
Timely, Efficient, and Accurate
Branch Precomputation

Aniket Deshmukh, Chester Cai, Yale Patt
HPS Research Group

1

Background
• Branch mispredictions still limit single-thread performance
• Most of these mispredictions come from a small set of problematic

branches referred to as “hard-to-predict” (H2P) branches
• Building extremely large predictors or using state-of-the-art neural

networks at best reduces a third of the mispredictions

• Alternative: Branch Precomputation
• Been around for over 25 years
• Identify H2P branches and instructions in their dependence chains
• Use the chains to compute H2P branch directions faster than the main

thread
• If the precomputation result arrives by the time the corresponding

branch is fetched, it is used to override the branch predictor

2

Branch Precomputation: Prior Work

3

Key considerations:
accuracy coverage timeliness

Compiler techniques

• Create a perfectly accurate but
heavy-weight helper thread

• Good coverage (>70%)
• Poor timeliness: <20% of

precomputation results arrive in-
time to override the prediction

Runtime solutions

• Create light-weight dependence
chains for specific types of control
flows

• Good timeliness: ~70% of
precomputation results are timely

• Poor coverage (~30%)

Thus, the tradeoff between coverage and timeliness severely limits performance

A Timely, Efficient, and Accurate
Precomputation Thread
We use precomputation results that arrive after the branch is fetched but
before it is executed to issue early pipeline flushes

• Enabled by synchronized timestamps provided the thread construction
mechanism

Mechanism for generating highly accurate dependence chains (>99.3%) at
runtime for H2P branches

• Improves misprediction coverage without hurting timeliness, traces longer
chains

Our precomputation thread can efficiently execute on-core without delaying
the main thread significantly

• Approaches the performance of using a dedicated execution engine or
separate OoO core

The TEA thread provides a 10.1% performance improvement over a set of SPEC CPU2017
and GAP benchmarks

4

Identifying H2P Branch Chains
• After retirement instructions are

collected into a Fill Buffer

• Identify frequently mispredicting
branches via the H2P Table

• Dependence chain instructions
are traced via a Backward
Dataflow Walk starting at these
branches

3 instructions

Key idea: use the control flow sequence generated by the main branch predictor to stitch
together block cache entries and re-construct the dependence chain at fetch time

2 instructions

24 instructions

Retired instructions

5

Constructing the TEA thread

Main Thread TEA Thread

𝐀𝟎	𝐀𝟏	𝐀𝟐 𝐀𝟎
𝐁𝟎	𝐁𝟏 𝑩𝟎
𝑪𝟎…… 𝑪𝟎	𝑪𝟐𝟐	𝑪𝟐𝟑
… … …

… 𝑪𝟐𝟐	𝑪𝟐𝟑

Branch predictor generates
the fetch address
sequence:
A (3), B (2), C (24)

• Both threads inherit the same branch IDs from the branch predictor
• Intermediate branches that are not hard-to-predict need not be precomputed 6

Implementation Overview
8-wide TEA thread frontend

Reservation Stations and Physical
Registers are partitioned

8-wide main thread frontend

Issue ports
shared with
priority given
to TEA thread

1. Faster fetch 2. Prioritized scheduling 3. No backend stalls due to non-
dependence chain instructions

7

Longer dependence chains improve timeliness as it allows the TEA thread to begin earlier

Thank you
Aniket Deshmukh, Chester Cai, Yale Patt

HPS Research Group

8

0
5

10
15
20
25
30
35

perlb
ench

gcc
mcf

omnetpp

xalancbmk
x264

deepsjeng
leela

exc
hange2 xz

pop2
nab bfs

sssp pr cc bc tc

amean

Ba
se

lin
e

Br
an

ch
 M

PK
I

9

0
5

10
15
20
25
30

perlb
ench

gcc
mcf

omnetpp

xalancbmk
x264

deepsjeng
leela

exc
hange2 xz

pop2
nab bfs

sssp pr cc bc tc

gmean

Pe
rfo

rm
an

ce

Im
pr

ov
em

en
t

(p
er

ce
nt

ag
e)

Performance Improvement

Identifying H2P Branch Chains

Backward Dataflow
Walk

10

