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Abstract—Out-of-order cores rely on high-accuracy branch
predictors to supply useful instructions to the processor backend.
However, there remains a large fraction of mispredictions caused
by hard-to-predict (H2P) branches that modern predictors have
been unable to improve. Precomputation is an alternative to
prediction that speculatively executes the dependence chain of
a branch earlier to override the branch predictor at Fetch
time. However, prior work sacrifices H2P branch coverage and
precomputation accuracy to produce timely results.

Our work relaxes this timeliness constraint by using precom-
putation results to issue early misprediction flushes instead of
overriding the branch predictor. This allows us to construct a
highly accurate precomputation thread with good misprediction
coverage, without sacrificing timeliness. The thread is efficient as
it utilizes on-core execution resources and re-uses existing hard-
ware for issuing early flushes. Using our Timely, Efficient, and
Accurate thread for precomputation yields a 10.1% improvement
in performance over an aggressive baseline OoO core.

Index Terms—Branch Prediction, Precomputation

I. INTRODUCTION

Branch mispredictions still present a major barrier to single-
thread performance in processors today. Despite years of
research, there remains a portion of branches that cannot be
easily predicted by modern high-accuracy branch predictors
such as TAGE-SC-L [23] and Perceptron [15], even with
significant hardware investment. These are commonly referred
to as hard-to-predict (H2P) branches. They comprise data-
dependent branches [12], [21] and branches with complex
control flow patterns [29] that are hard to identify at runtime.

Prior work has looked into developing alternative solutions
for these branches. Precomputation is one such approach that
identifies instructions in the dependence chains leading up to
H2P branches to create a standalone, speculatively executed
thread. This thread begins execution early enough to override
the branch predictor at Fetch time.

Early precomputation approaches used static analysis and
profiling to construct ”helper threads” [8], [22], [27],
[30] for frequently mispredicting branches. More recent ap-
proaches [13], [21], [26] generate a lightweight instruction
stream or ”precomputation thread” by detecting H2P branches
and analyzing their dependencies at runtime. Unfortunately,
prior work faces several limitations that restrict the set of
branches they can effectively precompute.

Precomputation is often late: The timeliness constraint of
having the precomputation result arrive before the branch is

predicted is hard to meet in many applications. Prior work
therefore focuses on specific branches with fixed control flow
properties to improve their timeliness. This reduces mispre-
diction coverage as many H2P branches are left out.

Precomputation is often inaccurate, i.e. precomputation
overrides correct branch predictions, causing additional mis-
predictions. Prior work thus only targets H2P branches with
simple or specific types of dependence chains to maintain
high accuracy. This further decreases misprediction coverage.
Heavy-weight helper threads generated using compiler-based
techniques are more accurate but perform poorly as they
compromise on timeliness.

Finally, precomputation is inefficient as it requires a
separate core or execution engine to provide timely results and
to avoid wasting on-core resources when the precomputation
is late or incorrect.

We argue that these limitations can be overcome if pre-
computation results that arrive ”late”, i.e. after the branch is
fetched but before it is executed, can still be used to correct
the instruction stream. Relaxing this constraint allows us to
trace longer dependence chains across complex control flows
that are initiated much earlier than prior work, thus optimiz-
ing for misprediction coverage and accuracy without hurting
timeliness. Our work presents a mechanism for constructing a
more Timely, Efficient, and Accurate (”TEA”) thread that
uses on-core hardware to trigger early mispredictions flushes
via precomputation instead of overriding the branch predictor
at fetch time. Our contributions can be summarized as follows:

• We describe a method to generate a lightweight yet highly
accurate dynamic precomputation threads (99.3%) with
high misprediction coverage (76%).

• Our precomputation thread contains synchronized times-
tamps for H2P branches that can leverage existing flush
mechanisms. This greatly simplifies the hardware re-
quired for triggering early misprediction flushes and
enables both direction and target precomputation.

• We show that using on-core resources with accurate pre-
computation threads provides performance comparable
to using a dedicated core or execution engine if the
processor backend prioritizes the precomputation thread.

• Finally, we show that focusing on accuracy and coverage
allows the TEA thread to outperform Branch Runahead,
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the current state-of-the-art in branch precomputation,
which focuses mainly on timeliness.

II. PRIOR WORK

A. Compiler-based approaches
Compiler-based approaches use static analysis to identify

frequently mispredicting branches and instructions needed
to compute these branches. This approach creates a heavy-
weight helper thread that is always correct. However, many
of these instructions are unnecessary as the control flow
observed at runtime is very limited: accounting for correctness
across all possible control flows at compile-time results in
an over-inflated thread that runs too slowly to provide any
benefit. Subsequent work decreased the Helper Thread size
by removing instructions and branches in infrequently seen
control flows using profiling [8], [17], [22], [24], [28], [30],
[31]. This hurts precomputation accuracy as profiling is not
always representative and cannot account for phase behavior.

CRISP [19] is a lightweight compiler solution that contin-
uously profiles several input datasets in a data center envi-
ronment to find instructions on the program’s critical path. It
identifies H2P branch and long latency load dependence chains
and prioritizes their execution in the backend. This provides
limited benefit as it only allows branch dependence chains to
be scheduled to the execution units a few cycles earlier.

Hybrid approaches like Control-Flow Decoupling [24] use
the compiler to hoist the control-flow computation within a
loop. The hoisted code inserts computed branch directions
ahead of time into a queue that is read by the rest of the
instructions. This is challenging to do in the absence of loops
or for loops with fewer iterations as it requires significant code
duplication to account for all control flows leading to a branch.

B. Runtime approaches
Most runtime precomputation techniques identify H2P

branches by keeping track of frequently mispredicting
branches in a table but differ in how their dependence chains
are constructed and executed.

Iterative Backward Dataflow Analysis (IBDA) [7] tags Reg-
ister Alias Table (RAT) entries with the PC of the last instruc-
tion that writes to that register. This identifies instructions that
write to registers needed by an H2P branch.

Repeating this process iteratively identifies instructions in
the dependence chain of that H2P branch. The identified PCs
are used to filter out non-dependence chain instructions from
the fetch stream to form a precomputation thread. However,
IBDA cannot trace memory dependencies, which are required
for constructing long and accurate dependence chains across
control flow constructs such as calls and returns. Moreover,
it only captures a single level of the dependence chain every
time the H2P branch is seen. This limits the overall length
of the dependence chain and how quickly it is constructed.
Since IBDA filters the normal fetch stream, it cannot fetch
dependence chain instructions faster than the baseline OoO
core (the ”main thread”), limiting its performance benefits.
The Branch Tracker Table in [13] functions similarly but only

works for dependence chains with a single load, followed by
a few arithmetic operations, leading up to a branch.

