
>

1

Abstract—. Dynamic cache resizing coupled with Built In Self

Test (BIST) is proposed to enhance yield of SRAM-based

cache memory. BIST is used as part of the power-up sequence

to identify the faulty memory addresses. Logic is added to

prevent access to the identified locations, effectively reducing

the cache size. Cache resizing approach can solve for as many

faulty locations as the end user would like, while trading off on

performance. Reliability and long term effect on memory such

as pMOS NBTI issue is also compensated for by running

BIST and implementing cache resizing architecture, hence

detecting faults introduced over time. Since memory soft

failures are worst at lower voltage operation dynamic cache

resizing can be used to tradeoff power for performance. This

approach supplements existing design time optimizations and

adaptive design techniques used to enhance memory yield.

Performance loss incurred due to the cache reduction is

determined to be within 1%.

Index Terms— sram memory, caches, high yield, memory

architecture, SOC design, processors design

I. INTRODUCTION

ncreasing process variability for new process technologies

 [1] coupled with increased reliability effects like Negative

Bias Temperature Instability (NBTI) [2] all contribute to

increased yield loss in chips due to SRAM-based memory

failures. Caches constitute in excess of 50% of modern SOC

and processors area and have more than 80% of the transistor

count [3]. In addition to the fact that the SRAM cell is the

most frequently used cell it also uses the smallest geometry

transistor to increase area utilization which make it more

susceptible to both device electrical and geometrical variations

 [4]. Memory hard failures due to manufacturing defects and

soft failures due to voltage, temperature variations have rarely

been considered an architectural problem. Yield issues have

been viewed as a circuit related problem and almost all the

research for improving yield has been in the circuits’ area. Our

proposal addresses the yield loss due to SRAM-based memory

failure at the architectural level. This approach is based on

dynamic cache resizing upon detection of a failure in the

cache. It uses existing cache logic and Built In Self Test

(BIST) to implement the cache resizing.

Traditionally, design time optimizations along with some

adaptive design techniques, and redundancy have been

employed to reduce the yield loss due to manufacturing or

parametric shift. These approaches have limitations on the

number and type of failures (read disturb, write failures, access

failures) it can repair [4]. It also has an area, timing and cost

overhead.

Section II will describe the background and few of the

recent attempts to address yield in SRAM-based memory.

Section III will introduce our approach (dynamic resizable

cache) and in section IV an analysis of impact on performance

will be studied. We will conclude with a summary and future

work in section V

Figure 1 : SRAM-based memory blocks showing

 redundant cell

II. BACKGROUND AND REVIEW OF CURRENT

APPROACHES TO MEMORY YIELD LOSS

Figure 1 shows the basic organization of SRAM-based

Memory main block and interface. The number of columns

Dynamic Cache Resizing Architecture for High

Yield SOC

Baker Mohammad
1
, Muhammad Tauseef Rab

1,3
, Khadir Mohammad

2
, and M. Aater Suleman

3

1
Qualcomm Incorporated,

2
University of Texas at San Antonio,

3
University of Texas at Austin

I

>

2

and rows are determined based on banking options,

performance, and power. The main purpose of the on chip

memory is to keep the intermediate data and to act as a buffer

between the main memory and the processor. The size of the

on chip memory is growing due to the ever increasing gap

between processor frequency and main memory (memory

wall). The probability of the part to be non functional

increases as the number of SRAM cell is increased. Table 1

illustrates the yield as a function of the memory size and the

probability of the SRAM cell to fail

Table 1: Chip yield as a function of memory size and cell

 failure rate

Memory failures are traditionally compensated for by three

main approaches. Firstly, a design time optimization through

selecting the right SRAM cell which involves a complex

tradeoff between area utilization, performance, power and

yield [?] may be used. The bigger cell area usually means

more stable SRAM and better yield but the cell density per

area decreases. .Secondly, an adaptive and tunable design

which changes the behavior of the memory cell electrical

characteristics based on the process, voltage, and temperature

status on the chip [5] is used. This approach improves yield

but can not fix all the failures and there will still be some yield

loss due to un-tunable cells. The third approach employed is

to repair the failure through swapping the identified failing

cells with working cells. This is done through adding extra

memory elements referred to as redundant columns or rows.

Figure 1 shows the basic SRAM-based memory block with

main interface signals and main blocks showing potential

redundant cells and fail cells. . If there is a failure in a certain

memory bank (identified by BIST) then the entire column/row

of the failing location is swapped out with the spare

column/row. This technique works well if the failures are

limited as each additional failure requires a spare column/row.

Every bad cell in a unique memory column requires an

additional spare column to rectify it. As we see in this

approach there is a linear dependency of area with the number

of fails that can be tolerated. The addition of these redundant

SRAM cells and the associated logic (fuses, special BIST) add

to the cost of the product [8]. The approach is also limited to

repair only certain number of cells in a block resulting in yield

loss.

