
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 360N, Fall 2005
Yale Patt, Instructor
Aater Suleman, Linda Bigelow, Jose Joao, Veynu Narasiman, TAs
Final Exam, December 16, 2005

Name (1 point): SOLUTION

Problem 1 (20 points):

Problem 2 (10 points):

Problem 3 (9 points):

Problem 4 (20 points):

Problem 5 (25 points):

Problem 6 (20 points):

Problem 7 (25 points):

Total (130 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

GOOD LUCK!

Name:

Problem 1 (20 points)

Part a (5 points): Amdahl’s Law states that the best Speed-up you can ever achieve with a system containing many

processors is limited by the part of the program that can’t be parallelized

Part b (5 points): Recall that the VAX System Page Table was in physical memory. That is, the SBR was a physical
address. The designers could have put the VAX System Page Table in System Virtual Space, and an additional data
structure in physical memory to keep track of where the pages that make up the System Page Table actually reside.
Recall that the VAX had 1 GB of system virtual space, pages were 512 bytes, and each PTE is 32 bits. Assuming
System space is completely mapped, how much storage would that additional data structure require?

Answer:
1GB = 230bytes
2
30

29 = 221 pages in System Space

221PTEs ∗ (4bytes

PTE
) = 223bytes (size of Sys Pg Table)

2
23

29 = 214pages (size of Sys Pg Table in pages)

214PTEs ∗ (4bytes

PTE
) = 216bytes = 64kB

ANSWER: 64 kB

2

Name:

Problem 1 continued

Part c (5 points): Algorithms A, B, and C all solve the same problem. The curves show the execution time of each
algorithm as a function of the number of processors that are available to the algorithm. Which algorithm should we
use to get maximum speed up if we have 9 processors available to us? The execution times for 9 processors are 6
hours for algorithm A, 4.5 hours for algorithm B and 4 hours for algorithm C. What is the Speed-up for this case?

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12

E
xe

cu
tio

n
tim

e
(h

ou
rs

)

Number of processors

A
B
C

Which algorithm C Speed-Up 5/4

Part d (5 points): Two paradigms for fetching and decoding multiple instructions each cycle are

superscalar and VLIW .

In the first case, the number of instructions one can fetch and decode each cycle is determined at (when)

runtime by the instructions in the I-stream .

In the second case, the number is specified by the ISA and therefore it is determined at the factory when the computer
is defined.

3

Name:
Problem 2 (10 points)
This problem involves evaluating a data flow graph that contains a data flow node that we have not discussed before:
the mux node. It is illustrated below.

F T

Output

Boolean

The mux node has three inputs and one output. Two of the inputs are labeled F and T, respectively. The third input is
a Boolean (True/False). When all three inputs are ready, the mux node fires. The result is to pass either the T input
token or the F input token to the output, depending on the value of the Boolean input.

Part a (1 point): If the Boolean is False, and tokens 17 and 5 are on the F and T input lines, respectively, the node
fires. What is the output?

17

Part b (9 points): The data flow graph shown below has three external inputs and one external output. Note the
left-most input contains one value: +∞. The middle input contains, in a queue, the values of an n-element vector. That
is, V[0], V[1], V[2], ..., V[n]. The right-most input contains the value n, the length of the vector. When processing
completes, the result is output via the output line labeled ”Answer.”

What does the data flow graph compute (in fewer than ten words)?

The minimum value in the vector

COPY

A > 0

A − 1

COPY

..

.

A < B

+

COPY

A

A

V[0]

V[1]

V[2]

V[n] n

A B F T

F T

ANSWER

4

Name:

Problem 3 (9 points):

Your job in this problem is to analyze the performance impact that Data Forwarding, Multiple Functional Units,
and Out-of-Order Execution would have on a particular instruction sequence. In the box next to each instruction
sequence, state which combination of these three features (you can choose more than one) would lead to the best
performance for that particular instruction sequence. Only include a feature if you can justify that including it will
improve performance for that sequence. Explain your answers.

