Accelerating Critical Section Execution
with Asymmetric Multi-Core Architectures

M. Aater Suleman Onur Mutlu Moinuddin K. Qureshi Yale N. Patt
University of Texas at Austin Carnegie Mellon University IBM Research University of Texas at Austin
suleman@hps.utexas.edu onur@cmu.edu mkquresh@us.ibm.com patt@ece.utexas.edu
Abstract The semantics of a critical section dictate that only one

thread can execute it at a given time. Any other thread that re
Multiprocessors (CMPs), the application must be split into quires access to shared data must wait for the current thread
threadswhich execute concurrently on multiple cores. In [0 complete the critical section. Thus, when there is con-
multi-threaded applications, critical sections are useer- tehn_tlcr)]n f%r shared (?cata, executlonrc]n‘ threakc)is geftshse&déllz_
sure that only one thread accesses shared data at any giveW Ich e lﬁces per O(ma?ce. AS tle numoer ? threads In-
time. Critical sections can serialize the execution of dldise treases, the contention for critical sections also In@eas
which significantly reduces performance and scalability,. 1 herefore, inapplications that have significant data symch
This paper proposeiccelerated Critical Sections (AGS) ~ Nization (e.g. Mozilla Firefox, MySQL [1], and operating
fSystem kernels [36]), critical sections limit both perf@mte

a technique that leverages the high-performance core(s) o . e
an Asyn?metric Chip Ml?ltiprocess%r (F,)ACMP) to acceler(aze (at a given number of threads) and scalability (the number of
threads at which performance saturates). Techniques to ac-

the execution of critical sections. In ACS, selected aaitic - oy ! .
sections are executed by a high-performance core, Which_celerate the execution of critical sections can reducealkseri

can execute the critical séction faster than the other,lsmal |za|t3|on,_thereby |mprr10\gzgl%er£%rr2imce and sgggablhty. .

cores. Consequently, ACS reduces serialization: it lotrers . Crﬁ."'ol\l/]ls lresearc [ACMPY h] propose f%mmel-
likelihood of threads waiting for a critical section to fihis 1 Chip Multiprocessor (4 arc |tectur?| t? ed|c!enty
Our evaluation on a set of 12 critical-section-intensivekyo ~ SX€CUte program portions that are not parallelized (i.en; A

loads shows that ACS reduces the average execution timedahl’s “serial bottleneck” [6]). An ACMP consists of at léas

by 34% compared to an equal-area 32-core symmetric CMP ON€ large, high-performance core and several small, low-
and by 23% compared to an equal-area ACMP. Moreover, performance cores. Serial program portions execute on a
for 7 of the 12 workloads, ACS also increases scalability large core to reduce the performance impact of the serial bot

(i.e. the number of threads at which performance saturates) tleneck. The parallelized portions execute on the smaégor

To improve the performance of a single application on Chip

) _) to obtain high throughput.
Categories and Subject Descriptors C.0 [Genera]: Sys- We propose theAccelerated Critical Sections (ACS)
tem architectures mechanism, in which selected critical sections execute on
General Terms Design, Performance the large coré of an ACMP. In traditional CMPs, when a

s] core encounters a critical section, it acquires the lock-ass
Keywords CMP, Critical Sections, Heterogeneous Cores, ciated with the critical section, executes the criticaltiseg

Multi-core, Parallel Programming, Locks and releases the lock. In ACS, when a core encounters a crit-
. ical section, it requests the large core to execute thatatit
1. Introduction section. The large core acquires the lock, executes the crit

It has become difficult to build large monolithic processors jcal section, and notifies the requesting small core when the
because of their excessive design complexity and high powercritical section is complete.
consumption. Consequently, industry has shifted to Chip- ~ To execute critical sections, the large core may require
Multiprocessors (CMP) [22, 47, 44] that provide multiple someprivate datafrom the small core e.g. the input pa-
processing cores on a single chip. To extract high perfor- rameters on the stack. Such data is transferred on demand
mance from such architectures, an application must be di- from the cache of the small core via the regular cache coher-
vided into multiple entities callethreads In such multi- ~ ence mechanism. These transfers may increase cache misses.
threaded applications, threads operate on differentqusti However, executing the critical sections exclusively oe th
of the same problem and communicate via shared memory.|arge core has the advantage thatltekandshared dataal-
To ensure correctness, multlple threads are not allowed tOWayS Stays inthe cache hierarchy ofthe |a|’ge core rathar tha
update shared data concurrently, known asrthgual ex- constantly moving between the caches of different cores.
clusionprinciple [25]. Instead, accesses to shared data areThjs improves locality of lock and shared data, which can
encapsulated in regions of code guarded by synchroniza-offset the additional misses incurred due to the transfer of
tion primitives (e.g. locks). Such guarded regions of code private data. We show, in Section 6, that critical sectiofs o
are callectritical sections ten access more shared data than private data. For example,
a critical section that inserts a single node of private data
sorted linked list (shared data) accesses several nodbe of t

shared list. For the 12 workloads used in our evaluation, we
Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copiesiar made or distributed
for profit or commercial advantage and that copies bear thtis@ and the full citation

on the first page. To copy otherwise, to republish, to postemmess or to redistribute LFor simplicity, we describe the proposed technique assgramimple-
to lists, requires prior specific permission and/or a fee. mentation that contains one large core. However, our prpgsgeneral
ASPLOS'09, March 7-11, 2009, Washington, DC, USA. enough to work with multiple large cores. Section 3 brieflgatées our

Copyright© 2009 ACM 978-1-60558-215-3/09/03. . . $5.00 proposal for such a system.

find that, on average, ACS reduces the number of L2 cache InitPriorityQueue(PQ): LEGEND
misses inside the critical sections by 26%. _ _ SpawnThreads(); ® A Amdan's serial part
On the other hand, executing critical sections exclusively ForEach Thread: C1.C2 Crical Sections

on a large core of an ACMP can have a negative effect.

Multi-threaded applications often try to improve concur- Wh"ié‘;f(bgm ot solved)

rency by using data synchronization at a fine granularity: SubProblem = PQ.remove(); ‘@

having multiple critical sections, each guarding a digjsit Unlock(X);

of the shared data (e.g., a separate lock for each element of Solve(SubProblem);)

an array). In such cases, executing all critical sections on o Proslom o o SubProblem):

the large core can lead to “false serialization” of differen Took(X) ’

disjoint critical sections that could otherwise have beee ‘ PQ insert(NewSubProblems);| @)

cuted in parallel. To reduce the impact of false serialgrati)

ACS includes a dynamic mechanism that decides whether or 5

not a critical section should be executed on a small core or printsotuion(; (E)

a large core. If too many disjoint critical sections are con-

tending for execution on the large core (and another large (@)

core is not available), this mechanism selects which atitic 1R e@——

section(s) should be executed on the large core(s). L T2 @I B D e @ ... -cm
Contributions: This paper makes two contributions: Ol R R S R e S

1. It proposes an asymmetric multi-core architecture, ACS, e time

to accelerate critical sections, thereby reducing thread s
rialization. We comprehensively describe the instruction
set architecture (ISA), compiler/library, hardware, and

b t t t t t t t t
egin 0 1 2 3 4 5 6 end
(b)

the operating system support needed to implement ACS. e @
2. We analyze the performance trade-offs of ACS and eval- L e A —
uate design options to further improve performance. We |®m =+ T8 o——@—o—— - e(cm
find that ACS reduces the average execution time by 34% . o Ca— T time
over an equal-area 32-core symmetric CMP (SCMP) and |t L T T T T
by 23% over an equal-area ACMP. © .
2. Background and Motivation Figure 1. Serial part, parallel part, and critical section in a multi-
-) threaded 15-puzzle kernel (a) Code example, and execuitims t
2.1 Amdahl's Law and Critical Sections line on (b) the baseline CMP (c) accelerated critical sestio

A multi-threaded application consists of two parts: the se-
rial part and the parallel part. The serial part is the claSi 2 2 serialization due to Critical Sections

