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The Asymmetric Chip Multiprocessor (ACMP)
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“Tile-Large” Approach

* Provide one large core and many small cores
» Accelerate serial part using the large core
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« EXxecute parallel part on small cores
for high throughput




The 8-Puzzle Problem




The 8-Puzzle Problem

/vvhile(problem not solved)

SubProblem = PriorityQ.remove()

Solve(SubProblem)
if(solved)
break
NewSubProblems = Partition(SubProblem)

Critical
Sections

/N

PriorityQ.insert(NewSubProblems) /




Contention for Critical Sections
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MySQL Database

o

LOCK_open—->Acquire()
foreach (table locked by thread)
table.lock—>release()
table.file>release()
If (table.temporary)
table.close()
LOCK open->Release()
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Conventional ACMP

EnterCS() 1. P2 encounters a Critical Section
o _ 2. Sends arequest for the lock
PriorityQ.insert(...) 3. Acquires the lock
LeaveCS() 4. Executes Critical Section
5. Releases the lock
Core executing
critical section
Pl

Onchip-
Interconnect




Accelerated Critical Sections (ACS)

EnterCS() 1. P2 encounters a Critical Section
o _ 2. P2 sends CSCALL Request to CSRB
PriorityQ.insert(...) 3. P1 executes Critical Section
LeaveCS() 4. P1 sends CSDONE signal

Core executing
critical section

P1

Critical Section

Request Buffer
(CSRE) ‘ Onchip-
Interconnect




Architecture Overview

ISA extensions
— CSCALL LOCK_ADDR, TARGET PC
— CSRET LOCK_ADDR

Compiler/Library inserts CSCALL/CSRET

On a CSCALL, the small core:

— Sends a CSCALL request to the large core
« Arguments: Lock address, Target PC, Stack Pointer, Core ID

— Stalls and waits for CSDONE

Large Core
— Critical Section Request Buffer (CSRB)

— Executes the critical section and sends CSDONE to the
requesting core
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“False” Serialization

* Independent critical sections are used to protect disjoint data

« Conventional systems can execute independent critical sections
concurrently but ACS can artificially serializes their execution

o Selective Acceleration of Critical Sections (SEL)

— Augment CSRB with saturating counters which track false serialization

CSCALL (A)
:
CSCALL (A)

B | CSCALLE®) |

Critical
Section
Request
Buffer
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Performance Trade-offs in ACS

e Fewer concurrent threads

— As number of cores increase
* Marginal loss in parallel performance decreases

 More threads = Contention for critical sections increases which
makes their acceleration more beneficial

e Overhead of CSCALL/CSDONE
— Fewer cache misses for the lock variable

e Cache misses for private data

— Fewer misses for shared data
Cache misses reduce If Shared data > Private data

— The large core can tolerate cache miss latencies better than
small cores
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Experimental Methodology

e Configurations

— One large core is the size of 4 small cores
— At chip area equal to N small cores

« Symmetric CMP (SCMP): N small cores, conventional locking

» Asymmetric CMP (ACMP): 1 large core, N — 4 small cores,
conventional locking

 ACS: 1 large core, N — 4 small cores, (N — 4)-entry CSRB.

 Workloads
— 12 critical section intensive applications from various domains
— 7 use coarse-grain locks and 5 use fine-grain locks

« Simulation parameters:
— X86 cycle accurate processor simulator

— Large core: Similar to Pentium-M with 2-way SMT.
2GHz, out-of-order, 128-entry, 4-wide, 12-stage

— Small core: Similar to Pentium 1, 2GHz, in-order, 2-wide, 5-stage
— Private 32 KB L1, private 256KB L2, 8MB shared L3
— On-chip interconnect: Bi-directional ring
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Workloads with Coarse-Grain Locks

Equal-area comparison
Number of threads = Best threads
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Workloads with Fine-Grain Locks

Exec. Time Norm. to ACMP
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Equal-Area Comparisons

Number of threads = No. of cores

2

12
5 11
10
o
; : i i 4 =
: ! i ! 7
A il o) . 6
< sCMP, T > X
—— ACMP 3
—~ACS | EOB @ W 1 2
e Ny aEN PENE
R R RN L Bl
7)) g8 16 24 32 8 16 24 32 g8 16 24 32 & 16 24 32 g 16 24 3
@©
B a) ep (c) puzz €) qsort () ts
>
O | 9 0 10
8 9 g
= 7 ; 8 :
S & 5 * %
o3 3 n B 6
4 2 5
O 2 3 4 B
Qo A 5 3 3
N = 2 2
1 1 1 F 1
e e T R 0 et S R e
8 16 24 32 8§ 16 24 32 8§ 16 24 32 g 16 24 32 8 16 24 32 g8 16 24 32
(g) sqlite (h) iplookup (H\umysql-1 (O Naysql- (k) specjbb (1) webcache

Chip Area (small cores)

16



ACS on Symmetric CMP
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Conclusion

 ACS reduces average execution time by:
— 34% compared to an equal-area SCMP
— 23% compared to an equal-area ACMP

 ACS improves scalability of 7 of the 12
workloads

e Future work will examine resource allocation in
ACS In presence of multiple applications
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