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Abstract
Caches are organized at a line-size granularity to exploit

spatial locality. However, when spatial locality is low, many
words in the cache line are not used. Unused words occupy
cache space but do not contribute to cache hits. Filtering
these words can allow the cache to store more cache lines.
We show that unused words in a cache line are unlikely to
be accessed in the less recent part of the LRU stack. We
propose Line Distillation (LDIS), a technique that retains
only the used words and evicts the unused words in a cache
line. We also propose Distill Cache, a cache organization to
utilize the capacity created by LDIS. Our experiments with
16 memory-intensive benchmarks show that LDIS reduces
the average misses for a 1MB 8-way L2 cache by 30% and
improves the average IPC by 12%.

1. Introduction
Caches are organized at a line-size granularity to exploit

spatial locality. Using large line-size provides a perfor-
mance improvement proportional to the amount of spatial
locality in the memory reference stream. However, spatial
locality varies across applications and between different ac-
cesses of the same application. When spatial locality is low,
majority of words in a line are never used. Cache perfor-
mance can be improved by discarding such words and us-
ing the cache space to store useful data. Removing unused
words from cache lines is called spatial filtering.

For set-associative caches, the information about which
words are used and which words remain unused stabilizes
as the line traverses the LRU stack. We show that unused
words in a cache line are less likely to be accessed in the
less recent part of the LRU stack. We propose, Line Dis-
tillation (LDIS), a technique to discard the unused words.
LDIS tracks the word usage information of a cache line un-
til it reaches a predefined recency position in the LRU stack
and then evicts the words that have not been used. Unlike
previous proposals [7][9][3][11] for spatial filtering, LDIS
does not require a separate prediction structure for tracking
spatial locality.

LDIS requires a cache organization that can utilize the
extra capacity created by filtering the unused words. Or-
ganizing the cache at word-size granularity as done in [7]

requires a tag overhead as much as half of the cache size
(approximately 4B of tag overhead for 8B data). Kumar et
al. [9] use a decoupled sectored cache [14] to reduce the tag
overhead. However, a decoupled sectored cache constrains
the position where a word can be installed, which reduces
the benefit of spatial filtering [9]. We propose a novel cache
organization, Distill Cache, which consists of two struc-
tures: Line-Organized Cache (LOC) and Word-Organized
Cache (WOC). Cache lines are initially placed in the LOC.
When the line is evicted from the LOC, the used words of
the line are transferred to the WOC and the unused words
are discarded. The distill-cache provides a good trade-off
between tag-overhead and flexible placement of the words
that remain after distillation. We describe the design and
operation of the distill-cache in Section 5.

Installing lines that have a large number of words used
can evict several useful lines from the WOC. The number of
useful lines in the WOC can be increased by not installing
lines for which the number of used words exceed a certain
threshold. We propose median-threshold filtering that dy-
namically tracks the median number of words used in the
cache line for a given application. If the cache line evicted
from LOC has more than the median number of words used,
then none of its words are installed in the WOC.

LDIS assumes that unused words are unlikely to be used
in the less recent part of the LRU stack. This assumption, al-
though true for most workloads, is violated for some bench-
marks. To make LDIS applicable to a wide variety of work-
loads, we propose a low-overhead reverter circuit. The re-
verter circuit disables LDIS when it is likely to hurt cache
performance.

Most of the previous spatial filtering studies [9][3][11]
were evaluated for first-level data (L1D) caches. The de-
sign of L1D cache is heavily constrained by cycle time
which makes it less amenable to performance optimiza-
tions. Moreover, with out-of-order execution, the proces-
sor can tolerate some of the L1D misses [8]. Our study
is focused on improving the performance of second-level
(L2) caches. In Section 4, we describe the framework to en-
able LDIS for L2 cache. Our evaluations with 16 memory-
intensive benchmarks show that LDIS reduces the misses
for a 1MB L2 cache by 30% and improves IPC by 12%
(other parameters of the study are described in Section 6).



An orthogonal approach for increasing cache capacity is
cache compression. Although the goal of compression and
LDIS is identical, they exploit fundamentally different inef-
ficiencies in cache design. Compression exploits the redun-
dancy in information stored in a cache line, whereas, LDIS
exploits the useless words in a cache line. In Section 8, we
study the interaction between LDIS and compression. To
our knowledge, this is the first study to investigate the inter-
action between spatial filtering and compression. We show
that they interact positively and can be combined for greater
capacity benefits than either scheme by itself. The proposed
combination, footprint-aware compression, reduces the av-
erage misses for the 1MB L2 cache by 50%.

2. Problem
The line-size of a traditional cache is fixed at design

time. When the spatial locality is low, a large amount of
cache space is allocated to data that is never accessed. To
quantify the amount of useful data in a cache line, we di-
vide the cache line into equally sized units called words.
In our studies, the size of each word is equal to 8B.1 Fig-
ure 1 shows the histogram of the number of words used in
the cache line of the baseline L2 cache with 64B line-size.
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Figure 1. Distribution of the words used in a cache line. Average
number of words used is also shown for each benchmark.

