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Abstract—The performance of user-facing applications is critical to
client platforms. Many of these applications are event-driven and exhibit
“bursty” behavior: the application is generally idle but generates bursts
of activity in response to human interaction. We study one example of a
bursty application, web-browsers, and produce two important insights:
(1) Activity bursts contain false parallelism, bringing many cores out
of a deep sleep to inefficiently render a single webpage, and (2) these
bursts are highly compute driven, and thus scale nearly linearly with
frequency. We show average performance gains/energy reductions of
14%/17% respectively on real hardware by statically moving threads
from multiple cores to a single core. We then propose dynamic hardware
driven thread migration and scheduling enhancements that detect these
bursts, leading to further benefits.

Index Terms: Multicore, Energy, Performance, Webpages

I. INTRODUCTION

Due to the hardware and software specialization of mobile devices
and cloud platforms, computing systems have largely split into the
client space and the server space. In client systems, many relevant ap-
plications are bursty, involving either a human or long latency request
as a component of the experience and are therefore often event-driven
in nature. Examples include web browsers, user interfaces, gesture
processing, and navigation functions.

The power profile of an activity burst is shown in Figure la. The
system is otherwise idle until a webpage is loaded in Firefox (a web-
browser) at about four seconds. This load causes a short burst of
processor activity that settles back to the idle baseline after about one
second. As the responsiveness of the application greatly influences
the user’s experience on the client system, these bursts are highly
latency sensitive and a key area for hardware optimization.

However, bursty applications do not exhibit behavior common
to traditional computer architecture workloads and are harder for
architects to evaluate as code-footprints are much larger than kernels
and relevant execution timescales are on the order of seconds. This
is illustrated in Figure 1b. We run all of the SPEC CPU2006
benchmarks with the reference input set and compare the number of
different 64-byte instruction cache lines touched by each application
to a web browser loading three different webpages: Google, Amazon,
and CNN. Even loading a seemingly simple webpage like the Google
homepage touches a code footprint that is 10x larger than the average
footprint touched by a SPECint benchmark.
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Fig. 1: (a) Core power consumption burst when loading a webpage
(Google homepage). (b) Total number of 64-byte instruction cache
lines accessed by SPECint/SPECfp 2006 and three webpage loads.

In this work, we seek to understand how these bursty workloads
perform on current multicore processors, which have penetrated the
mobile market. We make the following contributions in this paper:
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« We study one example of a bursty application, Firefox, on both
real hardware and with Pin [7] instrumentation. We make two
observations. First, the bursts of activity that occur while loading
a webpage contain “false-parallelism” that cause inefficiency by
bringing all of the cores of a multi-core processor out of sleep for
small periods of time. Second, these bursts are highly compute-
driven, and do not appear to be memory-limited.

o Using these insights, we evaluate a simple static policy on real
hardware that clusters all threads on a single core. This policy
results in a 14% average reduction in webpage load time and a
17% reduction in energy consumption.

« We propose a dynamic hardware-driven thread clustering policy
that detects the bursts of activity that we observe to be common
to webpage loads. We evaluate this policy using Pin and show
that it outperforms a static thread clustering policy.

II. BROWSER COMPUTE BEHAVIOR

To understand the compute behavior of a web-browser on a
multicore processor, we use Intel’s VTune [5] to track core utilization
when a web page is loaded. VTune uses performance counters to
track how much time each core spends executing an application in
different power-saving modes, or sleep states. This correlates to the
application’s compute utilization as an inactive or sleeping processor
is unutilized. We use Firefox as a web browser in our experiments
and suggest in Section VII that the observed behavior extends to
other browsers.

Figure 2a shows the core-activity data for each of the four cores
of an Intel Ivy-Bridge processor. The brightest yellow colors signify
time spent in the CO state, where the processor is operating at its full-
frequency. Darker colors denote power-saving states where different
parts of the processor are powered down, or the clock frequency is
reduced. Every data point is a sorted bar representing the fraction of
time during that interval that the core spent in each sleep state.
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Fig. 2: (a) Core sleep state data. Firefox is started at time O followed
by two Google page loads at 4 and 7 seconds. Each tick mark on
the x-axis denotes one second. (b) The number of active threads
and thread spawn events for starting Firefox and loading the Google
homepage twice. Every thread creation event is marked with an ’x’.