Amdahl's bottleneck [6] where only one thread exists. The fjq e 1(h) shows the execution timeline of the kernel shown
parallel part is where multiple threads execute conculyent Figure 1(a) on a 4-core CMP. After the serial part A, four
When multiple threads execute, accesses to shared data arg, .24 (T1, T2, T3, and T4) are spawned, one on each core
encapsulated inside critical sections. Only one threaggan 5o part B is,corhplete the serial part ’E is executed on

eclute at_particulaé_:c:fritica{ fsecti(')An %t ?]T,y giver; gmtﬁ €rit|i(a single core. We analyze the serialization caused by the
cal sections are dirrerent irom Amaanis serial DOWeENeck . itica| section in steady state of part B. Between titge

during the execution of a critical section, other threacs th andt,, all threads execute in parallel. At tinig, T2 starts
do not “e?d to ?xectute tht% satnr?e C&'t'c"’." tse_ctlgn gaﬂjr,makeexecuting the critical section while T1, T3, and T4 continue
Qf?%retﬁs- n cko\r}vras N0 0 elr rea elx'f S IP? rf[‘ha ste to execute the code independent of the critical section. At
rial bottienec N fe Ut.sef‘s'”}[.p € example to Show Ihe perior- ime +, T2 finishes the critical section and three threads
mance impact ot critical Sections. , (T1, T3, and T4) contend for the critical section — T3 wins
Figure 1(a) shows the code for a multi-threaded kemel 3.4 enters the critical section. Between timeandts, T3
where each thread dequeues a work quantum from the prior-gy e jtes the critical section while T1 and T4 remain idle,
ity queue (PQ) and attempts to solve it. If the thread cannot , aiing for T3 to finish. Between timeg andt., T4 executes
solve the problem, it divides the problem into sub-problems ¢ crifical section while T1 continues to wait. T1 finallytge
and inserts them into the priority queue. This is a very com- ;o acute the critical section between timeandts.
mon parallel implementation of many branch-and-bound al- ™ ;g example shows that the time taken to execute a crit-
gorithms [27]. In our benchmarks, this kernel is used to80lV .| section significantly affects not only the thread that e
the popular 15-puzzle problem [S0]. The kernel consists of ¢ tes it hut also the threads that are waiting to enter the
three parts. The initial part A and the final part E are the (sical section. For example, between and ¢5 there are
serial parts of the program. They comprise Amdahl's serial y,q threads (T1 and T4) waiting for T3 to exit the critical
bottleneck since only one thread exists in those sectiars. P section, without performing any useful work. Therefore, ac
B is the parallel part, executed by multiple threads. It con- cqjerating the execution of the critical section not only im
sists of code that is both inside the critical section (C1 and proves the performance of T3 but also reduces the useless
C2, both protected by lock X) and outside the critical sec- waiting time of T1 and T4. Figure 1(c) shows the execution

tlont.(Dl ?”d D2). thIy orr1]¢ Lhread can exequtlga trt[e C”?‘tﬁl of the same kernel assuming that critical sections take half
Section at a given ime, which can cause serialization ot th€ 54 |ong to execute. Halving the time taken to execute criti-

parallel part and reduce overall performance. cal sections reduces thread serialization, which sigmitiga
reduces the time spent in the parallel portion. Thus, accel-
2We simulated a CMP with private L1 and L2 caches and a sharea¢!3e. erating critical sections can provide significant perfonte

Section 5 describes our experimental methodology. improvement. On average, the critical section shown in Fig-

ure 1(a) executes 1.5K instructions. During an insert, the scalability. To this end, we proposecelerated Critical Sec-
critical section accesses multiple nodes of the prioritgpi tions (ACS) ACS is based on the ACMP architecture [30,
(implemented as a heap) to find a suitable place forinsertion 24, 15, 41], which was proposed to handle Amdabhl’s serial
Due to its lengthy execution, this critical section incuighh bottleneck. ACS consists of at least one large core and sev-
contention. When the workload is executed with 8 threads, eral small cores. The critical sections and the serial pfart o
on average 4 threads wait for this critical section at a given the program execute on a large core, whereas the remaining
time. The average number of waiting threads increases to 16parallel parts execute on the small cores. Executing tle cri
when the workload is executed with 32 threads. In contrast, ical sections on a large core reduces the execution latency
when this critical section is accelerated using ACS, the-ave of the critical section, thereby improving performance and
age number of waiting threads reduces to 2 and 3, for 8 andscalability.
32-threaded execution respectively. . L .

We find that similar behavior exists in commonly-used 3:1 Architecture: A high level overview
large-scale workloads. Figure 2 shows a section of code from The ACS mechanism is implemented on a homogeneous-
the database application MySQL [1]. The lotRCK _open, ISA, heterogeneous-core CMP that provides hardware sup-
protects the data structuspen_cache, which tracks all ta- port for cache coherence. ACS leverages one or more large
bles opened by all transactions. The code example showncores to accelerate the execution of critical sections and e
in Figure 2 executes at the end of every transaction andecutes the parallel threads on the remaining small cores. Fo
closes the tables opened by that transaction. A similar-func simplicity of illustration, we first describe how ACS can be
tion (not shown), also protected bPCK_open, executes are implemented on a CMP with a single large core and multiple
the start of every transaction and opens the tables for thatsmall cores. In Section 3.9, we discuss ACS for a CMP with
transaction. On average, this critical section executds 67 Multiple large cores. . ,
instructions. The average length of each transaction kfer t Figure 4 shows an example ACS architecture imple-
oltp-simple input set) is 40K instructions. Since critical Mented on an ACMP consisting of one large core (P0) and
sections account for 3% of the total instructions, contenti 12 small cores (P1-P12). Similarly to previous ACMP pro-
is high. The serialization due to th@CK_open critical sec- posals [24, 15, 30, 41], ACS executes Amdahl’s serial bot-
tion is a well-known problem in the MySQL developer com- tleneck on the large core. In addition, ACS accelerates the
munity [2]. On average, 5 threads wait for this critical sec- €xecution of critical sections using the large core. ACS exe

tion when the workload is executed with 32 threads. When cutes the parallel part of the program on the small cores P1-
ACS is used to accelerate this critical section, the averageP12. When a small core encounters a critical section it sends

number of waiting threads reduces to 1.4. a “critical section execution” request to PO. PO buffers thi
request in a hardware structure called tetical Section
Request Buffer (CSRB)Vhen PO completes the execution
of the requested critical section, it sends a “done” sigaal t
the requesting core. To support such accelerated execution
of critical sections, ACS requires support from the ISA.(i.e
new instructions), from the compiler, and from the on-chip
interconnect. We describe these extensions in detail next.

pthread_mutex_lock (&LOCK_open)

foreach (table locked by this thread)

table—>lock—>release()

table—>file—>release()

if (table—>temporary)
table—>close()

“——-scmp

Speedup vs small core
OoOFRLrNWhOON

8 16 24 32 CSCALL LOCK_ADDR, TARGET_PC CSRET LOCK_ADDR

pthread_mutex_unlock (&LOCK_open)
— Area (Small Cores) On small core: On large core:
i e H H s STACK_PTR <- SP Release lock at
Figure 2. Critical sectionatthe Figure 3. Scalability of chtient ontion Send CSCALL Request to large core LOCK_ADDR
1 with Arguments: LOCK_ADDR Send CSDONE to
end of MySQL transactions MySQL Request Bufer (CSRE) ARy T ek PR GORE. 1D Ay, Come
. . . . p1| P2 Stall until CSDONE signal received
2.3 Poor Application Scalability due to Critical p On large core: On small core:
P3| P4 Enqueue in CSRB Retire CSCALL

Sections Wait until HEAD ENTRY in CSRB
As the number of threads increases, contention for critical [~ "1™ | ™| | Acauie fock arLOCK_ADDR
sections also increases. This contention can become so high |_"°["°["™["?| | pc <- TARGET_PC
that every thread might need to wait for several otherthsead — . , ,
before it can enter the critical section. In such a caseagdi F19ure 4. ACS Figure 5. Format and operation semantics
more threads to the program does not improve (and in fact of new ACS instructions
can degrade) performance. For example, Figure 3 shows the
speedup when MySQL is executed on multiple cores of a 3.2 ISA Support

symmetric CMP (SCMP). As the number of cores increase, ACS requires two new instruction€SCALLand CSRET
more threads can execute concurrently, which increases conCSCALL is similar to a traditional CALL instruction, except
tention for critical sections and causes performance t-sat it js used to execute critical section code on a remote, large

rate at 16 threads. Figure 3 also shows the speedup of arprocessor. When a small core executes a CSCALL instruc-
equal-area ACS, which we will describe in Section 3. Per- tjon, it sends a request for the execution of critical sectm

formance of ACS continues to increase until 32 threads. This pg and waits until it receives a response. CSRET is similar to
shows that accelerating the critical sections can imprate n a traditional RET instruction, except that it is used to retu
only the performance of an application for a given number from a critical section executed on a remote processor. When

of threads but also the scalability of the application. PO executes CSRET, it sends a CSDONE signal to the small
- . core so that it can resume execution. Figure 5 shows the se-
3. Accelerated Critical Sections mantics of CSCALL and CSRET. CSCALL takes two argu-

The goal of this paper is to devise a practical mechanism ments: LOCKADDR and TARGETPC. LOCKADDR is
that overcomes the performance bottlenecks of critical sec the memory address of the lock protecting the critical secti
tions to improve multi-threaded application performancg a and TARGETPC is the address of the first instruction in the

critical section. CSRET takes one argument, LQBRDR CSRET from large core = CSDONE to requesting core

corresponding to the CSCALL. HEAD ENTRY || AN ENTRY IN CSRB
VALID ‘REQ_CORE ‘LOCK_ADDR ‘TARGET_PC ‘ STACK_PTR ‘