III. RESIZABLE CACHE ARCHITECTURE

The cache sub-system as shown in Figure 2 consists of the

data array which has the main data storage and tag array which

determine the way-hit in the cache based on comparing the

physical page number (ppn) with the tag value determined by

the index bits. Additionally, each tag has state bits which hold

important information regarding the validity of the tag.

Depending on the cache architecture, the state bits can range

from 1 to 3 or 4 bits for each cache line [7]. Both the hit way

and the state array along with the index bits determine the data

array access. Caches are organized so that every memory

location has a specific entry or entries, depending upon the

associativity of the cache. Any one of these possible entries is

called a ‘way’. Therefore every way in the cache has its own

state bits. Our approach is to add an extra state bit per way to

indicate if the cache memory location corresponding to this

way is bad or not. We will call this bit, a mask bit.

Figure 2 : Cache subsystem main blocks

Our approach utilizes Built In Self Test (BIST) which is used

traditionally to screen memory for failures and identify

functional versus non functional parts. We modified BIST

logic to identify the failing memory addresses and then retain

that information by setting an appropriate mask bit

corresponding to the failing location in the memory. This

requires adding an additional bit for each way in the index; we

will refer to it as the mask bit. The mask bit will be like any

other state bit present (valid and dirty) in the traditional caches

used today. The mask bits will be reset to a ‘0’ and if in BIST

a particular memory location fails, it will set its corresponding

mask bit to a ‘1’. The idea is to repeat this cycle every time we

power up so that we can keep updating the mask bits over

time, taking in to account all the recent failures incurred due to

long term effects. The architecture can decide on the total

number of failures the design can handle ahead of time and

>

3

store this information in an architecture register which can be

updated through software. A counter will be used to calculate

the total number of failing locations, which can be done by

counting the number of mask bits set. If and when the

maximum number of tolerated failures exceeds, the chip can

then be marked as ‘bad’ accordingly.

Additionally, we have to take into account the loss of

performance by effectively reducing the cache size, the details

of which can be found in the performance analysis section (IV)

Figure 3: Flow chart of the proposed dynamic cache

architecture

The trade-off here is between the loss in performance and the

gain in yield.

Figure 3 shows a detail flow chart of how the cache access will

look like when the dynamic cache resize is used to improve

yield.

A. Read operation
The tag array is compared with the in coming tag to figure out

if it is a hit or a miss. There are state bits associated with the

tag entries also which keep track of its validity and in the case

of a write back cache, if the content of the memory has

changed in the cache since it was brought inside the cache. We

added another bit called the mask bit which will now be used

as an additional gating to figure out if it is a hit or not. The

mask bit is set for each of the location which is determined to

be faulty during the BIST. If there is an access to one of the

locations whose mask bit was set by the BIST, it will now be

reported as a miss in the case of a read.

B. Write Operation

A multiple-way associative cache requires an algorithm to

determine which way to write for a given cache line. This is

done using a replacement algorithm like Least Recently Used

(LRU) block. Traditionally the LRU block uses the index bits

to access the state rams and uses its output and the state bits to

determine the next way. In our approach we added ‘n’ mask

bits (n = number of ways) and the LRU reads them in addition

to the original state bits to determine which way to write next.

By doing this the LRU masks out all the ways which have

faults. This dynamically reduces the over-all cache size but

increases yield.

IV. PERFORMANCE ANALYSIS

Our approach to improve yield is based on cache resizing.

This has impact on the performance due to the potential

decrease in the available entries in the cache. This is because

we take a performance hit when ever we find a bad cell and

internally treat it as an un cacheable address. This effectively

reduces the memory size but improves yield. To quantify the

impact of cache resizing on processor performance we

simulated variant cache sizes with different fault numbers.

A. METHODOLOGY

We used a cycle accurate x86 simulator [9] to analyze all 28

SPEC CPU2006 [10] benchmarks using the reference input

set. Each program was run for 200 million instructions and the

representative program slices were chosen using the Simpoint

methodology [11]. The cache we simulated is 1 Meg, 8-way

set associative and employs an LRU replacement

policy. We randomly inject faults in the cache. For our

experiments, we vary the cache sizes and fault ratios across

simulations.

 B. RESULTS

Figure 4 shows how the hit ratio of each benchmark changes as

the percentage faults increases in presence of our scheme.

Intuitively, as the percentage of faults increase, the hit ratio

decreases. When the fault ratio is 1%, the hit ratio reduces by

less than 7% across all benchmarks. The mean reduces by only

1%. When fault is 5%, the reduction hit ratio is less than 10%

across all benchmarks except sjeng and gamess. The data set

of these benchmarks is approximately 1MB. Since the faults

reduce the effective cache size, the data set no longer fits in the

cache. Thus, the hit ratio reduces rapidly in presence of faults.

