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ABSTRACT
Modern OoO cores achieve high levels of performance us-
ing large instruction windows. Scaling the window size im-
proves performance by making visible more of the paral-
lelism present in programs. However, this leads to an expo-
nential increase in area and power. We specify Criticality
Driven Fetch (CDF), a new execution paradigm that prefer-
entially fetches, allocates, and executes instructions on the
critical path of the program. By skipping over non-critical
instructions, critical instructions in the ROB can span a se-
quential instruction window larger than the size of the ROB.
This increases the amount of parallelism that can be extracted
from critical instructions, thereby improving performance.

In our implementation, CDF improves performance by (a)
increasing theMLP for independent loads executing concur-
rently, (b) fetching critical path loads past hard-to-predict
branches (by resolving them earlier), and (c) by initiating
last level cachemisses that cannot be parallelized earlier. Ac-
celerating critical loads using CDF achieves a 6.1% IPC im-
provement over a baseline OoO core with prefetching. Com-
pared to Precise Runahead, the prior state of the art work on
accelerating last level cache misses on the core, we provide
better performance and reduce memory traffic and energy
consumption by 4.0% and 7.2% respectively.
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1 INTRODUCTION
Single threaded performance remains an important aspect of im-
proving program runtime on modern OoO cores. These cores use
large instruction window resources - reorder buffer (ROB), reserva-
tion stations (RS), load and store queues (LQ and SQ), and physical
registers that extract Instruction Level Parallelism (ILP) and Mem-
ory Level Parallelism (MLP) to drive performance. Historically,
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Figure 1: Distribution of Instructions in the ROB during Full
Window Stalls

performance of OoO cores has been improved by scaling OoO win-
dow resources. Increasing the window size increases the number
of instructions that can be dispatched to execution units in parallel
(improving ILP) and increases the number of independent loads
that can access memory concurrently (improving MLP). However,
doing this is expensive since area and power scale exponentially
with window size.

Program performance is primarily governed by instructions on
the critical path of program execution, i.e., Last level cache (LLC)
misses, branch mispredictions, and instructions in the dependence
chains leading up to them. As these account for only 10%-40% of
the dynamic instruction footprint in typical (SPEC-like) programs,
during full window stalls, the processor pipeline contains more non-
critical instructions than critical ones (Fig. 1). Since improving the
performance of non-critical instructions does not affect the overall
program runtime significantly, this leads to inefficient use of the ex-
pensive OoO structures. In other words, OoO resources are wasted
on executing non-critical instructions, limiting the parallelism that
could be extracted from critical path instructions.

To improve performance efficiently, we need to target instruc-
tions on the critical path. We do this by re-ordering the instructions
stream so that critical instructions are prioritized while fetching.
As a result, these instructions are decoded, renamed and executed
earlier, and allocated more window resources. Determining an ideal
fetch and schedule order at compile time is problematic as runtime
events such as cache misses and branch mispredictions depend on
input data and impact which dynamic instructions are critical. Prior
work that targets compiler-based optimizations or uses the compiler
to construct program segments to accelerate critical instructions
fails to capture an optimal set of critical instructions. This includes
purely compiler-based solutions [21, 30, 31], work on Speculative
Multi-threading [17, 22, 34], Helper Threads [6, 10] and Decoupled
Lookahead [7, 13].

Criticality Driven Fetch (CDF) identifies critical instructions and
constructs their dependence chains at runtime. These chains are
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 1 for (i=0; i<bound1l; i++) {
 2   index1 = bound1p[i]-yoffset-1;         
 3   pred = waymap[index1].fillnum!=fillnum;
 4   // Several lines of 
 5   // non-critical instruction
 6   // that use pred 
 7 }

 for (i=0; i<bound1l; i++) {
   index1 = bound1p[i]yoffset-1;          
   pred = waymap[index1].fillnum!=fillnum;
 }

   // Several lines of 
   // non-critical instructions
   // that use pred 
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Figure 2: Code segment from the SPEC benchmark astar

stored in a cache and are fetched, allocated and executed before
non-critical instructions. Since non-critical instructions are initially
skipped, the OoO core is filled preferentially with critical instruc-
tions, thereby spanning a sequential instruction window that is
larger than the size of the ROB. This improves the performance of
critical instructions at the cost of delaying the execution of non-
critical ones. This tradeoff improves the overall performance since
non-critical instructions affect execution time less. If critical in-
structions are picked appropriately, an OoO core with CDF can
provide the same performance as a core with a much larger OoO
window without the scaling overhead.

While CDF can accelerate all critical instructions, we focus (in
this paper) on loads that miss in the LLC as these are often on the
critical path and are easy to identify. CDF improves the MLP for
independent critical loads by re-ordering the instruction stream.
CDF initiates both independent and dependent critical loads earlier
compared to a baseline OoO core which wastes cycles fetching
non-critical instructions. We also mark hard-to-predict branches as
critical, which enables quicker branch recovery and allows CDF to
restart fetching critical instructions past branch mispredictions.

In all, our contributions are as follows:
• We introduce Criticality Driven Fetch, a new paradigm for
OoO execution. CDF identifies critical instruction chains at
runtime and prioritizes their fetch, allocation, and execution
to improve performance.

• We present an implementation for CDF on an OoO core
targeting critical loads and outline all the microarchitectural
changes needed to support it.

• We show that with respect to accelerating cache misses on
the core, CDF provides better speedup than the prior state of
the art (Precise Runahead), 6.1% vs 2.6%. CDF also reduces
energy consumption (by 7.2%) and extra memory traffic (by
4%) compared to Precise Runahead.

2 CRITICALITY DRIVEN FETCH
We discuss the key benefits that CDF provides and how they im-
prove performance over the next few subsections. We also discuss
how these benefits make CDF a better solution for accelerating crit-
ical loads compared to Runahead and Compiler based techniques.

