ACMP: An Architecture to Handle Amdahl's Law

M. Aater Suleman Advisor: Yale Patt HPS Research Group

Acknowledgements

Eric Sprangle, Intel Anwar Rohillah, Intel Anwar Ghuloum, Intel Doug Carmean, Intel

Background

- Single-thread performance is power constrained
- To leverage CMPs for a single application, it must be parallelized
- Many kernels cannot be parallelized completely
- Applications likely include both serial and parallel portions
- Amdahl's law is more applicable now than ever

Serial Bottlenecks

• Inherently serial kernels

```
For I = 1 to N
A[I] = (A[I-1] + A[I])/2
```

• Parallelization requires effort

CMP Architectures

- Tile small cores e.g. Sun Niagara, Intel Larrabee
 - High throughput on the parallel part
 - Low serial thread performance
 - Highest performance for completely parallelized applications
- Tile large cores e.g. Intel Core2Duo, AMD Barcelona, and IBM Power 5.
 - High serial thread performance
 - Lower throughput than Niagara

ACMP

Niagara	Niagara	Niagara	Niagara
-like	-like	-like	-like
core	core	core	core
Niagara	Niagara	Niagara	Niagara
-like	-like	-like	-like
core	core	core	core
Niagara	Niagara	Niagara	Niagara
-like	-like	-like	-like
core	core	core	core
Niagara	Niagara	Niagara	Niagara
-like	-like	-like	-like
core	core	core	core

"Niagara" Approach

- Run serial thread on the large core to extract ILP
- Run parallel threads on small cores

ACMP

Niagara -like core Niagara -like core	Niagara -like core Niagara -like core	Niagara -like core Niagara -like core	ara Niagara ce -like re core ara Niagara ce -like re core		Niagara Niagara -like -like core core Niagara Niagara -like -like core core		P6-like Core	P6-like Core	
Niagara -like core Niagara -like core	Niagara -like core Niagara -like core	Niagara -like core Niagara -like core	Niagara -like core Niagara -like core		P6-like Core	P6-like Core			

"Niagara" Approach "Tiled-P6" Approach

- Run serial thread on the large core to extract ILP
- Run parallel threads on small cores

ACMP

Niagara Niagara -like -like core core Niagara Niagara -like -like core core	Niagara -like core Niagara -like core	Niagara -like core Niagara -like core	P6-like Core	P6-like Core	P6- Co	P6-like Core		Niagara -like core Niagara -like core
Niagara Niagara -like -like core core Niagara Niagara -like -like core core	Niagara -like core Niagara -like core	Niagara -like core Niagara -like core	P6-like Core	P6-like Core	Niagara -like core Niagara -like core	Niagara -like core Niagara -like core	Niagara -like core Niagara -like core	Niagara -like core Niagara -like core

"Niagara" Approach

"Tiled-P6" Approach

ACMP Approach

- Run serial thread on the large core to extract ILP
- Run parallel threads on small cores

Experimental Methodology

- Large core: Out-of-order (similar to P6)
- Small Core: 2-wide, In-order
- Configuration:
 - Niagara: 16 small cores
 - P6-Tile: 4 large cores
 - ACMP: 1 Large core, 12 small cores
- Single ISA, shared memory, private L1 and L2 caches, bi-directional ring interconnect
- Simulated existing multi-threaded applications without modification
- ACMP Thread Scheduling
 - Master thread \rightarrow large core
 - All additional threads \rightarrow small cores

Performance Results

Summary

- ACMP trades peak parallel performance for serial performance
- Improves performance for a wide range of applications
- Performance is less dependent on length of serial portion
- Improves programmer efficiency
 - Programmers can only parallelize easier-toparallelize kernels

Future Work

- Enhanced ACMP scheduling
 - Accelerate execution of finer-grain serial portions (critical sections) using the large core
 - Requires compiler support and minimal hardware
- Improved threading decision based on runtime feedback

Thank you