NOTE: Assume that in the baseline system, the Adder and the Multiplier are NOT PIPELINED.

Part a (3 points):

ADD R3, R2, R1 Use data forwarding. This sequence is filled with flow dependencies, so forwarding
MUL R5, R4, R3 the data would definitely improve performance.
ADD R7, R6, R5
MUL R9, R8, R7
ADD R11, R10, R9
MUL R13, R12, R11

Part b (3 points):

ADD R3, R2, R1 Use multiple functional units. The ADDs and MULs could be executed in parallel,
ADD R6, R5, R4 which would improve performance.
ADD R9, R8, R7
MUL R12, R11, R10
MUL R15, R14, R13
MUL R18, R17, R16

Part c (3 points):

MUL R3, R2, R1 Use out-of-order execution and multiple functional units so that the third through
ADD R5, R4, R3 sixth instructions could execute while the second instruction is put aside due to a flow
MUL R8, R7, R6 dependency. Data forwarding would also help a little since there is one flow dependency.
ADD R11, R10, R9
MUL R14, R13, R12
ADD R17, R16, R15

5

Name:

Problem 4 (20 points):

A computer system has a VA space of 32 bits, page size of 4KB, and PA address space of 16 MB. There is no re-
striction on the O/S with respect to mapping virtual pages to physical frames, except that shared data is allocated only
within the common system space.

We want to design a 4-way set-associative, write-back cache with Victim/Next Victim pseudo LRU replacement.
Cache line size is to be 32 bytes. Since we wish to access the TLB and Tag Store concurrently, the index bits of the
Tag store access must come from the VA.

Part a (7 points): If the cache is to be 8 KB,
8kB = 213bytes; 1 set : 32bytes

block
∗ 4blocks = 128 bytes

set
= 27 bytes

set
; 2

13bytes

27 bytes

set

= 26sets −− > 6 index bits

<--- 12 ---><--- 12 --->

PA: | PFN | offset |

<--- 13 ----><-6 -><-5->

tag index BiB

Tag store entry : 13 (tag) + 1 (valid) + 1(dirty) + 2 (V/NV) = 17 bits
Tag store : 17 bits

block
∗ 4 blocks

set
∗ 26sets = 17 ∗ 28bits

Compute the number of index bits: 6

Identify the bits that comprise the tag: PA[23:11]

Compute the size of the tag store in bits: 17 ∗ 28

Part b (8 points): If the cache size is to be 128 KB,
128kB = 217bytes; 2

17bytes

27 bytes

set

= 210sets −− > 10 index bits

<--- 12 ---><--- 12 --->

PA: | PFN | offset |

<-- 10 --><-5->
index BiB

<--- 12 --->
tag

Tag store entry : 12 (tag) + 1 (valid) + 1(dirty) + 2 (V/NV) = 16 bits
Tag store : 16 bits

block
∗ 4 blocks

set
∗ 210sets = 216bits

Compute the number of index bits: 10

Identify the bits that comprise the tag: PA[23:12]

Compute the size of the tag store in bits: 216

6

Name:

Problem 4 continued

Part c (5 points): In either part a or part b, is it possible to have the physical addresses in two different places in the
cache? Explain.

No. Since shared data is allocated within the common system space, this would not be
possible.

7

Name:

Problem 5 (25 points)

The real number line for an 11-bit floating point representation is shown below. Four values A, B, C, and D have been
identified. Assume all the floating point representations are based on the IEEE floating point standard.

0 A B

Range
Subnormal

Binade
Lowest Normalized Highest Normalized

Binade

C D

Part a (6 points): If the value A is 63/1024, how many bits are used for sign, exponent, and fraction in this format?
Show your work.

Answer:
63

1024
= 32+16+8+4+2+1

1024
= 111111 ∗ 2−10 (in binary)

Since it is the largest subnormal number, this is: 0.111111 ∗ 2−4.

Further, since it is the largest subnormal number, all the 1s must be represented, and there can’t be any 0s after it.
Thus, 6 bits for fraction. Since there is always 1 bit for sign, that leaves 4 bits for exponent.