2.1 Improving MLP
Fig. 2 (a) shows a code segment from the SPEC benchmark astar.
Line 3 contains an array access whose index is a function of data
in memory and is fairly random. Moreover, this array is large and
does not fit in the LLC. As a result, most dynamic instances of the
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Figure 3: Filling the code segment into the processor instruc-
tion window

Load that reads from the array in line 3 are LLC misses and cause a
full window stall. Note that the Load in line 2 sees almost no cache
misses as this array is accessed sequentially and can be effectively
prefetched. Fig. 3 (a) shows the processor instruction window dur-
ing a full window stall while executing this code. In this example,
three instances of the loop and hence three dynamic instances of
the load can fit in the instruction window. Since the critical loads
in subsequent loop iterations only need the loop counter and an
array access that is a cache hit to compute their address, these
loads can access memory in parallel (they are independent loads).
The instructions in the loop after the critical load do not incur any
long latency stalls and the performance of this code segment thus
depends only on the critical load. Expanding the size of the ROB
helps improve MLP as the processor can now fit more instances of
the critical load. However, notice that the ROB also contains many
non-critical instructions which prevents the instruction window
from holding more instances of the critical load.

Fig. 2 (b) shows the same code segment, but split into critical
and non-critical instructions. The load and all the instructions in
its dependence chain are classified as critical. The rest are marked
non-critical. If the critical instructions are fetched and allocated pref-
erentially into the ROB (which is partitioned into two sections
with a larger section assigned to critical instructions) as shown in
Fig. 3 (b), the processor is able to hold and initiate more instances
of the critical load. This improves MLP significantly. Non-critical
instructions are relegated to a much smaller section of the ROB. The
non-critical instructions corresponding to subsequent iterations of
the loop are fetched when this smaller section is freed up which
reduces their throughput since we keep the non-critical section of
the ROB small. However, this does not affect the overall execution
time much since the performance of this code segment depends
only on the critical load. CDF can thus achieve the same amount
of parallelism as a processor with a much larger ROB without the
scaling overhead.

2.2 Fetching Critical Loads past
Hard-to-Predict Branches

Branch mispredictions limit the number of correct-path critical in-
structions that CDF can fetch ahead. This can eliminate the benefit
of improved MLP as off-path critical loads may not have correct
addresses. CDF can fetch useful critical loads past hard-to-predict
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branches if these branches are marked critical. When marked criti-
cal, hard-to-predict branches are fetched, executed, and resolved
earlier along with other critical instructions. This allows CDF to
continue fetching critical instructions on the correct path after
mispredicted branches are resolved without having to wait for
intermediate non-critical instructions.

2.3 Initiating Critical Loads Earlier
When fetching critical instructions, CDF skips over non-critical
ones, increasing the effective frontend bandwidth for critical in-
structions. As a result, both dependent and independent critical
loads are fetched and initiated earlier compared to a baseline OoO
core. This effect is prominent in applications where loads that cause
full window stalls are far apart (more than 1000 instructions away).
The performance of these programs is still limited by these loads as
the intermediate instructions between the critical loads can be exe-
cuted quickly. However, it takes many cycles to reach and initiate
and next critical load since all the intermediate non-critical instruc-
tions need to be fetched. Even though CDF is unable to extract MLP
from these loads, it is able to significantly reduce the number of
intermediate instruction fetch thus improving the performance of
these applications.

2.4 Comparison Against Runahead and
Compiler Based Techniques

Runahead [8, 9, 19] executes dependence chains corresponding to
multiple cache misses either on a full window stall on the core, or in
parallel on a separate Runahead engine. It is similar to CDF in that
it executes dependence chains for critical loads in order to increase
MLP. The work most similar to CDF is Precise Runahead [20].

Precise Runahead runs dependence chains corresponding to
multiple cache misses on a full window stall and allows branches to
be predicted when fetching these chains. It uses empty Reservation
Stations and Physical Registers to reduce the penalty for entering
and exiting Runahead mode, enabling smaller Runahead intervals
compared to prior work.CDF has the following key advantages
over any Runahead scheme on the core:

(a) Runahead execution is limited by the full window stall du-
ration. This can significantly reduce the benefits of Runahead on
applications that have shorter and fewer full window stalls and gets
worse with better memory systems. CDF is unaffected by this. (b) If
the branches encountered while fetching Runahead instructions are
mispredicted, subsequent off-path loads may execute incorrectly.
This reduces the performance of Runahead on applications that
have a high branch MPKI. Marking hard-to-predict branches crit-
ical allows CDF to fetch correct-path critical loads beyond these
branches by resolving them early. (c) Applications with full window
stalls that are spaced far apart do not benefit from Runahead as it
is unable to fetch instructions far enough to reach the next critical
load during the full window stall. While CDF is unable to extract
parallelism from these loads, it initiates the next critical load more
quickly thus improving performance. (d) Runahead chains can be
incorrect and generate a lot of additional memory traffic. Moreover,
Runahead instructions are duplicates that are executed twice on the
core. CDF does not have this overhead as the critical instructions
are part of the main instruction stream.

Criticality driven fetch is not fundamentally limited to loads and
can be expanded to any instructions in the program that are critical.
It is therefore a more general solution.

Compilers can identify critical loads through profiling and rear-
range code by unrolling loops and hoisting critical loads to achieve
the same effect as CDF. They can avoid the hardware overhead of
constructing critical load dependence chains at runtime. However,
they have a few major flaws.

Profiling can find the set of static loads likely to miss in the LLC
at runtime but cannot accurately predict which dynamic instances
of the loads miss [21]. Input data and runtime behavior usually
determine whether a load is critical. For example (Figure 2), the
index of the array access on line 3 depends on the contents of
another array (bound1p). Depending on the nature of the data in
this input-dependent array (bound1p), the load in question could
be critical or hit in the caches frequently. This can only be deter-
mined at runtime. The contents of bound1p can also be modified
by the program, which can result in the load on line 3 changing its
behavior across program phases. This occurs in many workloads
and compilers either fail to capture these critical loads or end up
reordering code around non-critical loads which does not improve
performance. Moreover, load hoisting is limited by architectural
register pressure [30]; CDF does not have this problem since critical
instructions communicate their values through physical registers.