A line-size of 64B allows the cache to exploit spatial lo-
cality for facerec, galgel, apsi, swim, and wupwise. How-
ever, for art and mcf, on average less than two out of the
eight words are used, indicating that more than 75% of
cache space is used for storing words that are never ac-
cessed. For 8 out of the 16 benchmarks, on average four
or fewer words are used indicating that more than half the
words in the cache line remain unused. The unused words
consume cache space without contributing to cache hits.
Cache performance can be improved if unused words are
filtered out of the cache and the reclaimed cache space is
used for storing useful lines. An obvious way to reduce the
number of unused words is to reduce the line-size. How-
ever, spatial locality varies across applications and within
different memory regions of an application. Therefore, re-

1We use the Alpha ISA. The maximum size of a memory access gener-
ated by an Alpha instruction is 8B. Therefore, we use 8B for word size.

ducing cache line-size from 64B to 32B increases the cache
misses for most of the benchmarks.2 Our objective is to re-
duce cache misses by means of filtering the unused words.

3. Motivation
The unused words in the cache line can be evicted if such

words can be identified. To track unused words, we asso-
ciate a bit-vector, footprint, with each cache line. The foot-
print contains eight bits - one bit for each word in the line.
When a line is placed into the cache, its footprint is reset to
all zeros. When a word is accessed, its bit in the footprint is
set to 1. To track the distribution of footprint changes with
respect to the position of the line in the LRU stack, we as-
sociate each recency position with a numerical value. We
term MRU as position 0, the recency position next to MRU
as position 1, and so on. LRU corresponds to position 7 for
the baseline 8-way cache. For each cache line we record
the maximum position attained by the cache line before its
footprint gets changed. Consider a cache line A that is in
position 0 when its first footprint-change occurs. Later, line
A moves to position 5. An access to a different word causes
another footprint-change and the line moves back to posi-
tion 0. Line A is never accessed again and is eventually
evicted from the cache. In this scenario, we say that the
maximum recency position before footprint-change is posi-
tion 5. Figure 2 shows the distribution of maximum recency
position before footprint-change for all the lines when they
are evicted from the cache.
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Figure 2. Distribution of maximum recency position before
footprint-change. For an 8-way cache, recency position 0 de-
notes MRU and recency position 7 denotes LRU.

On average, 83% of footprint-changes occur when the
cache line is between position 0 and 3. Less than 12% of the
footprint changes occur after the line reaches position 6 or 7.
Thus, the footprint stabilizes as the line reaches the bottom
quarter (position 6 and 7) of the recency stack. By tracking
footprints during run-time, the unused words of a cache line
can be identified and discarded. This technique of retaining
used words and discarding unused words is called Line Dis-
tillation (LDIS). The next section describes the framework
to support LDIS.

2We use a line-size of 64B, similar to commercial processors. The
problem of unused words is worse for larger line-sizes.



4. Framework for Line Distillation
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Figure 3. Framework for Line Distillation (Figure not to scale)

Figure 3 shows the framework for implementing LDIS
in L2 cache. As instruction cache lines have high spatial lo-
cality, we perform LDIS only for the data lines. The cache
organization that supports LDIS is called Distill Cache. It
consists of two structures: Line-Organized Cache (LOC)
and Word-Organized Cache (WOC). Cache lines are ini-
tially placed in the LOC. When the line is evicted from the
LOC, the used words of the line are transferred to the WOC
and the unused words are discarded. We discuss the design
of the distill-cache in detail in Section 5.

4.1. Tracking Footprint for Lines in LOC

The access stream generated by the processor is visible
only to the first level (L1) caches. To track which words in
the cache line are used, each tag-entry in the LOC contains
an 8-bit footprint field. When the line is installed in LOC,
the footprint associated with the line is reset to all zeros
and the line is transferred to the L1. Each line in the L1D
also has a footprint field associated with it. The footprint
in L1D is updated as the processor accesses the word in
the cache line. When the line is evicted from the L1D, the
footprint associated with it is sent to the LOC. If the line
evicted from the L1D is present in the LOC, the footprint
of the line is OR-ed with the footprint already present in
the LOC. Thus, the LOC is able to obtain word usage infor-
mation even though the processor accesses are not directly
visible to it.

4.2. Variable Number of Valid Words in L1D

On a WOC hit, all words for the requested line in the
WOC are sent to the L1D. The WOC also sends a bit vector,
valid bits, containing one bit of valid/invalid information for
each word in the cache line. To accommodate variable num-
ber of valid words in the L1D line, we use a sectored cache
for the L1D. If an invalid word in the line is accessed by the
processor, a request for the line (along with the sector id)
is sent to the distill-cache. For L1D misses that are satis-
fied by the LOC or memory, all words in the L1D line are
marked as valid.

5. Distill Cache
LDIS requires a cache organization that can utilize the

extra capacity created by filtering the unused words. Or-
ganizing the entire cache at word-size granularity as done
in [7] requires a tag overhead as much as half the cache
size. The proposed Distill Cache organization allows flexi-
ble placement of words that remain after LDIS while incur-
ring the tag overhead for only a subset of the cache.

5.1. Organization
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Figure 4. Organization of one set of a 4-way distill-cache. LOC
consists of ways A, B, and C and WOC consists of way D.

