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Abstract—. Dynamic cache resizing coupled with Built In Self 

Test (BIST) is proposed to enhance yield of SRAM-based 

cache memory. BIST is used as part of the power-up sequence 

to identify the faulty memory addresses. Logic is added to 

prevent access to the identified locations, effectively reducing 

the cache size.  Cache resizing approach can solve for as many 

faulty locations as the end user would like, while trading off on 

performance.  Reliability and long term effect on memory such 

as pMOS NBTI issue is also compensated for by running 

BIST and implementing cache resizing architecture, hence 

detecting faults introduced over time.  Since memory soft 

failures are worst at lower voltage operation dynamic cache 

resizing can be used to tradeoff power for performance.  This 

approach supplements existing design time optimizations and 

adaptive design techniques used to enhance memory yield. 

Performance loss incurred due to the cache reduction is 

determined to be within 1%. 

 
Index Terms— sram memory, caches, high yield, memory 

architecture, SOC design, processors design 

I. INTRODUCTION 

ncreasing process variability for new process technologies 

 [1] coupled with increased reliability effects like Negative 

Bias Temperature Instability (NBTI)  [2] all contribute to 

increased yield loss in chips due to SRAM-based memory 

failures.  Caches constitute in excess of 50% of modern SOC 

and processors area and have more than 80% of the transistor 

count  [3].  In addition to the fact that the SRAM cell is the 

most frequently used cell it also uses the smallest geometry 

transistor to increase area utilization which make it more 

susceptible to both device electrical and geometrical variations 

 [4].  Memory hard failures due to manufacturing defects and 

soft failures due to voltage, temperature variations have rarely 

been considered an architectural problem. Yield issues have 

been viewed as a circuit related problem and almost all the 

research for improving yield has been in the circuits’ area. Our 

proposal addresses the yield loss due to SRAM-based memory 

failure at the architectural level. This approach is based on 

dynamic cache resizing upon detection of a failure in the 

cache.  It uses existing cache logic and Built In Self Test 

(BIST) to implement the cache resizing. 

 
 

Traditionally, design time optimizations along with some 

adaptive design techniques, and redundancy have been 

employed to reduce the yield loss due to manufacturing or 

parametric shift.  These approaches have limitations on the 

number and type of failures (read disturb, write failures, access 

failures) it can repair  [4].  It also has an area, timing and cost 

overhead.   

 

Section II will describe the background and few of the 

recent attempts to address yield in SRAM-based memory.  

Section III will introduce our approach (dynamic resizable 

cache) and in section IV an analysis of impact on performance 

will be studied.  We will conclude with a summary and future 

work in section V 

 
 

Figure 1 : SRAM-based memory blocks showing    

 redundant cell 

II. BACKGROUND AND REVIEW OF CURRENT 

APPROACHES TO MEMORY YIELD LOSS 

Figure 1 shows the basic organization of SRAM-based 

Memory main block and interface.  The number of columns 
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and rows are determined based on banking options, 

performance, and power. The main purpose of the on chip 

memory is to keep the intermediate data and to act as a buffer 

between the main memory and the processor.  The size of the 

on chip memory is growing due to the ever increasing gap 

between processor frequency and main memory (memory 

wall).  The probability of the part to be non functional 

increases as the number of SRAM cell is increased.  Table 1 

illustrates the yield as a function of the memory size and the 

probability of the SRAM cell to fail 

 

Table 1: Chip yield as a function of memory size and cell 

 failure rate 

 
 

Memory failures are traditionally compensated for by three 

main approaches. Firstly, a design time optimization through 

selecting the right SRAM cell which involves a complex 

tradeoff between area utilization, performance, power and 

yield [? ] may be used.  The bigger cell area usually means 

more stable SRAM and better yield but the cell density per 

area decreases. .Secondly, an adaptive and tunable design 

which changes the behavior of the memory cell electrical 

characteristics based on the process, voltage, and temperature 

status on the chip  [5] is used.  This approach improves yield 

but can not fix all the failures and there will still be some yield 

loss due to un-tunable cells.  The third approach employed is 

to repair the failure through swapping the identified failing 

cells with working cells.  This is done through adding extra 

memory elements referred to as redundant columns or rows.  

