(

~N

An Asymmetric Multi-core Architecture
for Accelerating Critical Sections

M. Aater Suleman
Advisor: Yale Patt

HPS Research Group
The University of Texas at Austin

Acknowledgements

Moinuddin Qureshi (IBM Research, HPS)
Onur Mutlu (Microsoft Research, HPS)
Eric Sprangle (Intel, HPS)

Anwar Rohillah (Intel)

Anwar Ghuloum (Intel)

Doug Carmean (Intel)

The Asymmetric Chip Multiprocessor (ACMP)

Large Large
core core
Large Large
core core

“Tile-Large” Approach

* Provide one large core and many small cores
» Accelerate serial part using the large core

Niagara|Niagara|Niagara|Niagara
-like -like -like -like
core core core core

Niagara|Niagara|Niagara|Niagara
-like -like -like -like
core core core core

Niagara|Niagara|Niagara|Niagara
-like -like -like -like
core core core core

Niagara|Niagara|Niagara|Niagara
-like -like -like -like
core core core core
(14 - 77

Niagara” Approach

Niagara|Niagara
-like -like
Large core | core
core Niagara|Niagara
-like -like
core core
Niagara|Niagara|Niagara|Niagara
-like -like -like -like
core core core core
Niagara|Niagara|Niagara|Niagara
-like -like -like -like
core core core core
ACMP Approach

« EXxecute parallel part on small cores
for high throughput

The 8-Puzzle Problem

The 8-Puzzle Problem

/vvhile(problem not solved)

SubProblem = PriorityQ.remove()

Solve(SubProblem)
if(solved)
break
NewSubProblems = Partition(SubProblem)

Critical
Sections

/N

PriorityQ.insert(NewSubProblems) /

Contention for Critical Sections

Critical
E Section
Thread 1 | | | Parallel
Thread2 — = Idle
Thread 3 |
Thread 4 | \
t1 1:2 1:7
Thread 1 | Critical Sections
Thread 2 | execute 2x faster
Thread 3 |
|

Thread 4

MySQL Database

o

LOCK_open—->Acquire()
foreach (table locked by thread)
table.lock—>release()
table.file>release()
If (table.temporary)
table.close()
LOCK open->Release()

~

fig

Speedup vs small core
D = D e Jm LR O =]

8 16 24 32
Area (Small Cores)

Conventional ACMP

EnterCS() 1. P2 encounters a Critical Section
o _ 2. Sends arequest for the lock
PriorityQ.insert(...) 3. Acquires the lock
LeaveCS() 4. Executes Critical Section
5. Releases the lock
Core executing
critical section
Pl

Onchip-
Interconnect

Accelerated Critical Sections (ACS)

EnterCS() 1. P2 encounters a Critical Section
o _ 2. P2 sends CSCALL Request to CSRB
PriorityQ.insert(...) 3. P1 executes Critical Section
LeaveCS() 4. P1 sends CSDONE signal

Core executing
critical section

P1

Critical Section

Request Buffer
(CSRE) ‘ Onchip-
Interconnect

Architecture Overview

ISA extensions
— CSCALL LOCK_ADDR, TARGET PC
— CSRET LOCK_ADDR

Compiler/Library inserts CSCALL/CSRET

On a CSCALL, the small core:

— Sends a CSCALL request to the large core
« Arguments: Lock address, Target PC, Stack Pointer, Core ID

— Stalls and waits for CSDONE

Large Core
— Critical Section Request Buffer (CSRB)

— Executes the critical section and sends CSDONE to the
requesting core

10

“False” Serialization

* Independent critical sections are used to protect disjoint data

« Conventional systems can execute independent critical sections
concurrently but ACS can artificially serializes their execution

o Selective Acceleration of Critical Sections (SEL)

— Augment CSRB with saturating counters which track false serialization

CSCALL (A)
:
CSCALL (A)