Figure 4 shows how a distill-cache can be implemented
with a four-way traditional cache. For simplicity, we show
only one set of the cache and assume that tag access and
data access are done sequentially.3 The distill-cache shown
in Figure 4 devotes three ways (ways A, B, C) to LOC and
the remaining one way (way D) to WOC. The tag-store of
WOC contains one tag-entry for each word in way D. For
example, tag-entry Td0 corresponds to word D0 and tag-
entry Td1 corresponds to word D1. Each tag-entry in WOC
also contains word-id bits to identify the address of the
stored word. The data-store for WOC remains unchanged as
the data-entries in WOC are only logically partitioned into
words. The incoming line from memory is always placed in
the LOC. Each tag-entry in LOC contains a footprint field
to track which words are used while the line is in the LOC.
When the line is evicted from LOC, the used words in the
line are installed in WOC and the unused words are evicted.

Multiple words of the same cache line are always stored
in consecutive positions in the WOC. For example, for a
cache line X evicted from the LOC, only the first word (X0)
and the last word (X7) are used. Then, if X0 is stored in
Td2 then X7 must be stored in Td3. We allow only power-
of-two (1, 2, 4, or 8) words for each cache line installed in
the WOC. Furthermore, multi-word lines must be aligned.

3Existing processors serialize tag comparison and data lookup to reduce
the power dissipation of large cache arrays [4][17]



For example, a line with four words used can only start at
Td0 or Td4 and a line with two words used can only start
at Td0, Td2, Td4 or Td6. The restriction of aligned place-
ment helps in getting all the words of a cache line from a
single way in the data-store. The limitation of aligned place-
ment also simplifies replacement decisions because the can-
didates for replacement must also be aligned.

5.2. Operation

An access to the distill-cache is sent to both the LOC
tag-store and the WOC tag-store. The access to the LOC
tag-store is similar to a traditional cache and returns either
a hit or a miss. The access to the WOC tag-store is checked
first for a line hit. If any word of the requested line is present
in the WOC, the tag-match in the WOC signals a line hit.
The tag-match also gives an 8-bit field, valid-bits, corre-
sponding to which words of the requested line are present
in the WOC. If the requested word is present in the WOC,
the word-match logic signals a word-hit. Thus, an access
to distill-cache can result in one of four cases. First, a hit
in the LOC (LOC-Hit). Second, a line hit and word hit in
the WOC (WOC-Hit). Third, a line hit and word miss in the
WOC (Hole-Miss). Fourth, a line miss in both WOC and
LOC (Line-Miss). We discuss the operation of distill-cache
for each of the four cases.

1. LOC-Hit. A hit in the LOC is serviced similar to a tra-
ditional cache. The matching data way is accessed and
the line is sent to the L1 cache. The replacement and
footprint information for the line is updated in LOC.

2. WOC-Hit. The way in the data store corresponding to
the WOC hit is accessed and the data-line (64B) is ob-
tained. The words of the matching line are rearranged
to their position. For example, for a line X, if the first
word (X0) is stored in Td2 and the last word (X7) is
stored in Td3, then the words in the data-line are re-
arranged such that X0 becomes the first word and X7

becomes the last word in the line. The WOC sends the
cache line to L1 along with a bit vector (valid-bits) that
identifies the valid words.

3. Hole-Miss. All words for the requested line in WOC
are invalidated. If any word of the requested line is
dirty, it is read out before invalidation. A request for
the line is sent to memory. The incoming line from
memory is installed in LOC. The cache line is updated
with dirty words (if any) and sent to the L1 cache.

4. Line-Miss. If the requested line is neither in the LOC
nor in the WOC, a request for that line is sent to mem-
ory. A victim line is evicted from the LOC and the
used words from this line are transferred to the WOC.
Note that the transfer from LOC to WOC happens in
parallel with the memory access.

5.3. Replacement
The LOC uses the LRU policy for replacement decisions.

A line evicted from the LOC can require space for storing
1, 2, 4, or 8 words in the WOC. Therefore, the replacement
policy in the WOC needs to support variable size replace-
ments. Replacement in WOC can occur only at alignment
boundary. Thus, for installing a line that has two words
used, the only candidates for replacement start at Td0, Td2,
Td4 and Td6. Furthermore, to reduce hole-misses, we evict
all the words of a line if any of its word words are evicted
from the WOC. To support this, we add a head-bit with each
tag-entry in the WOC. The head-bit is set only for the first
word of a line stored in the WOC. Thus, multiple words
of a line start with a head bit set and end when another
entry with the head-bit set or an invalid entry is encoun-
tered. Only WOC entries which are invalid or for which
the head-bit is set are eligible for replacement. The replace-
ment engine randomly4 picks from all candidates eligible
for replacement.

5.4. Threshold-Based Distillation
LDIS increases cache capacity by retaining only used

words of the cache lines. If a cache line evicted from the
LOC has a large number of used words, then installing the
line in WOC can evict several useful lines from the WOC.
For example, if a line has eight words used then installing it
in WOC can reduce one cache miss. However, it may evict
eight lines (each with only one word used) which could have
saved eight cache misses. The number of unique lines in the
WOC can be increased by not installing lines for which the
number of used words exceed a certain threshold K. We call
this threshold the distillation threshold.

The best distillation threshold depends on word usage of
the application. A low value of K means that almost no line
gets installed in the WOC, rendering the cache space de-
voted to WOC unusable. With a high value of K, threshold-
based distillation would provide no benefit over normal
LDIS. If the distillation threshold is set to the median num-
ber of words used by the application, then approximately
half of the lines evicted from the LOC are installed in the
WOC. We call this mechanism median-threshold (MT) fil-
tering.

