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Problem 1. (20 points)

Part a (5 points): The SACK signal is a message from X to Y.

X: Y:

X asserts SACK, when

When Y receives SACK, it

Part b (5 points): Stripmining would be unnecessary if (in less than 15 words):

Part c (5 points): An ISA specification contains in part: a 32-bit virtual address space, 25-bit physical address space,
and page size of 4KB. Byte-addressible. We implement a 8KB direct-mapped, virtually-indexed, physically-tagged
cache. We do not restrict the mapping between virtual page number and physical frame number.

How many tag bits are required in each tag-store entry to make this work.

Part d (5 points): A four-way set associative cache contains 256 sets. Suppose we make exactly one change - that is,
we change it to a sector cache where the size of each sector is 1/4 the size of the original block. The number of bits of

storage needed to implement the tag store increases by bits.
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Problem 2. (20 points) We wish to design a new ISA, similar to the LC-3b, but with certain differences (mainly for
the benefit of this exam question!).

The ISA will have a 16 bit virtual address space, supported by a virtual memory management structure similar to the
two-level translation scheme of the VAX. Virtual memory will be partitioned into three regions, allocating 3/4 of the
virtual memory to process space, 1/8 to system space, and 1/8 left unassigned. VA[15:13] will specify the region of
memory. VA[15:13] = 110 is system space, VA[15:13] = 111 is unassigned. The rest is Process Space.

The ISA specifies 4KB of physical address space, partitioned into page frames of 64 bytes each. PTEs are 16 bits.
The Process Page Table is in system space, starting at address xC300. The System Page Table is in physical memory,
starting at address x200.

The Assembly language for this ISA contains the instruction LDB R2,X. In executing LDB R2,X, the value loaded
into R2 is obtained from physical address xA6D. What is the VA of X?

(Note: To successfully do this, you need to know that the PTE of the page containing X is stored in physical addresses
x59C and x59D. Also, that physical addresses x224, x225 contain the PTE of the page in system space on which the
PTE of the page containing X is stored.)
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Problem 3. (15 points) A tree (triangle) replacement scheme is used to implement the pseudo LRU policy for a 4-way
set-associative cache. We need 3 LRU bits per set to implement this scheme.

LRU[2]: specifies whether the last access came from Way0,Way1 or from Way2,Way3
(a 0 means Way0,Way1 was least recently accessed)

LRU[1]: specifies which of the two Way1 or Way0 was accessed least recently.
(a 0 means WayO0 was least recently accessed)

LRU[O]: specifies which of the two Way?2 or Way3 was accessed least recently.
(a 0 means Way?2 was least recently accessed)

Part a (5 points) The state of LRU[2:0] determines which Way to replace on a cache miss. Complete the table below.

LRU[2:0] || Replace

000 Way 0
001 Way 0
010
011
100
101
110
111

An access to a Way (whether due to replacement after a miss, or to a hit) results in LRU[2:0] being updated. Complete
the table below which specifies the state of LRU[2:0] as a result of an access to each Way.

Accessto || LRU[2:0]
Way 0 11-
Way 1
Way 2
Way 3

(Note: The - in 11- means LRU[O0] is left unchanged.)
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Part b (5 points) The table below is intended to show a snapshot of a single initially empty set of a cache after making
8 sequential accesses, all LD instructions to that set. The replacement policy is the tree-replacement scheme described
above. Assume the block size = the size of a single data element. The state of LRU[2:0] and the addresses of data
stored in each block after each access are shown. Line 1 in the table reflects the first access, LD A. The LRU bits are
set to 110, A is in Way 0, and Ways 1,2,and 3 are all invalid. Your job is to complete the table. Assume each LD
accesses only one of 5 distinct addresses (A,B,C,D,E). A memory address may be accessed more than once. Note:
There is only one unique sequence of loads that will produce the state shown after the 8th access (LD E).

Access | LRU[2] LRU[1] LRU[0] | Way0 Wayl Way2 Way3

LD A 1 1 0 A - - -
LDC 0 1 1 A - Cc -
LDB
LD D
LD _
LD _
LD _
LD E 1 1 0 E A C D

0 N (o (0w N |

Part c (5 points). Prove that the solution of Part b is unique. Use this space ONLY and please be clear.




Name:

Problem 4. (25 points) Little Computer Inc. is now planning to build a new computer that is more suited for scientific
applications. LC-3b can be modified for such applications by replacing the data type Byte with Vector. The new
computer will be called LmmVC-3 (Little ’'mickey mouse’ Vector Computer 3). Your job is to help us implement the
datapath for LmmVC-3. LmmVC-3 ISA will support all the scalar operations that LC-3b currently supports except
the LDB and STB will be replaced with VLD and VST respectively. Our datapath will need to support the following
new instructions:

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 O

MOVI Vstride, amounté :lon o0 | 00 | amounts
MOVI Viength, amounté \ lon \ 001 \ :0001 \ umounfé‘
VLD VDR BaseR, offseté | oolo | VOR | BassR | ofsels |
VADD VDR, VSRI,VSR2 | 1010 | vor | vse ‘O‘l'o‘vsm |
VADD VDR VSRI,SR2 | 1010 | vor | vse1 |o|ofo| s |
VST VSR, BaseR,offseté | o011 | Vs | BaseR | offsets |

Note: VDR = Vector Destination Register, VSR = Vector Source Register

MOVI

If IR[11:9] = 000, MOVI moves the unsigned quantity amount6 to Vector Stride Register (\Vstride).
If IR[11:9] = 001, MOVI moves the unsigned quantity amount6 to Vector Length Register (Vlength).
This instruction has already been implemented for you.