In the most recent Slipstream proposal [26], the precompu-
tation thread is constructed by removing all control-dependent
instructions for an H2P branch. Subsequent branches that are
control-independent but data-dependent with respect to that
H2P branch are also removed. This allows it to leverage
misprediction-level parallelism [20]. However, the resulting
thread is still heavy-weight and requires a separate core for
execution. This also increases the communication latency of
forwarding branch directions across cores, hurting timeliness.

DP-SSMT [9] used a dataflow walk to trace the dependence
chain of an H2P branch. This was done by tracking the
live-ins and live-outs of instructions in a post-retire buffer.
The generated precomputation thread used trigger instructions
to drive its control flow. A similar approach, the Backward
Dataflow Walk, was introduced by Filtered Runahead [14].
It is used in Branch Runahead [21], the current state-of-
the-art in branch precomputation, to identify lightweight and
timely dependence chains in applications with simple control
flows. It uses a post-retire buffer to trace all dependence
chain instructions between two consecutive instances of an
H2P branch. Branch Runahead also identifies branches whose
dependence chain instructions are independent of whether
previous branches were predicted correctly and initiates them
early to provide more timely results. However, it performs
poorly in programs with more complex control flows and
requires a dedicated dependence chain engine to support the
parallel execution of these chains.

The TEA thread is highly accurate and can trace long
dependence chains across complex control flows while remain-
ing lightweight. Section III discusses how the TEA thread is
constructed and where its performance benefits come from.
The TEA thread uses a dedicated frontend and partitions back-
end resources which allows it to run effectively on-core and
reduces the hardware overhead associated with precomputation
(Section IV).

C. Issuing Early Misprediction Flushes
Prior work uses a unified queue or multiple per-branch

queues to forward precomputed directions to the branch pre-
dictor. These queues are expensive as they buffer hundreds of
predictions per branch. They also have multiple write ports
as several branches in the precomputation thread can finish
executing together. Prior work therefore only precomputes
branch directions, as adding targets is expensive.

Implementing early resolution with these queues (in ad-
dition to overriding the branch predictor) requires support
for simultaneous reads from multiple pipeline stages in the
frontend. Alternatively, the in-flight branch queue and the
precomputed branch queues can be scanned in parallel to
match precomputation thread branches to their corresponding
main thread counterpart. This enables early resolution for
branches in the backend as well. However, both solutions
increase the hardware cost and complexity of these queues.
[11] uses the scanning approach but does not discuss its
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implementation overhead. [13] on the other hand only has a
few fixed flush points in the frontend.

In contrast, the TEA thread issues early misprediction
flushes using synchronized timestamps (Section III-B). This
allows TEA thread branches to correctly flush all instructions
younger than the corresponding main thread branch utilizing
existing flush mechanisms. This enables both direction and
target mispredictions to be precomputed without any additional
overhead. A detailed description of this mechanism is provided
in Section IV-F.

III. THE TEA THREAD

The TEA thread is an independent, speculatively executed
thread that precomputes H2P branch directions and targets
and issues early mispredictions flushes for both direct and
indirect branches. It has a dedicated frontend that only fetches
instructions in the dependence chains of H2P branches and
shares the processor backend with the main thread. The TEA
thread runs ahead of the main thread as it skips the fetch
and execution of non-dependence chain instruction and is not
limited by in-order retirement. Main thread instructions do not
affect TEA thread performance as it has a dedicated frontend,
preferential access to Issue ports (going from Rename to
Reservation Stations), and a dedicated partition of execution
resources in the backend (Section IV-A).

The TEA thread uses the main branch predictor to drive its
control flow. This allows the TEA thread to trace dependence
chains across complex control flows. It also enables accurate
prediction of intermediate non-H2P branches, thereby reducing
the size of the TEA thread as non-H2P branch dependence
chains need not be included for accurate precomputation
(Section III-B).

Using the main branch predictor allows the same timestamp
(or branch IDs) to be assigned to a TEA thread branch
and its main thread counterpart. The TEA thread uses this
synchronized timestamp to issue early misprediction flushes
irrespective of where in the pipeline the corresponding main
thread branch is. Since the TEA thread uses existing flush
mechanisms (Section IV-F), it supports out-of-order and nested
branch resolutions. This significantly reduces the timeliness
constraint as the precomputation result only needs to arrive
before the corresponding main thread branch finishes execu-
tion to provide some benefit.

Our chain construction mechanism can trace longer and
more accurate dependence chains that are valid across multiple
control flows. Precomputation for longer chains can be initi-
ated much earlier in the instruction stream, which improves
timeliness. The higher accuracy helps improve misprediction
coverage significantly (Section III-C,D,E).

The TEA thread and main thread share Physical Registers,
Reservation Stations, and Execution Units. Since the TEA
thread is highly accurate and timely, it does not waste re-
sources when executing on-core and can be prioritized (at Issue
and Scheduling) over the main thread. This allows the on-core
implementation to approach the performance of a dedicated
execution engine (Section V-D).

The rest of this Section provides an overview of the TEA
thread’s construction and fetch mechanisms and discusses the
key features that allow it to maximize misprediction coverage
and accuracy over prior work.

A. Identifying Dependence Chain Instructions

We use a variant of the Backward Dataflow Walk proposed
in Criticality Driven Fetch [10] for identifying dependence
chain instructions. This requires identifying H2P branches
and is done by training a table of counters called the H2P
Table (Section IV-A). The chain construction process begins
by saving retired instructions and their operands (in program
order) in a ”Fill Buffer”. Retired branches that are likely to
benefit from precomputation are marked using the H2P Table
when entering the Fill Buffer. The example in Fig.1-(a) shows
a code snippet containing an H2P branch with its assembly
and control flow diagram. Fig.1-(b) (left) shows how the Fill
Buffer is populated after several iterations of the code snippet
have retired. The H2P branch is marked in red.

Performing the Backward Dataflow Walk When the Fill
Buffer is full, a Backward Dataflow Walk is initiated starting
at the youngest instruction: C0 in the above example. The
Fill Buffer is traversed instruction by instruction until an
H2P branch is encountered. At this point, the registers and
memory addresses needed to compute that branch are added
to a ”Source List”. In the example (Fig.1-(b)), A2 is the first
H2P branch encountered during the Backward Dataflow walk
and the condition code register (RFLAGS for x86) is added
to the Source List.

