
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Identifying H2P Branch Chains

Backward Dataflow 
Walk
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