
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 360N, Fall 2004
Yale Patt, Instructor
Aater Suleman, Huzefa Sanjeliwala, Dam Sunwoo, TAs
Exam 1, October 6, 2004

Name:

Problem 1 (20 points):

Problem 2 (15 points):

Problem 3 (20 points):

Problem 4 (15 points):

Problem 5 (30 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

GOOD LUCK!

Name:

Problem 1 (20 points):

Part a (4 points): The string move instruction copies a block of information from one region of memory to another.
This instruction can usually be used to copy up to 64KB of data with a single instruction, although admittedly, it
takes a long time to execute that instruction. This instruction is usually accomplished by using an inner loop that
copies data, increments the two pointers, and decrements the counter indicating how much more is left to copy. This
implementation detail (the inner loop) allows the string move instruction to be stopped after some but not all of the
data has been copied, in order to

service and interrupt ,

which improves interrupt latency .

Part b (4 points): Some ISAs have a fixed length, uniform decode instruction format. Other ISAs opt for a variable
length format. The advantages of a fixed length, uniform decode format (in 20 words or fewer):

Decode logic is simpler

The disadvantages of a fixed length, uniform decode format (in 20 words or fewer):

Lower utilization of instruction bits. Limited number of opcodes, addressing modes, and operands.

Please put both answers in the above boxes.

Part c (4 points): The classical condition code mechanism gives you an extra piece of work tacked on to the instruc-
tion, thereby potentially decreasing the number of dynamic instructions needed to execute the program. A significant
potential disadvantage to this mechanism is (in 20 words or fewer):

The branch instruction needs to be executed right after the instruction that generates the condition codes.

Part d (4 points): Critical path design requires you to look at the longest speed path and try to shorten it, thereby
decreasing the cycle time. MIPS found on one of their early machines that the speed path associated with the cache
access was twice as long as the ALU path and the control path. That is, the ALU was n nanoseconds, the control path
0.80n nanoseconds, and the cache access approximately 2n nanoseconds. The microarchitect set the cycle to what?
How did he manage that? Answer in the box, 20 words or fewer:

n nanoseconds. Make the cache access a two cycle operation.

Part e (4 points): Mike Flynn observed that it did not matter how sophisticated we made our pipeline, or how many
stages we had in it, we would never be able to complete on average more than one instruction each cycle as long as:
(Finish your answer in the box in fewer than 20 words.)

we fetch only one instruction per cycle.

2

Name:

Problem 2 (15 Points):

Little Computer Inc. produces a machine in which all instructions execute in one cycle. However, the ISA does not
include a multiply (MUL) instruction. To perform a multiplication, it takes 5 instructions from the existing ISA. Little
Computer Inc. proposes a new ISA, which adds a MUL instruction. Everything else stays the same. In the new
ISA, all instructions take one cycle, including the new MUL instruction. However, in order to accomplish this, the
implementation of the proposed ISA has an increase in cycle time of 50%. Your job: to find out if the proposed ISA is
a good idea.

Part a (8 points): Little Computer Inc simulates the proposed ISA and finds that on a set of representative benchmarks,
20% of the instructions executed on average are MUL instructions. Would it be a good idea to add the MUL to the
ISA? Explain.

0.2 x 5 + 0.8 = 1.8

Since 1.8 > 1.5 , it is a good idea

Part b (7 points): What if, instead of 20%, only 10% of the instructions exectuted are MUL instructions? Good idea
or bad idea? Explain.

0.1 x 5 + 0.9 = 1.4

Since 1.4 < 1.5 , it is a bad idea

3

Name:

Problem 3 (20 points):

A two-way interleaved, byte addressable memory is shown in the figure. It takes TEN cycles after the MAR is loaded
to load the MDR with the contents of the relevant memory locations. The processor supports unaligned memory
accesses.

4

Name:

Problem 3 (Continued):

Part a (4 points) LDW R3, B loads a 32-bit word into R3. Consider the case where the address B is an integer of the
form (8 ∗ k + 2), where k is an integer. What is the number of cycles required to get the contents of B into the MDR,
after the cycle in which the processor puts the requested address on the bus.

10

Part b (4 points) Repeat part (a) where B is (8 ∗ k + 6), k is an integer.

11

Part c (12 points) Construct the truth table to implement the combinational logic that controls the unaligned memory
system shown in the figure for read accesses. You DO NOT need to worry about the datasize BYTE.

R/W SIZE 1st/2nd ADDR[2:0] LD MAR[3:0] ROT[1:0] SEL[3:0]
R H 1 000 0011 00 xx00
R H 2 000 0000 xx xxxx
R H 1 001 0011 01 x00x
R H 2 001 0000 xx xxxx
R H 1 010 0011 10 00xx
R H 2 010 0000 xx xxxx
R H 1 011 0011 11 0xx1
R H 2 011 0000 xx xxxx
R H 1 100 0011 00 xx11
R H 2 100 0000 xx xxxx
R H 1 101 0011 01 x11x
R H 2 101 0000 xx xxxx
R H 1 110 0011 10 11xx
R H 2 110 0000 xx xxxx
R H 1 111 0001 11 1xxx
R H 2 111 0010 11 xxx0
R W 1 000 1111 00 0000
R W 2 000 0000 xx xxxx
R W 1 001 1111 01 0001
R W 2 001 0000 xx xxxx
R W 1 010 1111 10 0011
R W 2 010 0000 xx xxxx
R W 1 011 1111 11 0111
R W 2 011 0000 xx xxxx
R W 1 100 1111 00 1111
R W 2 100 0000 xx xxxx
R W 1 101 0111 01 111x
R W 2 101 1000 01 xxx0
R W 1 110 0011 10 11xx
R W 2 110 1100 10 xx00
R W 1 111 0001 11 1xxx
R W 2 111 1110 11 x000