3 IMPLEMENTATION
3.1 Overview
Implementing CDF on an OoO core requires additional structures
in various stages of the pipeline and changes to how instructions
are allocated in the Reorder Buffer, Reservation Stations, and Load
and Store Queues. An overview of the changes is shown in Fig. 4.

As instructions retire, the criticality of retired loads and branches
is predicted using the Critical Count Tables. The Fill Buffer records
the last 1024 retired uops. When full, it is walked starting from the
youngest uop and all the uops in the dependence chains of loads
and branches that were predicted critical are also marked critical.
Following this, the critical uops are collected into (decoded) uop
traces and added to the Critical Uop Cache.

The processor has two modes of operation: CDF mode and reg-
ular mode. On a hit in the Critical Uop Cache, the processor en-
ters CDF mode. In CDF mode all fetch address are computed and
branches predicted when fetching critical uops from the Critical
Uop Cache. This forms the critical instruction stream. Uops in the
critical instruction stream are renamed in the Critical Rename stage
which uses a separate critical Register Alias Table (RAT) and are
subsequently Issued to the processor backend.

In parallel, instructions are fetched from the I-cache using the
branch predictions and targets generated while fetching critical
uops (to ensure that they follow the same control flow path). This
forms the non-critical instruction stream which contains both crit-
ical and non-critical uops. These uops are Decoded and sent to
the Regular Rename stage. All uops in the non-critical instruction
stream update the RAT. Non-critical uops are renamed normally.
For critical uops, the corresponding renaming operations that were
performed in the Critical Rename stage are replayed. This ensures
that the state of the RAT is updated in-order and non-critical uops
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Figure 4: Overview of changes to the OoO pipeline

that depend on critical uops read the correct physical registers. The
critical uops are then discarded and the non-critical uops are Issued
to the processor backend.

Structures in the backend are partitioned into two sections: one
for critical instructions and the other for non-critical instructions.
The partitioning is dynamic and changes over the course of ex-
ecution but is generally skewed towards a larger critical section.
Dynamic partitioning allows CDF to adjust the throughput of the
critical and non-critical instruction streams. Instructions in each
section of the ROB are present in program order, and the oldest
instructions in each section are looked up to ensure retirement
occurs in-order. We discuss all these changes with examples and
go over their implementation details in the next few subsections.

3.2 Identifying and Storing Critical
Instructions

Identifying Critical Loads To track critical loads, we use a 64-
entry table (Critical Count Table) that contains two saturating
counters for each load in the table. The counters are updated at
retire time and incremented or decremented based on whether the
loads miss in the last level cache.

A load is considered critical if it has an entry in the Critical Count
Table and its counter value exceeds a set threshold. For most bench-
marks, having a stricter threshold is better as it reduces the density
of critical instructions and allows CDF to expand the effective in-
struction window further. However, some benchmarks benefit from
greater coverage. To account for these two sets of behaviors, we
have two counters per load in the Critical Count Table: one with a
stricter threshold and the other with a more permissive threshold
(the counters have different lengths). At runtime, we measure the
percentage of instructions marked critical by CDF and dynamically
pick the more permissive counters for prediction if too few loads
are marked critical. Hard to predict branches are tracked similarly
in a separate table and have different thresholds.

Adding Instructions to the Fill Buffer As instructions retire,
they update the Critical Count Tables and are marked critical based
on the counters. The retired instructions are then added to a FIFO
called the Fill Buffer. Each Fill Buffer entry contains a decoded uop,
a bit vector for the registers written to and read by the uop, a tag
for memory locations written to and read by the uop, and a bit to
indicate whether the instruction is critical. This is shown in Fig. 6.

When the Fill Buffer is full, we walk the Fill Buffer from the
youngest to the oldest instruction, constructing the dependence
chains for critical loads similar to the scheme used in Filtered Runa-
head [9]. In our case however, there can be multiple critical loads in
the Fill Buffer and the uops marked critical are thus a combination
of the uops in the dependence chains of multiple critical loads. This
process is shows for an example in Fig. 5.
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Figure 5: Backwards dataflow walk in the Fill Buffer

Adding instructions to the Critical Uop Cache When per-
forming the backwards dataflow walk, we keep track of basic block
boundaries by marking branches. When a complete basic block has
been marked in the fill buffer, the critical uops corresponding to the
basic block are collected into a trace. These uops are added to the
Critical Uop Cache and are tagged with the first instruction in the
basic block. When filling the next basic block, the tag from the prior
basic block is saved and added to the critical uop trace. This allows
the frontend to compute the fetch address of the next critical trace
by either predicting the branch at the end of the basic block (a bit
is added to the trace if it ends in a branch), or by using the address
saved at the end of the trace. This is shown in Fig. 7. Note that the
backwards dataflow walk does not end at basic block boundaries.
We use these boundaries to break the critical uops in the Fill Buffer
into basic block sized traces for ease of storage. If a basic block
exceeds the line limit (8 uops), it is broken into multiple Critical
Uop Cache entries. This process is repeated and uops are added to
the Fill Buffer every 10k instructions. The latency for marking the
dependent uops critical and filling them into the Critical Uop Cache
is around 1200 cycles, as iterating over individual instructions and
inserting a trace into the Critical Uop Cache each take a single cycle.
These are accounted for in our simulations.

Mask Cache The uops in the dependence chain of a critical load
may be different on different control flow paths. Thus different sets
of uops may be marked critical for the same basic block. To ensure
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Figure 7: Marking dependent instructions critical and
adding critical uop traces to the Critical Uop Cache

that the same set of critical uops can be used on multiple control
flow paths we combine the set of uops marked critical across all
previously encountered instances of that basic block.

