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How do we use the transistors?

• More transistors Higher performance core
– Performance increases without programmer effort 
– Larger cores are complex and consume more power

• More transistors Bigger cache
– Assist the core by reducing memory accesses
– Easier to design and consume less power
– Pentium M: 50M out of the 77M were cache

• More transistors More cores
– Chip Multiprocessors (CMPs)
– Less complex 
– Run at lower frequency (Power α frequency3)  

But, do CMPs improve
performance?
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Multithreading

To leverage CMPs, applications must be split into threads

Single-Threaded

But, can we do this for
all applications?
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Easy-to-parallelize Kernels

Kernel from 
ImageMagick

GrayscaleToMonochrome (picture)

foreach (OldPixel in picture)
if( OldPixel > Threshold)

NewPixel = 1

else
NewPixel = 0
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Serial Kernels

Smooth(Picture)
for i = 1 to N

Pixel[i] = (Pixel[i-1] + Pixel[i])/2

avg

avg

avg

Kernel from 
ImageMagick

Old pixels:

New pixels:

1         2        3        4
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Amdahl’s Law

As the number of cores increase, even a small serial part 
can have significant impact on overall performance

Future CMPs must improve performance
of both parallel and serial parts
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Outline

• Background

• Speeding up serial part
– Asymmetric Chip Multiprocessor (ACMP) 

• Speeding up parallel part
– Feedback-Driven Threading (FDT) 

• Summary
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Current CMP Architectures
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Current CMP Architectures

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

“Niagara” Approach

• Tile many small cores
• Sun Niagara Processor
• High throughput on the parallel part
• Low performance on the serial part
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“Niagara” Approach

• Tile a few large cores
• IBM Power 5, AMD Barcelona, Intel Core2Quad
• High performance on the serial part
• Low throughput on the parallel part
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“Tile-Large”Approach
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The Asymmetric Chip Multiprocessor (ACMP) 
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“Niagara” Approach

• Provide one large core and many small cores
• Accelerate serial part using the large core
• Execute parallel part on small cores

for high throughput
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• Analytical experiment details
– One large core replaces four small cores
– Large core provides 2x performance
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Both ACMP and 
Tile-Large 
outperform Niagara

At high parallelism, 
Niagara 
outperforms ACMP

At medium 
parallelism, ACMP 
wins

Niagara beats 
ACMP at 97% 
parallelism
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Throughput of ACMP vs. Niagara
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ACMP Scheduling
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Data Transfers in ACMP

• Data is transferred if the serial part requires the 
data generated by the parallel part or vice-versa

• ACMP
– Data is transferred from all small cores

• Niagara/Tile-Large
– Data is transferred from all but one core

• Number of data transfers increases by only 3.8%
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Experimental Methodology

• Configurations:
– Niagara: 16 small cores
– Tile-Large: 4 large cores
– ACMP: 1 large core, 12 small cores

• Simulated existing multithreaded applications 
without modification

• Simulation parameters:
– x86 cycle accurate processor simulator
– Large core: 2GHz, out-of-order, 128-entry window, 4-wide issue, 12-stage pipeline
– Small core: 2GHz, in-order, 2-wide, 5-stage pipeline 
– Private 32 KB L1, private 256KB L2
– On-chip interconnect: Bi-directional ring



21

Performance Results
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Impact of ACMP on Programmer Effort

• ACMP makes performance less dependent 
on length of the serial part

• Programmers parallelize the easy-to-parallelize kernels 

• Hardware accelerates the difficult-to-parallelize serial part

• Higher performance can be achieved with less effort
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Outline

• Background

• Speeding up serial part
– Asymmetric Chip Multiprocessor (ACMP) 

• Speeding up parallel part
– Feedback-Driven Threading (FDT) 

• Summary
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How Many Threads?

• Some applications:
– As many threads as the number of cores

• Other applications:
– Performance saturates
– Fewer threads than cores 

The number of threads 
must be chosen carefully
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Two Important Limitations

• Contention for shared data
– Data synchronization: Critical section

• Contention for shared resources
– Off-chip bus
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Contention for Critical Section

Kernel 
from 
PageMine
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Contention for Critical Section

Critical Section: 
     Add local histogram to global histogram 

GetPageHistogram(Page *P) 

UpdateLocalHistogram(Fraction of Page)

   Barrier 

Parallel Part

Serial Part
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N = 1
N = 2

N = 4

N = 8

Contention for Critical Section

Time outside 
Critical Section (CS)Time inside CS
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Two Important Limitations

• Contention for shared data
– Data-synchronization: Critical section

• Contention for shared resources
– Off-chip bus
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Off-Chip Bandwidth

Main
MemoryOff-Chip

Bus
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Contention for Off-chip Bus

Kernel 
from ED

EuclideanDistance (Point A)
for i = 1 to num_dimensions

sum = sum + A[i] * A[i]
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Contention for Off-chip Bus 

N = 1
N = 2

N = 4

N = 8
N=4 and N=8 take

same time to execute
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Who Chooses Number of Threads?