An instruction that writes to a register or memory location in
the Source List is part of the H2P branch dependence chains.
Thus A1 is marked as a dependence chain instruction (green).
At the same time, the A′

1s destination register (RFLAGS) is
removed from the Source List, and A′

1s source (R1) is added to
the Source List instead. This ensures that the Source List tracks
the minimum set of live-ins needed to compute the marked
H2P branches.

Continuing upwards, A0 is marked as a dependence chain
instruction and the Source List is modified to contain register
R4, register R5, and memory location [R4+R5]. The Backward
Dataflow Walk continues until it reaches the oldest instruction
in the Fill Buffer (B0). Note that chains for all branches
marked as H2P, including multiple dynamic instances of
the same H2P branches, are traced simultaneously via this
mechanism.

Storing dependence chain instructions: The next step
collects all the marked instructions (including H2P branches)
in the Fill Buffer into basic block-sized segments. These
segments are stored as a single entry in a ”Block Cache”
that records all identified dependence chain instructions. Block
Cache entries are tagged with the PC of the first instruction in
that basic block, as shown in Fig.1-(b) (right). In the example,
all instructions in basic block A are marked, therefore its entry
contains A0, A1, A2 and is tagged with the PC of A0. Basic
block B’s entry is empty as none of its instructions are part
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Fig. 1. Constructing dependence chains for an H2P Branch. This example uses a code snippet that models a commonly seen control flow pattern leading up
to an H2P branch in many applications (the GAP benchmarks bfs, bc, tc, cc, sssp have several loops with this control flow pattern)

of the dependence chain. The entry for basic block C only
contains CX .

B. Constructing the TEA Thread at Fetch
Our baseline OoO core has a decoupled Branch Predictor

(BP) that generates fetch addresses for the main thread and
pushes them into a Fetch Queue. Fig.1-(c) shows how this
works for the previous example. 1 The first address, PC(A0)
is pushed into the queue in cycle 0. The BP predicts taken
for branch A2, and the next fetch address PC(C0) is added
in cycle 1. The stream of fetch addresses generated by the
decoupled BP is shown in the upper half of Fig.1-(c).

These fetch addresses are used by the main thread to fetch
instructions from the I-cache. In the example, the main thread
uses PC(A0) in cycle 1 to read instructions in basic block A.
However, it takes three cycles (cycles 2, 3, and 4) for all the
instructions in basic block C to be fetched (Fig.1-(c), bottom-
left).

The TEA thread has a dedicated Fetch stage (as part of the
TEA thread frontend) that fetches TEA thread instructions in
parallel with the main thread. It uses the same fetch addresses
generated by the decoupled BP to stitch together basic block
segments in the Block Cache. In the example, the first address,
PC(A0) is used to read the Block Cache entry for basic block
A in cycle 1. In cycle 2, the TEA thread reads the Block Cache
entry for PC(C0). Since only CX is part of the dependence
chain, the TEA thread fetches the basic block segment for C
in a single cycle. Subsequently, it can fetch and initiate the
precomputation for the next instance of H2P branch A2 faster
than the main thread.

The TEA thread runs faster because the throughput of
decoupled branch predictors is much higher than the frontend
bandwidth. Aggressive processor designs today have an 8-
wide frontend, but the decoupled BP can predict up to 32
instructions (or 128B) per cycle. This allows the decoupled BP
and the TEA thread to run several cycles ahead of the main

1Assuming the branch predictor has a throughput of one taken branch per
cycle and capped by the BTB line size if a taken branch is not found, which
can be as high as 128B or ∼32 instructions in aggressive out-of-order cores.

thread. The TEA thread runs further ahead every time the main
thread is stuck fetching non-dependence chain instructions
or stalled due to backend pressure. This adds up over time
(until the first misprediction is detected) even if there are
cycles when the TEA thread fetches nothing. In the example,
every time basic block C is seen, the TEA thread gains two
additional cycles over the main thread. Thus even though the
TEA thread fetches nothing in cycle 4, it can initiate the third
instance of branch A2 in cycle 6 which is four cycles ahead
of the main thread. The run-ahead distance is limited by the
size of the Fetch Queue that buffers fetch addresses for the
main thread, which is 128 addresses in our design.

The main advantage of this model is the ability to trace
any possible control flow by composing different basic block
segments using the fetch addresses generated by the branch
predictor. This provides much better misprediction coverage
compared to other solutions that only work on specific control
flow patterns [7], [13], [21].

Dealing with intermediate branches: Non-H2P interme-
diate branches can be encountered while fetching instructions
from the TEA thread. The direction of these branches often
determines which instructions are needed to precompute an
H2P branch even though they are not H2P themselves. Prior
work attempts to deal with these branches by either using
simple but inaccurate mechanisms to predict them or by
marking them as H2P so that their directions can also be
precomputed [9], [21].

The TEA thread predicts intermediate branches with high
accuracy as its fetch addresses are generated by the main
branch predictor (TAGE). For instance, in the example in
Fig.3, the branch on line 4 (end of basic block A) can be
accurately predicted by TAGE. Its chain is not included in
the TEA thread even if it affects the dependence chain of the
H2P branch, thus keeping the TEA thread lightweight. TAGE
also predicts many H2P branches with a reasonably high
accuracy (∼80%) which allows the TEA thread to correctly
fetch instructions past them and begin precomputation for the
next H2P branch earlier. This improves both the timeliness
and accuracy of the TEA thread.
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Fig. 2. Tracing longer dependence chains over multiple Fill Buffer iterations. This control flow pattern is commonly seen in leela.

Some prior work can fetch instructions faster than the TEA
thread as they either ignore or statically predict intermediate
branch directions, whereas the TEA thread has to wait for the
main branch predictor to generate fetch addresses. This only
works if the intermediate branches are biased. Prior work can
also deal with intermediate branches if H2P branch depen-
dence chains are independent, i.e., the dependence chain is
unaffected by the direction of these intermediate branches [20],
[21]. This works well in benchmarks where simple control
flows are common, but provides very little performance in
applications with more complex control flows as the oppor-
tunities for exploiting control independence are limited. The
TEA thread provides good performance for both classes of
applications as it can capture some of the benefits associated
with control independence if TAGE predicts intermediate
branches accurately. We evaluated these effects in Sec. V-C.