3.3 Compiler/Library Support

The CSCALL and CSRET instructions encapsulate a criti- . L csca Reauess fom smal cores

cal section. CSCALL is inserted before the “lock acquire” Figure 7. Critical Section Request Buffer (CSRB)

and CSRET is inserted after the “lock release.” The com-) o
piler/library inserts these instructions automaticallighaut cores, the CSRB has 12 entries, each of which is 25 Bytes

relquiring anly modification to the source code. The com- each. Thus, the storage overhead of the CSRB is 300 bytes.
piler must also remove any register dependencies betwee N

the code inside and outside the critical section. This avoid '3.4.3 Modifications to the large core

transferring register values from the small core to thedarg When the large core receives an entry from the CSRB, it
core and vice versa before and after the execution of theloads its stack pointer register with STACKTR and ac-
critical section. To do so, the compiler performsction quires the lock corresponding to LOCKDDR (as speci-
outlining [52] for every critical section by encapsulating fied by program code). It then redirects the program counter
it in a separate function and ensuring that all input and to TARGET.PC and starts executing the critical section.
output parameters are communicated via the stack. SeveraWhen the core retires the CSRET instruction, it releases
OpenMP compilers already do function outlining for criti- the lock corresponding to LOCIKDDR and removes the

cal sections [28, 37, 9]. Therefore, compiler modifications HEAD ENTRY from the CSRB. Thus, ACS executes a crit-
are mainly limited to the insertion of CSCALL and CSRET ical section similar to a conventional processor by acqgiri
instructions. Figure 6 shows the code of a critical section e the lock, executing the instructions, and releasing th&.loc
ecuted on the baseline (a) and the modified code executed orHowever, it does so at a higher performance because of the
ACS (b). aggressive configuration of the large core.

3.4.4 Interconnect Extensions

Small Ci Small C L C . . A
A= computet; | A= computeg: aroeTere ACS introduces two new transactions on the on-chip inter-
LOCK X PUSH A)] connect: CSCALL and CSDONE. The interconnect trans-
. CSCALL Request . .

(O CSB | CSOALLXTPC ——— e PoPA fers the CSCALL request (along with its arguments) from
print result STACK_PTR, CORE_ID "result = CS(A) the smaller core to the CSRB and the CSDONE signal from
PUSH result the CSRB to the smaller core. Similar transactions alread
CSRET X . . R y

POP result m exist in the on-chip interconnects of current processaus. F
@ print result @ example, Sun Niagara-1 [22] uses such transactions te inter

Figure 6. Source code and its execution: (a) baseline (b) ACS ~face cores with the shared floating point unit.

3.5 Operating System Support
3.4 Hardware Support ACS requires modest support from the operating system
3.4.1 Modifications to the small cores (OS). When executing on an ACS architecture, the OS al-
. locates the large core to a single application and does not

When a CSCALL is executed, the small core sends a schedule any threads onto it. Additionally, the OS sets the
CSCALL request along with the stack pointer (STAGRIR) — control registers of the large core to the same values as the
and its core ID (CORHD) to the large core and stalls, wait- gmg|| cores executing the application. As a result, the pro-
ing for the CSDONE response. The CSCALL instruction gram context (e.g. processor status registers, and TLB en-
is retired when a CSDONE response is received. Such supies) of the application remains the same in all cores, in-
port for executing certain instructions remotely alreaely € ~ ¢jyding the large core. Note that ACS does not require any
Ists in current architectures: for example, all 8 cores in Su gpecial modifications because such support already eRists i
common remote FP unit. Handling Multiple Parallel Applications: When mul-

- ; tiple parallel applications are executing concurrentlg S\
3.4.2 .(.:ntlcal Se.zctlon Request Buffer can be used if the CMP provides multiple high—perfor%r]ance
The Critical Section Request Buffer (CSRB), located at the contexts of execution (multiple large cores or simultargeou
large core, buffers the pending CSCALL requests sent by multithreading (SMT) [48] on the large core). Alternatiyel
the small cores. Figure 7 shows the structure of the CSRB. the OS can time-share the large core between multiple appli-
Each entry in the CSRB contains a valid bit, the ID of the re- cations taking performance and fairness into account. ACS
questing core (RECTORE), the parameters of the CSCALL can be enabled only for the application that is allocated the
instruction, LOCKADDR and TARGETPC, and the stack |arge core and disabled for the others. This paper introgluce
pointer (STACKPTR) of the requesting core. When the the concept and implementation of ACS; resource allocation
large core is idle, the CSRB supplies the oldest CSCALL policies are part of our future work.
request in the buffer to the core. The large core notifies the) o
CSRB when it completes the critical section. At this point, 3.6 Reducing False Serialization in ACS
the CSRB dequeues the corresponding entry and sends a CS<ritical sections that are protected by different locks ban
DONE signal to the requesting core. The number of entries executed concurrently in a conventional CMP. However, in
in the CSRB is equal to the maximum possible number of ACS, their execution gets serialized because they are all ex
concurrent CSCALL instructions. Because each small core ecuted sequentially on the single large core. This “false se
can execute at most one CSCALL instruction at any time, alization” reduces concurrency and degrades performance.
the number of entries required is equal to the number of
small cores in the system (Note that the large core does not®Each CSRB entry has one valid bit, 4-bit REZDRE, 8 bytes each for
send CSCALL requests to itself). For a system with 12 small LOCK_ADDR, TARGET.PC, and STACKPTR.

We reduce false serialization using two techniques. First,
we make the large core capable of executing multiple crit-
ical sections concurrentfusing simultaneous multithread-
ing (SMT) [48]. Each SMT context can execute CSRB en-
tries with different LOCKADDR. Second, to reduce false
serialization in workloads where a large number of critical
sections execute concurrently, we prop&sdective Accel-
eration of Critical Sections (SELYhe key idea of SEL is to
estimate the occurrence of false serialization and adagtiv

decide whether or not to execute a critical section on the

large core. If SEL estimates false serialization to be hiigé,
critical section is executed locally on the small core, viahic
reduces contention on the large core.

Implementing SEL requires two modifications: 1) a bit
vector at each small core that contains the AGISABLE
bits and 2) logic to estimate false serialization. The
ACS_DISABLE bit vector contains one bit per critical sec-
tion and is indexed using the LOCKDDR. When the
smaller core encounters a CSCALL, it first checks the corre-
sponding ACSDISABLE bit. If the bitis O (i.e., false serial-
ization is low), a CSCALL request is sent to the large core.
Otherwise, the CSCALL and the critical section is executed
locally.

False serialization is estimated at the large core by aug-

menting the CSRB with a table of saturating counters, which
track the false serialization incurred by each critical-sec
tion. We quantify false serialization by counting the num-
ber of critical sections present in the CSRB for which the
LOCK_ADDR is different from the LOCKADDR of the in-
coming request. If this count is greater than 1 (i.e. if treree

at least two independent critical sections in the CSRB), the

estimation logic adds the count to the saturating counter co

responding to the LOCKADDR of the incoming request.

If the count is 1 (i.e. if there is exactly one critical sec-

tion in the CSRB), the corresponding saturating counter is

decremented. If the counter reaches its maximum value, the

ACS _DISABLE bit corresponding to that lock is set by send-

ing a message to all small cores. Since ACS is disabled in-

frequently, the overhead of this communication is negligib
To adapt to phase changes, we reset the ATSABLE bits

for all locks and halve the value of the saturating counters
periodically (every 10 million cycles). We reduce the hard-
ware overhead of SEL by hashing lock address into a smal

number of sets. Our implementation of SEL hashes lock ad-

dresses into 16 sets and uses 6-bit counters. The totafjetora

overhead of SEL is 36 bytes: 16 counters of 6-bits each and

16 ACSDISABLE bits for each of the 12 small cores.

3.7 Handling Nested Critical Sections
A nested critical section is embedded within another aitic

nested at run-time. Such critical sections are not conserte
to CSCALLs.

3.8 Handling Interrupts and Exceptions

ACS supports precise interrupts and exceptions. If an-inter
rupt or exception happens outside a critical section, ACS
handles it similarly to the baseline. If an interrupt or gxce
tion occurs on the large core while it is executing the caitic
section, the large core disables ACS for all critical sewio
pushes the CSRB on the stack, and handles the interrupt or
exception. If the interrupt is received by the small corele/hi

it is waiting for a CSDONE signal, it delays servicing the in-
terrupt until the CSDONE signal is received. Otherwise, the
small core may miss the CSDONE signal as it is handling
the interrupt, leading to a deadlock.

