
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 360N, Spring 2003
Yale Patt, Instructor
Hyesoon Kim, Onur Mutlu, Moinuddin Qureshi, Santhosh Srinath, TAs
Exam 1, March 5, 2003

Name:

Problem 1 (25 points):

Problem 2 (20 points):

Problem 3 (20 points):

Problem 4 (15 points):

Problem 5 (20 points):

Problem 6 (no points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

GOOD LUCK!

Name:

Problem 1 (25 points):

Part a (5 points): The main element of storage required to store a single bit of information depends on whether we are
talking about DRAM cells or SRAM cells.

For DRAM cells it is:

For SRAM cells it is:

Part b (5 points):

The primary purpose of segmentation is:

The primary purpose of paging is:

Part c (5 points): The reference bit in a PTE is used for what purpose?

The similar function is performed by what bit or bits in a cache’s tag store entry?

Part d (5 points): We note that condition codes get set by the three load instructions and the four operates in the last
cycle of the instruction cycle when they load the destination register. So, someone suggested we get rid of the LD.CC
control signal and use instead the LD.REG signal to load condition codes, If we did this, without changing anything
else, would the LC-3b work correctly? Why/why not?

Part e (5 points): A cache has the block size equal to the word length. What property of program behavior, which
usually contributes to higher performance if we use a cache, does not help the performance if we use THIS cache?

2

Name:

Problem 2 (20 points):

Little Computer Inc. has decided to support unaligned accesses in the LDW instruction. The specification of the LDW
instruction is as follows:

Assembler Format

LDW DR, BaseR, offset6

Encoding

15 12 11 9 8 6 5 0

BaseRDR0110 offset6

Operation

DR = MEM[BaseR+SEXT(offset6)];
setcc(DR);

Part a. We show below the states used to implement the LDW instruction. Using the notation of the LC-3b state
diagram, describe inside each “bubble” what happens in each state. We have already given you what happens in state
C. In this state, MAR[0] is tested and next state is determined based on the value of MAR[0]. The modified datapath
is shown on the next page.

[MAR[0]]

B

A

C

D

E

To 18

F

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

LDW

3

Name:

Problem 2 continued:

MEMORY

ADDR. CTL.
LOGICMDR

MAR L

R.W

MAR[0]

LD.MDR

DATA.SIZE

R

MAR[0]

DATA.SIZE

ROTATE

DATA.SIZE
D.MAR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16LOGIC

16

GateMDR

R

16 16

16

[4:0]
SEXT

SEXT 16

X

N Z P

SR2
OUT

SR1
OUT

REG
FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

+1

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

LOGIC

Y
2

ADDERMUX

2

MIO.EN

LOGIC

1 0

 0 1

[7:0]

16

16

4

Name:

Problem 2 continued:

Part b. The modified datapath shown on the previous page contains a logic block whose inputs are LD.MDR,
DATA.SIZE, R.W, MAR[0], and X. The outputs of this logic block are the two-bit signal Y and a 1-bit ROTATE
signal. Identify precisely in the boxes below the signals X, Y[0], and Y[1]. Four or five words should be more than
enough for each signal. Identify the specific value for X in each input combination of the truth table. Complete the
output columns of the truth table.

Signal X:

Signal Y[0]:

Signal Y[1]:

R.W DATA.SIZE LD.MDR MAR[0] X Y[1] Y[0] ROTATE

READ BYTE NO 0

READ BYTE NO 1

READ BYTE LOAD 0

READ BYTE LOAD 1

READ WORD NO 0

READ WORD NO 1

READ WORD LOAD 0

READ WORD LOAD 1

5

N
am

e:

Problem
2

continued:

P
artc.T

he
processing

in
each

state
(A

,B
,C

,D
,E

,F)
is

controlled
by

asserting
ornegating

each
controlsignal.E

nter
a

1
or

a
0

as
appropriate

for
the

m
icroinstructions

corresponding
to

states
A

,B
,D

,E
,F.T

he
controlsignals

forstate
C

are
already

filled
in

for
you.