C. Tracing Longer Dependence Chains
Longer dependence chains improve timeliness as they allow

precomputation to be initiated earlier. Adding more instruc-
tions to a precomputation thread often improves timeliness
rather than hurting it if the added instructions increase the
length of the dependence chains in the precomputation thread.

The length of the dependence chains traced in the Fill Buffer
is limited by the size of the Fill Buffer and the position of the
H2P branch in the Fill Buffer. This is seen in the example
in Fig.2-(a) which contains an H2P loop branch. Only a few
instructions in the dependence chain of this H2P branch can be
traced the first time it is seen in the Fill Buffer (Fig.2-(b)). This
limitation can be overcome if TEA thread instructions are used
as initiation points for the Backward Dataflow Walk the next
time the corresponding main thread instructions are seen in the
Fill Buffer. Fig.2-(c) depicts a future Fill Buffer iteration. The
Backward Dataflow Walk in this case is initiated at dependence
chain instructions (red) instead of an H2P branch. Additional

instances of the Backward Dataflow Walk (Fig.2-(d)) trace
more and more of the dependence chain. The TEA thread thus
contains dependence chains that span thousands of instructions
even though the Fill Buffer can only hold 512 instructions.

D. Incorporating Memory Dependencies
The TEA thread tracks memory dependencies during the

Backward Dataflow Walk using the Source List as correlated
loads and stores can impact precomputation accuracy signifi-
cantly. This is common when an H2P branch is within a func-
tion body. Pre-computing its branch direction early requires
tracing dependence chain instructions across the function call.
The input variables to the function are often part of the
dependence chain of the H2P branch in such cases; memory
dependencies need to be tracked so that the push and pop
operations that communicate input variables are included in
the precomputation thread.

Unlike register dependencies, memory addresses corre-
sponding to correlated load-store pairs can change over
time. Thus, incorporating memory dependencies sometimes
increases the precomputation thread size without improving
its accuracy. However, the overall improvement in the length
and accuracy of the dependence chains makes up for this in
most benchmarks. A quantitative analysis of how memory
dependencies affect precomputation accuracy and timeliness
is presented in Section V-E.

E. Combining chains across multiple control flows
An H2P branch can have different dependence chains for

each control flow leading up to it. Fig.3 shows such an
example. Under the control flow A-B-D, the first instruction
in basic block A is part of the dependence chain (in blue) for
the H2P branch (in red). For A-C-D, the second instruction
in A is part of the dependence chain (in yellow). Saving
the longest or the most recent dependence chain produces
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Fig. 3. Multiple control flows leading up to an H2P branch. mcf has these
types of control flows

incorrect results when the saved dependence chain does not
match the actual control flow during execution. Saving all
possible dependence chain versions is not viable in terms of
storage as each additional branch added to the control flow
(branch at the end of block A in Fig. 3) exponentially increases
the number of possible chains.

Combining the chains from multiple paths ensures that the
precomputation is correct across all these paths. The TEA
thread does this by storing a bit-mask along with each basic
block that indicates which instructions in the basic block are
part of H2P branch dependence chains. Different versions of
each basic block can be combined by bit-wise ORing the
masks. In Fig.3, two masks are generated for basic block A:
1000 for control flow A-B-D and 0100 for control flow A-C-D.
The ”1” in the bit mask indicates that the instruction is part of
the H2P branch dependence chain. After bit-wise ORing these
masks, both the first and second instructions in basic block A
are saved in the Block Cache. This ensures the TEA thread is
correct under both control flows. However, this also adds an
additional instruction to the TEA thread on either path that is
not needed to precompute the H2P branch on that path.

The additional instructions negatively impact timeliness.
However, this is compensated for by the increased chain accu-
racy and length. Section V-E provides a quantitative analysis
of how the bit-masks impact precomputation accuracy and
timeliness, and shows that maximizing accuracy and coverage
is almost always better for performance.

IV. IMPLEMENTATION DETAILS

A. Overview
The Baseline OoO Core has an 8-wide frontend with a

decoupled branch predictor that can predict up to one taken
branch or sequential instructions spanning 128B per cycle.
Fetch addresses generated by the decoupled BP are filled into
a Fetch Queue. For each fetch address, up to two sequential

cache lines can be read every cycle. Decode, Rename, and
Issue process up to 8 uops per cycle. The frontend is 12 cycles
deep and the minimum fetch to resolution (end of execution)
latency for a branch is 15 cycles (Table-I).

TEA thread structures An overview of the additional
hardware required to construct and fetch the TEA threads is
shown in Fig.4. The H2P Branch Table and Fill Buffer located
in the backend are responsible for identifying H2P branches
and tracing dependence chains. The TEA thread has dedicated
8-wide Fetch and Rename Stages. The Block Cache and Fetch
unit construct the TEA thread using fetch addresses inserted
into a shadow Fetch Queue by the decoupled BP. The overall
frontend latency for the TEA thread is 9 cycles. A shadow RAT
manages TEA thread dependencies. The two threads converge
at Issue, with the TEA thread getting preferential access to the
Issue ports. Backend execution resources (Physical Registers
and Reservations Stations) are partitioned statically when the
TEA thread is active. TEA thread instructions do not enter the
ROB and their Physical Registers are freed using a separate
physical register map table. The TEA thread has a small store
data cache for buffering store values (Table-II).

Fig. 4. Hardware required to construct and fetch TEA Threads

B. Finding H2P Branches
Similar to previous work, H2P branches are identified

using a table of per-branch counters to record the number of
mispredictions. It tracks direction and target mispredictions
for both direct and indirect branches. The H2P Table is
an 8-way set associative structure with 256 entries, indexed
with the branch PC. Each entry contains a 3-bit saturating
counter. An entry in the H2P Table is created for a branch
when it mispredicts with its counter value initialized to 1. If
the same branch is mispredicted again, its counter value is
incremented. A branch is considered H2P if it has an entry
in the H2P Table and its counter value is greater than 1. All
counters in the H2P Table are decremented by 1 every 50k
instructions so that counter values for branches that mispredict
less often than once every 50k instructions (less than 0.02
MPKI) tend towards 0. Branches with a counter value of 0
are prioritized for replacement. The periodic decrement allows
branches above a certain MPKI threshold to be identified as
H2P. We experimented with various decrement periods to find
the best-performing parameters. Our general observation was
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that marking more branches as H2P improves misprediction
coverage and provides better performance. This begins to drop
off only when highly accurate branches are marked as H2P as
it starts to hurt timeliness significantly.