To compute the median number of words used in a line
we use eight counters. The first counts the LOC evictions
that had one word used, the second counts the LOC evic-
tions that had two words used and so on. A separate counter,
eviction-sum, counts the total lines evicted from the LOC.
The median is calculated by adding the counts starting from
the first counter to the last counter until one-half of the value
of the eviction-sum is reached. We compute the value of
median once every 4k LOC evictions.

4LRU policy for variable-sized replacement requires multiple LRU
lists. Random selection is simpler than LRU and has similar performance.



5.5. Reverter Circuit

The implicit assumption of LDIS is that unused words
are unlikely to be used in the less recent part of the LRU
stack. This assumption is violated in some benchmarks
which access a large number of unused words in the less
recent part of the LRU stack. Furthermore, with the capac-
ity boost provided by LDIS, cache lines remain in the cache
longer, which increases the likelihood that unused words
become used. An access to a line present in the WOC for
which the requested word is not present results in a hole-
miss. If most of the lines stored in the WOC cause a hole-
miss without giving any cache hits, then the space devoted
to the WOC is useless. In such cases, LDIS can hurt per-
formance. To make LDIS applicable to a wide variety of
workloads, we propose a low-overhead reverter circuit. The
reverter circuit uses dynamic set sampling [12] to enable or
disable LDIS depending on whether LDIS has fewer misses
compared to a traditional cache.
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Figure 5. (A) Reverter circuit for a distill-cache with eight sets.
(B) Hysteresis curve to enable/disable LDIS.

Figure 5 demonstrates the working of the reverter circuit
for a distill-cache containing eight sets. Sets B, E, G are
called leader sets because they decide if LDIS is enabled or
disabled for the remaining sets. The remaining sets (A, C,
D, F, and H) are called follower sets. LDIS is always en-
abled for the leader sets. The state of the traditional cache
is tracked only for the leader sets using a separate structure
called Auxiliary Tag Directory (ATD). The policy selec-
tor (PSEL) is an 8-bit saturating counter that tracks which
of the two configurations—LDIS or traditional cache—has
fewer misses. A miss in the leader sets of the distill-
cache decrements PSEL, whereas, a miss in the ATD incre-
ments PSEL. The value of PSEL thus represents which of
the two configurations—LDIS or traditional cache—incurs
fewer misses. To avoid frequent enabling and disabling of
LDIS, we incorporate hysteresis in decisions based on the
value of PSEL. LDIS is disabled if the value of PSEL is less
than 64 and enabled if the value of PSEL is more than 192.
If the value of PSEL is between 64 and 192, the previous
decision is retained. We use 32 leader sets for the baseline
cache with 2048 sets. The reverter circuit enables/disables
LDIS for the remaining 2016 (2048 − 32 = 2016) sets.
The reverter circuit requires a storage overhead of 1kB (32
sets · 8 ways/set · 4B/ATD-entry).

6. Experimental Methodology

6.1. Configuration

We use a trace-driven cache simulator for all the exper-
iments in the paper, except for the IPC results shown in
Section 7.4. For the IPC experiments, we use an in-house
execution-driven simulator that models the Alpha ISA. The
parameters of our baseline configuration are shown in Ta-
ble 1. The baseline L2 cache is 1MB 8-way set associative.
The distill-cache has the same size as the baseline L2 cache.
Unless stated otherwise, the distill-cache devotes six out of
the eight ways to the LOC and the remaining two ways
to the WOC. We do not enforce inclusion in our memory
model.

Table 1. Baseline processor configuration
Inst. Cache 16kB, 64B line-size, 2-way with LRU replacement;
Branch 64k-entry gshare/64k-entry PAs hybrid
Predictor minimum branch misprediction penalty is 15 cycles.
Exec. Engine 8-wide; reservation station contains 128 entries
Data Cache 16kB, 64B line-size, 2-way with LRU replacement,
Unified 1MB, 64B line-size, 8-way with LRU replacement,
L2 Cache 15-cycle hit latency, 32-entry MSHR.
Memory 32 DRAM banks; 400-cycle access latency; bank

conflicts modeled; maximum 32 outstanding requests;
Bus 16B-wide split-transaction bus at 4:1 frequency ratio.

6.2. Benchmarks

The SPEC CPU2000 benchmarks used in our study were
compiled for the Alpha ISA. A representative sample of
250M instructions was obtained for each benchmark using
a tool similar to Simpoint [10]. Benchmarks eon, perlbmk,
and crafty were excluded from our study because of ex-
tremely low miss rate (< 0.1 MPKI). We also excluded
benchmarks for which the MPKI reduced by less than 10%
when the cache size was quadrupled from 1MB to 4MB.5 In
addition to the SPEC benchmarks, we also used the health
benchmark from the olden suite to show the effect of LDIS
on pointer chasing workloads. We ran the health benchmark
to completion. Table 2 shows the number of L2 misses per
1000 instructions (MPKI) and the percentage of misses that
are compulsory misses for each benchmark.