Figure 1 shows the basic SRAM-based memory block with 

main interface signals and main blocks showing potential 

redundant cells and fail cells.  . If there is a failure in a certain 

memory bank (identified by BIST) then the entire column/row 

of the failing location is swapped out with the spare 

column/row. This technique works well if the failures are 

limited as each additional failure requires a spare column/row. 

Every bad cell in a unique memory column requires an 

additional spare column to rectify it. As we see in this 

approach there is a linear dependency of area with the number 

of fails that can be tolerated. The addition of these redundant 

SRAM cells and the associated logic (fuses, special BIST) add 

to the cost of the product  [8].  The approach is also limited to 

repair only certain number of cells in a block resulting in yield 

loss.  

 

III. RESIZABLE CACHE ARCHITECTURE 

The cache sub-system as shown in Figure 2 consists of the 

data array which has the main data storage and tag array which 

determine the way-hit in the cache based on comparing the 

physical page number (ppn) with the tag value determined by 

the index bits.  Additionally, each tag has state bits which hold 

important information regarding the validity of the tag.   

Depending on the cache architecture, the state bits can range 

from 1 to 3 or 4 bits for each cache line  [7].  Both the hit way 

and the state array along with the index bits determine the data 

array access. Caches are organized so that every memory 

location has a specific entry or entries, depending upon the 

associativity of the cache. Any one of these possible entries is 

called a ‘way’. Therefore every way in the cache has its own 

state bits. Our approach is to add an extra state bit per way to 

indicate if the cache memory location corresponding to this 

way is bad or not. We will call this bit, a mask bit. 

 

 
 

Figure 2 : Cache subsystem main blocks 

 

Our approach utilizes Built In Self Test (BIST) which is used 

traditionally to screen memory for failures and identify 

functional versus non functional parts.  We modified BIST 

logic to identify the failing memory addresses and then retain 

that information by setting an appropriate mask bit 

corresponding to the failing location in the memory. This 

requires adding an additional bit for each way in the index; we 

will refer to it as the mask bit. The mask bit will be like any 

other state bit present (valid and dirty) in the traditional caches 

used today. The mask bits will be reset to a ‘0’ and if in BIST 

a particular memory location fails, it will set its corresponding 

mask bit to a ‘1’. The idea is to repeat this cycle every time we 

power up so that we can keep updating the mask bits over 

time, taking in to account all the recent failures incurred due to 

long term effects. The architecture can decide on the total 

number of failures the design can handle ahead of time and 
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store this information in an architecture register which can be 

updated through software. A counter will be used to calculate 

the total number of failing locations, which can be done by 

counting the number of mask bits set. If and when the 

maximum number of tolerated failures exceeds, the chip can 

then be marked as ‘bad’ accordingly. 

 

Additionally, we have to take into account the loss of 

performance by effectively reducing the cache size, the details 

of which can be found in the performance analysis section (IV) 

 

 
 

Figure 3: Flow chart of the proposed dynamic cache 

architecture 

 

The trade-off here is between the loss in performance and the 

gain in yield.  

Figure 3 shows a detail flow chart of how the cache access will 

look like when the dynamic cache resize is used to improve 

yield.  

A. Read operation 
The tag array is compared with the in coming tag to figure out 

if it is a hit or a miss. There are state bits associated with the 

tag entries also which keep track of its validity and in the case 

of a write back cache, if the content of the memory has 

changed in the cache since it was brought inside the cache. We 

added another bit called the mask bit which will now be used 

as an additional gating to figure out if it is a hit or not. The 

mask bit is set for each of the location which is determined to 

be faulty during the BIST. If there is an access to one of the 

locations whose mask bit was set by the BIST, it will now be 

reported as a miss in the case of a read.  

 

B. Write Operation 

A multiple-way associative cache requires an algorithm to 

determine which way to write for a given cache line. This is 

done using a replacement algorithm like Least Recently Used 

(LRU) block. Traditionally the LRU block uses the index bits 

to access the state rams and uses its output and the state bits to 

determine the next way. In our approach we added ‘n’ mask 

bits (n = number of ways) and the LRU reads them in addition 

to the original state bits to determine which way to write next. 