C. Constructing and storing H2P branch dependence chains
As described in Section III-B, the Fill Buffer is responsible

for marking instructions in the dependence chains of H2P
branches. The Fill Buffer operates on micro-ops (uops) instead
of instructions2. Each entry in the Fill Buffer contains a valid
bit, the decoded bytes for a uop (which includes register and
memory locations written to and read by that uop), and its
PC. In addition, a chain-bit indicates whether that uop is an
H2P branch or part of an H2P branch dependence chain. This
amounts to a total of 16B per entry. The chain bit is initially set
both for H2P branches and for instructions that were executed
as part of the TEA thread as it helps trace longer dependence
chains (Section III-C). This is done by marking main thread
instructions that were also fetched as part of the TEA thread
using the bit masks in the Block Cache entries.

The Backward Dataflow Walk is performed by a state
machine and takes ∼500 cycles. Register dependencies are
tracked using a bit vector with a length equal to the number
of architectural registers. Memory dependencies are tracked
using a small 16-entry buffer that stores memory addresses.
Together, these structures form the ”Source List” mentioned
in Section III-B. Instructions retired during the backward
Dataflow Walk are discarded. Thus the Fill Buffer only sam-
ples a portion of the retired instruction stream. We found
that performance is not very sensitive to the duration of the
Backward Dataflow Walk, and the associated structures thus do
not need multiple access ports to perform the walk faster. The
Fill Buffer size does not affect performance significantly (∼1%
change) as the bit-mask allows longer chains to be traced over
multiple Backward Dataflow Walks.

Block Cache Uops with their chain-bit set after the Back-
ward Dataflow are divided into basic block segments and
stored in the Block Cache. The Block Cache has 512 entries
and is divided into a tag store and a data store. The tag
store holds a 40-bit tag (PC of the first instruction in the
basic block). The data store contains decoded dependence
chain uops (on average 4B per uop) and the bit-mask (32-
bits long). A bigger Block Cache improves the misprediction
coverage of the TEA thread. To improve coverage without
increasing storage significantly, we added a smaller 256-entry
Block Cache tag store. This is reserved exclusively for Block
Cache entries with no dependence chain uops and therefore
does not need associated data store entries (as their bit-masks
are zero as well). The tag store for these entries is needed as
it indicates there are potentially more dependence chain uops
past the empty basic block segment and that the TEA thread
should not terminate.

Basic block segments belonging to a cache line are stored
in separate ways with the same cache-line index. Segments

2This is because we use the x86 ISA in our simulations. Operating at the
instruction granularity works fine for fixed-length ISAs.

longer than 8 sequential uops are divided into multiple entries.
Entries from consecutive cache lines are distributed across
two banks (similar to the I-cache). Fetch addresses generated
by the decoupled BP read out all Block Cache entries for
two consecutive cache lines. This ensures the Block Cache
can deliver up to 8 uops per cycle distributed across multiple
sequential segments until the first taken branch.

Periodically Resetting the Bit-masks: Some control flow
patterns are only observed during specific execution phases.
Dependence chains captured with older control flows may
not be valid after a phase change and therefore need to be
removed to keep the TEA thread lightweight. This is done by
periodically resetting the bit-masks in the Block Cache and
ensures that future Backward Dataflow Walks do not use these
instructions are initiation points. We found that a reset period
of 500K instructions works best for performance.

D. TEA thread frontend
Fetch addresses generated by the branch predictor are sent

to both the Block Cache and the I-cache as shown in Fig.4.
The main thread consumes fetch addresses at a lower rate
compared to the TEA thread. To account for this mismatch,
the Fetch Queue for the main thread is much larger than a
traditional Fetch Queue (can hold up to 128 fetch addresses).
This allows the Branch Predictor to function at peak through-
put and generate fetch addresses faster to match the TEA
thread’s throughput. The TEA thread is initiated on a hit in the
Block Cache. The uops read out are rotated and sent directly
to the shadow Rename stage (as they are decoded). The
corresponding bit masks are added to a small queue that feeds
the main thread. The bit-mask is used to mark instructions in
the main thread that are part of the TEA thread so they can
be used as initiation points for the Backward Dataflow Walk
in the Fill Buffer.

TEA thread instructions are renamed using a shadow RAT.
The contents of the main RAT are copied into the shadow
RAT before the first TEA thread instruction is renamed to
synchronize the state of both threads. After renaming, TEA
thread instructions are sent to the Issue logic which picks
between the two 8-wide Rename output stages. The Issue logic
is 8-wide but prioritizes TEA thread instructions and uses
the leftover Issue slots for the main thread. The dedicated
frontend, preferential access to Issue slots, and partitioned
backend ensure that the TEA thread is not blocked due to
back-pressure caused by main thread instructions.

E. TEA thread backend
Prior work on precomputation often uses a dedicated exe-

cution engine or core. This is because their precomputation
threads are often inaccurate or late which wastes execution
bandwidth and slows down the main thread. Schemes that
perform precomputation on-core do so by either using a small
section of the on-core resources or by scavenging Issue slots,
Execution ports, and RS entries that are unused.

The TEA thread is extremely accurate (less than 0.7% of
the TEA thread branches are incorrectly computed) and timely
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(∼76% of TEA thread branches save at least one cycle of
misprediction penalty). Executing its instructions using on-
core resources leads to very little wastage. We found that
prioritizing the Issue of TEA thread instructions and allocating
a significant proportion of Reservation Station entries and
Physical Registers to it is better for performance, even though
it delays the execution of some main thread instructions. This
is because H2P branch mispredictions are almost always on the
critical path of execution, even for applications with relatively
lower branch MPKI. Prioritizing their execution, even at the
cost of other instructions, provides better performance. A
dedicated execution engine or separate core for the TEA thread
shows marginal improvement but is much more expensive.

192 Reservation Stations and Physical Registers are re-
served for the TEA thread when it is active. Instructions from
both threads share Execution units, cache ports, and MSHRs.
TEA thread instructions are identified by an additional bit in
the Reservation Station entries and are discarded when they
finish execution.

Freeing Physical Registers The TEA thread only maintains
a speculative RAT. Its instructions free up backend resources
as soon as possible to avoid the in-order retirement bottleneck.
TEA thread instructions do not enter the ROB. They use a
separate table containing a Valid bit and a 5-bit Reference
Counter per Physical Register (PR) for identifying PRs that
can be freed. These are initialized to 1 and 0 respectively when
the TEA thread is initiated. When a TEA thread instruction is
renamed, it sets the Valid bit for the previous PR mapped
to its destination Architectural Register (AR) to 0. If this
previous PR is not currently being used (Valid=0, Reference
Counter=0), it is freed.