To do this, we record a bit-mask for each basic block in the Fill
Buffer. The masks are created when performing the backwards
dataflow walk and contain a 1 for every critical uop in the basic
block. The masks for all basic blocks encountered when walking
the Fill Buffer are stored in the Mask Cache. If a basic block whose
mask is present in the Mask Cache is seen the next time instructions
are added to the Fill Buffer, its mask is read out and placed in a shift
register. As uops are added, they can be either marked critical by
the Critical Count Table or if the basic block mask being currently
read contains a 1 for that uop. Thus, the mask accumulates critical
uops for the same basic block seen on different control flow paths.

Storing the contents of the Fill Buffer as a single long trace for
every encountered control flow path also prevents this problem.
However, this results in a large number of duplicate instructions in
the Critical Uop Cache. Storing basic blocks of critical uops reduces
duplicates and allows the CDF frontend to fetch control flow paths
that include basic blocks sequences that have not been seen before.
Each entry in the mask cache is a 64-bit mask that is tagged with the
address of the first instruction in the basic block. It is periodically
reset (every 200k instructions) to clear uops accumulated in the
masks from control flow paths that are no longer active.

When marking instructions in the Fill Buffer, if too few (<2%)
or too many (>50%) instructions are marked critical, they are not
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Figure 8: CDF Fetch Stage

added to the Critical Uop Cache or the Mask Cache as CDF does not
improve performance in these situations. Instead, the correspond-
ing basic blocks are removed from these structures to prevent the
processor from entering CDF mode.

3.3 Fetching Critical Instructions OoO
To fetch critical instructions preferentially, we augment the fron-
tend of the pipeline with extra fetch logic. We add a new PC register,
replicate the next-PC logic, and add the Delayed Branch Queue: a
256-entry FIFO that stores the directions and targets of all branches
encountered in CDF mode. These changes are shown in Fig. 8.

Entering CDF mode On a hit in the Critical Uop Cache, the
processor copies the contents of the PC to the critical next-PC logic
and begins CDF mode. During CDF mode, all fetch addresses are
computed and branches predicted by the critical fetch logic. These
addresses are sent to the Critical Uop Cache and the uops read
out are added to the Critical Instruction Buffers. Since we store
decoded uops, they are directly sent to the Critical Rename stage.
The predictions and targets of all the branches are added to the
Delayed Branch Queue. If no branch is encountered (or the branch
is predicted not-taken), the next fetch address is obtained from the
critical uop trace that was previously read out.

Fetching Non-Critical Instructions In CDF mode, the regular
fetch logic continues to function as usual, except the predictions for
all branches and their targets are read out from the Delayed Branch
Queue. Thus, branch prediction is performed in order and the pre-
dictors are only accessed once when fetching critical uops. Reading
from the Delayed Branch Queue ensures that the non-critical in-
struction stream follows the same control flow path that the critical
fetch logic took. We fetch all instructions (critical and non-critical)
from the I-cache and add them to the Instruction Buffers. The criti-
cal uops are discarded at the Rename stage.

It is possible to avoid the overhead of re-fetching and decoding
critical uops from the I-cache by having a separate Non-Critical
Uop Cache. This also improves the fetch bandwidth for non-critical
instructions. However, having a Non-Critical Uop Cache adds ad-
ditional area and complexity to the design of the Fetch Unit and
complicates renaming. Moreover, we observed that non-critical
instructions are generally less sensitive to fetch bandwidth and
decided not to implement a separate Non-Critical Uop Cache.
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Figure 9: CDF Rename Stage

Assigning Timestamps OoO cores assign timestamps to in-
structions to specify their relative ordering. Since we know ex-
actly how many intermediate non-critical uops are present in a
basic block while constructing critical uop traces, we can assign
timestamps to critical uops appropriately when they are fetched by
skipping over the timestamp values that would have been assigned
to non-critical uops. The critical uop traces contains an additional
field per uop that enables this. When instructions are fetched as
part of the non-critical instruction stream, timestamps are assigned
as usual starting from the same value as when CDF began. This
ensures that the timestamps correctly identify the program order
of critical and non-critical uops.

3.4 Renaming Instructions OoO
Renaming the Critical Instruction Stream When critical uops
reach the rename stage, they create a copy of the Register Alias Ta-
ble (RAT) after the last regular mode instruction has been renamed.
The critical uops then proceed to get renamed as they would in a
normal OoO core using the critical RAT. This is shown in Fig. 9

In the example in Fig. 10, there are no critical uops that depend on
a non-critical uop. This is because any non-critical uop that writes
to a source register read by a critical uop is also marked critical
during Trace Construction. As a result, renaming critical uops first
correctly outlines the dependencies between them. The destination
physical registers written to by critical uops are recorded in the
Critical Map Queue, which is a 256-entry FIFO.

Renaming the Non-critical Instruction StreamNon-critical
uops can depend on critical uops. Looking at the example in Fig. 10,
we see that I4 and I7 depend on critical uops. To correctly execute
them, the destination physical registers used by critical uops (I0 and
I6 in the example) need to be communicated to the subsequent non-
critical uops, which is done by the Critical Map Queue. When the
non-critical instruction stream (which contain all uops) is renamed,
non-critical uops are renamed normally using the Free Physical
Register List and update the regular RAT. Critical uops read the
head of the Critical Map Queue instead to update the RAT. The entry
at the head of the Critical Map Queue contains the physical register
that was assigned to the next critical uop when it was renamed
as part of the critical instruction stream. This allows the regular
RAT to be updated in-order as we essentially replay the renaming
operation of the intermediate critical uops. In the example, reading

I0: R0 <- R0 - 1

I1: BRZ I3

I2: R3 <- R3 - 2

I3: R1 <- [R3+R0]

I4: R5 <- [0x200+R0]

I5: R7 <- R5 >> 2

I6: R2 <- [R1]

I7: [0x300+R7] <- R2

I8: BRNZ I0

I1 is Taken and skips over I2

Non-Critical Uops Critical Uops

Renaming Order

(Critical Rat)
I0
I3
I6

(Regular RAT)
I0
I1
I3
I4
I5
I6
I7
I8

Figure 10: Simple example to demonstrate renaming. There
are no dependencies from non-critical to critical instruc-
tions. However non-critical instructions may use data writ-
ten by critical instructions.

out the destination physical registers for the intermediate critical
uops (I0, I6) from the Critical Map Queue ensures that I4 and I7
have source physical register IDs that correspond to the actual data
produced by I0 and I6.