By doing this the LRU masks out all the ways which have 

faults. This dynamically reduces the over-all cache size but 

increases yield. 

IV. PERFORMANCE ANALYSIS 

Our approach to improve yield is based on cache resizing.  

This has impact on the performance due to the potential 

decrease in the available entries in the cache. This is because 

we take a performance hit when ever we find a bad cell and 

internally treat it as an un cacheable address. This effectively 

reduces the memory size but improves yield. To quantify the 

impact of cache resizing on processor performance we 

simulated variant cache sizes with different fault numbers. 

A.  METHODOLOGY 

We used a cycle accurate x86 simulator [9] to analyze all 28 

SPEC CPU2006 [10] benchmarks using the reference input 

set. Each program was run for 200 million instructions and the 

representative program slices were chosen using the Simpoint 

methodology [11]. The cache we simulated is 1 Meg, 8-way 

set associative and employs an LRU replacement 

policy. We randomly inject faults in the cache. For our 

experiments, we vary the cache sizes and fault ratios across 

simulations. 

  B.  RESULTS 

Figure 4 shows how the hit ratio of each benchmark changes as 

the percentage faults increases in presence of our scheme. 

Intuitively, as the percentage of faults increase, the hit ratio 

decreases. When the fault ratio is 1%, the hit ratio reduces by 

less than 7% across all benchmarks. The mean reduces by only 

1%. When fault is 5%, the reduction hit ratio is less than 10% 

across all benchmarks except sjeng and gamess. The data set 

of these benchmarks is approximately 1MB. Since the faults 

reduce the effective cache size, the data set no longer fits in the 

cache. Thus, the hit ratio reduces rapidly in presence of faults. 

Similar behavior is seen for several benchmarks as the fault 

ratio increases to 10% and 15%. The average reduction in hit 
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ratio is 3%, 12%, and 23% for 5%, 10%, and 15% faults 

respectively. This reduction in hit ratio is tolerable since the 

chip yield increases to a 100% using our proposed scheme. 
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 Figure 4: Performance impact due to reduce cache size 
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Figure 5: Hit rate with different cache size and varying 

failure rate 

Figure 5 shows how the average hit ratio across benchmarks 

changes as the cache size increases. The Y-axis is harmonic 

mean of hit ratios across all SPEC2006 benchmarks. The five 

lines show the hit ratio at each cache size for caches with 

different percentage of faults. As expected, the performance of 

our scheme is best when the cache size is large and fault ratio 

is small. On the other hand, the scheme performs worst 

compared to the baseline at the small cache size and high fault 

ratio. This is because at a smaller cache size, even a small 

reduction in cache size can significantly impact cache 

performance. Since our scheme reduces effective cache size to 

increase yield, we see this reduction in performance. However, 

as the cache size increases, the difference between our scheme 

and the idealistic baseline, with no faults, closes. As 

technology enables more transistors on the chip, both cache 

sizes and fault ratios are expected to increase. Consequently, 

our scheme becomes feasible in the future since the 

performance loss will be marginalized while the improvement 

in yield will further increase.                          

V. SUMMARY AND FUTURE WORK  

We see that our proposal solves for yield, which is one of the 

most critical design parameter, with minimum additional 

circuitry. Although there is a loss in performance, we have 

determined that this loss in performance is low. Furthermore, 

our approach can work in addition to the traditional 

approaches of solving for yield by using spare columns.  In 

addition to yield the system power can also be optimized and 

trade off for performance as the memory failures increases at 

lower voltage. As part of the future study, we plan to look at 

hybrid solutions of spare columns and the currently proposed 

dynamic shrinkage of memory. The study of trading off power 

(by reducing the voltage) for performance by dynamic cache 

resizing method will be analyzed.   In conclusion we will also 

do a study on area savings by eliminating the need of spare 

columns, which is how the traditional approach can be 

extrapolated to solve for multiple bad memory locations. 
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