Table 2. Benchmark summary (B = Billion)

Name MPKI Compulsory Name MPKI Compulsory
Misses Misses

art 38.3 0.5% parser 1.6 20.3%
mcf 136 2.2% sixtrack 0.4 20.6%
twolf 3.6 2.9% apsi 0.3 22.8%
vpr 2.2 4.3% swim 26.6 50.4%
ammp 2.8 5.1% vortex 0.7 53.4%
galgel 4.7 5.9% gcc 0.4 77.4%
bzip2 2.4 15.5% wupwise 2.3 83.0%
facerec 4.8 18.0% health 62 0.73%

5Key results for the 11 SPEC benchmarks excluded from our study are
shown in Appendix A.



7. Results and Analysis

7.1. Change in MPKI with Line Distillation

Figure 6 shows the percentage reduction in MPKI over
the baseline cache for three LDIS configurations. The first
configuration, LDIS-Base, always transfers all used words
from the evicted line of LOC to WOC. The second con-
figuration, LDIS-MT, employs median-threshold filtering.
Finally, LDIS-MT-RC employs both median-threshold fil-
tering and reverter circuit. The bar labeled avg represents
the reduction in the arithmetic mean MPKI over all the 16
benchmarks. As mcf has a high value for MPKI, the average
MPKI reduction excluding mcf (avgNomcf) is also shown.
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Figure 6. Reduction in MPKI with three LDIS configurations.

LDIS-Base reduces MPKI by more than 40% for art,
twolf, ammp, sixtrack, and health. LDIS-Base reduces the
average MPKI by 22.8%. LDIS-MT allows the LDIS mech-
anism to store more useful lines in the WOC, which further
reduces the MPKI for mcf, twolf, vpr, and sixtrack.

Both LDIS-Base and LDIS-MT significantly increase
MPKI for swim. For swim, 45% of the lines evicted from a
0.75MB cache (the size of LOC) have only one word used
and the remaining lines have all the words used.6 LDIS tries
to increase the number of useful lines by retaining in WOC
only the used words of a cache line. However, when the
cache size is increased to 1.25MB, swim uses all the words
in the cache line for 99% of the cache lines. Thus, retaining
in WOC only the used words of a line evicted from LOC is
futile because the unused words are referenced soon caus-
ing hole-misses in the WOC. As most of the lines stored
in the WOC result in hole-misses without contributing to
cache hits, the distill-cache performs worse than the base-
line. In such cases, the reverter circuit in LDIS-MT-RC dis-
ables LDIS and allows the distill-cache to perform similar
to the baseline cache. The reverter circuit limits the increase
in misses for benchmarks bzip2, parser, and swim. LDIS-
MT-RC reduces the average MPKI by 30.7% compared to
the baseline, while never increasing misses by more than
2%. As LDIS-MT-RC is robust across all the benchmarks,
we use LDIS-MT-RC as the default LDIS configuration in
the rest of the paper.

6Appendix B shows the average number of words used in a cache line
for each benchmark as the cache size is varied.

7.2. Analysis of Hit-Miss Distribution

An access to a traditional cache results in either a hit or
a miss. An access to a distill-cache can result in one of the
four cases: LOC-hit, WOC-hit, Hole-miss, or Line-miss.
Figure 7 shows the breakdown of cache accesses in terms of
hit-miss for both the baseline cache and the distill-cache.7
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Figure 7. Breakdown of cache accesses in terms of hit-miss for
the (a) baseline cache (b) distill-cache.

For mcf, 12% of the accesses hit in the baseline cache.
The LOC has only 6 ways compared to the 8-ways in the
baseline, which reduces the fraction of hits from 12% to
10%. However, the 2-ways devoted to WOC provide an ad-
ditional 25% hits. Thus, for mcf, the distill-cache has three
times the hits in the baseline cache. For twolf and ammp,
the large fraction of WOC-hits helps the distill-cache to out-
perform the baseline cache.

For art and health, the number of LOC-hits is greater
than the number of hits in the baseline cache. This happens
because these two benchmarks have a dataset bigger than
the cache size which causes thrashing with the LRU policy
employed in the baseline cache. The distill-cache accom-
modates some part of the dataset in WOC which reduces
the thrashing in LOC and hence the increased hits.

Although LDIS increases the hit rate of art from 25% to
63%, half of the misses for art are hole-misses. With LDIS
a significant fraction of the dataset of art fits in the cache,
which means that cache lines stay in the distill-cache sig-
nificantly longer than in the baseline cache. This increases
the likelihood of unused words being used which results in
hole-misses. The problem of hole-misses is inherent when
spatial filtering decisions are based on word usage patterns
for a given cache size. Spatial filtering tries to increase the
cache size which changes the word usage patterns. We also
analyzed other spatial filtering scheme that uses a separate
predictor [9] and found that art incurs a significant number
of hole-misses even when a separate predictor is used.

7A distill-cache can incur extra cache accesses due to sector miss in the
first-level cache. For all benchmarks, except art, distill-cache incurs less
than 1% additional accesses compared to the baseline cache. For art, the
distill-cache has 1.5% additional accesses than the baseline cache. As the
number of L2 accesses for the baseline cache and distill-cache are similar,
their hit-miss distributions are comparable.



7.3. Capacity Analysis

Figure 8 shows the reduction in MPKI with the distill-
cache, a 1.5MB cache, and a 2MB cache over the base-
line 1MB cache. For facerec, ammp, and sixtrack, distill-
cache is comparable to increasing the cache size by 50%.
For mcf and health, distill-cache provides more benefit than
doubling the cache size.
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Figure 8. Reduction in MPKI with distill-cache (DISTILL) and
traditional (TRAD) cache of bigger size.