Thus, the state of the regular RAT is always updated in program
order. The Critical Map Queue also filters out critical uops after
updating the RAT as they are already issued to the backend as
part of the critical instruction stream. Note that the performance
of non-critical instructions is reduced here because they are not
renamed at peak bandwidth due to the intermediate renaming
operations that are replayed for the critical uops. However, this
does not degrade the overall performance much as non-critical
instructions can generally tolerate this reduced bandwidth. The
non-critical instruction stream stalls if the corresponding critical
uops in the critical instruction stream have not been renamed.

3.5 Allocating Instructions and Partitioning
Window Resources

When the first critical uop reaches the ROB, a critical partition is
created for critical instructions. This is done by assigning a new
set of fill and retire pointers. The pointers to the start and end of
the critical section are stored in separate registers. The increment
logic for the critical fill and retire pointers is modified to skip over
non-critical instructions in the ROB and vice-versa. The Load and
Store Queues are also partitioned with similarly modified fill and
retire pointer logic. The Reservation Stations and Physical Registers
are partitioned by imposing a limit on the number of critical uops
in both the structures.

Issue and Dispatch Both the critical and non-critical Rename
stages contain uops that need to be issued to the ROB and the
Reservation Stations. The Issue logic always picks uops from the
critical Rename stage if it is not empty and the critical section of the
ROB, LQ or SQ are not stalled. Otherwise, it issues non-critical uops.
When dispatching instructions from the Reservation Stations to
the Execution Units, we use oldest-first scheduling with preference
given to critical uops. The total issue and dispatch bandwidth in
CDF is the same as that of the underlying OoO core.

Dynamically Changing the Partition Size Reducing the par-
tition size for non-critical instructions reduces their throughput
but does not generally affect performance. However, assigning too
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small a partition for non-critical instructions will eventually lead
to them bottlenecking execution as they are unable to make suffi-
cient forward progress. Moreover, not all cache misses are marked
critical as the Critical Count Table can be wrong in its prediction
of whether a load (or branch) is critical. Therefore, instead of keep-
ing the partitions static, we allow the partition size to change by
modifying the fill and retire pointer boundaries. When the critical
partition in the ROB needs to be expanded, the first non-critical
instruction slot after the end of the critical partition is marked. If it
empty, the register containing the pointer to the end of the critical
section is incremented to include the next slot and the size of the
critical section increases by one. If it is not empty, we wait until the
instruction in the non-critical ROB entry retires and then add the
slot to the critical section. Reducing the size of the critical section
works similarly: we mark the slot at the beginning of the critical
section, and when empty, increment the pointer to the start of the
critical section to exclude that slot.

We vary the partition sizes of the ROB, LQ and SQ independently
(the number of critical uops in the RS and PRF change with the
ROB partition size). The partitioning mechanism is controlled by
counters that measure the relative number of full window stalls
caused due to these structures in both the critical and non-critical
sections. If the number of full window stalls in a section exceeds
the other by a set threshold, it is expanded. In our simulations, we
use a full window stall cycle threshold of 4 cycles. The partition
sizes of the ROB/RS are incremented or decremented by 8 entries
when this threshold is reached. The partition sizes of the LQ/SQ
are updated by 2. In general, we observed that finer granularities
for both the stall threshold and partition size changes work better.

Dynamic partitioning allows CDF to adjust the throughput of
the critical and non-critical instruction streams. This prevents non-
critical instructions from bottlenecking performance while max-
imizing the amount of parallelism that can be extracted from critical
instructions. Since the optimal partition sizes are program/execution
phase dependent, the ability to dynamically pick a partition
size significantly improves the performance of CDF.

Memory Disambiguation In OoO cores with Total Store Or-
dering (TSO) ormore relaxed forms ofmemory ordering, associative
lookups are performed on instruction timestamps in the Load and
Store Queues to make sure memory ordering is not violated. Since
CDF assigns timestamps for both critical and non-critical uops in
program order, the memory disambiguation logic does not change
significantly. While CDF partitions the Load and Store Queues, the
memory operations within the two sections of the queues are al-
ways present in program order. The memory disambiguation logic
thus needs look up two sets of (smaller) ordered queues to ensure
correctness.

During CDF, there may be non-critical loads and stores (which
are older than critical memory operations already in the queues)
that have not been issued to the processor backend. However, criti-
cal memory operations are not committed until retire time. Since
retirement happens in order, the missing non-critical loads and
stores (that are in program order before the critical ones) will be
issued to the LQ and SQ before the critical loads and stores are
committed. The memory operations can then be checked for de-
pendence violations and do not require any additional logic beyond

what is already present in a regular OoO core. If a memory depen-
dence violation is detected, the pipeline is flushed and the processor
restarts fetching instructions in regular mode from the instruction
at which the violation was detected.

In-Order Retirement In both the critical and non-critical sec-
tions of the ROB, instructions are present in program order. Only
the oldest instructions in each section (as indicated by the two
retire pointers) need to be checked for retirement and a simple
comparison of their timestamps gives us the next instruction to be
retired. While this increases the complexity of the retirement logic,
it does not affect performance much since very few programs are
limited by the Retire stage latency.

3.6 Overall Pipeline Changes
Branch Mispredictions CDF deals with branch mispredictions in
the same way as a regular OoO core: on a detected misprediction,
all instructions in the processor younger than the mispredicted
branch in program order are flushed. This includes critical and
non-critical instructions. Both the Critical Map Queue and Delayed
Branch Queue are partially flushed. This does not add any addi-
tional overhead to the misprediction latency as entries in these
structures are arranged in program order and flushing them is thus
straightforward.