Because ACS executes critical sections on a separate
core, temporary register values outside the critical secti
are not visible inside the critical section and vice verdasT
is not a concern in normal program execution because the
compiler removes any register dependencies between the
critical section and the code outside it. If visibility tonte
porary register values outside the critical section is nexgli
inside the critical section, e.g. for debugging purposies, t
compiler can ensure the transfer of all register values from
the small core to the large core by inserting additionallstac
operations in the debug version of the code.

3.9 Accommodating Multiple Large Cores

We have described ACS for an ACMP that contains only
one large core. ACS can also leverage multiple large cores
in two ways: 1) to execute different critical sections from
the same multi-threaded application, thereby reducinigéfa
serialization,” 2) to execute critical sections from diffat
applications, thereby increasing system throughput. &l
tion of ACS using multiple large cores is out of the scope of
this paper.

4. Performance Trade-offs in ACS
There are three key performance trade-offs in ACS that de-
termine overall system performance:

1. Faster critical sections vs. fewer threads: ACS ex-
ecutes selected critical sections on a large core, the area

Idedicated to which could otherwise be used for executing

additional threads. ACS could improve performance if the
performance gained by accelerating critical sections (and
serial program portions) outweighs the loss of throughput
due to the unavailability of additional threads. ACS’s perf
mance improvement becomes more likely when the number
of cores on the chip increases because of two reasons. First,
the marginal loss in parallel throughput due to the largecor

section. Such critical sections can cause deadlocks in ACSbecomes relatively small (for example, if the large core re-

with SEL 5 To avoid deadlocks without extra hardware com-
plexity, our design does not convert nested critical sestio
to CSCALLs. Using simple control-flow analysis, the com-
piler identifies the critical sections that can possiblydmae

4 Another possible solution to reduce false serializatiot iadd additional

large cores and distribute the critical sections acrossettwres. Further
investigation of this solution is an interesting researdteation, but is

beyond the scope of this paper.

5For example, consider three nested critical sections: thermost Q),
inner (\), and the innermost). ACS is disabled foN and enabled fo©
andl. The large core is executin@ and another small core is executing
executingN locally (because ACS was disabled). The large core encaunte
N, and waits for the small core to finisN. Meanwhile, the small core
encounterd, sends a CSCALL request to the large core, and waits for the
large core to finish. Therefore, deadlock ensues.

places four small cores, then it eliminates 50% of the smalle
cores in a 8-core system but only 12.5% of cores in a 32-core
system). Second, more cores allow concurrent execution of
more threads, which increases contention by increasing the
probability of each thread waiting to enter the critical sec
tion [36]. When contention is high, faster execution of #&-cri
ical section reduces not only critical section executiometi
but also the contending threads’ waiting time.

2. CSCALL/CSDONE signals vs. lock acquire/release:
To execute a critical section, ACS requires the communi-
cation of CSCALL and CSDONE transactions between a
small core and a large core. This communication over the
on-chip interconnect is an overhead of ACS, which the con-
ventional lock acquire/release operations do not incur. On
the other hand, a lock acquire operation often incurs cache
misses [33] because the lock needs to be transferred from

one cache to another. Each cache-to-cache transfer require3 threads, then we report the performance with 3 threads. In
two transactions on the on-chip interconnect: a request for both ACMP and SCMP, conventional lock acquire/release
the cache line and the response, which has similar latencyoperations are implemented using the Monitor/Mwait in-
to the CSCALL and CSDONE transactions. ACS can re- structions, part of the SSE3 extensions to the x86 ISA [17].
duce such cache-to-cache transfers by keeping the lock atin ACS, lock acquire/release instructions are replacet wit
the large core, which can compensate for the overhead of CSCALL/CSRET instructions.

CSCALL and CSDONE. ACS actually has an advantage in

Small core | 2-wide In-order, 2GHz, 5-stage. L1: 32KB write-through.: L

that the latency of CSCALL and CSDONE can be over- 256KB write-back, 8-way, 6-cycle access

lapped with the execution of another instance of the same [Targe core | 4-wide Out-of-order, 2GHz, 2-way SMT, 128-entry ROB, 1p-
critical section. On the other hand, in conventional logkin stage, L1: 32KB write-through. L2: 1-MB write-back, 16-way

a lock can only be acquired after the critical section hasbee cycle

f e : Interconnect 64-bit wide bi-directional ring, all queuing delays modkleing
completed, whiclalwaysadds a delay before critical section hop latency of 2 cycles (latency between one cache to thg ne

e_X(':‘CUtion- Therefore, the overhead of CSCALI—_/CSDONE IS [Coherence | MES, On-chip distributed directory similar to SGI Orgigq],

likely not as high as the overhead of lock acquire/release. cache-to-cache transfers. # of banks = # of cores, 8K efiteink
3. Cache misses dueto private data vs. cache misses due L3 Cache [8MB, shared, write-back, 20-cycle, 16-way

to shared data: In ACS, private data that is referenced in Memory 32 banks, bank conflicts and queuing delays modeled. Roweb{iff

the critical section needs to be transferred from the cathe o hit: 25ns, Row buffer miss: 50ns, Row bufer conflict: 75ns

=

Memory 4:1 cpu/bus ratio, 64-bit wide, split-transaction, pipelil bus, 40-

the small core to the cache of the large core. Conventional | s cycle latency

L?Ckmg doe_s. nolt II’]CU.I’ this cache-to-ca(tjche tﬁanlsferlom]‘he Area-equivalent CMPs. Area = N small cores. N varies from 320 |
e.(:ause CI‘I'[_IC& sections are. executed at the local core an SCMP N small cores, One small core runs serial part, all N cores |run

private data is often present in the local cache. On the other parallel part, conventional locking (Max. concurrent ts = N)

hand, conventional systems incur overheads in transtgrrin ["Acvp T Targe core and N-4 small cores; large core runs serial pavay

shared data: in such systems, shared data “ping-pongs” be SMT on large core and small cores run parallel part, conoeati

tween caches as different threads execute the criticdbsect | locking (Maximum humber ‘ngggcé‘,\rlfi’)“e‘:t’eagz;gj% —

and reference the Shafed .data' ACS ellmmates the transfers coreglarge core runs the serial p’art smallrgores run thellpér| ’

of Shared_data by keeping it at the |arg_e cbrehich can off- part, 2-way SMT on large core runs critical sections usingSAC

set the misses it causes to transfer private data into the lar (Max. concurrent threads = N-4)

core. In fact, ACS can decrease cache misses if the critical

section accesses more shared data than private data. Note Table 1. Configuration of the simulated machines

that ACS can improve performance even if there are equal
or more accesses to private data than shared data because
the large core can still 1) improve performance of other in- 5.1 Workloads - o
structions and 2) hide the latency of some cache misses usindour main evaluation focuses on 12 critical-section-intens
latency tolerance techniques like out-of-order execution ~ workloads shown in Table 2. We define a workload to be
In summary, ACS can improve overall performance if its critical-section-intensive if at least 1% of the instrocts in
performance benefits (faster critical section execution, i the parallel portion are executed within critical section®
proved lock locality, and improved shared data locality-ou divide these workloads into two categories: workloads with
weigh its overheads (reduced parallel throughput, CSCALL coarse-grained locking and workloads with fine-grained
and CSDONE overhead, and reduced private data locality).locking. We classify a workload as using coarse-grained
Next, we will evaluate the performance of ACS on a variety locking if it has at most 10 critical sections. Based on this

of CMP configurations. classification, 7 out of 12 workloads use coarse-grain lock-
) ing and the remaining 5 use fine-grain locking. All work-
5. Experimental Methodology loads were simulated to completion. A description of the

Table 1 shows the configuration of the simulated CMPs, us- benchmarks whose source code is not publicly available is
ing our in-house cycle-accurate x86 simulator. The large provided in [42].
core occupies the same area as four smaller cores: the

smaller cores are modeled after the Intel Pentium proces- L.Locks | Workioad | Description | Source] Inputset |
sor [19], which requires 3.3 million transistors, and thegta ep Ra”doﬁ“tnumbe’rge“era‘” ;1 2621_“2;;”15-
core is modeled after the Intel Pentium-M core, Which re- | coarse [oagemine|—Da s permer—|— 1 TORDaGES
quires 14 million transistors [12]. We evaluate three dédfe puzzle T5-Puzzle game 50 33
CMP architectures: a symmetric CMP (SCMP) consisting of gsort Quicksort 1T 20K elem.
all small cores; an asymmetric CMP (ACMP) with one large sqlite | sqfite3 [3] database enging [4] | OLTP-simple
core with 2-way SMT and remaining small cores; and an __tsp__| Traveling salesman prob| 23] 11 cities
ACMP augmented with support for the ACS mechanism plookup | ¥ ggﬁ;ﬁg:‘?ﬁ [ﬁal 25K querles
(ACS). Unless specified otherwise, all comparisons are done| gine o,tg_z MisQL server[] 4] OLTP_ComS,ex
at equal area budget. We specify the area budget in terms specjpb | JAVA business benchmark _ [40] 5 seconds
of the number of small cores. Unless otherwise stated, the webcache| Cooperative web cache| [45] | 100K queries

number of threads for each application is set equal to the
number of threads that minimizes the execution time for the .
icul fi n- if the b f fan 0. Evaluation

partlpu ar con |gur_at|on, e.g. If the best per ormance or an .

application is obtained on an 8-core SCMP when it runs with We make three comparisons between ACMP, SCMP, and
ACS. First, we compare their performance on systems where

6By keeping shared data in the large core’s cache, ACS redbeasache the number of threads is set equal to the optimal number of

space available to shared data compared to conventionkihtpéwhere threads for each appllcat_lon under a given area constraint.

shared data can reside in any on-chip cache). This can Bereache Second, we compare their performance assuming the num-

misses. However, we find that such cache misses are rare arad degrade ber of threads is set equal to the number of cores in the sys-

performance because the private cache of the large congisdmough. tem, a common practice employed in many existing systems.

