
1

An Asymmetric Multi-core Architecture
for Accelerating Critical Sections

M. Aater Suleman
Advisor: Yale Patt

HPS Research Group
The University of Texas at Austin

2

Acknowledgements

Moinuddin Qureshi (IBM Research, HPS)
Onur Mutlu (Microsoft Research, HPS)
Eric Sprangle (Intel, HPS)
Anwar Rohillah (Intel)
Anwar Ghuloum (Intel)
Doug Carmean (Intel)

3

The Asymmetric Chip Multiprocessor (ACMP)

• Provide one large core and many small cores
• Accelerate serial part using the large core
• Execute parallel part on small cores

for high throughput

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Large
core

ACMP Approach

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

Niagara
-like
core

“Niagara” Approach

Large
core

Large
core

Large
core

Large
core

“Tile-Large” Approach

4

The 8-Puzzle Problem

1 2 3

4 5 6

7 8

1

23

4 5

67 8

1

23 4

5

67 8

1

23

4 5

67 8

:
:

5

The 8-Puzzle Problem

1 2 3

4 5 6

7 8

1

23

4 5

67 8

while(problem not solved)

SubProblem = PriorityQ.remove()

Solve(SubProblem)
if(solved)

break
NewSubProblems = Partition(SubProblem)

PriorityQ.insert(NewSubProblems)

Critical
Sections

6

Contention for Critical Sections

t1 t2 t3 t4 t5 t6 t7

t1 t2 t3 t4 t5 t6 t7

Critical Sections
execute 2x faster

Thread 1
Thread 2
Thread 3
Thread 4

Thread 1
Thread 2
Thread 3
Thread 4

Critical
Section
Parallel
Idle

7

MySQL Database

LOCK_open Acquire()
foreach (table locked by thread)

table.lock release()
table.file release()
if (table.temporary)

table.close()
LOCK_open Release()

8

Conventional ACMP

P1
P2 P3 P4

EnterCS()

PriorityQ.insert(…)

LeaveCS()

Onchip-
Interconnect

1. P2 encounters a Critical Section
2. Sends a request for the lock
3. Acquires the lock
4. Executes Critical Section
5. Releases the lock

Core executing
critical section

9

Accelerated Critical Sections (ACS)

P1
P2 P3 P4

EnterCS()

PriorityQ.insert(…)

LeaveCS()

Onchip-
Interconnect

Critical Section
Request Buffer
(CSRB)

1. P2 encounters a Critical Section
2. P2 sends CSCALL Request to CSRB
3. P1 executes Critical Section
4. P1 sends CSDONE signal

Core executing
critical section

10

Architecture Overview

• ISA extensions
– CSCALL LOCK_ADDR, TARGET_PC
– CSRET LOCK_ADDR

• Compiler/Library inserts CSCALL/CSRET

• On a CSCALL, the small core:
– Sends a CSCALL request to the large core

• Arguments: Lock address, Target PC, Stack Pointer, Core ID
– Stalls and waits for CSDONE

• Large Core
– Critical Section Request Buffer (CSRB)
– Executes the critical section and sends CSDONE to the

requesting core

11

“False” Serialization

• Independent critical sections are used to protect disjoint data

• Conventional systems can execute independent critical sections
concurrently but ACS can artificially serializes their execution

• Selective Acceleration of Critical Sections (SEL)
– Augment CSRB with saturating counters which track false serialization

CSCALL (A)

CSCALL (A)

CSCALL (B)

Critical
Section
Request
Buffer

4

4

A

B

32

5

12

Performance Trade-offs in ACS

• Fewer concurrent threads
– As number of cores increase

• Marginal loss in parallel performance decreases
• More threads Contention for critical sections increases which

makes their acceleration more beneficial

• Overhead of CSCALL/CSDONE
– Fewer cache misses for the lock variable

• Cache misses for private data
– Fewer misses for shared data

Cache misses reduce if Shared data > Private data
– The large core can tolerate cache miss latencies better than

small cores

13

Experimental Methodology
• Configurations

– One large core is the size of 4 small cores
– At chip area equal to N small cores

• Symmetric CMP (SCMP): N small cores, conventional locking
• Asymmetric CMP (ACMP): 1 large core, N – 4 small cores,

conventional locking
• ACS: 1 large core, N – 4 small cores, (N – 4)-entry CSRB.

• Workloads
– 12 critical section intensive applications from various domains
– 7 use coarse-grain locks and 5 use fine-grain locks

• Simulation parameters:
– x86 cycle accurate processor simulator
– Large core: Similar to Pentium-M with 2-way SMT.

2GHz, out-of-order, 128-entry, 4-wide, 12-stage
– Small core: Similar to Pentium 1, 2GHz, in-order, 2-wide, 5-stage
– Private 32 KB L1, private 256KB L2, 8MB shared L3
– On-chip interconnect: Bi-directional ring

14

Workloads with Coarse-Grain Locks

Chip Area = 16 cores
SCMP = 16 small cores
ACMP/ACS = 1 large and 12 small cores

Equal-area comparison
Number of threads = Best threads

Chip Area = 32 small cores
SCMP = 32 small cores
ACMP/ACS = 1 large and 28 small cores

15

Workloads with Fine-Grain Locks

Area = 16 small cores Area = 32 small cores

16

Equal-Area Comparisons
Number of threads = No. of cores

Chip Area (small cores)

Sp
ee

du
p

ov
er

 a
 s

m
al

l c
or

e

17

ACS on Symmetric CMP

18

Conclusion

• ACS reduces average execution time by:
– 34% compared to an equal-area SCMP
– 23% compared to an equal-area ACMP

• ACS improves scalability of 7 of the 12
workloads

• Future work will examine resource allocation in
ACS in presence of multiple applications