ADDR2MUX

LD.MAR

LD.MDR

LD.IR

LD.BEN

LD.REG

LD.PC
LD.CC

GatePC

GateMDR

GateALU

GateMARMUX

PCMUX

DRMUX

SR1MUX

MARMUX

ALUK

MIO.EN

LSHF1

X

ADDR1MUX

R.W

DATA.SIZE

GateSHF

ADDERMUX

ZERO, offset6, PCoffset9, PCoffset11
 00, 01, 10, 11

PC+2, BUS, ADDR
 00, 01, 10

ADD, AND, XOR, PASSA
 00, 01, 10, 11

state A

state B

state C

state D

state E

state F

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

IR[11:9](0), R7(1)

IR[11:9](0), IR[8:6](1)

PC(0), BaseR(1)

BYTE(0), WORD(1)

LSHF(ZEXT[IR[7:0],1)(0), adder(1)

BUS(0), MAR+1(1)

RD(0), WR(1)

6

Name:

Problem 3 (20 points):

We hired a new circuit designer from A&M to help us implement the LC-3b, and he loaded the microinstructions into
the wrong control store locations, as noted on the state machine shown in Figure 1. No problem, we can fix it with
some quick fixes to the microsequencer. Figure 2 identifies the “new” microsequencer.

R

To 18

To 18

RR

To 18

To 18

To 18

MDR<−SR[7:0]
NOTES
B+off6 : Base + SEXT[offset6]
PC+off9 : PC + SEXT[offset9]
*OP2 may be SR2 or SEXT[imm5]
** [15:8] or [7:0] depending on
 MAR[0]

PC<−BaseR

To 18

56

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

set CC

[BEN]

PC<−MDR

2

0

1
To 18

To 18
To 18

R R

[IR[15:12]]

R7<−PC
MDR<−M[MAR]

set CC

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

DR<−SR1 XOR OP2*

R7<−PC
[IR[11]]

1011

JSR

JMP

BR

1010

PC<−BaseR

20

16
0 1

LDB

MAR<−B+off6

set CC

To 18

MAR<−B+off6

DR<−MDR
set CC

To 18

MDR<−M[MAR]

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

set CC

set CC
DR<−PC+LSHF(off9,1)

LDW

MAR<−B+LSHF(off6,1) MAR<−B+LSHF(off6,1)

PC<−PC+LSHF(off11,1)

PC<−PC+LSHF(off9,1)

0

1

DR<−SHF(SR,A,D,amt4)

MAR <− PC
PC <− PC + 2

[INT]

0

R

MDR<−M[MAR[15:1]’0]

DR<−SEXT[BYTE.DATA]

R

MDR<−SR

To 11

R R

M[MAR]<−MDR

10

3

R R

12

To 13

14

M[MAR]<−MDR**

MAR<−LSHF(ZEXT[IR[7:0]],1)

To 18

32

To 54

To 52

40

3846443660

58

62

50

DR<−SR1&OP2* 42
26

34

4

5

6

7

8

9

18, 11, 13

To 48

Figure 1
7

Name:

Problem 3 continued:

Cond[1:0]

00

01

10

11

Unconditional

Addressing Mode

Ready

Branch

Signal Values

D E F

H[5:0]

B CA

Figure 2 : "new" microsequencer

GJ[4]J[5]

1 0
IRD

Address of Next State

6

COND0COND1

6 6

Part a. Identify the signals A through G in the boxes provided below. A few words at most should suffice for each
box.

A

B

C

D

E

F

G

Part b. Identify separately each bit of H[5:0].

H[5] H[3] H[2] H[1] H[0]H[4]

Part c. In which state / states is IRD asserted?

8

Name:

Problem 4 (15 points):

An LC-3b system ships with a two-way set associative, write back cache with perfect LRU replacement. The tag store
requires a total of 4352 bits of storage. What is the block size of the cache? This is one problem where you really do
need to show all your work on the paper.

Hint: 4352 =
�����

+
���

.

9

Name:

Problem 5 (20 points):

A machine with 64KB, byte addressable virtual memory and 4KB physical memory has two-level virtual address
translation similar to the VAX. The page size of this machine is 256 bytes. Virtual address space is partitioned into
the P0 space, P1 space, system space and reserved space. The space a virtual address belongs to is specified by the
most significant two bits of the virtual address, with 00 indicating P0 space, 01 indicating P1 space, and 10 indicating
system space. Assume that the PTE is 32 bits and of the format 10000000..000PFN.

For a single load instruction the physical memory was accessed three times. The first access was at location x108 and
the value read from that location (x108, x109, x10A, x10B) was x80000004. Hint: What does this value mean?

The second access was at location x45C and the third access was at location x942.

If SBR = x100, P0BR = x8250 and P1BR = x8350,

Part a. What is the virtual address corresponding to physical address x45C ?

VA = x

Part b. What is 32 bit value read from location x45C ?

Value = x

Part c. What is the virtual address corresponding to physical address x942 ?