Table 2. Simulated workloads

Third, we analyze the impact of ACS on application scalabil- Systems area-equivalent to 8 small coredVhen area
ity i.e., the number of threads over which performance does budget equals 8, ACMP significantly outperforms SCMP for
not increase. workloads with high percentage of instructions in the deria

) _ part (85% inis and 29% ingsort as Table 3 shows). In
6.1 Performance with the Optimal Number of Threads puzzle, even though the serial part is small, ACMP im-
Systems sometimes use profile or run-time information to proves performance because it improves cache locality of
choose the number of threads that minimizes executionshared data by executing two of the six threads on the large
time [43]. We first analyze ACS with respect to ACMP and core, thereby reducing cache-to-cache transfers of shared
SCMP when the optimal number of threads are used for eachdata. SCMP outperforms ACMP farglite andtsp be-
application on each CMP configuratiéie found that do- cause these applications spend a very small fraction af thei
ing so provides the best baseline performance for ACMP and instructions in the serial part and sacrificing two thre&ats
SCMP, and a performance comparison results in the lowestimproved serial performance is not a good trade-off. Since
performance improvement of ACS. Hence, this performance ACS devotes the two SMT contexts on the large core to
comparison penalizes ACS (as our evaluations in Section 6.2accelerate critical sections, it can execute only four lpara
with the same number of threads as the number of threadlel threads (compared to 6 threads of ACMP and 8 threads
contexts will show). We show this performance comparison of SCMP). Despite this disadvantage, ACS reduces the av-
separately on workloads with coarse-grained locks andethos erage execution time by 22% compared to SCMP and by

with fine-grained locks. 11% compared to ACMP. ACS improves performance of
)) five out of seven workloads compared to ACMP. These five
6.1.1 Workloads with Coarse-Grained Locks workloads have two common characteristics: 1) they have

Figure 8 shows the execution time of each application on high contention for the critical sections, 2) they accessemo
SCMP and ACS normalized to ACMP for three different Shared data than private data in critical sections. Duegseth
area budgets: 8, 16, and 32. Recall that when area budgegharacteristics, ACS reduces the serialization causedty c
is equal to N, SCMP, ACMP, and ACS can execute up to Ical sections and improves locality of shared data.

N, N-2, and N-4 parallel threads respectively. In the ensu- _ Why does ACS reduce performanceqeort andtsp?

ing discussion, we ask the reader to refer to Table 3, which The critical section imsort protects a stack that contains
shows the characteristics of critical sections in eachiegpl ~ indices of the array to be sorted. The insert operation paishe

tion, to provide insight into the performance results. two indices (private data) onto the stack by changing the
stack pointer (shared data). Since indices are larger thean t

stack pointer, there are more accesses to private data than
shared data. Furthermore, contention for critical sestion
is low. Thereforegsort can take advantage of additional
threads in its parallel portion and trading off several &ute
for faster execution of critical sections lowers perforroan
The dominant critical section insp protects a FIFO queue
where an insert operation reads the node to be inserted (pri-
vate data) and adds it to the queue by changing only the head
pointer (shared data). Since private data is larger tharegha
(a) Area budget=8 small cores data, ACS reduces cache locality. In addition, contentson i
210 150 low and the workload can effectively use additional threads
Systems area-equivalent to 16 and 32 small coreRe-
call that as the area budget increases, the overhead of ACS
decreases. This is due to two reasons. First, the parallel
throughput reduction caused by devoting a large core to ex-
ecute critical sections becomes smaller, as explaineddn Se
tion 4. Second, more threads increases contention for crit-
ical sections because it increases the probability thah eac
thread is waiting to enter the critical section. When theaare
budgetis 16, ACS improves performance by 32% compared
to SCMP and by 22% compared to ACMP. When the area
budgetis 32, ACS improves performance by 42% compared
to SCMP and by 31% compared to ACMP. In fact, the two
benchmarks {sort and tsp) that lose performance with
ACS when the area budget is 8 experience significant per-
formance gains with ACS over both ACMP and SCMP for
an area budget of 32. For example, ACS with an area budget
of 32 provides 17% and 22% performance improvement for
Figure 8. Execution time of workloads with coarse-grained lock- 4sort andtsp respectively over an equal-area ACMP. With
ing on ACS and SCMP normalized to ACMP an area budget of at least 16, ACS improves the performance
of all applications with coarse-grained locks. We conclude
that ACS is an effective approach for workloads with coarse-
"We determine the optimal number of threads for an applioatip simu- grained locking even at small area budgets. However, ACS

lating all possible number of threads and using the one tliittizes exe- becomes even more attractive as the area budget in terms of
cution time. The interested reader can obtain the optimailber of threads number of cores increases.

for each benchmark and each configuration by examining tteeidarig-
ure 10. Due to space constraints, we do not explicitly quioése thread
counts.

Exec. Time
Norm. to ACMP

Exec. Time
Norm. to ACMP

Exec. Time
Norm. to ACMP

(c) Area budget=32 small cores

Workload % of instr. % of parallel instr.| # of disjoint What is Protected by CS? | Avg. instr.in | Shared/Privat Contention
‘ H in Serial Part| in critical sections| critical sections critical section ‘ (at4 threads)e‘ 4 | 8 |16] 32
ep 13.3 14.6 3 reduction into global data 620618.1 1.0 14]18| 40| 82
is 84.6 8.3 1 buffer of keys to sort 9975.0 11 234381 164
pagemine 0.4 5.7 1 global histogram 531.0 17 23[43| 82 159
puzzle 2.4 69.2 2 work-heap, memoization tabl¢ 926.9 11 22(43|83 16.1
gsort 28.5 16.0 1 global work stack 127.3 0.7 11| 30| 96| 25.6
sqlite 0.2 17.0 5 database tables 933.1 2.4 14 22[37] 64
tsp 0.9 43 2 termination cond., solution 29.5 0.4 12 16] 20| 3.6
iplookup 0.1 8.0 # of threads routing tables 683.1 0.6 12]13] 15[19
oltp-1 2.3 13.3 20 meta data, tables 277.6 0.8 12| 12]15] 22
oltp-2 1.1 12.1 29 meta data, tables 309.6 0.9 1112|114 16
specjbb 1.2 0.3 39 counters, warehouse data 1002.8 0.5 10| 10| 10| 1.2
webcache 35 94.7 33 replacement policy 2257.0 11 111111 14

Table 3. Characteristics of Critical Sections. Shared/Privatehés ratio ofshareddata (number of cache lines that are transferred from
caches of other cores) pivate data (number of cache lines that hit in the private cachedsssx inside a critical section. Contention is the
average number of threads waiting for critical sectionsmtie workload is executed with 4, 8, 16, and 32 threads on @RS

6.1.2 Workloads with Fine-Grained Locks

Figure 9 shows the execution time of workloads with fine-
grained locking for three different area budgets: 8, 16, and
32. Compared to coarse-grained locking, fine-grained lock-
ing reduces contention for critical sections and hencedhe s
rialization caused by them. As a result, critical section-co
tention is negligible at low thread counts, and the workkad
can take significant advantage of additional threads erdcut
in the parallel section. When the area budget is 8, SCMP
provides the highest performance (as shown in Figure 9(a))
for all workloads because it can execute the most number of
threads in parallel. Since critical section contentionésyv
low, ACS essentially wastes half of the area budget by dedi-
cating it to a large core because it is unable to use the large
core efficiently. Therefore, ACS increases execution time
compared to ACMP for all workloads excefgplookup. In
iplookup, ACS reduces execution time by 20% compared
to ACMP but increases it by 37% compared to SCMP. The
critical sections iniplookup access more private data than
shared data, which reduces the benefit of ACS. Hence, the
faster critical section execution benefit of ACS is able to
overcome the loss of 2 threads (ACMP) but is unable to pro-
vide enough improvement to overcome the loss of 4 threads
(SCMP).