Sign: 1 Exponent: 4 Fraction: 6

Part b (3 points): What is the excess (BIAS) for the excess code:

Answer:
Since A is subnormal and has an exponent of -4, -4 must be the smallest possible exponent. This means that when the
exponent field contains 0001, the actual exponent is -4.

Exponent field − bias = actual exponent
1 − bias = −4
bias = 5

5

8

Name:

Problem 5 continued

Part c (6 points): What are the values B, C, and D?

Note: Values B, C, and D may NOT be specified in the following format: sign | exp | fraction .

Answer:
D is the largest normalized number, which means the fraction bits will all be 1, and the exponent field contains 1110
(in binary). This corresponds to an actual exponent of 9. So, D is 1.111111 ∗ 29.

Since C is in the same binade as D, C will have the same exponent as D (9). The lowest number in that binade has the
fraction bits all set to 0 (i.e. 1.000000 ∗ 29). Since C is two ULPs larger, C is 1.000010 ∗ 29.

The lowest normalized binade has an exponent of -4. Since B is in the same binade, it has the same exponent (-4). The
largest number in that binade has all 1s for the fraction bits (i.e. 1.111111 ∗ 2−4). Since B is two ULPs smaller than
the largest number in that binade, B is 1.111101 ∗ 2−4.

B: 1.111101 ∗ 2−4
C: 1.000010 ∗ 29

D: 1.111111 ∗ 29

Part d (10 points): IEEE Floating Point arithmetic specifies five different types of exceptions. That is, an instruction
OPCODE X,Y,Z has the potential to cause any one of the five exceptions.

In the table below, identify the five distinct exception types.

For each exception type, specify an OPCODE and the values of the two source operands Y,Z that would cause that
exception. Use the format derived in parts a and b.

Note: Source operands Y and Z may NOT be specified in the following format: sign | exp | fraction .

Exception Type OPCODE Y Z

underflow DIVIDE 0.000001 ∗ 2−4 1.111111 ∗ 29

overflow MULTIPLY 1.111111 ∗ 29 1.111111 ∗ 29

inexact ADD 1.111111 ∗ 29 0.000001 ∗ 2−4

divide by 0 DIVIDE 1.111111 ∗ 29 0

invalid DIVIDE 0 0

9

Name:

Problem 6 (20 points)

A processor has an 8-bit physical address space and a physically addressed cache. Memory is byte addressable. The
cache uses perfect LRU replacement.

The processor supplies the following sequence of addresses to the cache. The cache is initially empty. The hit/miss
outcome of each access is shown.

Address Outcome
0 Miss
2 Hit
4 Miss

128 Miss
0 Hit

128 Hit
64 Miss
4 Hit
0 Miss

32 Miss
64 Hit

Your job: Determine the block size, associativity, and size of the cache. Note: It is not necessary to give an explanation
for every step, but you should show sufficient work for us to know that you know what you are doing.

Answer:
From the first 3 references, the block size must be 4. To get the associativity, notice that the 5th reference (to address
0) is a hit, but the 9th reference (again to address 0) is a miss. This means the data for address 0 was kicked out of the
cache somewhere in between. If the associativity were 4 or more, the data for address 0 would not have been kicked
out; therefore, we know the associativity is either 2 or 1. If the associativity were 1, the cache size would have to be
greater than 128 bytes since the 5th and 6th references (to 0 and 128, respectively) are both hits. However, if the cache
size were greater than 128 bytes, the data for address 0 would not have been kicked out, which means the associativity
must be 2. To get the cache size, notice that addresses 0, 64, and 128 must map to the same set (index bits must be the
same), but address 32 should map to a different set. This is only possible if the number of index bits is 4. This implies
a cache size of 128 bytes:

4bytes
block

∗ 2blocks
row

∗ 24rows = 128bytes

Block size: 4 bytes

Associativity: 2 -way

Size: 128 bytes

10

Name:

Problem 7 (25 points)

Recall the LmmVC-3 (Little mickey mouse Vector Computer 3) that you implemented in Problem Set 5, and modfied
on Exam 2 to be able to interrupt VADD instructions. For your convenience, the data path that you constructed in
Problem set 5 is shown on page 15. Today’s task is to extend the capability of the LmmVC-3 to be able to interrupt
vector loads (VLD).