VA = x

10

Name:

Problem 6 (optional - for those who finish early and wish a challenge):

Many people have asked us to include an old popular addressing mode, available on Motorola’s MC68000, Digital
Equipment’s PDP-11, and IBM’s second generation RISC machine in the LC-3b. It is called pre-decrement addressing
mode, whereby a source or destination operand address was obtained as follows: first decrement the register by the
size of the operand in bytes. Then use the register as a pointer to the memory location to obtain the operand. The
assembly notation is -(Rx). Evaluate the operand addresses sequentially, first source, then destination.

We will try this out by using our two unused opcodes 1010 and 1011 to do a copy instruction from source address to
destination address using this new addressing mode for both. We will call 1010 MOVB for Move a byte from source
to destination, and 1011 MOVW for the equivalent Move two bytes. For example, for MOVB, if R1 initially contained
the value #4097, MOVB -(R1),-(R1) would copy the one byte in location #4096 into location #4095.

The encodings for MOVB and MOVW are as shown below.

1111011111 MOVW:MOVB:

15 12 11 9 8 6 5 4 3 2 0

DR1011 SR 1

15 12 11 9 8 6 5 4 3 2 0

1010 SR 1DR

State machines for the two new opcodes are shown below:

SR <− SR−1
MAR <− SR−1

MDR <− M[MAR]

MAR<−DR−1
DR<−DR−1

M[MAR]<−MDR
R

R

SR <− SR−2
MAR <− SR−2

MDR <− M[MAR]

MAR<−DR−2
DR<−DR−2

M[MAR]<−MDR
R

R

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

R

To 19

R

R

To 18

R

MOVB MOVW

Question: If we include MOVB and MOVW as described above in the LC-3b ISA, what additional storage structure
would be needed in the data path specifically to allow the processor to handle page faults properly? We must not
unnecessarily slow down the processor, so saving the register file before each MOVB or MOVW instruction is not an
option. We would like to incur no extra cycles in processing MOVB or MOVW in the absence of a page fault.

Draw the storage structure that is needed to do this, with specific details as to the number of elements, size of each
element, and size of each field.

Explain how the structure is used (in 25 words or less).

Explain why this structure is necessary (in less than 25 words, please).

11

Name:

Problem 6 continued:

Explain how the structure is used:

Explain why this structure is necessary:

12

LC-3b ISA

+

+

1

0 00 BaseR 000000

000 111 000000

PCoffset11

BaseR 000000

not used

not used

111111

+

+

+

0

1 imm5

00

LEA

BR

AND

ADD

+

ADD+

+

AND+

RET

RTI

JMP

JSR

JSRR

LDB +

LDW

STB

STW

TRAP

zn p

DR SR1 1 imm50101

0000

DR1110

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

1100

1000 000000000000

1100

0100

0100

BaseRDR boffset6

DR BaseR offset6

0010

0110

PCoffset9

PCoffset9

000

1101 DR SR amount4

1101 DR SR amount4

1101 DR SR amount4

SR BaseR boffset60011

SR BaseR0111

1111 0000 trapvect8

offset6

15 12 11 9 8 6 5 4 3 2 017101314

+
DR1001

+
DR1001 SR

1010

1011

NOT
+

DR1001 SR

XOR

XOR

LSHF

RSHFL

RSHFA

0 0

0 1

1 1

SR2SR1

+ indicates instructions that modify condition codes.

13

A state machine for the LC-3b (from Appendix C)

R

PC<−BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

MDR<−SR[7:0]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−MDR

32

1

5

0

0

1
To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<−PC
MDR<−M[MAR]

set CC

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

9
DR<−SR1 XOR OP2*

R7<−PC
[IR[11]]

4

22

To 11
1011

JSR

JMP

BR

1010

To 10

PC<−BaseR

21

20
0 1

LDB

MAR<−B+off6

set CC

To 18

MAR<−B+off6

DR<−MDR
set CC

To 18

MDR<−M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

13

14

LDW

MAR<−B+LSHF(off6,1) MAR<−B+LSHF(off6,1)

PC<−PC+LSHF(off11,1)

PC<−PC+LSHF(off9,1)

33

35

DR<−SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<−M[MAR[15:1]’0]

DR<−SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<−SR

To 18

R R

M[MAR]<−MDR

16

23

R R

17

To 19

24

M[MAR]<−MDR**

MAR<−LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <− PC
PC <− PC + 2

*OP2 may be SR2 or SEXT[imm5]
** [15:8] or [7:0] depending on
 MAR[0]

To 18

DR<−PC+LSHF(off9,1)
set CC

14