Similar behavior is seen for several benchmarks as the fault

ratio increases to 10% and 15%. The average reduction in hit

>

4

ratio is 3%, 12%, and 23% for 5%, 10%, and 15% faults

respectively. This reduction in hit ratio is tolerable since the

chip yield increases to a 100% using our proposed scheme.

 p
e

rl
b

e
n

c
h

 b
z

ip
2

 g
c

c
 m

c
f

 g
o

b
m

k
 h

m
m

e
r

 s
je

n
g

 l
ib

q
u

a
n

tu
m

 h
2

6
4

re
f

 o
m

n
e

tp
p

 a
s

ta
r

 x
a

la
n

c
b

m
k

 b
w

a
v

e
s

 g
a

m
e

s
s

 m
il

c

15% faults

5% faults

0

0.2

0.4

0.6

0.8

1

h
it

 r
a

ti
o

benchmark

% fault

15% faults

10% faults

5% faults

1% faults

 Figure 4: Performance impact due to reduce cache size

0

10

20

30

40

50

60

70

80

90

100

32KB 128KB 1MB 2MB

Cache Size

A
v
e
ra

g
e
 H

it
 R

a
ti

o
 (

%
)

No-Faults

1% faults

5% faults

10% faults

15% faults

Figure 5: Hit rate with different cache size and varying

failure rate

Figure 5 shows how the average hit ratio across benchmarks

changes as the cache size increases. The Y-axis is harmonic

mean of hit ratios across all SPEC2006 benchmarks. The five

lines show the hit ratio at each cache size for caches with

different percentage of faults. As expected, the performance of

our scheme is best when the cache size is large and fault ratio

is small. On the other hand, the scheme performs worst

compared to the baseline at the small cache size and high fault

ratio. This is because at a smaller cache size, even a small

reduction in cache size can significantly impact cache

performance. Since our scheme reduces effective cache size to

increase yield, we see this reduction in performance. However,

as the cache size increases, the difference between our scheme

and the idealistic baseline, with no faults, closes. As

technology enables more transistors on the chip, both cache

sizes and fault ratios are expected to increase. Consequently,

our scheme becomes feasible in the future since the

performance loss will be marginalized while the improvement

in yield will further increase.

V. SUMMARY AND FUTURE WORK

We see that our proposal solves for yield, which is one of the

most critical design parameter, with minimum additional

circuitry. Although there is a loss in performance, we have

determined that this loss in performance is low. Furthermore,

our approach can work in addition to the traditional

approaches of solving for yield by using spare columns. In

addition to yield the system power can also be optimized and

trade off for performance as the memory failures increases at

lower voltage. As part of the future study, we plan to look at

hybrid solutions of spare columns and the currently proposed

dynamic shrinkage of memory. The study of trading off power

(by reducing the voltage) for performance by dynamic cache

resizing method will be analyzed. In conclusion we will also

do a study on area savings by eliminating the need of spare

columns, which is how the traditional approach can be

extrapolated to solve for multiple bad memory locations.

REFERENCES

[1] Kuhn, K. Reducing variation in advanced logic technologies:

Approaches to process and design for manufacturability of nano scale

CMOS, Proc. IEDM, December 2007, pp. 471-474

[2] J. G. Massey. NBTI: what we know and what we need to know - a

tutorial addressing the current understanding and challenges for the

future, In IEEE International Integrated Reliability Workshop Final

Report, 2004; pp. 199–211

[3] George R. Roelke, Rusty O. Baldwin, A cache Architecture for the

Extremely unreliable nanotechnologies, IEEE Transactions on

reliability, Vol. 56, June 2007

[4] Mukhopadhyay, S.; Mahmoodi, H, and Roy, K. Modeling of failure

probability and statistical design of SRAM array for yield enhancement

in nanoscaled CMOS, Proc. of TCAD , December 2005, pp. 1859-1880

[5] Baker Mohammad; Martin Saint-Laurent, Paul Bassett; and Jacob

Abraham; Cache Design for Low Power and High Yield; IEEE ISQED

Conference; March 2008

[6] Jitendra B. Khare, Memory yield improvement-SOC Design

Prospective, ITC International test conference, 2004

[7] Hennessy, J. and Patterson, D. Computer Organization & Design, 3rd

ed., Morgan Kaufmann 2005

[8] Said Hamdioui, Georgi Gaydadjiev, Ad J. van de Goor, The state-of-art

and future trends in testing Embedded Memories, Memory technology,

design and testing, 2004

[9] M. Aater Suleman, Moinuddin Qureshi., and Yale Patt.

Feedback-driven threading: power-efficient and high-performance

execution of multi-threaded workloads on CMPs. In ASPOS XIII, 2008.

[10] SPEC CPU Benchmark suite. http://www.spec.org

[11] Erez Perelman, Greg Hamerly and Brad Calder. Picking

Statistically Valid and Early Simulation Points , In the International

Conference on Parallel Architectures and Compilation Techniques,

September 2003.