7.4. Impact on System Performance

To measure the IPC improvements provided by LDIS,
we use an execution-driven simulator. As the distill-cache
contains more tag-store entries than the baseline cache, we
add an extra cycle latency for the tag access of the distill-
cache. The access latency for the data-store of the distill-
cache remains the same as the baseline cache. For accesses
that hit in the WOC, we add a latency of two cycles for re-
arranging the words in the cache line before it is sent to the
first-level cache. Figure 9 shows the performance improve-
ment measured in instructions per cycle (IPC) between the
baseline processor and the same processor with the distill-
cache. The bar labeled gmean is the geometric mean of the
individual IPC improvements of each benchmark.
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Figure 9. System IPC improvement with distill-cache.

The processor with the distill-cache outperforms the
baseline by an average of 12%. The IPC of art, mcf, twolf,
ammp, and health increases by more than 30%.

Instructions on the wrong path can cause the footprint
to show a higher number of words used which reduces the
benefit of LDIS.8 Therefore, the reduction in misses for vpr
and gcc does not translate into IPC improvements. As gcc is
instruction-cache intensive, the extra cycle in cache access
causes a minor IPC reduction.

8The effect of footprint update by wrong path instructions can be miti-
gated by delaying the footprint update until the instruction is confirmed to
be on the correct path. We do not explore such optimizations in this paper.

7.5. Overheads of Distillation

In this section, we evaluate the storage, latency, and en-
ergy costs associated with the distill-cache. Storage is mea-
sured in terms of register bit equivalents. To model cache
access latency and energy we used Cacti v3.2[18].

7.5.1. Storage The extra hardware for the distill-cache
consists of the following: (1) Extra tags for the WOC, (2)
Footprint bits in each tag-store entry in the LOC, (3) Foot-
print bits in each tag-store entry of the first-level data cache,
(4) Counters for median threshold distillation, and (5) Ex-
tra tags in the ATD of the reverter circuit. The storage re-
quirement for the distill-cache is calculated in Table 3. We
assume a physical address space of 40 bits.

Table 3. Storage overhead of Line Distillation.
Size of each tag-entry in WOC 29 bits
(valid + dirty + head-bit + 23-bit tag + 3-bit word-id)
Total number of tag-entries in WOC 32k
(2k sets * 2ways/set * 8entries/way)
Overhead of tag-entries in WOC (29 bits/entry * 32k entries) 116kB
Total number of tag-entries in LOC (1MB/64B) 16k
Overhead of footprint bits in LOC ( 8bits/line * 16k lines) 16kB
Total number of lines in L1D Cache (16kB/64B) 256
Overhead of footprint bits in L1D Cache (256 lines * 8bits) 256B
Overhead for median threshold distillation (9 * 2B-counters) 18B
Size of each ATD entry 4B
Number of ATD entries (8 ATD-entries/set * 32 sets) 256
Overhead of reverter circuit (4B/ATD-entry * 256 entries) 1kB
Total storage overhead of distill-cache 133 kB
(116kB+16kB+256B+18B+1kB)
Area of baseline L2 cache (64kB tags + 1MB data) 1088 kB
% increase in L2 area with distill-cache (133kB/1088kB) 12.2%

The distill-cache incurs a total storage overhead of
12.2% of the area of the baseline cache. However, this stor-
age overhead is dependent on the line-size of the cache. For
a line-size of 128B, the storage overhead reduces to 7% and
for a line-size of 256B, the storage overhead reduces to 4%.

7.5.2. Latency The distill-cache incurs a latency penalty
due to the additional tag-store entries in the WOC. The ac-
cess latency is also extended by a mux delay to select the
information about the matching way between the LOC tag-
store and the WOC tag-store. For 65nm technology, Cacti
estimates the additional delay to be 0.14ns. In our IPC ex-
periments, we assume this additional delay increases the tag
access of the distill-cache by one cycle.

7.5.3. Energy We use Cacti to measure the energy con-
sumed in the extra tags of the WOC tag-store. For each
access in the distill-cache, the extra tags of the WOC con-
sume 3.76 nJ per access in addition to the 3.06 nJ consumed
in the tag-store of the LOC. The access to the data-store in a
distill-cache is similar to a traditional cache. Therefore, for
accesses that hit in the distill-cache, the energy consumed
in the data portion of the distill-cache remains similar to the
baseline cache.



8. LDIS and Compression: Differences,
Interactions, and Optimizations

This paper proposes LDIS for increasing cache capac-
ity. An orthogonal approach for increasing cache capacity
is cache compression [19][1][6]. Although the goal of com-
pression and LDIS is identical, they both try to exploit fun-
damentally different inefficiencies in cache design. Com-
pression exploits the redundancy in the information stored
in a cache line, whereas, LDIS exploits the words that re-
main unused in a cache line. In this section, we analyze the
interaction between compression and LDIS, and propose a
mechanism that combines both schemes.

8.1. Compressibility of Cache Lines

To analyze the compressibility of cache lines, we use the
following9 encoding that operates on a 32-bit granularity:

Table 4. Encoding scheme for 32-bit data.
Code Value of the 32 bit data
00 0
01 1
10 bits[31:16] are 0, only bits[15:0] stored.
11 Incompressible, all bits[31:0] stored.