As the area budget increases, ACS starts providing per-
formance improvement over SCMP and ACMP because the
loss of parallel throughput due to the large core reduces.
With an area budget of 16, ACS performs similarly to SCMP
(within 2%) and outperforms ACMP (by 6%) on average.
\r<1vgﬂt ?snt r?éerﬁg?u%%?-eb%; :(3)\2/’9 ﬁscgﬁppgggr{g@n%%éwﬁéo&lg Figure 9. Execution time of workloads with fine-grained locking

. 0 0 , ;
in fact, ACS outperforms both SCMP and ACMP on all on ACS and SCMP normalized to ACMP
workloads. Hence, we conclude that ACS provides the best
performance compared to the alternative chip organization is less than or equal to 24 small cores. Since chips with 8
even for critical-section-intensive workloads that useefin and 16 small cores are already in the market [22], and chips
grained locking. with 32 small cores are being built [47, 38], we believe ACS

Depending on the scalability of the workload and the can be a feasible and effective option to improve the perfor-
amount of contention for critical sections, the area budget mance of workloads that use fine-grained locking in near-
required for ACS to provide performance improvement is future multi-core processors.
different. Table 4 shows the area budget required for ACS

Exec. Time
Norm. to ACMP

Exec. Time
Norm. to ACMP

Exec. Time
Norm. to ACMP

(c) Area budget=32 small cores

to outperform an equivalent-area ACMP and SCMP. In gen- E =Y 5 %
eral, the area budget ACS requires to outperform SCMP is 5Nt e S22 T8
higher than the area budget it requires to outperform ACMP. $lel8|2|l2|5|2|le|lE|E|2]|¢
However,webcache andgsort have a high percentage of [ACMP 6] 6] 6] 412] 6 [10] 6 |14[10][18]24]
serial instructions; therefore ACMP becomes significantly [SCMP|[6 4|6 4|86 |18][1414]16/18| 14|

more effective than SCMP for large area budgets. For all : :
workloads with fine-grained locking, the area budget ACS Table 4. Area budggt (in terms of small cores) required for ACS
requires to outperform an area-equivalent SCMP or ACMP to outperform an equivalent-area ACMP and SCMP

Summary: Based on the observations and analyses we made % 3 % % 4
above for workloads with coarse-grained and fine-grained % g, T,
locks, we conclude that ACS provides significantly higher &2 5 5
performance than both SCMP and ACMP for both types 2 | scwp e | 22
of workloads, except for workloads with fine-grained locks 317 —-acwve 2T T 3.
when the area budget is low. ACS’s performance benefit & | ©-Acs @ ! N N
increases as the area budgetincreases. In future systémswi " ° 5§ 55 5% PO RS T TR S5
a large number of cores, ACS is likely to provide the best Area (Small Cores) Area (Small Cores) Area (Small Cores)
system organization among the three choices we examined. (@) ep (b)is (c) pagemine
For example, with an area budget of 32 small cores, ACS ¢ © ©
outperforms SCMP by 34% and ACMP by 23% averaged 8 ° Sa S5
across all workloads, including both fine-grained and a@ars £ i £3 £4
grained locks. 25 2, 23
o o [~}
6.2 Performance with Number of Threads Set Equalto 2 g1 314
the Number of Available Thread Contexts 7 S N S 7 N N 78 N N
In the previous secti_on,.we used the Optimal number of Arga (éﬁwallzéorizs) Arga (éﬁwallzéorizs) Arga (éﬁwallzéorizs)
threads for each application-configuration pair. When an es d | t lit
timate of the optimal number of threads is not available, (d) puzzle o (&) gsor o (f) sqlite
many current systems use as many threads as there are avail g9 g,
able thread contexts [18, 32]. We now evaluate ACS assum- = 1 39 I 6
ing the number of threads is set equal to the number of avail- § 5 8 55
able contexts. Figure 10 shows the speedup curves of ACMP, ¢ 2a 3‘3‘
SCMP, and ACS over one small core as the area budget is 2 33 32
varied from 1 to 32. The curves for ACS and ACMP startat & . g1dd i i Slo 1 1
4 because they require at least one large core which is area-” s CCTE R T e R
equiva|ent to 4 small cores. Area (Small Cores) Area (Small Cores) Area (Small Cores)
(9) tsp (h) iplookup (i) oltp-1
[Number of thready{ No. of max. thread contexi$ Optimal |) @)
[AreaBudget [[8 |16 [32 & [6 [32 | 5l s A 8y
| SCMP___ [[0.93 [1.04 [1.18 [0.94 [1.05 [1.15 | T8 £ i
| ACS |[097 [0.77 [0.64 _ |[0.96 |0.83 |0.77 | 56 2 A
Table 5. Average execution time normalized to area-equivalent 3 3 %‘1[E
ACMP g 7 g g 2
” 0 ® 0 ” 0

816 24 32 8 16 24 32 816 24 32

Table 5 Summarlzes the data |n F|gure 10 by ShOW|ng Area (Small Cores) Area (Small Cores) Area (Small Cores)
the average execution time of ACS and SCMP normalized () oltp-2 (k) specjbb () webcache

to ACMP for area budgets of 8, 16, and 32. For compari-
son, we also show the data with optimal number of threads.
With an area budget of 8, ACS outperforms both SCMP and

Figure 10. Speedup over a single small core

Q D
ACMP on 5 out of 12 benchmarks. ACS degrades average £l o g a8
execution time compared to SCMP by 3% and outperforms SIN|E|&].]8|2|2|88
ACMP by 3%. When the area budget is doubled to 16, ACS |Workioad||8 | « | & |2 | & |8 |2 |2 |3 |5 |5 |=
outperforms both SCMP and ACMP on 7 out of 12 bench- SCMP [[8.2] 16.4] 15.9]16.1] 25.6| 6.4] 3.6]] 1.9 2.2| 1.6] L.2[1.4
marks, reducing average execution time by 26% and 23%, [ACMP [[8.1[149[155[16.1]24.0]6.2]|37][1.9]19]15[1.2]1.4
respectively. With an area budget of 32, ACS outperforms ACS ||15[20]20]25]19]14]35]/18/14]13]10]1.2

both SCMP and ACMP on all benchmarks, reducing aver- Taple 6. Contention (see Table 3 for definition) at an area budget

age execution time by 46% and 36%, respectively. Note that ¢ 35 (yumber of threads set equal to the number of thread con-

this performance improvement is significantly higher than text

the performance improvement ACS provides when the opti- exts)

mal number of threads is chosen for each configuration (34%

over SCMP and 23% over ACMP). Also note that when the \yhere the number of threads is set equal to number of thread

area budgetincreases, ACS starts to consistently outperfo contexts because ACS is able to tolerate contention fa crit

both SCMP and ACMP. This is because ACS tolerates con- ca| sections significantly better than ACMP or SCMP.

tention among threads better than SCMP and ACMP. Table 6 o B

compares the contention of SCMP, ACMP, and ACS at an 6.3 Application Scalability

area budget of 32. Fasp, on average more than 8 threads We examine the effect of ACS on the number of threads re-

wait for each critical section in both SCMP and ACMP. ACS quired to minimize the execution time. Table 7 shows num-

reduces the waiting threads to less than 2, which improvesber of threads that provides the best performance for each

performance by 44% (at an area budget of 32). application using ACMP, SCMP, and ACS. The best number
We conclude that, even if a developer is unable to deter- of threads were chosen by executing each application with

mine the optimal number of threads for a given application- all possible threads from 1 to 32. For 7 of the 12 applica-

configuration pair and chooses to set the number of threadstions (is, pagemine, puzzle, gsort, sqlite, oltp-1,and

at a point beyond the saturation point, ACS provides signif- o1tp-2) ACS improves scalability: it iIncreases the number

icantly higher performance than both ACMP and SCMP. In of threads at which the execution time of the application is

fact, ACS’s performance benefit is even higher in systems minimized. This is because ACS reduces contention due to

critical sections as explained in Section 6.2 and Table 6. Fo table. SEL detects this serialization and disables thel@ece
the remaining applications, ACS does not change scalabil- ation of the critical section for the memoization table. @n a
ity.2 We conclude that if thread contexts are available on the erage, across all 12 workloads, ACS with SEL outperforms
chip, ACS uses them more effectively compared to ACMP ACS without SEL by 15%. We conclude that SEL can suc-
and SCMP. cessfully improve the performance benefit of ACS by elim-

= = T inating false serialization without affecting the perfamte
Elllel|e 2lala|2 8 of workloads that do not experience false serialization.
DN o | = o 9 E. (<]
workload|| S| 2 | S| 2|2 |38 ||2|5|5| 3|2 160 253
SCMP [[4[8| 8| 8|16| 8 |32([24[16(16|32|32
ACMP 4188|816 8 |32((24(16]|16|32|32
ACS 4112(12(32(32]32|32((24(32]|24|32|32

Table 7. Best number of threads for each configuration

6.4 Performance of ACS on Critical Section
Non-Intensive Benchmarks = ACS

We also evaluated all 16 benchmarks from the NAS [7] and & 011=ACS w/o SEL|

SPLASH [51] suites that are not critical-section-inteesiv o & S Sa

These benchmarks contain regular data-parallel loops and &'« & §»”

execute critical sections infrequently (less than 1% of the S <

executed instructions). Detailed results of this analgseés Figure 11.Impact ofFigure 12. ACS on symmetric

presented in [42]. We find that ACS does not significantly sg|. CMP.

improve or degrade the performance of these applications.