Every instruction that wants to read from a PR increments
its Reference Counter (at Rename). The counter is decre-
mented when the instruction reads the data value for that PR
(just before it enters the Execution Units). After decrementing
the counter, if it is also found to be invalid (Valid=0, Reference
Count=0) because a younger instruction overwrote its map-
ping, the PR is freed. This works because there are no more
instructions that need this PR in the Reservation Stations, and
instructions still in the frontend use the new mapping for that
AR. Note that this can result in incorrect precomputation if
the counter overflows (this does not affect the main thread).
However, this is quite rare since the TEA thread is frequently
flushed and does not affect performance significantly.

Dealing with Stores Most instructions can be executed
speculatively without any impact on the architectural state.
This includes TEA thread loads as it is similar to a prefetch
that speculatively brings data into the D-cache. No ordering
needs to be enforced on the loads and they are not allocated
Load Queue entries. Loads only leave the Reservations Sta-
tions when they have a D-cache port and TEA thread loads that
miss in the D-cache carry their destination PR in the MSHR
entry. However, TEA thread stores cannot write to the cache
as they update the architectural state of the machine. Instead,
they write to a small cache that buffers the last 16 half-lines
written to by TEA thread stores.

F. Branch misprediction flushes
When a mispredicted TEA thread branch finishes execution,

a flush operation is triggered. TEA thread branches inherit the
timestamps generated by the branch predictor and thus have
the same timestamps as their main thread counterparts. Similar
to a regular flush operation, all instructions younger than
the mispredicted branch are discarded. This applies to both
the main thread and TEA thread instructions. The processor
backend is partially flushed exactly as it would be in a normal
OoO core and the checkpointed or recovered state of the RAT
is copied over to both the main RAT and the shadow RAT.
This, along with fixing the Branch Predictor history and PC,
synchronizes the state of both threads.

Partially Flushing the Frontend: Normally, when a branch
misprediction is detected in the backend, all the frontend
pipeline stages are flushed. However, we support partial flushes
in the processor frontend, i.e. instructions older than the
mispredicting branch in the frontend pipeline stages are also
flushed. This situation arises when the TEA thread runs so
far ahead that the main thread branch being flushed is in
the frontend. In this case, some instructions in the frontend
are older than the mispredicting branch. Partial flushes in the
frontend are supported by adding a comparator before the flush
signal for each pipeline stage to compare the timestamp of
the instructions in that stage and the mispredicting branch.
The comparator latency overlaps with other tasks performed
during the flush operation such as fixing the branch predictor
history and is unlikely to impact the overall misprediction flush
latency. The Fetch Queue is also partially flushed; when this
happens, the full misprediction penalty for that branch is saved.
Note that when the frontend is partially flushed, the state of
the main RAT does not need to be recovered. The shadow RAT
does need to be fixed, and this is achieved by checkpointing
the contents of the shadow RAT instead of the main RAT when
the TEA thread is running far ahead of the main thread.

When a TEA thread branch resolves, the in-flight branch
queue entry (which tracks information for all main thread in-
flight branches in the pipeline) for the corresponding main
thread branch is modified to reflect the precomputed branch
direction and target. When the main thread branch finishes
execution, it reads the in-flight branch queue to check whether
the misprediction has been resolved correctly. If the TEA
thread branch was incorrectly computed, another misprediction
flush is issued to correct the control flow. However, this is rare
and its impact on performance is negligible.

G. TEA thread termination
The TEA thread is terminated on a miss in the Block

Cache or when a TEA thread branch is incorrectly computed.
On a miss, the remaining TEA thread instructions continue
to precompute directions for any remaining branches. If an
incorrect precomputation is detected, all remaining TEA thread
instructions are drained out of the processor.

Incorrect precomputations can be detected in two ways.
The first examines the precomputed branch direction and
target saved in the modified in-flight branch queue entry
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Core 3.2GHz, 8-wide issue, 12 cycle FE latency
512 Entry ROB, 352 Entry Reservation Station, 16-wide retire

12 Execution Ports (6-ALU, 2-LD, 2-LD/ST, 2-FP)
400 Physical Regs, 256 entry load queue, 192 entry store queue

Predictors 64KB TAGE-SC-L [23], 128-entry Fetch Queue
History-based indirect branch predictor, RAS

1 taken per cycle, 4k entry BTB
Caches 32KB 8-way L1 I-cache (4-cycle access) 2R, 1W ports (4 banks)

48KB 12-way D-cache (4-cycle access)
1MB 16-way LLC cache (18-cycle access), 64B lines

Memory DDR4 2400R: 1 rank, 2 channels
4 bank groups and 4 banks per channel

tRP-tCL-tRCD: 16-16-16

TABLE I
CORE PARAMETERS

Core 8-wide Fetch and Rename Stages, 8-cycle latency
Issue-ports shared with the main thread

192 PRs, 192 RS reserved for TEA threads when active
Caches H2P Branch Table: 256-entry cache, 0.2KB, 1-cycle access

Block Cache: 512-entry cache, 256 zero-tags, 8-way, 19KB
Store data cache for TEA thread: 16 entry cache (32B per entry)

Other Fill Buffer: 512-entry queue, 8KB, single access port
structures PR map queue, 2400 bits, Shadow RAT

TABLE II
TEA THREAD STRUCTURES

(as explained above) and serves as a fail-safe. The second
uses bit-masks stored in the Block Cache entries to examine
instructions in the main thread. When the TEA thread is
initiated, a poison bit in the main RAT is initialized to 0
for all ARs. Main thread instructions that are not part of the
H2P branch dependence chains (have a 0 in the bit-mask)
set the poison bit for the AR they write to. Main thread
instructions that are part of the dependence chains (have a 1
in the bit mask) clear the poison bit for their destination AR.
If a main thread instruction that is part of the H2P branch
dependence chains (has a 1 in the bit-mask) reads from a
poisoned register, the TEA thread has an incorrect dependence
chain and precomputation is preemptively terminated. This
is because reading from a poisoned register means that the
dependence chain instruction needed a result produced by
a non-dependence chain instruction (after the TEA thread
started), which is incorrect by definition. When this is detected,
TEA thread branches that have not been executed yet and are
younger than the instruction that caused this dependence viola-
tion are blocked from triggering misprediction flushes. The rest
of the TEA thread instructions are gradually drained out of the
backend. This helps filter out most incorrect precomputations
without requiring a second misprediction flush, reducing the
number of additional flushes to below 0.001 PKI.