We sample the contents of the baseline cache once ev-
ery 10M instructions and invoke the compression scheme
for all the valid lines in the cache. Based on the size of the
compressed line, each cache line is classified into four cate-
gories. The first three categories contain cache lines that can
be stored in at least one-eighth, one-fourth, and one-half of
their original size, respectively. The fourth category, full
size, contains all the remaining lines. Figure 10(a) shows
the distribution of cache lines for the baseline.
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Figure 10. Compressibility of lines when (a) all words are con-
sidered for compression (b) only used words are compressed

All lines that do not belong to the full category are called
compressible lines. For 10 out of the 16 benchmarks, less
than half the lines are compressible. Even among com-
pressible lines, most of the lines are in the one-half cate-
gory. Only mcf, parser, and sixtrack have more than 20%
lines in either the one-fourth category or the one-eighth cat-
egory. Due to limited compressibility, some of the propos-

9We also studied more complex compression schemes [2] but the com-
pression ratio and the reduction in MPKI were similar.

als for cache compression try to compress a line to only half
its original size [19], which severely restricts the potential
gains from compression. However, not all words in a cache
line are useful. If only used words are compressed then
the compression engine might be able to reduce the lines
to a much smaller size. Figure 10(b) shows the breakdown
of the cache lines into the four categories when only used
words are considered for compression. For most bench-
marks, a majority of the lines are compressible. For art,
mcf, twolf, vpr, vortex, and health, more than half the lines
are in either one-fourth category or one-eighth category in-
dicating significant capacity benefits from such a compres-
sion scheme.

8.2. Footprint-Aware Compression

The information about which words are used is avail-
able in the footprint field of the LOC. A compression
scheme that uses the footprint information to compress
only used words is called Footprint-Aware Compression
(FAC). FAC can easily be implemented in conjunction
with the distill-cache. When the cache line is evicted from
LOC, the used words are compressed and stored in the
WOC. The tag-entries in WOC are modified to support
both compressed and uncompressed lines. Figure 11
shows the percentage reduction in MPKI for four cache
configurations. First, LDIS-3xTags is a distill-cache in
which two ways out of the eight ways are devoted to
WOC. Second, LDIS-4xTags is a distill-cache in which
three out of the eight ways are devoted to WOC. Third,
CMPR-4xTags is a traditional cache that implements
compression and has 4 times as many tag-entries as cache
lines. Finally, FAC-4xTags is a distill-cache which imple-
ments FAC and devotes three out of the eight ways to WOC.
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Figure 11. Reduction in MPKI with LDIS, Compression (CMPR),
and Footprint-Aware Compression (FAC)

For some benchmarks LDIS reduces more misses than
CMPR and for some CMPR reduces more misses than
LDIS. FAC reduces more misses than either scheme for
benchmarks mcf, vpr, sixtrack, and health. CMPR reduces
more misses than FAC on galgel and gcc because we use
perfect LRU replacement for CMPR and the practical size-
based random replacement (discussed in Section 5.3) for
FAC. On average, FAC reduces the average MPKI by 50%
indicating that LDIS and CMPR interact positively.



9. Related Work

Sectored caches reduce the overhead of tag directories.
Instead of a cache line, only a portion of a cache line, i.e.
a sector, is fetched on a miss. Although a sectored cache
utilizes bandwidth efficiently, it utilizes cache space inef-
ficiently as some sectors remain invalid. A sectored cache
typically has a higher miss rate than a traditional cache [14].

Vary number of contiguous

PredictorMiss

and install words in footprint

(C) Spatial Fooprint Prediction

Predict Spatial Footprint (SFP)

Miss

(D) Line Distillation

(x) (y)
LOC WOC

Transfer used words from x to y
(No separate predictor required)

PC Predictor

temporal or spatial
Predict if Instruction is 

(A) Spatial−Temporal Cache

PredictorMiss

(B) Variable Linesize

words installed per miss

Figure 12. Organizations for Spatial Filtering

Several studies have looked at improving cache perfor-
mance by using a predictor to detect spatial locality. Fig-
ure 12 classifies some of the proposals for spatial filtering.
The design proposed by Gonzalez et al. [5] consists of a
spatial cache, a temporal cache, and a predictor which pre-
dicts if the miss-causing instruction is spatial or temporal.
Depending on the prediction, the fetched line is placed in ei-
ther the spatial cache or the temporal cache. The proposed
scheme works well for numerical codes but it does not scale
well to integer codes. Furthermore, the spatial-temporal
cache physically partitions the cache such that a line can
only be allocated to one of the two caches. Whereas, with
the distill-cache all lines can be placed in either of the two
structures which provides more efficient use of cache space.

Johnson [7] propose a mechanism to vary the line-size by
predicting spatial locality of access over a region of mem-
ory. Similarly, Viedenbaum et al. [16] propose an algorithm
to gradually change the line-size based on reuse information
of adjacent cache lines. These techniques exploit spatial lo-
cality at a coarser granularity. For example, if only the first
and the last word of a cache line are used, then these tech-
niques will also fetch all the words between the first and the
last word. Furthermore, both techniques use a cache orga-
nized at a word granularity which results in a tag overhead
of as much as half the cache size.