Thread Creation

There are three events captured in Figure 2a. First, Firefox is
started at time 0. Second, at about 4 seconds we load Google using
a bookmarked link. Third, at about 7 seconds we reload Google by
refreshing the webpage'. For each of these events we observe the
bursty behavior that we expected: the system becomes very active
for a short period of time and then settles back to idle. Moreover, we

'We disable the browser’s software cache for all experiments in this paper



consistently observe all of the four cores powering up from a deep
sleep state (signified by a dark green color) to CO (bright yellow). The
operating system has scheduled threads for execution on each core,
implying that Firefox is a very parallel program with many threads
available for execution. The application is making use of all of the
available compute resources during each burst.

Figure 2a shows that loading Google causes high compute utiliza-
tion for a short period of time. However, Google is not the only
website to display this trend. Based on our experiments, we observe
this behavior for all of the websites we loaded, from simple micro-
benchmarks to full webpages such as Google. In general, the bursts of
activity caused by loading a website result in high compute utilization
and appear to be driven by many threads. We further explore this
effect by instrumenting Firefox using Pin [7]. This allows us to
observe how many threads are active in a given interval as well as the
total number of threads that are spawned while loading a webpage.

We experiment once again by loading the Google homepage. We
use an interval length of one million instructions, and define any
given thread to be active if it executes a substantial portion of the
total number of instructions in that interval (100,000 instructions out
of a 1,000,000 instruction interval, or 10%). As in Figure 2a, we
start instrumentation when Firefox begins and then load the Google
homepage twice. These results are shown in Figure 2b.

Figure 2b marks thread creation events with an ’x’. These events
are concentrated around three different points. During the first billion
instructions, when Firefox is starting, around 1.5 billion instructions,
during the first page load, and at 5.0 billion instructions during
the second page load. To accomplish the task of starting Firefox
and loading two web pages, 41 threads are spawned. This is a
large number of threads, far more than a modern multi-core chip
is designed to run at once. With this level of apparent parallelism, it
is not surprising that Figure 2a shows all four cores powering up out
of deep sleep to execute all of the available threads.

However, Figure 2b also shows that for the vast majority of
intervals a single thread dominates the total number of executed
instructions. In fact, out of the 7600 total intervals there are four
active threads for only four intervals, and three active threads for
only 24 intervals. This implies that the 41 threads that were spawned
tend to each do a very small amount of total work, accounting for
under 100,000 instructions, and there are one or two main threads
that are active during most intervals.

Our studies attribute this thread behavior to the event-driven,
asynchronous nature of web-browsers and JavaScript. Analysis of
the work that each thread is completing is generally obscured by
indirect jumps in the main event-handler loop in Firefox. The main
thread that handles the event loop is usually active, while many other
threads are generated as work/events occur.

Yet, as each core is 2-way SMT, this threading behavior poses
a question. Why are all four cores powering out of deep sleep to
complete this work when the majority of the time, only a small
number of threads are active? The operating systems treats all
threads equally whereas these threads exhibit very different compute
behavior. There is a significant static-power overhead to turn on a
whole new core if it is only going to be active for a very short
period of time, as caches require time to warm-up after power-gating.
If the running thread only runs for a short amount of time, this data
migration cost cannot be amortized. We explore this observation in
Section III by instrumenting real hardware to measure power and
performance during website loads.

ITI. SINGLE-CORE VS. MULTI-CORE

In Section II we identified that while there appears to be significant
parallelism when loading a webpage, there are predominantly one or

two threads that dominate execution time. With this little effective
parallelism, there may be energy and performance benefits to running
all of the threads on a single core instead of across all four-cores of
a multi-core processor. This minimizes data movement and sharing
between cores, thereby increasing compute efficiency and reducing
overall static power overhead.

