
1

High-Performance Execution of
Multithreaded Workloads on CMPs

M. Aater Suleman
Advisor: Yale Patt

HPS Research Group
The University of Texas at Austin

2

How do we use the transistors?

• More transistors Higher performance core
– Performance increases without programmer effort
– Larger cores are complex and consume more power

• More transistors Bigger cache
– Assist the core by reducing memory accesses
– Easier to design and consume less power
– Pentium M: 50M out of the 77M were cache

• More transistors More cores
– Chip Multiprocessors (CMPs)
– Less complex
– Run at lower frequency (Power α frequency3)

But, do CMPs improve
performance?

3

Multithreading

To leverage CMPs, applications must be split into threads

Single-Threaded

But, can we do this for
all applications?

4

Easy-to-parallelize Kernels

Kernel from
ImageMagick

GrayscaleToMonochrome (picture)

foreach (OldPixel in picture)
if(OldPixel > Threshold)

NewPixel = 1

else
NewPixel = 0

5

Serial Kernels

Smooth(Picture)
for i = 1 to N

Pixel[i] = (Pixel[i-1] + Pixel[i])/2

avg

avg

avg

Kernel from
ImageMagick

Old pixels:

New pixels:

1 2 3 4

6

Amdahl’s Law

As the number of cores increase, even a small serial part
can have significant impact on overall performance

Future CMPs must improve performance
of both parallel and serial parts

7

Outline

• Background

• Speeding up serial part
– Asymmetric Chip Multiprocessor (ACMP)

• Speeding up parallel part
– Feedback-Driven Threading (FDT)

• Summary

8

Current CMP Architectures

9

Current CMP Architectures

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

“Niagara” Approach

• Tile many small cores
• Sun Niagara Processor
• High throughput on the parallel part
• Low performance on the serial part

10

Current CMP Architectures

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

“Niagara” Approach

11

Current CMP Architectures

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

“Niagara” Approach

• Tile a few large cores
• IBM Power 5, AMD Barcelona, Intel Core2Quad
• High performance on the serial part
• Low throughput on the parallel part

Large
core

Large
core

Large
core

Large
core

“Tile-Large”Approach

12

Current CMP Architectures

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

“Niagara” Approach

Large
core

Large
core

Large
core

Large
core

“Tile-Large”Approach

13

The Asymmetric Chip Multiprocessor (ACMP)

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

“Niagara” Approach

• Provide one large core and many small cores
• Accelerate serial part using the large core
• Execute parallel part on small cores

for high throughput

Large
core

Large
core

Large
core

Large
core

“Tile-Large”Approach

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Large
core

ACMP Approach

14

The Asymmetric Chip Multiprocessor (ACMP)

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

“Niagara” Approach

Large
core

Large
core

Large
core

Large
core

“Tile-Large”Approach

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Large
core

ACMP Approach

15

The Asymmetric Chip Multiprocessor (ACMP)

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

“Niagara” Approach

• Analytical experiment details
– One large core replaces four small cores
– Large core provides 2x performance

Large
core

Large
core

Large
core

Large
core

“Tile-Large”Approach

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Large
core

ACMP Approach

16

0
1
2
3
4
5
6
7
8
9

0 0.2 0.4 0.6 0.8 1
Degree of Parallelism

Sp
ee

du
p

vs
. 1

 L
ar

ge
 C

or
e Niagara

Tile-Large
ACMP

Performance vs. Parallelism

Both ACMP and
Tile-Large
outperform Niagara

At high parallelism,
Niagara
outperforms ACMP

At medium
parallelism, ACMP
wins

Niagara beats
ACMP at 97%
parallelism

17

Throughput of ACMP vs. Niagara

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Large
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

18

ACMP Scheduling

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Large
core

ACMP Approach

19

Data Transfers in ACMP

• Data is transferred if the serial part requires the
data generated by the parallel part or vice-versa

• ACMP
– Data is transferred from all small cores

• Niagara/Tile-Large
– Data is transferred from all but one core

• Number of data transfers increases by only 3.8%

20

Experimental Methodology

• Configurations:
– Niagara: 16 small cores
– Tile-Large: 4 large cores
– ACMP: 1 large core, 12 small cores