B | CSCALLE®) |

Critical
Section
Request
Buffer

11

Performance Trade-offs in ACS

e Fewer concurrent threads

— As number of cores increase
* Marginal loss in parallel performance decreases

 More threads = Contention for critical sections increases which
makes their acceleration more beneficial

e Overhead of CSCALL/CSDONE
— Fewer cache misses for the lock variable

e Cache misses for private data

— Fewer misses for shared data
Cache misses reduce If Shared data > Private data

— The large core can tolerate cache miss latencies better than
small cores

12

Experimental Methodology

e Configurations

— One large core is the size of 4 small cores
— At chip area equal to N small cores

« Symmetric CMP (SCMP): N small cores, conventional locking

» Asymmetric CMP (ACMP): 1 large core, N — 4 small cores,
conventional locking

 ACS: 1 large core, N — 4 small cores, (N — 4)-entry CSRB.

 Workloads
— 12 critical section intensive applications from various domains
— 7 use coarse-grain locks and 5 use fine-grain locks

« Simulation parameters:
— X86 cycle accurate processor simulator

— Large core: Similar to Pentium-M with 2-way SMT.
2GHz, out-of-order, 128-entry, 4-wide, 12-stage

— Small core: Similar to Pentium 1, 2GHz, in-order, 2-wide, 5-stage
— Private 32 KB L1, private 256KB L2, 8MB shared L3
— On-chip interconnect: Bi-directional ring

13

Workloads with Coarse-Grain Locks

Equal-area comparison
Number of threads = Best threads

210 150

130

120
110
100
90
30+
70+
60
504
40
30+
204
10+

m SCMP
m ACS

Exec. Time Norm. to ACMP

=
|

o
5 & & & &
s Ov
_m@ Q@ 0% ®

&R

Chip Area = 16 cores
SCMP = 16 small cores
ACMP/ACS =1 large and 12 small cores

210 150

130 AN

120
110
100
90
80
70 7
60
50
40
30
20
10

0_

m SCMP
m ACS

Exec. Time Norm. to ACMP

s
. ﬁé}«&
Q“’“%

L
N

éﬂ%{%

G
4 oy
SR
Chip Area = 32 small cores
SCMP = 32 small cores

ACMP/ACS = 1 large and 28 small cores

R

N

14

Workloads with Fine-Grain Locks

Exec. Time Norm. to ACMP
Exec. Time Norm. to ACMP

Area = 16 small cores Area = 32 small cores

15

Equal-Area Comparisons

Number of threads = No. of cores

2

12
5 11
10
o
; : i i 4 =
: ! i ! 7
A il o) . 6
< sCMP, T > X
—— ACMP 3
—~ACS | EOB @ W 1 2
e Ny aEN PENE
R R RN L Bl
7)) g8 16 24 32 8 16 24 32 g8 16 24 32 & 16 24 32 g 16 24 3
@©
B a) ep (c) puzz €) qsort () ts
>
O | 9 0 10
8 9 g
= 7 ; 8 :
S & 5 * %
o3 3 n B 6
4 2 5
O 2 3 4 B
Qo A 5 3 3
N = 2 2
1 1 1 F 1
e e T R 0 et S R e
8 16 24 32 8§ 16 24 32 8§ 16 24 32 g 16 24 32 8 16 24 32 g8 16 24 32
(g) sqlite (h) iplookup (H\umysql-1 (O Naysql- (k) specjbb (1) webcache

Chip Area (small cores)

16

ACS on Symmetric CMP

Exec. Time Norm. to SCMP

N

N

N

120

[

[

A

[

110
100
90
80 -
70
60
50 -
40 -
30 -
20+

10 A

m ACS
symmACS
2 X0
N T NN 0 0 F
S

17

Conclusion

 ACS reduces average execution time by:
— 34% compared to an equal-area SCMP
— 23% compared to an equal-area ACMP

 ACS improves scalability of 7 of the 12
workloads

e Future work will examine resource allocation in
ACS In presence of multiple applications

18