Only useful words of a cache line can be installed in the
cache, if the information about which words in the line are
useful is available. Kumar et al. [9] use a spatial footprint
predictor (SFP) to predict the useful words in a cache line.
The prediction of the SFP determines which words in the
cache line are installed in the cache. They used a decou-
pled sectored cache [14] to limit the tag overhead. Fig-
ure 13 compares the reduction in MPKI provided by SFP
and LDIS. We simulated the same number of tag-entries in
the decoupled sector cache (used in SFP) as there are in the
distill-cache (used in LDIS). However, SFP also incurs ad-
ditional overhead of the footprint predictor. We show SFP
results for a predictor that has 16k entries (64kB) and 64k
entries (256kB). We also added the reverter circuit to the
SFP to limit the increase in MPKI for some benchmarks.
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Figure 13. Comparison with SFP

Figure 13 shows that SFP reduces the misses compared
to the baseline, however, this reduction is significantly
lower than the reduction from LDIS. SFP makes predic-
tion at install time which means that an incorrect predic-
tion results in a miss which would be a hit in the traditional
cache. On the other hand, LDIS performs filtering only at
eviction time, which means that an access to a word that is
not present will result in a miss which may also have been
a miss in the traditional cache. Also, the SFP stores spa-
tial footprint for a particular sized cache. An attempt to
store more lines can change the footprint information for a
cache line, causing mispredictions in SFP. Furthermore, the
decoupled sectored cache restricts the placement of words.
Thus, if two lines require only the first word in the line then
they cannot reside together in the same data line of a de-
coupled sector cache. Whereas, these words can easily be
stored in any two entries of WOC in a distill-cache.

SFP also requires huge overhead of the prediction table.
This overhead can be reduced by learning the spatial pat-
terns rather than memorizing the spatial footprint of each
line. Chen et al. [3] and Somogyi et al. [15] describe
mechanisms to learn the spatial patterns and use this in-
formation for prefetching. These schemes do prefetching
at a cache line granularity so LDIS can be used with these
schemes for removing unused words in both demand and
prefetched lines. Pujara et al. [11] use spatial footprint pre-
diction for reducing cache leakage power, however, they do
not describe any mechanism to improve cache performance.



10. Concluding Remarks
A significant number of words in the cache line remain

unused because of the variation in spatial locality. Unused
words occupy cache space without contributing to cache
hits. The usage of words in a cache line stabilizes as the line
traverses through the LRU stack. This information can be
used to filter the unused words which can allow the cache
to store more cache lines. Based on this observation, this
paper makes the following contributions:

1. We propose Line Distillation (LDIS) to filter unused
words in the cache line. Unlike previous proposals,
LDIS uses only in-cache information for spatial filter-
ing and requires no separate prediction structure.

2. We propose the Distill Cache organization to increase
cache capacity by leveraging LDIS. The distill-cache
has extra tags for a subset of the cache to provide flex-
ible placement for words that remain after distillation.

3. We propose median-threshold filtering and the reverter
circuit to improve the performance of LDIS and to
make it applicable to a wide variety of workloads. Our
evaluation shows that LDIS reduces average misses for
a 1MB 8-way L2 cache by 30% and improves average
IPC by 12%.

4. We show that compression and LDIS interact posi-
tively and can be combined for a greater capacity ben-
efit than either scheme standalone. The proposed com-
bination, footprint-aware compression, reduces aver-
age misses for the 1MB 8-way cache by 50%.
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Appendix A: Cache-Insensitive Benchmarks
If increasing the cache size does not reduce misses, then

LDIS cannot reduce misses either. The MPKI of gzip
(1.45), fma3d (4.61), perlbmk (0.04), and eon (0.01) remain
unchanged for the four configurations shown in Table 5.

Table 5. MPKI for cache configurations (Trad=Traditional)

Config. equake lucas mgrid applu mesa crafty gap
Trad 1MB 18.42 16.17 7.73 13.75 0.62 0.09 1.65
LDIS 1MB 18.40 16.16 7.74 13.75 0.62 0.10 1.66
Trad 2MB 18.02 16.16 7.57 13.50 0.61 0.08 1.65
Trad 4MB 16.88 16.16 7.13 12.89 0.59 0.08 1.65

Appendix B: Cache Size vs. Words Used
Table 6. Average number of words used in the cache line

Size art mcf twolf vpr fac. ammp galgel bzip2
0.75MB 1.80 1.82 3.20 3.10 6.82 2.58 7.75 3.76
1.00MB 1.81 1.83 3.24 3.71 7.01 2.40 7.60 4.13
1.25MB 2.39 1.85 3.26 4.59 7.08 2.62 7.39 4.46
1.50MB 3.27 1.86 3.33 5.77 7.14 2.95 7.73 4.85
2.00MB 3.63 1.91 3.83 6.09 7.35 3.16 7.73 6.13

Size parser sixtrk apsi swim vrtx gcc wup. health
0.75MB 6.01 4.34 7.88 4.71 3.03 6.13 7.01 2.44
1.00MB 6.42 4.34 7.80 6.91 3.04 6.38 7.01 2.44
1.25MB 6.84 4.37 7.85 7.98 3.09 6.69 7.01 2.44
1.50MB 7.27 4.39 7.94 7.98 3.15 6.88 7.01 2.44
2.00MB 7.59 4.38 7.94 7.98 3.25 7.04 7.01 2.44