• Simulated existing multithreaded applications
without modification

• Simulation parameters:
– x86 cycle accurate processor simulator
– Large core: 2GHz, out-of-order, 128-entry window, 4-wide issue, 12-stage pipeline
– Small core: 2GHz, in-order, 2-wide, 5-stage pipeline
– Private 32 KB L1, private 256KB L2
– On-chip interconnect: Bi-directional ring

21

Performance Results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

mcf
is_

na
sp

fft_
sp

las
h

cg
_n

as
p

ep
_n

as
p

art
_o

mp
mg_

na
sp

fm
m_s

pla
sh

ch
ole

sk
y

pa
ge

co
nv

ert
h.2

64 ed

Sp
ee

du
p

ov
er

 N
ia

ga
ra

Tile-Large
ACMP

Low

Parallelism

Medium

Parallelism

High

Parallelism

22

Impact of ACMP on Programmer Effort

• ACMP makes performance less dependent
on length of the serial part

• Programmers parallelize the easy-to-parallelize kernels

• Hardware accelerates the difficult-to-parallelize serial part

• Higher performance can be achieved with less effort

23

Outline

• Background

• Speeding up serial part
– Asymmetric Chip Multiprocessor (ACMP)

• Speeding up parallel part
– Feedback-Driven Threading (FDT)

• Summary

24

How Many Threads?

• Some applications:
– As many threads as the number of cores

• Other applications:
– Performance saturates
– Fewer threads than cores

The number of threads
must be chosen carefully

25

Two Important Limitations

• Contention for shared data
– Data synchronization: Critical section

• Contention for shared resources
– Off-chip bus

26

Contention for Critical Section

Kernel
from
PageMine

All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.

…

a b c d

oc
cu

rre
nc

es

∑

27

Contention for Critical Section

Critical Section:
 Add local histogram to global histogram

GetPageHistogram(Page *P)

UpdateLocalHistogram(Fraction of Page)

 Barrier

Parallel Part

Serial Part

All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.

…

a b c d

oc
cu

rre
nc

es

∑

Kernel
from
PageMine

28

N = 1
N = 2

N = 4

N = 8

Contention for Critical Section

Time outside
Critical Section (CS)Time inside CS

29

Two Important Limitations

• Contention for shared data
– Data-synchronization: Critical section

• Contention for shared resources
– Off-chip bus

30

Off-Chip Bandwidth

Main
MemoryOff-Chip

Bus

31

Contention for Off-chip Bus

Kernel
from ED

EuclideanDistance (Point A)
for i = 1 to num_dimensions

sum = sum + A[i] * A[i]

32

Contention for Off-chip Bus

N = 1
N = 2

N = 4

N = 8
N=4 and N=8 take

same time to execute

33

Who Chooses Number of Threads?

• Programmer
– No! Not for general-purpose workloads

Large variation in input data and machines
• User

– No! I do not want Windows media player to ask me
the number of threads

• Set equal to the number of cores
– Assumption:

More threads More performance

Goal: A run-time mechanism to estimate
the best number of threads

34

Outline

• Background

• Speeding up serial part
– Asymmetric Chip Multiprocessor (ACMP)

• Speeding up parallel part
– Feedback-Driven Threading (FDT)

• Synchronization-Aware Threading (SAT)
• Bandwidth-Aware Threading (BAT)
• Combining SAT and BAT (SAT+BAT)

• Summary

35

Feedback-Driven Threading (FDT)

Conventional
Multithreading

Feedback-Driven
Threading

N = K

N = No. of threads
K = No. of cores

36

Outline

• Background

• Speeding up serial part
– Asymmetric Chip Multiprocessor (ACMP)

• Speeding up parallel part
– Feedback-Driven Threading (FDT)

• Synchronization-Aware Threading (SAT)
• Bandwidth-Aware Threading (BAT)
• Combining SAT and BAT (SAT+BAT)

• Summary

37

Synchronization-Aware Threading (SAT)

N = 1
N = 2

N = 4

N = 8

Time outside C.S.
NTN = + N x Time inside C.S.