However, as Figure 2b demonstrates, a full webpage load requires
executing billions of instructions, making traditional cycle-accurate
simulation methods intractable. Therefore, we use a special tablet-
like, mobile machine instrumented to capture power consumption to
explore the energy effects of loading a webpage on a single-core vs
a multi-core processor. The machine is based on Windows 8 and a
quad-core Intel Haswell processor.

The proprietary power instrumentation hardware samples at 20 Hz
and breaks out and records the major sources of power consumption
in a non-intrusive fashion including: core (inclusive of the last level
cache), DRAM, wireless, display, and SSD power consumption. The
system is otherwise idle until a webpage is loaded, the load causes a
burst of core activity that registers on the power monitoring hardware.

We measure the load time of a website by the length of time
between the rising edge and falling edge of the burst (Figure 1a).
The energy consumed by the load is the area underneath this portion
of the power curve. Each webpage load is repeated five times, and
we take the average of these numbers. All of the energy results we
report are for the power consumption of the package, inclusive of all
four cores and the shared cache.

We vary two parameters in this test, the number of active cores
and the frequency of each of the active cores. If a core is disabled,
it is turned off and the operating system is unable to schedule tasks
to run on that core. Turbo is disabled to ensure deterministic test
parameters, so once a frequency is set for a core, it will not increase.
We use five commonly accessed webpages with a variety of different
content and complexity to conduct our test: the Google homepage, a
sports news website (ESPN), a shopping website (Amazon), and two
news sites (Google News and CNN).

Overall, we find that the single-core runs have a consistent perfor-
mance/energy advantage over the quad-core runs. Our experiments
also show that performance scales nearly linearly with frequency
from 1.2 GHz to 2.4 GHz for all of the websites, implying that
loading a webpage is not memory-bound. As 2.4 GHz is the highest
performing frequency for all webpage loads, Figure 3 shows the
average performance/energy difference between the single-core runs
and the quad-core baseline at 2.4 GHz.
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Fig. 3: Average performance/energy difference between a single-core
and a quad-core baseline at 2.4GHz.

Figure 3 indicates a 14% performance advantage to using one
core and a 17% energy reduction. This demonstrates that the low-
amount of thread level parallelism shown in Figure 2b translates to
a performance and efficiency advantage for requiring the application
to run on a single SMT core. The additional compute resources of
the multi-core processor are unnecessary.

While statically pinning all threads to a single core is one answer
to the problem, browsers render many diverse workloads, and a
static solution may work well for webpage loads, but not for other



scenarios. For example, we observe that loading ESPN (or watching
a video in a browser) generates stable, long lived threads with
independent working sets. This is a good scenario for the baseline
round-robin policy, and these threads benefit from running on an
independent core. This diversity requires a dynamic solution, not a
simple static solution.

We therefore implement a simple policy that maximizes the thread
to data locality that we observe in this application. Our measurements
in Figure 3 show that it is generally advantageous to run all threads
on as few cores as possible as spawned threads are short-lived and
include a large amount of inter-thread data communication. This
obseravtion is supported by further Pin cache studies, which show
that on average, 39% of L1 cache misses for transient threads is for
data that is resident in a different L1 cache on-chip.

We propose that the hardware detects the short lived threads
generated during a computation burst. This is advantageous as the
hardware requires very little overhead to do so and it can react
much faster than the software - a key point during a short burst.
Instead of spreading the threads across all cores, the hardware initially
clusters threads on the core that the main thread is running on. Once
it is established that the spawned thread is independent, it is then
migrated to an available core. We describe this policy in Section IV
and evaluate it in Section VI.

IV. ACTIVITY-BASED MIGRATION

We use several insights from our analysis to improve the per-
formance of the static thread clustering policy with a dynamic
policy. This dynamic policy (called activity-based migration) initially
clusters all spawned threads on the core that their parent thread is
running on. If the execution of a thread exceeds a threshold number
of instructions (100,000 - as in Figure 2b), we determine the thread to
be independent and power on a new core for the thread to execute on,
if one is available. The rationale for this policy is that it is inefficient
to spawn a short-lived thread on a new core, due to data-migration
costs. However, if a thread has executed for a long period of time, it
can efficiently utilize the increased resources of a core.