VLD

VLD loads a vector of length Vlength from memory into VDR. VLD uses the opcode previously used by LDB. The
starting address of the vector is computed by adding the LSHF1(SEXT (offset6)) to BaseR. Subsequent addresses are
obtained by adding Vstride to the address of the preceding vector element.

VST
VST writes the contents of VSR into memory. VST uses the opcode previously used by STB. Address calculation is
done in the same way as for VLD.

VADD
If IR[4] is a 1, VADD adds two vector registers (VSR1 and VSR2) and stores the result in VDR.
If IR[4] is a 0, VADD adds a scalar register (SR2) to every element of VSR and stores the result in VDR.

VLD, VST, and VADD do not modify the content of Vstride and Vlength registers.

The following five hardware structures have been added to LC-3b in order to implement LmmVC-3.
Vector Register File with eight 63-element Vector registers

Vector Length Register

Vector Stride Register

Grey box A

Box labeled X

These structures are shown in the LmmVC-3 datapath shown on next page.
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Part a (4 points) A 6-bit input to the Vector Register file has been labeled X on the datapath diagram. What is the
purpose of this input. (Answer in less than 10 words )

The logic structure X contains a 6-bit register and some additional logic. X has two control signals as its inputs. What
are these signals used for?

Part b (12 points) Grey box A contains several additional muxes on both input lines to the ALU. Complete the logic
diagram of grey box A (shown below) by showing all muxes and interconnects. You will need to add new signals to
the control store; be sure to clearly label them in the logic diagram.

Hint 1: Keep in mind that we will still need to support all the existing scalar operations.

Hint 2: An XOR can be used to compare two values.

Hint 3: Our solution required 3 additional control signals and 7 2-to-1 muxes.
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Part ¢ (9 points) We show the beginning of the state diagram necessary to implement VVLD. Using the notation of the
LC-3b State Diagram, add the “bubbles” you need to implement VVLD. Inside each “bubble” describe what happens in
that state. You can assume that you are allowed to make any changes to the microsequencer that you find necessary.
You do not have to make/show these changes. Make sure your design works when Vlength = 0. Full credit will be
awarded to solutions that require not more than 6 states.

State 32
BEN<-IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

=
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Problem 5. (20 points) We show below a synchronous split transaction bus system employing centralized arbitration.
There are two processors (PO and P1) and two storage devices (SO and S1). For the sake of simplicity, we assume that
processors will only Read data from the storage devices.

SBG1
SBGO
SAU SBR1
SBRO =

PBGL
pray  PBGO

PBR1 =
PBRO

length_p
id_p
addr_p

data s \
id_s k 9

Y Y Y Y Y Y Y ¥

Controller PO Controller P1 Controller SO Controller S1

Pyl

ReqT iReady J/Data eqT iReadyiData Reqi ?ReadyﬁData Reqi TReady TData

Processor PO Processor P1 Storage Device SO Storage Device S1

We describe below the arbitration and data transfer mechanisms:

Arbitration

There are two arbitration units, Processor Arbitration Unit(PrAU) and Storage Device Arbitration Unit(SAU). PrAU
arbitrates the addr_p bus across PO and P1. SAU arbitrates the data_s bus across SO and S1. This allows one processor
to request a transfer while the other processor is receiving data. PO has higher priority than P1 and SO has higher
priority than S1. Once the SAU has granted the data_s bus to a storage device, it does not rearbitrate until the device
deasserts its bus request. This allows the storage device to carry out the entire transfer in consecutive cycles.

Data Transfer
Following is how a transfer between Processor i (Pi) and Storage Device j (Sj) proceeds:

1. When Pi needs data from S;j, it asserts the Bus Request signal (PBRi). Upon receiving the Bus Grant signal
(PBGi) from the PrAU, the controller asserts the starting address on addr_p, the *Vaddr’ (valid address signal,
not shown in the figure), number of elements to be transfered on ’length_p’ (Count), and its Id (i in this case) on
’id_p’. Pi now waits for data from S;j.

2. When Sj sees an address that is in its address range with *Vaddr’ asserted, it latches the address, length, and Id
and starts processing the request.

3. When Sj is ready to return the data, it asserts SBRj. Upon receiving the Grant signal (SBGj), it starts the process
of transferring the data.

4. Sj asserts data on data_s, the 1d of the processor that requested the data on id_s and the "Vid’ (valid id signal,
where Vid = SBG0 OR SBG1, not shown in the figure). It also decrements its Count of the remaining elements.

5. When Pi sees its Id on id_s with "Vid’ signal asserted, it latches the data element and decrements its Count.
6. Piand Sj cycle through steps 4 and 5 until Count reaches 0.
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The device and controller synchronize using the Dev and Ready signals. When a transfer needs to be carried out the
Dev signal is asserted. The availability of valid data is indicated by asserting the *Ready’ signal.

NOTE: For the sake of simplicity, assume each processor can have only one pending transfer. Each storage device can
buffer up to two requests since each processor could have one pending transfer from a given storage.

Part a (10 points) Construct the state machine for the processor controller Pi. Show relevant inputs and outputs
on all arcs. (Remember that the controller keeps track of the number of remaining data transfers in a ’Count’ register.)

Part b (10 points) Construct the state machine for the storage device controller Si. Show relevant inputs and outputs
on all arcs. (Remember that the controller keeps track of the number of remaining data transfers in a ’Count’ register.)
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