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Background

• Single-thread performance is power constrained

• To leverage CMPs for a single application, it 
must be parallelized

• Many kernels cannot be parallelized completely

• Applications likely include both serial and 
parallel portions

• Amdahl’s law is more applicable now than ever



Serial Bottlenecks

• Inherently serial kernels 
For I = 1 to N

A[I] = (A[I-1] + A[I])/2

• Parallelization requires effort 
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CMP Architectures

• Tile small cores e.g. Sun Niagara, Intel 

Larrabee

– High throughput on the parallel part

– Low serial thread performance

– Highest performance for completely 
parallelized applications

• Tile large cores e.g. Intel Core2Duo, AMD 

Barcelona, and IBM Power 5.

– High serial thread performance

– Lower throughput than Niagara



ACMP

• Run serial thread on the large core to 
extract ILP

• Run parallel threads on small cores 
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Performance vs. Parallelism
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At low parallelism, 

ACMP and P6-Tile 

outperform Niagara
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At high parallelism, 

Niagara 

outperforms ACMP



Performance vs. Parallelism
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At medium 

parallelism, ACMP 

wins



Performance vs. Parallelism
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in the future



Experimental Methodology

• Large core: Out-of-order (similar to P6)

• Small Core: 2-wide, In-order

• Configuration:

– Niagara: 16 small cores

– P6-Tile: 4 large cores

– ACMP: 1 Large core, 12 small cores

• Single ISA, shared memory, private L1 and L2 caches, bi-directional 

ring interconnect

• Simulated existing multi-threaded applications without 
modification

• ACMP Thread Scheduling
– Master thread → large core

– All additional threads → small cores



Performance Results
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Summary

• ACMP trades peak parallel performance for 

serial performance

• Improves performance for a wide range of 

applications

• Performance is less dependent on length of 

serial portion

• Improves programmer efficiency

– Programmers can only parallelize easier-to-

parallelize kernels



Future Work

• Enhanced ACMP scheduling

– Accelerate execution of finer-grain serial portions 
(critical sections) using the large core

– Requires compiler support and minimal hardware

• Improved threading decision based on run-
time feedback



Thank you