When area budget is 32, ACS provides a modest 1% perfor-

mance improvement over ACMP and 2% performance re- 7.2 ACS on Symmetric CMPs: Effect of Only Data

duction compared to SCMP. As area budget increases, ACS Locality

performs similar to (within 1% of) SCMP. We conclude that part of the performance benefit of ACS is due to improved

ACS will not significantly affect the performance of critlca |ocality of shared data and locks. This benefit can be real-

number of cores. can be implemented on a sy?nwetric CI,;MP, whicdh (\;ve ca(ljl

o . . symmACSn symmACS, one of the small cores is dedicate
7. Sensitivity of ACS to System Configuration {5 executing critical sections. This core is augmented with

7.1 Effect of SEL CSRB and executes the CSCALL requests and CSRET in-

ACS uses the SEL mechanism (Section 3.6) to selectively structions. Figure 12 shows the execution time of symmACS
accelerate critical sections to reduce false serialinatib ar:gC,ASCS gormahzed to SCMP wt?en area EUdgE_)GO}IS 32. Symé
critical sections. We evaluate the performance impact of M SCMrlg luces execution time by rr:jqret an t;)compare
SEL. Since SEL does not affect the performance of work- © b mésd puzzle, thtg’ ?]n 1P1.°°ku% ecause |
loads that have negligible false serialization, we focus ou MOr€ shared data is accessed than private data in critica
evaluation on the three workloads that experience false se-Sections’ In ep, pagemine, gsort, andtsp, the overhead
rialization: puzzle, iplookup, andwebcache. Figure 11 of CSCALL/CSRET messages and transferring private data
shows the normalized execution time of ACS with and with- Offsets the shared data/lock locality advantage of ACSsThu
out SEL for the three workloads when the area budget is Overall execution time increases. On average, SYymmACS
32. For iplookup and webcache, which has the highest ~reduces execution time by only 4% which is much lower
amount of false serialization, using SEL improves perfor- than the 34% performance benefit of ACS. Since the per-
mance by 11% and 5% respectively over the baseline. Theformance gain due to improved locality alone is relatively
performance improvement is due to acceleratiorsome Small, we conclude that most of the performance improve-
critical sections which SEL allows to be sent to the large Ment of ACS comes from accelerating critical sections using
core because they do not experience false serialization. Inthe large core.

webcache, multiple threads access pages of different files

stored in a shared cache. Pages from each file are protecte®- Related Work . _
by a different lock. In a conventional system, these critica The major contribution of our paper is a comprehensive
sections can execute in parallel, but ACS without SEL seri- mechanism to accelerate critical sections using a large. cor
alizes the execution of these critical sections by forciregn The most closely related work is the numerous proposals to
to execute on a single large core. SEL disables the acceleraoptimize the implementation of lock acquire/release opera
tion of 17 out of the 33 locks, which eliminates false serial- tions and the locality of shared data in critical sectiomgsi

c. Time Norm. to ACMP
Exec. Time Norm. to SCMP

ization and reduces pressure on the large corgplokup, OS and compiler techniques. We are not aware of any work
multiple copies of the routing table (one for each thread) ar that speeds up the execution of critical sections using more
protected by disjoint critical sections that get seriadingth- aggressive execution engines. To our knowledge, this is the

out SEL.puzzle contains two critical sections protecting a first paper that comprehensively accelerates criticaiest
heap object (PQ in Figure 1) and a memoization table. Ac- by improving both the execution speed of critical sections
cesses to PQ are more frequent than to the memoization taand locality of shared data/locks.

ble, which results in false serialization for the memoiaati

9 Note that these numbers do not correspond to those showrbie JaThe
8 Note that Figure 10 provides more detailed information orsA@ffect on Shared/Private ratio reported in Table 3 is collected byetirg the work-
the scalability of each application. However, unlike Tabl¢he data shown loads with 4 threads. On the other hand, in this experiméstwtorkloads
on the x-axis is area budget and not number of threads. were run with the optimal number of threads for each confitjoma

8.1 Improving Locality of Shared Data and Locks ACMP (area budget is 32 and number of threads set to the
Sridharan et al. [39] propose a thread scheduling algorithm optimal number for each system). TLR reduces average exe-
for SMP machines to increase shared data locality in criti- cution time by 6% while ACS reduces it by 23%. In applica-
cal sections. When a thread encounters a critical sectien, t tions where critical sections often access disjoint datg (e
operating system migrates the thread to the processor thapuzzle, where the critical section protects a heap to which
has the shared data. This scheme increases cache locality aiccesses are disjoint), TLR provides large performance im-
shared data but incurs the substantial overhead of migratin provements. However, in workloads where critical sections
complete thread state on every critical section. ACS doés no conflict with each other (e.gis, where each instance of
migrate thread contexts and therefore does not need OS inthe critical section updates all elements of a shared array)
tervention. Instead, it sends a CSCALL request with mini- TLR degrades performance. ACS outperforms TLR on all
mal data to the core executing the critical sections. More- benchmarks, and by 18% on average because ACS acceler-
over, ACS accelerates critical section execution, a benefitates many critical sections, whether or not they have data
unavailable in [39]. Trancoso and Torrellas [46] and Ran- conflicts, thereby reducing serialization.

ganathan et al. [35] improve locality in critical sectiors u

ing software prefetching. These techniques can be combined
with ACS for improved performance.

Several primitives (e.g., Test&Test&Set, Compare&Swap)
were proposed to efficiently implement lock acquire and
release operations [10]. Recent research has also studied
hardware and software techniques to reduce the overhead of
lock operations [16, 5]. The Niagara-2 processor improves
cache locality of locks by executing the “lock acquire” in-
structions [13] remotely at the cache bank where the lock
is resident. However, none of these techniques increase the
speed of critical section processing or the locality of skar

data. Figure 13. ACS vs. TLR performance.

Exec. Time Norm. to ACMP
— |

8.2 Hiding the Latency of Critical Sections

Several proposals try to hide the latency of a critical sec- .
tion by executing it speculatively with other instancesta t ~ 8:3 _Asymmetric CMPs

same critical sectioas long as they do not have data con- CMPs with heterogeneous cores have been proposed to re-
flicts with each otherExamples include transactional mem- duce power consumption and improve performance. Morad
ory (TM) [14], speculative lock elision (SLE) [33], trans- €t al. [30] proposed an analytic model of a CMP with one
actional lock removal (TLR) [34], and speculative synchro- large core and multiple small, low-performance cores. The
nization (SS) [29]. SLE is a hardware technique that allows large core would be used to accelerate the serial bottleneck
multiple threads to execute the critical sections speivalgt ~ Suleman et al. [41] show that the ACMP model can im-
without acquiring the lock. If a data conflict is detectedyon ~ Prove programmer efficiency. Hill at al. [15] further show
one thread is aliowed to complete the critical section while that there is potential in improving the performance of the
the remaining threads roll back to the beginning of the crit- Serial part of an application. Kumar et al. [24] use hetero-
ical section and try again. TLR improves upon SLE by pro- geneous cores to reduce power and increase throughput for
viding a timestamp-based conflict resolution scheme that en Multi-programmed workloads. We use the ACMP to accel-
ables lock-free execution. ACS is partly orthogonal to ehes erate critical sections as well as the serial part in multi-
approaches due to three major reasons: threaded workloads. . .

1. TLR/SLE/SS/TM improve performance when the concur- __IPek et al. [21] propose Core Fusion, where multiple
rently executed instances of the critical sections do noeha Small cores can be combined, i.e. fused, to form a powerful

data conflicts with each other. In contrast, ACS improves core at runtime. They apply Core Fusion to speed up the
performance even for critical section instances thathave d ~ S€fial portion of programs. Our technique can be combined
conflicts. If data conflicts are frequent, TLR/SLE/SS/TM can With Core Fusion. A powerful core can be built by fusing
d_egra?e”pgrformar]ce by ro”inghbact:)k the $pec¥laﬁive execlu_mulnple small cores to accelerate critical sections.

tion of all but one instance to the beginning of the critica

section. In contrast, ACS’s performance is not affected by 8.4 Other Related Work
data conflicts in critical sections.