H. Discussion on hardware overhead

The TEA thread configuration increases the total dynamic
instruction footprint by 31.9% over the baseline OoO core.
This is much lower that Slipstream [26] (85%), and compara-
ble to Branch Runahead [21] (34%). The TEA thread executes
instructions on-core rather than using a separate execution
engine or core, making it much more efficient compared to
prior work. We use McPAT [18] to estimate area, power, and
energy consumption.

Area The main area overhead associated with the TEA
thread structures comes from the Fill Buffer and the Block
Cache. The duplicated pipeline stages and shadow RAT also

add to this overhead. This is approximately 3.5% of the total
core area with over 2% coming from just the caches and Fill
Buffer. Comparatively, a true 16-wide OoO core is much more
challenging to implement: it costs ∼10% more area while
only providing 2.8% performance. This is because scaling
the frontend width without increasing predictor bandwidth
provides very little benefit, and there are no efficient ways
to consistently fetch more than one taken branch per cycle.

Power The additional TEA thread structures increase peak
power by 8.5% according to McPAT. The additional frontend
for the TEA thread is responsible for over 6% of the additional
power: particularly the Block Cache, Rename stage, and the
shadow RAT.

Energy The TEA thread increases the overall dynamic
instruction footprint, leading to increased Fetch, Rename, and
backend energy in addition to the energy consumed by the
additional structures. However, this is mitigated by the reduc-
tion in overall execution time and the reduction in wrong path
instruction fetches in the main thread. According to McPAT,
the overall energy consumption over our set of evaluated
benchmarks reduces by 2%. A per-benchmark breakdown for
the increase in dynamic instructions fetched is shown in Table-
III. nab and pr stand out because the reduction in wrong path
fetches in the main thread for these benchmarks is very large.

V. EVALUTATION

A. Methodology
We use Scarab [4], an execution-driven cycle-accurate x86-

64 simulator, to simulate the micro-architecture of an aggres-
sive OoO core augmented with the structures and logic needed
to construct and execute the TEA thread. Ramulator [16] is
used to model main memory. Parameters of the baseline OoO
core and added structures are listed in Tables I and II. The
baseline core parameters model an aggressive 8-wide OoO
core similar to many industry products [1]–[3]. All results are
relative to this baseline core configuration.

Benchmarks We use SPEC CPU2017 benchmarks [5] with
the ref input set and the GAP benchmarks suite [6] (with inputs
g=19 and n=300) in our evaluation. Benchmarks with MPKI
less than 0.5 are not included (5 floating point benchmarks).
We use the SimPoint [25] methodology to find representative
regions and generate up to 5 Simpoints per benchmark, with
200 million instructions per Simpoint. Each run is preceded
by a warmup period of 200 million instructions.

B. Performance
Fig.5 shows the performance improvement provided by the

TEA thread when used to precompute branch directions and
targets using on-core resources. The geomean improvement
is 10.1% and is relatively evenly distributed across most
benchmarks. The branch MPKI for these applications is shown
in Fig.6. Fig.7 contains a breakdown of the percentage of
mispredictions A covered by the TEA thread.

The best-performing benchmarks: mcf, bfs, cc and tc all have
many mispredictions, most of which are on the critical path
of the program. They also have many loads that are guarded
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Benchmarks perlbench gcc mcf omnettpp xalanbmk x264 deepsjeng leela exchange2
Dynamic I-count 17.63% 25.51% 40.01% 23.07% 22.21% 14.39% 32.15% 44.62% 27.67%

Benchmarks xz pop2 nab bfs sssp pr cc bc tc
Dynamic I-count 51.03% 16.59% 10.25% 43.49% 56.79% -1.27% 45.96% 48.76% 40.72%

TABLE III
PERCENTAGE OF EXTRA DYNAMIC INSTRUCTIONS FETCHED RELATIVE TO BASELINE OOO CORE

Fig. 5. Performance benefit of pre-computing branches using the TEA thread

Fig. 6. Total number of direction and target mispredictions per 1000
instructions

by H2P branches and hit in the Last Level Cache (LLC) or go
out to main memory. Resolving these branches early allows
correct path loads to begin execution sooner and improves the
amount of memory level parallelism. These effects add up to
provide substantial performance improvements. perlbench and
nab do not have a high branch MPKI but show substantial
improvement as they have many long latency loads in the
shadow of a few H2P branches.

The TEA thread also has the side-effect of prefetching loads
that are part of H2P branch dependence chains. We turned
off early resolution in the TEA thread to measure how much
this skews performance, and it only provides an overall 1.2%
performance gain. This makes sense as the TEA thread only
focuses on H2P branch chains. xalanbmk is the only exception
as most of its benefit comes from data prefetching.

Deepsjeng and omnetpp are limited primarily by the Block
Cache size. This is reflected in their lower misprediction
coverage (due to no dependence chain being available). In-
creasing the number of basic block segments tracked by the
Block Cache significantly improves performance on these
benchmarks (by 5%). However, Block Cache storage is not
easy to scale because it is not as dense as the I-cache.
An entry within the Block Cache can hold up to 8 uops,
but the number of dependence chains uops in a basic block
can vary significantly. To reduce the storage inefficiency, we
added additional tag store entries for basic blocks with no

Fig. 7. Breakdown of branch mispredictions covered by the TEA thread

dependence chain uops in them (Section IV-B). This helps
improve performance in perlbench, gcc, omnetpp, deepsjeng,
and leela by optimizing the Block Cache capacity.

gcc, mcf, omnetpp, and xz have some ”late” precomputa-
tions. This predominantly occurs when the TEA thread and
main thread finish execution in the same cycle. There are a
few cases (< 0.1%) where the TEA thread finishes executing
an H2P branch after the main thread. If this occurs more than
4 times, the TEA thread is terminated. However, this is very
infrequent and does not affect the overall performance. Some
of the SPEC17 benchmarks have a non-negligible portion of
incorrect precomputions as seen in Fig.7, but these are almost
always detected by the RAT-poisoning scheme which prevents
them from issuing additional misprediction flushes (< 0.05%).