If a mispredicted branch is a marked critical, recovering to the
mispredicted branch does not end CDF mode. This allows the CDF
frontend to continue fetching critical instructions after the branch is
resolved. The state of the critical RAT is checkpointed and recovered
using the same mechanism as the regular RAT. A mispredicted
branch in the non-critical instruction stream does not end CDF
mode either if it was fetched when CDF mode was active. It only
sees a higher misprediction latency since all branches are predicted
when fetching critical instructions. Recovering to a mispredicted
branch that was fetched as part of regular execution does end CDF
mode. Subsequent instructions can re-start CDF mode again on a
hit in the Critical Uop Cache.

Dependence Violations in the Critical Instruction Stream
The dependence chains constructed as part of the backward dataflow
walk can be incorrect in rare cases. This primarily happens when
critical uops are fetched on a control flow path that has not been
seen before, or the critical load dependence chain goes beyond
1024 uops (the capacity of the Fill Buffer). Memory dependence
violations are detected and resolved by the memory disambigua-
tion logic. When a register dependence violation occurs, a critical
uop that depends on an incorrectly marked non-critical uop can
be fetched and executed before the non-critical uop leading to in-
correct execution. An example of this is shown in Fig. 12 where
only the taken path has been recorded in the Fill Buffer. When
the not-taken path is seen, I2 is not fetched as part of the critical
instruction stream even though it writes to a critical instruction
(I3). I0, I3 and I6 are fetched and executed first, which leads to I3
and subsequently I6 being incorrectly executed.

The mask cache helps reduce the number of dependence viola-
tions significantly since it combines instructions marked critical
across multiple control flow paths for a basic block. However, the
rare cases in which instructions are incorrectly executed need to
be detected and resolved to ensure correctness.
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Figure 11: I2 poisons register R3. I3 is a critical uop that reads from R3. When the renaming operation of I3 is replayed, a
dependence violation is detected.

I0: R0 <- R0 - 1

I1: BRZ I3

I2: R3 <- R3 - 2

I3: R1 <- [R3+R0]

I4: R5 <- [0x200+R0]

I5: R7 <- R5 >> 2

I6: R2 <- [R1]

I7: [0x300+R7] <- R2

I8: BRNZ I0

I1 Not Taken

Non-Critical Uops Critical Uops

Renaming Order

(Critical RAT)
I0
I3
I6

(Regular RAT)
I0
I1
I2
I3

Figure 12: If I1 is not-taken, there is a non-critical instruc-
tion that writes to a critical instruction as this control flow
behavior has not been captured in the Fill Buffer

To detect whether any non-critical uop writes to a critical uop,
we use a poison bit in the regular RAT for each architectural register.
When the non-critical uops in the non-critical instruction stream
are renamed, the poison bit in the regular RAT corresponding to its
destination register is set. When performed for all the non-critical
uops, this poisons the destination register set for all non-critical
uops. If a subsequent critical uop (whose renaming operation is
replayed) reads a poisoned register, it has executed incorrectly since
it should have used the value computed by the non-critical uop
which poisoned that register. This process is shown for the previous
example in Fig. 11. This constitutes a dependence violation. Sub-
sequent critical uops may have executed incorrectly; therefore, all
critical instructions in program order after the instruction at which
the violation was detected need to be flushed from the pipeline.
The frontend then restarts regular execution at the instruction at
which the violation was detected. When replaying the renaming
operations of critical uops in the non-critical instruction stream,
the poison bit for their destination registers is cleared since it is not
in the set of registers written to by non-critical instructions.

A dependence violation can potentially flush a large number of
critical instructions from the pipeline. However, since they are rare,
we found that this overhead was under 2% (in terms of execution
cycles) for most benchmarks. The branch flush logic can be reused
for flushing the pipeline in the event of a dependence violation.

Exiting CDF mode The fetch unit stops fetching critical uops
on any of the following events: (a) the fetch unit encounters a miss
in the Critical Uop Cache, (b) a dependence violation is detected,
(c) the branch being recovered to was not fetched in CDF mode.

Any remaining non-critical instructions (as indicated by the
Delayed Branch Queue being not empty) are then fetched. Once
the last non-critical instruction is fetched, the processor exits CDF
mode and resumes regular execution. Since the non-critical instruc-
tion stream updates the state of the regular RAT in program order,
no additional work needs to be done to transition back to regular
execution. Note that it is possible to have unretired critical instruc-
tions in the pipeline when the frontend exits CDF mode and starts
fetching instructions normally. To deal with this, all instructions
that are fetched regularly are treated as non-critical and the size
of the critical section of all the backend structures is gradually
decreased till the pending critical instructions retire.

4 EVALUATION
4.1 Methodology
To evaluate how CDF affects processor performance, we simulate
the micro-architecture of an aggressive OoO core augmented with
the structures and logic needed to support CDF. We use Scarab [1],
an execution-driven cycle-accurate x86-64 simulator, to implement
CDF, and Ramulator [11] to model main memory. CACTI [18] and
McPAT [15] are used to provide energy and area measurements.
The system details for the baseline OoO core and additional CDF
structures are listed in Table 1. The baseline core parameters are
modelled after the Intel Sunny Cove microarchitecture.
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Core 3.2 GHz, 6-wide issue, TAGE-SC-L Predictor [25]
352 Entry ROB, 160 Entry Reservation Station

128 Entry Load & 72 Entry Store Queues
Caches 32KB 8-way L1 I-cache & D-cache, 2-cycle access

1MB 16-way LLC cache, 18-cycle access, 64B lines
Prefetcher Stream Prefetcher, 64 Streams (always on),

Feedback Directed Prefetching to throttle prefetcher
Memory DDR4_2400R: 1 rank, 2 channels

4 bank groups and 4 banks per channel
tRP-tCL-tRCD: 16-16-16

CDF 64B 2-way Critical Count Tables, 1-cycle access
Caches 4KB 4-way Mask Cache, 1-cycle access

18KB 4-way Critical Uop Cache, 1-cycle access
8 uops (8B each) per entry

CDF 1024-entry, 16KB Fill Buffer
FIFOs 256-entry, 1KB Delayed Branch Queue

256-entry, 512B Critical Map Queue

Table 1: Simulation Parameters

Benchmarks We use the set of memory intensive applications
from SPEC CPU2006 and SPEC CPU2017 (speed). We use SimPoints
[26] to get representative regions for these benchmarks and gener-
ate up to 5 SimPoints per benchmark, with 200 million instructions
per SimPoint. In all our simulations we warm up the caches and
branch predictor for 200 million instructions before the SimPoint.

