
ACMP: An Architecture to
Handle Amdahl’s Law

M. Aater Suleman
Advisor: Yale Patt

HPS Research Group

Acknowledgements

Eric Sprangle, Intel

Anwar Rohillah, Intel

Anwar Ghuloum, Intel

Doug Carmean, Intel

Background

• Single-thread performance is power constrained

• To leverage CMPs for a single application, it
must be parallelized

• Many kernels cannot be parallelized completely

• Applications likely include both serial and
parallel portions

• Amdahl’s law is more applicable now than ever

Serial Bottlenecks

• Inherently serial kernels
For I = 1 to N

A[I] = (A[I-1] + A[I])/2

• Parallelization requires effort

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Programmer Effort

D
eg

re
e

o
f

P
ar

al
le

li
sm

Data-parallel

Loops

Loops with early

termination

Irregular

code

CMP Architectures

• Tile small cores e.g. Sun Niagara, Intel

Larrabee

– High throughput on the parallel part

– Low serial thread performance

– Highest performance for completely
parallelized applications

• Tile large cores e.g. Intel Core2Duo, AMD

Barcelona, and IBM Power 5.

– High serial thread performance

– Lower throughput than Niagara

ACMP

• Run serial thread on the large core to
extract ILP

• Run parallel threads on small cores

ACMP

• Run serial thread on the large core to
extract ILP

• Run parallel threads on small cores

ACMP

• Run serial thread on the large core to
extract ILP

• Run parallel threads on small cores

Performance vs. Parallelism

0

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1
Degree of Parallelism

S
p

e
e
d

u
p

 v
s.

 1
 P

6
-t

y
p

e
 C

o
re

ACMP

Niagara

P6-Tile

Performance vs. Parallelism

0

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1
Degree of Parallelism

S
p

e
e
d

u
p

 v
s.

 1
 P

6
-t

y
p

e
 C

o
re

ACMP

Niagara

P6-Tile

At low parallelism,

ACMP and P6-Tile

outperform Niagara

Performance vs. Parallelism

0

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1
Degree of Parallelism

S
p

e
e
d

u
p

 v
s.

 1
 P

6
-t

y
p

e
 C

o
re

ACMP

Niagara

P6-Tile

At high parallelism,

Niagara

outperforms ACMP

Performance vs. Parallelism

0

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1
Degree of Parallelism

S
p

e
e
d

u
p

 v
s.

 1
 P

6
-t

y
p

e
 C

o
re

ACMP

Niagara

P6-Tile

At medium

parallelism, ACMP

wins

Performance vs. Parallelism

0

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1
Degree of Parallelism

S
p

e
e
d

u
p

 v
s.

 1
 P

6
-t

y
p

e
 C

o
re

ACMP

Niagara

P6-Tile

The cut-off point

moves to the right

in the future

Experimental Methodology

• Large core: Out-of-order (similar to P6)

• Small Core: 2-wide, In-order

• Configuration:

– Niagara: 16 small cores

– P6-Tile: 4 large cores

– ACMP: 1 Large core, 12 small cores

• Single ISA, shared memory, private L1 and L2 caches, bi-directional

ring interconnect

• Simulated existing multi-threaded applications without
modification

• ACMP Thread Scheduling
– Master thread → large core

– All additional threads → small cores

Performance Results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

m
cf

is
_n

as
p

fft
_s

pl
as

h
cg

_n
as

p
ep

_n
as

p
ar

t_
om

p
m

g_
na

sp
fm

m
_s

pl
as

h
ch

ol
es

ky

pa
ge

co
nv

er
t

h.
26

4 ed

S
p

e
e

d
u

p
 v

s
.
N

ia
g

a
ra

P6-Tile

ACMP

Low

Parallelism

Medium

Parallelism

High

Parallelism

Summary

• ACMP trades peak parallel performance for

serial performance

• Improves performance for a wide range of

applications

• Performance is less dependent on length of

serial portion

• Improves programmer efficiency

– Programmers can only parallelize easier-to-

parallelize kernels

Future Work

• Enhanced ACMP scheduling

– Accelerate execution of finer-grain serial portions
(critical sections) using the large core

– Requires compiler support and minimal hardware

• Improved threading decision based on run-
time feedback

Thank you