Before we get into today’s problem, we reproduce below (for those who want it) the LmmVC-3 specification. Note:
The remainder of this page contains the EXACT same specification that was given in Problem Set 5 and on Exam 2.

Little Computer Inc. is now planning to build a new computer that is more suited for scientific applications. LC-3b
can be modified for such applications by replacing the data type Byte with Vector. The new computer will be called
LmmVC-3 (Little “mickey mouse” Vector Computer 3). LmmVC-3 ISA will support all the scalar operations that
LC-3b currently supports except the LDB and STB will be replaced with VLD and VST respectively. Our data path
will need to support the following new instructions:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

amount6

amount6

offset6

 0 0 VSR2

 0 0 SR2

offset6

VDR, VSR1, SR2 0

 1

Vlength, amount6

VDR, BaseR, offset6

VDR, VSR1, VSR2

VSR, BaseR, offset6

Vstride, amount6MOVI

MOVI

VLD

VADD

VADD

VST

000 000

001 0001011

VDR BaseR0010

1010

1010

VDR

VDR

VSR1

VSR1

VSR BaseR0011

1011

Note: VDR = Vector Destination Register, VSR = Vector Source Register

MOVI
If IR[11:9] = 000, MOVI moves the unsigned quantity amount6 to Vector Stride Register (Vstride).
If IR[11:9] = 001, MOVI moves the unsigned quantity amount6 to Vector Length Register (Vlength).
This instruction has already been implemented for you.

VLD
VLD loads a vector of length Vlength from memory into VDR. VLD uses the opcode previously used by LDB. The
starting address of the vector is computed by adding the LSHF1(SEXT(offset6)) to BaseR. Subsequent addresses are
obtained by adding LSHF1(ZEXT(Vstride)) to the address of the preceding vector element.

VST
VST writes the contents of VSR into memory. VST uses the opcode previously used by STB. Address calculation is
done in the same way as for VLD.

VADD
If IR[4] is a 1, VADD adds two vector registers (VSR1 and VSR2) and stores the result in VDR.
If IR[4] is a 0, VADD adds a scalar register (SR2) to every element of VSR and stores the result in VDR.

VLD, VST, and VADD do not modify the content of Vstride and Vlength registers.

11

Name:

Problem 7 continued

In Exam 2 we noted that interrupt capability is useful while processing vector instructions since vector instructions
take many cycles to complete. That is, we wish to be able to interrupt the vector instruction at any time, service
the interrupt, and then return to the point in the vector instruction where we left off. We do NOT want to repeat the
execution of any part of the vector instruction that we had already carried out before the interrupt occurred.

A clean way to accomplish this (better than the solution we implemented in Exam 2) is to introduce a First Part Done
(FPD) flag. When the vector instruction has performed some operations that should not be re-executed if the vector
instruction is interrupted, the processor sets FPD to 1. When a vector instruction is fetched, FPD is checked. If FPD=0,
this is the initial fetch of the vector instruction, and processing proceeds normally. If FPD=1, this indicates that the
vector instruction has been re-fetched after an interrupt service routine has finished. In this case, the vector instruction
picks up where it left off when the interrupt occurred.

For your reference, the solution for the state machine of the VLD instruction in Problem Set 5 is shown on page 16.

Part a (5 points): Consider all the operations involving the FPD flag. We do not want to have a separate register for
FPD. Where should FPD information be kept to get an efficient implementation? Why?

The FPD flag can be stored as a bit in the PSR. Since the PSR is already saved during
interrupt initiation, this would be very efficient.