2. TLR/SLE/SS/TM amortize critical section latency by con-
currently executing non-conflicting critical sectionst they

The idea of executing critical sections remotely on a differ
ent processor resembles fRemote Procedure Call (RP(3]
mechanism used in network programming to ease the con-

do not reduce the latency of each critical section. In catra ;tlr:)ugl%n %feg'stg'bemgg’ tg“?é}%sn%rvgr b?gsf.g egpggoﬁl?n ote
ACS reduces the execufion latency of critical sections. IS u X uCS hl "u utl |

3. TLR/SLE/SS/TM do not improve locality of lock and (S€rver) computers. in ACS, the small cores are analogous to
shared data. In contrast, as Section 7.2 showed, ACS im-the client,” and the large core is analogous to the “server

: ; .~ Where the critical sections are remotely executed. ACS has
girr%/lisclggﬁlel'fy oflock and shared data by keeping them in a two major differences from RPC. First, ACS executes “re-

. mote” critical section calls within the same address space
urewle3 %%rgvegr?héhgxggafgérr?%rxg gff é?]CASCﬂF(’j a-lruLg?‘r']e??ed and the same chip as the callee, thereby enabling the acceler

, 10 L ? ated execution of shared-memory multi-threaded programs.
with TLR* and the execution time of ACS normalized to Second, ACS's purpose is to accelerate shared-memory par-

allel programs and hence reduce the burden of parallel pro-
10T|R was implemented as described in [34]. We added a 12§-bnffer gramming, whereas RPC'’s purpose is to ease network pro-
to each small core to handle speculative memory updates. gramming.

9. Conclusion

We proposedAccelerated Critical Sections (AC$%) im-
prove the performance and scalability of multi-threaded ap
plications. ACS accelerates execution of critical sectibp
executing them on the large core of an Asymmetric CMP
(ACMP). Our evaluation with 12 critical section intensive

[24] R. Kumar et al. Heterogeneous chip multiprocesstEEE
Computer 38(11), 2005.

[25] L. Lamport. A new solution of Dijkstra’s concurrent
programming problemCACM, 17(8):453—-455, August 1974.

[26] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. It5SCA pages 241-251, 1997.

workloads shows that ACS reduces the average execution27] E. L. Lawler and D. E. Wood. Branch-and-bound methods: A

time by 34% compared to an equal-area baseline with 32-

survey. Operations Researcli4(4):699-719, 1966.

core symmetric CMP and by 23% compared to an equal-area[2g] C. Liao et al. OpenUH: an optimizing, portable OpenMP

ACMP. Furthermore, ACS improves the scalability of 7 of
the 12 workloads. As such, ACS is a promising approach to
overcome the performance bottlenecks introduced by atitic
sections.

Acknowledgments

We thank Khubaib and Rustam Miftakhutdinov for their
help. Special thanks to Eric Sprangle, Anwar Rohillah, Hye-

compiler. Concurr. Comput. : Pract. ExpeR007.

[29] J. F. Martinez and J. Torrellas. Speculative syncization:
applying thread-level speculation to explicitly parakeglpli-
cations. INASPLOS-X2002.

[30] T. Morad et al. Performance, power efficiency and saktgb
of asymmetric cluster chip multiprocessof3AL, 2006.

[31] R. Narayanan et al. MineBench: A Benchmark Suite foreDat
Mining Workloads. InlISWC 2006.

soon Kim, and Jose Joao for helpful technical discussions[32] Y. Nishitani et al. Implementation and evaluation ofédMP

and the Cockrell Foundation, IBM, Intel, and Microsoft for
their generous support.

References
[1] MySQL database engine 5.0.1. http://www.mysql.con)&0

[2] O{:)ening Tables scalability in MySQL. MySQL Performance
Blog. http://www.mysqlperformanceblog.com/2006/11/21
opening-tables-scalability, 2006.

[3] SQLite database engine version 3.5.8. 2008.

[4] SysBench: a system performance benchmark version.0.4.8
http://sysbench.sourceforge.net, 2008.

[5] S. Adve et al. Replacing locks by higher-level primitive
Technical Report TR94-237, Rice University, 1994.

[6] G. M. Amdahl. Validity of the single processor approach t
achieving large scale computing capabilitiesARIPS 1967.

[7] D. H. Bailey et al. NAS parallel benchmarks. TechnicapBet
Tech. Rep. RNR-94-007, NASA Ames Research Center, 1994.

[8] A.D. Birrelland B. J. Nelson. Implementing remote prdoee
calls. ACM Trans. Comput. SysR(1):39-59, 1984.

[9] C. Brunschen et al. OdinMP/CCp - a portable implemeantati
of OpenMP for C.Concurrency: Prac. and Exp2000.

[10] D. Culler et al. Parallel Computer Architecture: A Hard-
ware/Software ApproaciMorgan Kaufmann, 1998.

[11] A. J. Dorta et al. The OpenMP source code repository. In
Euromicrg 2005.

[12] S. Gochman et al. The Intel Pentium M processor: Microar
chitecture and performance. 7(2):21-36, May 2003.

[13] G. Grohoski. Distinguished Engineer, Sun Microsyssem
Personal communication, November 2007.

[14] M. Herlihy and J. Moss. Transactional memory: arcHiteal
support for lock-free data structures. IBCA-20Q 1993.

[15] M. Hill and M. Marty. Amdahl’s law in the multicore era.
IEEE Computer41(7), 2008.

[16] R. Hoffmann et al. Using hardware operations to redbee t
synchronization overhead of task podl€PP, 2004.

[17] Intel. Prescott New Instructions Software Dev. Gui@e04.
[18] Intel. Source code for Intel threading building blocks

[19] Intel. Pentium Processor User's Manual Volume 1: Pentium
Processor Data BogkL993.

[20] Intel. IA-32 Intel Architecture Software Dev. GuideQ@8.

[21] E. Ipek et al. Core fusion: accommodating software iifg
in chip multiprocessors. II5CA-34 2007.

[22] P. Kongetira et al. Niagara: A 32-Way Multithreaded $RA
ProcessorlEEE Micro, 25(2):21—-29, 2005.

[23] H. Kredel. Source code for traveling salesman problesp)(
http://krum.rz.uni-mannheim.de/ba-pp-2007/java/intaml.

for Hitachi SR8000. INSHPC-3 2000.

[33] R. Rajwar and J. Goodman. Speculative lock elisionifing
highly concurrent multithreaded execution. NMCRO-34
001.
[34] R. Rajwar and J. R. Goodman. Transactional lock-free
execution of lock-based programs. ASPLOS-X2002.

[35] P. Ranganathan et al. The interaction of software pchfieg
with ILP processors in shared-memory systemslSGA-24
1997.

[36] C. Rossbach et al. TxLinux: using and managing hardware
transactional memory in an operating system.SIDSP’07
2007.

[37] M. Sato et al. Design of OpenMP compiler for an SMP
cluster. INEWOMP Sept. 1999.

[38] L. Seiler et al. Larrabee: a many-core x86 architecfore
visual computing ACM Trans. Graph.2008.

[39] S. Sridharan et al. Thread migration to improve synoira-
tion performance. In Workshop on OSIHPA, 2006.

[40] The Standard Performance Evaluation Corporativelcome
to SPEC http://www.specbench.org/.

[41] M. Suleman et al. ACMP: Balancing Hardware Efficiencgan
Programmer Efficiency. Technical Report TR-HPS-2007-001,
2007.

[42] M. Suleman et al. An Asymmetric Multi-core Architeceur
for Accelerating Critical Sections. Technical Report TR-&+
2008-003, 2008.

[43] M. Suleman et al. Feedback-driven threading: powécieht
and high-performance execution of multi-threaded wortttoa
on CMPs. INnASPLOS XI1] 2008.

[44] J. M. Tendler et al. POWER4 system microarchitectliBi
Journal of Research and Developmet(1):5-26, 2002.
[45] Tornado Web Server. http://tornado.sourceforgé.net

[46] P. Trancoso and J. Torrellas. The impact of speeding up
critical sections with data prefetching and forwarding. In
ICPP, 1996.

[47] M. Tremblay et al. A Third-Generation 65nm 16-Core 32-
Thread Plus 32-Scout-Thread CMT SPARC Processor. In
ISSCG 2008.

[48] D. M. Tullsen et al. Simultaneous multithreading: Maui-
ing on-chip parallelism. INSCA-22 1995.

[49] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner.
Scalable high speed ip routing lookups.SHKGCOMM 1997.

[50] Wikipedia. Fifteen puzzle. http://en.wikipedia.bngki/-
Fifteenpuzzle.

[51] S. C. Woo et al. The SPLASH-2 programs: Characteriratio
and methodological considerations.|8CA-22 1995.

[52] P. Zhao and J. N. Amaral. Ablego: a function outlininglan
partial inlining framework. Softw. Pract. Exper37(5):465—
491, 2007.