Precise Runahead For a fair comparison, we use the same
mechanism as CDF for marking and fetching critical instructions
in Precise Runahead (PRE), except we only mark loads that cause
full window stalls as critical. The Critical Uop Cache can hold more
critical instructions compared to PRE’s Stalling Slice Table (SST)
and hence provides better performance. Our implementation of PRE
also does not include the Extended uop Queue (EMQ) since fetching
from the Critical Uop Cache means non-critical instructions need
not be buffered.

4.2 Performance
Fig. 13 shows the speedup of CDF and PRE over the baseline OoO
core (with prefetching). CDF provides a geomean speedup of 6.1%
over the baseline, whereas PRE provides a speedup of 2.6%.

Application Level Analysis CDF performs better than PRE on
most benchmarks. This can be attributed to the three reasons we
discussed in Section 2. On benchmarks such as lbm, the full window
stall duration is too short to enable any useful Runahead prefetches.
CDF does not have this limitation. CDF does well on bzip, astar,mcf
and soplex as we mark hard-to-predict branches critical. As a result,
mispredicted branches are resolved earlier which allows CDF to
continue fetching critical instructions. Not marking these branches
critical eliminates the benefits of CDF in these applications and
reduces the geomean speedup to 3.8%. All benchmarks benefit from
CDF’s improved critical instruction fetch bandwidth. bzip and nab
in particular perform better than the baseline due to faster initiation
of critical loads and do not benefit much from improved parallelism.

CDF provides a large performance improvement when the in-
structions marked critical are sparse. This allows CDF to skip more
non-critical instructions and fill up the processor instruction win-
dow with critical loads, which is the case in our best performing

Figure 13: Percentage IPC improvement for CDF and PRE
over the baseline

Figure 14: MLP for CDF and PRE relative to baseline

benchmarks (milc, xalanbmk, libquantum). PRE performs well on
some benchmarks as its prefetch distance is not limited by the ROB
or LQ. CDF cannot fetch as far ahead as PRE in these benchmarks
as the critical instructions are not sparse enough. These include
zeusmp, GemsFDTD, fotonik3d and roms.

leslie3d, sphinx,wrf, parest and omnetpp do not dowell with either
CDF or PRE. The critical instruction densities in these benchmarks
does not fit into the two broad categories that we use in Section
3.2. Accelerating cache misses in benchmarks that CDF does
poorly on is possible but requires a more complex mecha-
nism for manipulating critical instruction and load densi-
ties in a fine-grained manner. We leave this optimization to
future work.

Note on PRE Results The speedup for PRE in our implementa-
tion is much lower than shown in prior work. In our evaluation, we
used up to five SimPoints per benchmark, whereas all prior work
on Runahead (including PRE) uses only a single SimPoint. Some
SimPoints are not memory intensive and can provide neutral or
even negative benefits: for example some SimPoints in libquantum
and CactuBSSN show poor performance due to corruption of the
cache state and excess memory traffic respectively. Also, we use a
more aggressive memory configuration and baseline OoO core in
our evaluation which reduces the duration of full window stalls in
many benchmarks and limits the benefits of PRE.

MLP Fig. 14 shows the MLP for CDF and PRE relative to the
baseline OoO core. A large percentage of the increased MLP for PRE
is due wrongpath loads or loads with incorrect dependence chains
which do not contribute to improved performance. In contrast,
almost all the extra parallelism exposed by CDF contains critical
loadswith correct addresses that lead to performance improvements
which is reflected in the low overhead of CDF.
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Figure 15: Memory traffic relative to baseline

Figure 16: Percentage change in energy consumption rela-
tive to baseline

4.3 Overheads
Memory Traffic Fig. 15 shows the memory traffic for CDF and PRE
relative to the baseline. In addition to the extra incorrect memory
accesses, PRE also triggers additional Stream Prefetcher accesses
which further adds to the memory traffic. CDF issues useful loads
that are part of the main instruction stream and thus increases
memory traffic only by 0.1%, whereas PRE has a 4.1% overhead.

Energy CDF reduces the energy consumed for most applications
as the overall runtime decreases as seen in Fig. 16. The energy over-
head of all the additional structures adds up to 2% of the baseline.
The Critical Uop Cache, Mask Cache and critical RAT contribute
to most of this. The added FIFOs and pipeline logic do not have
significant overhead since read and write operation energy and
static energy for these structures are much lower due to their lower
complexity. Benchmarks that do not do well in CDF mode default
to regular execution which reduces the dynamic energy due to the
CDF structures in these benchmarks.

PRE performs worse than the baseline in terms of energy due to
the large increase in memory traffic and the large number of dupli-
cate instructions fetched and executed in the pipeline. Even though
CDF fetches and renames critical uops twice (which we model),
this overhead is much lower since it does not lead to additional
Branch predictor or backend activity (PRF, LQ, RS) in the pipeline.
Overall, CDF reduce the energy consumption by 3.5%, while Precise
Runahead increases energy consumption by 3.7%.

Area and Cycle Time CDF has a total area overhead of 3.2%.
Majority of this overhead is due to the Critical Uop Cache, Mask
Cache and critical RAT. The FIFOs and additional pipeline logic
(Fetch logic, Instruction Buffers, Critical Rename logic) have fewer
access ports and add much lower overhead.

The operations involving trace construction are not on the criti-
cal path of the processor pipeline and do not affect the cycle time.