Part b (6 points): Assume that the interrupt initiation sequence is already implemented as in Lab 4, i.e. just by push-
ing PSR and PC, and then jumping to the appropriate interrupt vector. Describe all the changes to the basic interrupt
initiation sequence required to implement the interruptible VLD. Make sure that your implementation is able to
correctly execute other vector instructions -including VLD- in the interrupt service routine.

Push Vindex, Vlength, and Vstride onto the stack. Clear the FPD bit after pushing the PSR
onto the stack.

12

Name:

Problem 7 continued

Part c (9 points): We show the beginning of the state diagram necessary to implement VLD. Using the notation of
the LC-3b State Diagram, add the states you need to implement an interruptible VLD that uses the FPD flag. Inside
each state describe what happens in that state. You can assume that you are allowed to make any changes to the data
path and microsequencer that you find necessary. You do not have to make/show these changes.

NOTES:
1. Your implementation must support servicing interrupts in the middle of VLD.
2. Clearly indicate in which state you check for interrupts.
3. Assume that FPD is initialized to 0 when the machine is reset.
4. As in the problem set, you are allowed to clobber the condition codes and the BaseR.
5. Make sure that your implementation works for Vlength = 0.

[IR[15:12]]

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

BUS <− Vindex XOR Vlength
SetCC

[FPD]

[Z]

MAR <− BaseR

MDR <− M[MAR]

VDR[Vindex] <− MDR

Increment(Vindex)

FPD <− 0

[INT]
BaseR <− BaseR + LSHF1(ZEXT(Vstride))

Vindex <− 0

BaseR <− BaseR + LSHF1(SEXT(offset6))
FPD <− 1

0010

State 32

A

1 0

0

R

R

1

To 18

0

1

To interrupt initiation sequence

13

Name:

Problem 7 continued

Part d (5 points): Does the interrupt initiation sequence push BaseR onto the stack? Why or why not?

No. According to the LmmVC-3 ISA, the hardware is not responsible for saving registers
R0 - R7. The ISR/ESR programmer will save and restore a register if need be.

14

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.
LOGIC

MDR

INMUX

MAR L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D.MAR

2

KBSR

MEM.EN

R

LD.VSTRIDE

LD.VLENGTH

S3MUX S3MUX

S1MUX

S2MUX

IR[5]

IR[4] 0

1 0

1

10

0 01 1

0 1

.W

MIO.EN

GatePCGateMARMUX

16

16

16 16 16

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

[7:0]

LSHF1

[4:0]

1616

16 16

16

1616

16

1616

LD.CC

16

16

16

LOGIC

16 16

GateMDR

LD.CC

16

SHF

GateSHF

6
IR[5:0]

GateIR GateALU

16

SR2
OUT

SR1
OUT

MARMUX

16

3

0

16

ADDR2MUX

2

ZEXT &
LSHF1

3

PCMUX
2

SR2

LD.REG

3

FILE
REG DR

SR1

SCALAR

ADDR1MUX

FILE
REG

VECTOR
VDR

OUT
VR1
OUT

VR2

3

3
VR2

LD.VREG

VR1

3

6

N Z P
2

IR

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

ALUK

Vindex

IN
C

R
E

M
E

N
T

.V
IN

D
E

X

R
E

SE
T

.V
IN

D
E

X

16
LD.IR

Vlength

Vstride

ALU
B A

6

6CONTROL

R

LSHF1
ZEXT&

Figure 1: Modified data path to implement vector instructions

15

State 32

VLD

MDR <− M[MAR]

Increment(Vindex)

R

R

BUS <− Vindex XOR Vlength
setCC

[Z]

0
To 18

1

C

E

F

G
BaseR <− BaseR + LSHF1(ZEXT(Vstride))

BaseR <− BaseR + LSHF1(SEXT(offset6))

Vindex <− 0

B

D MAR <− BaseR

VDR[Vindex] <− MDR

A=2

[IR[15:12]]

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

Figure 2: State diagram of the non-interruptible VLD instruction from Problem Set 5

16