C. Comparison against Branch Runahead

We implemented a scaled-up version of Branch Runahead
using a dedicated execution engine on the same baseline
OoO core and measured its performance improvement. This
is shown in Fig.8. For comparison, we split the applications
into two categories: those with simple control flows and those
with more complex control flow patterns3. Benchmarks with
simple control flows have many independent branches. These
are branches whose dependence chains are unaffected by the
directions of any other branches around them (including other
dynamic instances of the same branch). The H2P branch
in Fig.1 is one such example. Most H2P branches in these
benchmarks are also confined to simple loops without complex
loop exit conditions. All the GAP benchmarks are classified as
simple control flow applications, with xz being the only SPEC
benchmark in this category.

Precomputation using the TEA thread overall does much
better than Branch Runahead (10.1% vs 7.3% geomean im-
provement) even though it uses on-core execution resources
compared to Branch Runahead’s dedicated execution engine

3Note that a simple control flow leading up to a branch does not make it
easy to predict.
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Fig. 8. Comparison again Branch Runahead

(which has a large backend optimized to execute branch
dependence chains). However, Branch Runahead performs
comparably on benchmarks with simple control flows. This
is because Branch Runahead explicitly identifies independent
branches within a loop using merge point prediction. This
allows multiple invocations of the independent branch to be
issued and executed in parallel even if a previous branch is
mispredicted. The TEA thread cannot leverage this as it uses
the main branch predictor to drive its control flow, but the
higher prediction accuracy of TAGE on intermediate branches
extracts part of this benefit (as explained in Section III-B). As a
result, the TEA thread has slightly smaller per-branch savings
in simple control flow applications as it is less timely, but
is made up for by the higher misprediction coverage. Branch
Runahead only does much better than the TEA thread on sssp
and bc, and this is primarily because it has a lot more backend
execution resources available to it.

Benchmarks with more complex control flows have fewer
independent branches and more complicated dependence
chains. It is harder to extract misprediction level parallelism
or leverage control independence in these benchmarks. Branch
Runahead only performs optimally for specific types of control
flows confined to loop boundaries and thus does not do well
on such benchmarks.

D. On-core vs dedicated execution engine

Executing the TEA thread on a separate execution engine
eliminates any interference associated with using on-core
resources. Fig.9 shows the performance of the TEA thread
when executed on an independent execution engine with the
same amount of resources as the on-core implementation (192
Reservation Stations and Physical Registers) and 16 dedicated
execution units. The size of the baseline OoO core remains the
same. This configuration pushes the overall performance up to
12.3%. This is not a significant increase given the execution
engine has a much larger area and power overhead associated
with it compared to using on-core resources. Most of the
improvement comes from mcf, xalanbmk, nab, pr, and bc,
and these mainly benefit from the increase in the number of
execution units. sssp in particular benefits from the minimized
interference between the two threads. We also experimented
with a much larger execution engine (the same backend as the

Fig. 9. Performance benefit of pre-computing branches using the TEA thread
with a separate execution engine

main OoO core), but that provided very little additional benefit
(12.8% geomean improvement).

E. TEA thread features

Fig.10-(a) shows the impact of the thread construction
features discussed in Section III on precomputation accuracy.
It consists of 5 configurations that include the TEA thread
as-is, and the TEA thread without certain features. The ”only
loops” category records the dependence chain instructions only
between two consecutive instances of an H2P branch, thus
limiting the chains to loops. The ”no masks” configuration
does not combine Block Cache entries and allows Backward
Dataflow Walks to start only at H2P branches, limiting the
dependence chain length. The ”no mem” configuration does
not incorporate memory dependencies during the Backward
Dataflow Walk. Finally, the Branch Runahead dependence
chains are also added for comparison.

Chain Accuracy Overall, no single feature provides most
of the benefit. Incorporating memory dependencies is the least
important for accurate precomputation for most benchmarks.
Among the graph benchmarks, sssp, pr, and bc are relatively
unaffected by any of the features. This is because most of
the H2P branches in these benchmarks match the control flow
modeled by the example in Fig.1, which can easily be captured
by any dynamic chain construction scheme. Thus, even Branch
Runahead has close to a 100% precomputation accuracy on
these benchmarks. Any complexity over this simple case
requires a more comprehensive thread construction mechanism
to ensure accurate precomputation. The TEA thread provides
good accuracy across all the applications (with an average
precomputation accuracy of 99.3%). Performance-wise, all
other configurations are 3% to 5% worse than the TEA,
with masks having the greatest impact on improving the TEA
thread’s performance.

Misprediction Coverage Branch Runahead has a high
precomputation accuracy for the H2P branches it covers as
it actively removes chains corresponding to H2P branches
that provide incorrect precomputations. This is reflected in its
low misprediction coverage, shown in Fig.10-(b). In contrast,
The TEA thread has a much higher misprediction coverage
(76%). Removing all the features drops the overall coverage
down to 39% (much lower than removing any one feature),
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Fig. 10. Precomputation thread accuracy, coverage and timeliness

thus reinforcing the fact that all the proposed techniques for
augmenting the TEA thread are important.

Timeliness Fig.10-(c) provides a measure of timeliness by
counting the average number of misprediction cycles saved per
branch (measured with respect to the main thread’s branch
resolution cycle). Across most applications, the per-branch
savings are the highest for the configuration with all the
features even though it is the heaviest precomputation thread in
terms of the number of dynamic instructions executed (31.19%
of the total dynamic instructions as compared to 21% for
no features). The only two exceptions to this are xalanbmk
and xz. Combining dependence chains across multiple control
flows (using the Block Cache masks) hurts timeliness in these
benchmarks.

VI. CONCLUSION

Improvements in branch prediction accuracy have slowed
down in recent years as increasingly complex algorithms are
needed to cover the remaining branch mispredictions. This has
made alternative solutions to branch prediction more attractive.
Precomputation was one of the first alternative solutions
proposed to deal with branches that are fundamentally hard
to predict for history-based predictors. While it provides good
benefits, recent work has been limited to specific types of

branches and control flows as a more general solution cannot
produce precomputation results in time to override the branch
prediction. We show that relaxing the timeliness constraint
on precomputation by allowing early misprediction flushes
enables broader precomputation schemes that provide high
misprediction coverage. The TEA thread we propose performs
well due to its high accuracy and misprediction coverage
without compromising on timeliness. It also provides a simple
hardware solution for issuing early misprediction flushes,
making it viable to implement. The TEA thread beats the
prior state-of-the-art in precomputation, showing that focusing
purely on timeliness does not provide better performance. This
invites a wider array of future solutions to precomputation-
based problems that give more importance to accuracy and
coverage rather than timeliness.
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