To improve the cost of the migration we track all of the data that
each thread has touched in the first level cache (by adding a bit per
cache line for each SMT context). Before the thread is migrated to
the new core for execution, all of the working set of the thread is
transfered to the data cache of the new core. This allows the thread
to quickly resume execution and minimizes the cost of the migration.
This optimization is denoted as activity-based migration + warmup.

Our evaluation compares activity-based migration to two different
thread-to-core mapping policies. The baseline policy assigns threads
to each of the four cores in a round-robin manner, starting with core 0.
The second policy (static clustering) maps all threads to the same core
that their parent thread is running on, if possible. This is effectively
what was evaluated on the platform in Section II.

Although thread scheduling is generally handled by the operating
system, these policies operate at an instruction granularity that is
much finer than the operating system scheduler generally runs. The
default for the Linux scheduler is to run on the order of 10’s-
100 milliseconds — this is between 300 and 3000 of our migration
thresholds assuming a 3GHz clock rate and 1 IPC. While we
currently set static policy parameters based on our observations
(number of threads/instruction count), in future systems feedback
from the hardware could allow the operating system to set scheduling
parameters that it deems appropriate. These three policies (round-
robin, clustering, and activity-based migration), are evaluated in
Section VL.

V. METHODOLOGY

To evaluate the mechanism described in Section IV we simulate a
quad-core system using Pin [7] on Ubuntu 12.04.3 LTS. We model
the CPI of each instruction as 1 plus caching latencies, as we do not
notice high branch misprediction rates or other events that require
detailed core evaluation in our analysis on real hardware. We model
a two level cache hierarchy. Each core has a private 32KB data and
instruction cache and the four cores share a 1MB last-level cache
with a 20-cycle hit latency. A last-level-cache miss results in a 200
cycle memory access. A standard invalidation-based cache coherence
protocol is modeled. Each of the four simulated cores is four-way
SMT (supports the execution of four threads at once). As we can
not force a thread to wait in Pin, if the SMT contexts of Core 0 are
currently filled during our clustering policies, threads are mapped
to core 1 until all of its SMT contexts are full. This continues as
necessary for all four cores.

VI. SIMULATION RESULTS

Figure 4a displays our simulated performance results, normalized
to the round-robin baseline.
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Fig. 4: (a) Simulated performance of clustering and activity-based
migration policy relative to a round-robin baseline. (b) Sensitivity to
the length of time that a thread runs before it is migrated to a new
core.

By enabling the hardware to dynamically make fine-grained thread
and data migration decisions, our activity-based migration policy
outperforms the clustering policy in Figure 4a, increasing the av-
erage performance gain from 8% to 12.5%/14% without/with cache
warmup vs. the static clustering policy. We show a performance gain
across all of the different webpage loads.

Activity-based migration allows the hardware to migrate a thread
to a new core after a threshold number of instructions have been
executed. The main parameter to the policy is the number of
instructions that a thread executes before migration is triggered. We
find 100,000 instructions to be an optimal period before migration
across the webpages in our evaluation. Figure 4b shows sensitivity to
this parameter for three of the webpages that we simulated. Overall,
we notice that a 10k instruction threshold appears to be too short,
and we see a performance penalty when compared to the clustering
policy. Many of the websites see a performance drop off 150k to 200k
instructions, implying that we are reaching the maximum length of
time a thread runs for when loading the webpage. Overall there is a
general plateau from 50k to 150k instructions, and we choose 100k
instructions as the base value to trigger thread/data migration.

Activity-based migration + warmup pre-loads the cache of the new
core with the working set of the current thread. Once that thread is
scheduled for migration the hardware transfers the working set of the
thread to the new data-cache before the thread is set to execute on
the new core and its architectural state is migrated. On average, we
find that 2.7KB of data is transferred per thread migration and that
there are an average of 42 migrations per webpage load.