Time outside C.S.
Time inside C.S√NCS =

38

Implementing SAT using FDT

• Train
– Measure the time inside and outside the critical

section using cycle counter

• Compute NCS =

• Execute

Time outside C.S.
Time inside C.S √

39

Machine Configuration

• CMP: 32 in-order cores (2-wide, 5-stage deep)
• Caches: L1: 8-KB, L2: 64KB. Shared L3: 8MB
• Off-chip bus: 64-bit wide, 4x slower than cores
• Memory: 200 cycle minimum latency

40

Results of SAT
N

or
m

. E
xe

c.
 T

im
e

N
or

m
. E

xe
c.

 T
im

e

PageMine (Data Mining) ISort (NAS)

EP (NAS)GSearch (OSR)

SAT decreases execution time

and saves power

41

Adaptation of SAT to Input Data

• Time inside and outside the critical section depends on
the input to program

• For PageMine, the best number of threads changes with
the page size

42

Outline

• Background

• Speeding up serial part
– Asymmetric Chip Multiprocessor (ACMP)

• Speeding up parallel part
– Feedback-Driven Threading (FDT)

• Synchronization-Aware Threading (SAT)
• Bandwidth-Aware Threading (BAT)
• Combining SAT and BAT (SAT+BAT)

• Summary

43

Bandwidth-Aware Threading (BAT)

N = 1
N = 2

N = 4

N = 8
N=4 and N=8 take

same time to execute

Total Bandwidth
Bandwidth used by a single threadNBW =

44

Implementation BAT using FDT

• Train
– Measure bandwidth utilization using performance

counters

• Compute NBW =

• Execute

Total Bandwidth
Bandwidth used by a single thread

45

Results of BAT
N

or
m

. E
xe

c.
 T

im
e

N
or

m
. E

xe
c.

 T
im

e

ED (Numerical) convert (ImageMagick)

MTwister (nVIDIA)Transpose (nVIDIA)

BAT saves power without
increasing execution time

46

Adaptation of BAT to System Configuration

• The best number of threads is a function of
off-chip bandwidth

• BAT correctly predicts the best number of threads for
systems with different bandwidth

convert (ImageMagick)

47

Outline

• Background

• Speeding up serial part
– Asymmetric Chip Multiprocessor (ACMP)

• Speeding up parallel part
– Feedback-Driven Threading (FDT)

• Synchronization-Aware Threading (SAT)
• Bandwidth-Aware Threading (BAT)
• Combining SAT and BAT (SAT+BAT)

• Summary

48

Combining SAT and BAT

• Train
– Train for both SAT and BAT

• Compute
NSAT+BAT = MIN (NCS, NBW, Num. cores)

• Execute

49

Results of SAT+BAT
Fewer threads fewer cache misses

(SAT+BAT) reduces power and execution time

On average, (SAT+BAT) reduces the execution time by 17% and power by 59%

N
or

m
. t

o
32

 th
re

ad
s

50

Comparison with Static-Best

Simulate all possible number of threads and choose the best

Two kernels: First needs 12 threads, second
needs 32. Static-Best uses 32 for both.

N
or

m
. t

o
32

 th
re

ad
s

(SAT+BAT) Exec. Time
Static-Best Exec. Time
(SAT+BAT) power
Static-Best power

51

Outline

• Background

• Speeding up serial part
– Asymmetric Chip Multiprocessor (ACMP)

• Speeding up parallel part
– Feedback-Driven Threading (FDT)

• Synchronization-Aware Threading (SAT)
• Bandwidth-Aware Threading (BAT)
• Combining SAT and BAT (SAT+BAT)

• Summary

52

Summary

• CMPs have increased the importance of multithreading

• Performance of both serial and parallel parts is important

• Asymmetric Chip Multiprocessor (ACMP)
– Accelerates the serial portion using a high-performance core
– Provides high throughput on the parallel portion using multiple small cores

• Feedback-Driven Threading (FDT)
– Estimates best number of threads at run-time
– Adapts to input sets and machine configurations
– Does not require programmer/user intervention

53

• Thank You