• Programmer
– No! Not for general-purpose workloads 

Large variation in input data and machines
• User

– No! I do not want Windows  media player to ask me 
the number of threads

• Set equal to the number of cores
– Assumption: 

More threads More performance

Goal: A run-time mechanism to estimate
the best number of threads



34

Outline

• Background

• Speeding up serial part
– Asymmetric Chip Multiprocessor (ACMP) 

• Speeding up parallel part
– Feedback-Driven Threading (FDT)

• Synchronization-Aware Threading (SAT)
• Bandwidth-Aware Threading (BAT)
• Combining SAT and BAT (SAT+BAT)

• Summary
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Feedback-Driven Threading (FDT)

Conventional
Multithreading

Feedback-Driven
Threading

N = K

N = No. of threads
K = No. of cores
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Outline

• Background

• Speeding up serial part
– Asymmetric Chip Multiprocessor (ACMP) 

• Speeding up parallel part
– Feedback-Driven Threading (FDT) 

• Synchronization-Aware Threading (SAT)
• Bandwidth-Aware Threading (BAT)
• Combining SAT and BAT (SAT+BAT)

• Summary
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Synchronization-Aware Threading (SAT)

N = 1
N = 2

N = 4

N = 8

Time outside C.S.     
NTN = + N x Time inside C.S.

Time outside C.S.
Time inside C.S√NCS  = 
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Implementing SAT using FDT

• Train
– Measure the time inside and outside the critical 

section using cycle counter

• Compute NCS =

• Execute

Time outside C.S.
Time inside C.S √
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Machine Configuration

• CMP: 32 in-order cores (2-wide, 5-stage deep) 
• Caches: L1: 8-KB, L2: 64KB. Shared L3: 8MB
• Off-chip bus: 64-bit wide, 4x slower than cores 
• Memory: 200 cycle minimum latency
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Results of SAT
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SAT decreases execution time

and saves power
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Adaptation of SAT to Input Data

• Time inside and outside the critical section depends on 
the input to program

• For PageMine, the best number of threads changes with 
the page size
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Outline

• Background

• Speeding up serial part
– Asymmetric Chip Multiprocessor (ACMP) 

• Speeding up parallel part
– Feedback-Driven Threading (FDT) 

• Synchronization-Aware Threading (SAT)
• Bandwidth-Aware Threading (BAT)
• Combining SAT and BAT (SAT+BAT)

• Summary
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Bandwidth-Aware Threading (BAT)

N = 1
N = 2

N = 4

N = 8
N=4 and N=8 take

same time to execute

Total Bandwidth
Bandwidth used by a single threadNBW = 
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Implementation BAT using FDT

• Train
– Measure bandwidth utilization using performance 

counters

• Compute NBW = 

• Execute

Total Bandwidth
Bandwidth used by a single thread
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Results of BAT
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BAT saves power without
increasing execution time
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Adaptation of BAT to System Configuration

• The best number of threads is a function of 
off-chip bandwidth

• BAT correctly predicts the best number of threads for 
systems with different bandwidth

convert (ImageMagick)
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Outline

• Background

• Speeding up serial part
– Asymmetric Chip Multiprocessor (ACMP) 

• Speeding up parallel part
– Feedback-Driven Threading (FDT) 

• Synchronization-Aware Threading (SAT)
• Bandwidth-Aware Threading (BAT)
• Combining SAT and BAT (SAT+BAT)

• Summary
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Combining SAT and BAT

• Train
– Train for both SAT and BAT

• Compute
NSAT+BAT = MIN (NCS, NBW, Num. cores)

• Execute
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Results of SAT+BAT
Fewer threads fewer cache misses

(SAT+BAT) reduces power and execution time

On average, (SAT+BAT) reduces the execution time by 17% and power by 59%
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Comparison with Static-Best

Simulate all possible number of threads and choose the best

Two kernels: First needs 12 threads, second 
needs 32. Static-Best uses 32 for both.
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(SAT+BAT) Exec. Time
Static-Best Exec. Time
(SAT+BAT) power
Static-Best power
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Outline

• Background

• Speeding up serial part
– Asymmetric Chip Multiprocessor (ACMP) 

• Speeding up parallel part
– Feedback-Driven Threading (FDT) 

• Synchronization-Aware Threading (SAT)
• Bandwidth-Aware Threading (BAT)
• Combining SAT and BAT (SAT+BAT)

• Summary
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Summary

• CMPs have increased the importance of multithreading

• Performance of both serial and parallel parts is important

• Asymmetric Chip Multiprocessor (ACMP) 
– Accelerates the serial portion using a high-performance core
– Provides high throughput on the parallel portion using multiple small cores

• Feedback-Driven Threading (FDT)
– Estimates best number of threads at run-time 
– Adapts to input sets and machine configurations
– Does not require programmer/user intervention
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• Thank You