TABLE I: Number of active threads for each browser running on Windows 8.1 (Mac OS 10.9.4).

Browser Reddit Amazon | Bing Google | ESPN CNN Google News
Internet Explorer 11 | 50 58 65 59 99 102 84

Safari 7 (66) (58) (48) (43) (58) (65) (57)

Chrome 37 56 (68) | 79 (64) 67 (73) | 65 (77) | 67 (84) | 80 (85) | 64 (73)
Firefox 32 52 (52) | 52 (54) 53 (53) | 52 (53) | 58 (59) | 57 (52) | 52 (53)

VII. APPLICABILITY TO OTHER BROWSERS

Throughout this paper, we study the thread behavior of one
application, Firefox. In our analysis, we use data from both hardware
(Section III), and dynamic instrumentation (Section VI). This analysis
is completed on two different operating systems, a Windows 8 based
machine as well as a Ubuntu machine, illustrating that the problem
is not just limited to a single operating system.

However, security mechanisms (such as sandboxing and multiple
processes) prevent us from using dynamic instrumentation (such as
Pin) on browsers besides Firefox. To show that the problem we
observe is not limited to just Firefox, we use the activity monitor of
two different operating systems (Windows 8, OS X) to corroborate
the key observation from Section II: that browsers employ a very
large number of active threads. This data is shown in Table 1.

To collect this data we disabled each browser’s cache and then
loaded each of the seven websites in sequence in a single tab. The
active threads are monitored on Windows using the task manager and
on OS X using the activity monitor. For browsers that spawn multiple
processes (Chrome, IE, Safari) we sum the maximum observed
thread counts across all active processes. The results shown are the
average of three experiments. Overall, all active thread counts are
above, and generally much higher than, the 41 threads observed in
Section II. The websites with very high thread counts (ESPN, CNN)
include streaming video content. With this data, we suggest that our
observations are not simply a result of the architecture of Firefox,
but rather a trend present in web browsers in general.

VIII. RELATED WORK

To our knowledge, we are the first to suggest clustering threads on
cores to optimize short-term data locality. There has been prior work
that propose clustering threads from a scheduler perspective. Tam
et al. [11] concentrate on optimizing cross-package communication
by requiring the system to deliver a summary vector of the memory
regions accessed by the application during each scheduler quantum,
and then migrate threads based on locality. Vega et al. [12] study
PARSEC and also optimize long term data locality. Both of these
prior scheduling papers run at operating system quantum intervals.

We are not the first to point out the predominantly single-threaded
behavior for many desktop applications. Blake et al. [1] do a wide
study (including two web-browsers: Firefox and Safari) and find that
many applications show very low effective TLP, while pointing out
the potential benefit of SMT in these scenarios. To our knowledge,
we are the first to observe that the low TLP is not due to a lack of
threading, but rather an inefficient use of threads. Hauser et al. [4]
explore why this could be the case and found that programmers gen-
erally use threads to structure code and not to increase performance.

Prior work has also characterized mobile applications [10], [8],
[6], [3], observing many of the microarchitectural event trends that
we also note, including the instruction cache behavior differences
between SPEC and web workloads. Rantanaworabhan et al. [9]
also point out this behavior, and find that many mobile JavaScript
benchmarks are also not representative of real websites. Chadha
et al. propose instruction prefetching based on event-signatures [2].
Zhu et al. discuss QoS-driven scheduling techniques for event-based

applications [13] and hardware and observe that web-page loading
is not generally network limited and can benefit from heavyweight
compute hardware [14].

IX. CONCLUSION

In this paper, we studied the runtime behavior of Firefox as an
example of an event-driven, bursty application. We observe that
bursty applications have different run-time properties when compared
to applications that exhibit data-parallel threading or loopy, steady-
state behavior. By taking these differences into account, architects can
make modifications to create more specialized, efficient processors.
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