The Critical Uop Cache can be accessed in a single cycle. Accesses
to the Delayed Branch Queue and Critical Map Queue take very
little time since they are FIFOs. The only significant logic added
directly on the critical path of the pipeline is the logic in the Allo-
cation Stage which can pick between both critical and non-critical
uops and prioritizes critical uops. To model the worst-case scenario,
we added an addition pipeline stage at the end of Rename during
CDF.

4.4 Scaling Studies
With CDF, a larger OoO core provides increased parallelism since
more critical loads can be packed together in the ROB and LQ. If the
application benefits from increased MLP, CDF provides significant
performance benefits with even larger OoO cores. Fig. 17 shows
how the IPC and energy consumption of a CDF OoO core scale
in comparison to a regular OoO core. Applications like roms and
fotonik perform better with a larger baseline since the larger win-
dows allow CDF to fetch further ahead. A scaled OoO core with
area comparable to our CDF implementation provides only 3.7% IPC
improvement (a major part of this comes from improved ILP which
CDF cannot currently extract) and consumes 2.5% more energy.

5 RELATEDWORK
There has been a lot of prior work on improving single-threaded
parallelism using separate threads or through pre-computation.
Speculative multi-threading [17, 22, 34] splits the program into
speculative threads at compile time and executes these threads on
a different core to improve parallelism. In Lookahead execution
[7, 13], a ’skeleton’ or reduced version of the main program pre-
computes branch directions and load addresses before the program
reaches the corresponding instructions. Helper threads [6, 10] are
similar and are run as a separate context on the same core. [4] uses
a similar "future thread" that executes (but does not commit) on a
partitioned section of the core and forwards registers values to the
main program.

Speculative multi-threading leverages the compiler to find good
points to parallelize code. These threads are not optimal since in-
struction criticality cannot be accurately computed at compile time.
Also, speculative multi-threading is expensive as it requires an ad-
ditional core. Lookahead execution and helper threads also face
similar problems as the skeleton code or the helper threads cannot
determine which instructions will be critical at runtime. As a result,
they contain a lot of instructions and require a significant amount
of resources to run ahead of the main program. Moreover, these in-
structions are duplicates that need to be executed twice, leading to
additional overhead. This code can also be inaccurate, causing extra
memory traffic.While the most recent work on Slipstream [29] com-
putes instruction criticality at runtime, it still requires a separate
core and re-executes a large number of instructions. CDF takes the
more direct approach of changing the fetch and schedule order of
the instruction stream to trigger loads in a more timely manner and
focuses on extracting more parallelism from the available window
resources.

Continuous Runahead [8] runs simple dependence chains on a
separate Runahead engine to prefetch load misses. Since the Runa-
head engine is lightweight, it does not have a complex branch
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Figure 17: CDF and Baseline OoO cores with different ROB configurations (other core structures are scaled proportionately)

predictor or support execution of floating point operations. This
leads to many memory accesses at incorrect addresses which re-
sults in additional memory traffic. This overhead is shared by most
aggressive prefetching algorithms as well.

LTP [24] and Shelf OoO Execution [27] leverage instruction
criticality to improve the efficiency of the Reservation Stations but
cannot extractMLP beyond the capacity of the ROB since it allocates
instructions to the ROB in-order. CDF could be implemented such
that it performs in-order fetch, buffers instructions after fetch, and
allocates critical instructions preferentially (similar to LTP, but
with a partitioned backend). However, the parallelism that can
be extracted from such a design would be limited by the size of
the intermediate buffer. Moreover, we would lose the benefit of
improved critical instruction fetch bandwidth by fetching in-order,
which reduces the performance of this design significantly.

Slice OoO execution [5, 14] tries to extract MLP from InO cores
by executing load slices out-of-order. CDF instead maximizes the
parallelism that can be extracted from an OoO core. [2] uses instruc-
tion criticality and control independence to reduce in-order fetch
bottlenecks. Continual Flow Pipelines (CFP) [28] finds independent
critical load chains in a tight loop and creates a self-contained exe-
cution loop in hardware by releasing resources early and allowing
subsequent iterations of the chains to acquire them. The CFP chains
however have significantly lower coverage compared to CDF which
can have multiple critical loads and diverse control flow paths. Un-
like CDF, CFP uses a ROB-less architecture [3] to enable a larger
instruction window for critical loads.

Since CDF expands the speculative window of the OoO core, it
affects side-channel attacks that exploit speculative execution [12,
16]. For instance, an attacker can artificially trigger cache misses
to have longer speculative windows which may make some attacks
easier to execute. This however is the same problem that a processor
with an actual larger OoOwindowwould face, and existing defenses
against speculative side channels [23, 32, 33] can be made to work
on a CDF OoO core.

6 CONCLUSION AND FUTUREWORK
In this paper, we present CDF - a new execution paradigm for
accelerating critical instructions on OoO cores. CDF expands the
effective size of the instruction window seen by critical instructions
by preferentially fetching, allocating and executing them at the
expense of reducing the throughput of non-critical instructions.
We implement CDF on an OoO core and show that it improves the
performance of loads that miss in the LLC by marking all such loads
and the instructions in their dependence chains critical. CDF does
this by exposing more MLP for independent loads and by fetching
critical loads earlier. It can also fetch critical loads past hard-to-
predict branches by resolving the branches early. CDF improves
performance by 6.1% over a baseline OoO core.

CDF and techniques such as Runahead provide different benefits
and can potentially be combined. CDF is better suited to the task
of extracting parallelism from loads that lie a few 1000 instructions
away, whereas memory prefetchers and variants of Runahead are
better suited to prefetching loads far into the future. CDF is not
limited to loads and can improve the performance of most programs
that show better performance with a larger OoO window. To this
end, accurately predicting instruction criticality and finding the
optimal critical instruction density for an application’s execution
phases are essential. While compilers cannot identify critical in-
structions and find the optimal level of loop unrolling statically,
they can be used to augment CDF by statically generating a set of
possible chains that CDF can then choose to fetch and execute at
runtime. This can help reduce the hardware overhead and complex-
ity of CDF significantly.
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