5

Name:

Problem 4 (15 points):

A 16KB virtual address space is made up of 1KB pages. For this anemic system, operating system code and data
structures are contained within the process’ virtual address space. A snapshot of physical memory right now is shown
below:

 Page 10

 Page 0

 Page 4

111111111111

000000000000

 Page Table

All pages that are resident belong to this process. The process consists of 12 pages of virtual address space.
Since the last time the reference bits in all PTEs were cleared, the following memory accesses were made:

R-10, R-10, W-10, R-10, R-0, R-0, R-0, R-10, R-0,

where R-n means Read from page n, W-m means Write to page m.

6

Name:

Problem 4 (Continued):

Your job: Construct a snapshot of the COMPLETE page table for this process as it exists right now. Note, we have
provided more than enough space to contain the COMPLETE page table. Use only what you need.

Each page table entry should consist of the minimum integer number of bytes needed to do the job. You may
assign fields to the bits of the PTE anyway you wish.

Assume memory is protected on a page level of granularity. Assume two levels of privilege {Kernel, User}.
Assume three kinds of access {None, Read, Write}. In the current process Kernel and User are allowed to read and
write to all pages. Feel free to choose any code you feel is appropriate to represent the fact that Kernel and User can
read and write to a page.

Page Table Base Register

V M R Prot PFN

0 1 0 1 0 0 0 0 1

1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

4 1 0 0 0 0 0 1 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0

10 1 1 1 0 0 0 0 0

11 0 0 0 0 0 0 0 0

7

Name:

Problem 5 (30 points):

We wish to add to the LC-3b the new instruction MWORDCPY, which copies the contents of k consecutive words to
another set of k consecutive words. We will use the unused opcode 1010 for this purpose.

Encoding

 0 0 0

15 12 11 9 8 6 5 4 2 0

CntRMWORDCPY DBaseR, SBaseR, CntR DBaseR SBaseR1010

Operation

while(CntR > 0){
MEM[DBaseR] = MEM[SBaseR];
DBaseR = DBaseR + 2;
SBaseR = SBaseR + 2;
CntR = CntR - 1;

}
We will assume for simplicity here that DBaseR and SBaseR are different registers and that CntR contains a non-
negative integer. You do not have to test for either of these.

In order to implement this instruction, we have added some hardware to the LC-3b datapath and some new logic
in the microsequencer.

8

Name:

Problem 5 (Continued):

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.
LOGIC

MDR

INMUX

MAR L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D.MAR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

[4:0]

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16

16

LOGIC

16 16

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG
FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

ALU
ALUK

2 AB

PCMUX
2

SR1SR2

LD.REG

IRLD.IR

CONTROL

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

ADDR1MUX

3
DR

DRMUX

IR[11:9]

 M

111

N

O

0x0002

16

16

3

3

BMUX

AMUXA_MUX

B_MUX

9

Name:

Problem 5 (Continued):

Part a (3 points) What are M, N, and O (see datapath on previous page). Be specific.
M -1 or 0xFFFF
N IR [8:6]
O IR [2:0]

Part b (2 points) What signal does X correspond to in the Microsequencer diagram shown below? (Hint: It is one of
the condition code registers).

P

Part c (5 points) What is the Control Store address for C in the state machine on the next page.

26

J[4]

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

BEN R

Branch Ready
Mode
Addr.

IR[11]

J[0]J[1]J[2]

COND0COND1

J[3]

COND2

X

10

Name:

Problem 5 (Continued):

Part d (9 points) We show below the begining of the state diagram necessary to implement MWORDCPY. Using
the notation of the LC-3b State Diagram, add the ”bubbles” you need to implement the MWORDCPY instruction.
Describe inside each ”bubble” what happens in each state. You should be able to implement this in fewer than 15
states. (A TA found a solution that required only 8 states).

from 32

10

To 18

B

A

C

D

E

F

G

H

I

 setcc

[P]

MDR<−M[MAR]

MAR<−DBaseR

M[MAR]<−MDR

DBaseR<−DBaseR+2

SBaseR<−SBaseR+2

CntR<−CntR

CntR<−CntR−1
 setcc

MAR<−SBaseR

R

R

11

Name:

Problem 5 (Continued):

Part e (2 points) Give the values of the COND bits (COND0 , COND1, COND2) for the state labeled B.

COND2 1
COND1 0
COND0 0

Part f (9 points) The processing in each state you just added is controlled by asserting or negating each control signal.
Enter a 1 or a 0 as appropriate for the microinstructions corresponding to the states you have added.

G
at

eM
A

R
M

U
X

A
D

D
R

2M
U

X

M
A

R
M

U
X

A
D

D
R

1M
U

X

LD
.M

A
R

LD
.M

D
R

LD
.R

EG
LD

.C
C

G
at

eM
D

R
G

at
eA

LU

SR
1M

U
X

A
M

U
X

B
M

U
X

D
R

M
U

X

A
LU

K

R
.W

M
IO

.E
N

A

B

C

D

E

F

G

H

I

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 00 0

0 0 0 0 0 0 0 0 0 0 00 0

0 0 0 0 0 0 0 0 0 0 00 0

0 1 1 1 1 1 1 0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1 1

0

1

1

1

1

1 0

1

1

1 1

1 1

0

1 1

1 1

0

1

1

1

1

1

12

