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1.0 INTRODUCTION 

 

In this project, we plan to implement a Direct Memory Access (DMA) module. DMA 

permits the peripheral devices to transfer data directly to or from memory without having 

each byte handled by the processor. Thus DMA enables more efficient use of interrupts, 

increases data throughput, and potentially reduces hardware costs by eliminating the need 

for peripheral-specific FIFO buffers [1]. This makes DMA an important module for any 

System-on-a-Chip as it can increase performance by a large factor. In this project, we will 

implement a DMA controller and interface it with the ARM processor and the AMBA 

bus we used in Lab2. We will then evaluate the gain in performance of our complete 

SOC system with the DMA. We will do this by running a very data intensive test 

program which has a high frequency of memory accesses. 

 

2.0 OVERVIEW 

 

We programmed the DMA controller module in SystemC. The DMA controller has 

specific ports to communicate with the processor, peripherals, and the bus. This DMA 

controller has been tested by interfacing it with ARM processor and the AMBA bus used 

Lab2. For our peripheral, we have developed a module i_DISK. In our setup, the DMA 

facilitates the communication between the i_DISK and i_RAM (a block level picture of 

the system is shown later).  

 

The way we developed the disk, one of the input parameters to the disk is the disk 

latency. We can adjust this parameter to change the nature of a program from compute 

bound to disk bound and vice-versa. We evaluate the performance of our DMA controller 

over various different disk latencies (shown later).  

 

In this report, we will first provide a general description of a DMA in Section 3 followed 

by details of our implementation in Section 4. Section 5 will discuss the performance 

evaluation methodology. We will present the results from these methodologies in Section 



6. We will end the report with the conclusion and future work with sections 7 and 8 

respectively. 

 

3.0 GENERAL DESCRIPTION OF A DMA 

 

Direct Memory Access (DMA) is a well know technique, whereby an I/O device gets 

access to memory directly without having the microprocessor in between. By this direct 

path, a word input through a device, can be stored in memory, or a word from memory 

can be output through a device, on the device’s request. It is possible for a word in 

memory to be moved to another place in memory using direct memory access. 

 

DMA is one of the fastest ways to input data to a buffer. This technique requires 

considerably more hardware and is considerably faster than if it were done through 

software. A DMA channel is the additional logic needed to move data to or from an I/O 

device. 

 

4.0 FUNCTIONAL SPECIFICATIONS  

In our implementation, the DMA channel is the AMBA bus. The system level block 

diagram is shown in Figure 1.  

 
The following is a description of how our DMA controller works [2]: 



 

1) The CPU initiates the transfer by supplying the following data to the DMA 

controller: the memory address of the source and destination of the data to be 

transferred, and the number of bytes to transfer. The CPU does so by writing this 

data to the DMA internal registers (shown later).   

 

2) The DMA controller starts the operation on the device and requests the bus. 

Once the bus is granted to DMA, it then waits on the Source Device to provide 

data. When the data is available, it transfers the data to the destination. The DMA 

controller supplies the memory address for reads and writes. If the request 

requires more than one transfer on the bus, the DMA unit generates the next 

memory address and initiates the next transfer. 

 

3) Once the transfer is complete, the DMA controller interrupts the processor and 

notifies it if there were any failures during the transfer. 

 

Note that the processor has to wait for the DMA to finish the transfer before it can supply 

it with the next transfer. Therefore the processor has to keep track of transfer requests and 

transfer acknowledgments. This is accomplished using a dedicated control port 

connecting the DMA to the AMBA Bus and thus to the processor.  

 

5.0 OUR IMPLEMENTATION 

Hardware 

In this project we used the tools we learned in this class to complete this project. First, we 

used The Platform Creator from Coware to draw a system level diagram (Figure 2). We 

developed the following two hardware modules in SystemC 

1. A DMA controller ( block level diagram shown later as Figure 3) 

2. A disk  

 

 

 



 
 

 

 

Figure 2. PCT diagram 

Figure 3. Block level 
diagram of DMA 
Controller.  
 
The Internal Register 
File can be seen 



ARM Core Software 

Another important task in this project was to develop a program that can be used as a test 

program. We wanted this program to be a realistic application of the DMA. We provide a 

description of this program in the next section.  

 

Interface 

We used the AMBA API to interface the modules with the existing system. There were 

two master ports and one slave port that we added to the AMBA bus as a part of the 

DMA controller. Similarly a Slave port was also added to the AMBA bus for the disk. 

The interfacing was done using memory-mapped I/O. The following table shows the 

memory map table of the system. The DMA port shown here is a slave that is used by the 

processor as the control port to program the DMA controller for transfers.  

 

Module Memory Map 

i_ROM 0x0 

i_RAM 0x4000000 

i_disk 0x40002000 

i_dma 0x40001000 
 

Another important portion of the interfacing involved the arbitration of the bus between 

the 4  AHB initiators. (two from processor and two from the DMA). We used a fixed 

priority arbiter from the AMBA library to handle this issue. The fixed priorities were 

assigned by us as the program specifications. The following table shows the priorities 

assigned to each AMBA initiator in the system. 

 

 

 

 

 



Module Priority 

IAHB 2 

DAHB 3 

read_dma master 1 

write_dma master 0 
 

 

6.0 PERFORMANCE EVALUATION 

 

To evaluate the performance gains of the DMA module we developed a data intensive 

test program with a high frequency of memory accesses. The test program is basically a 

small Kernel that computes the dot product of two vectors A and B. Both vectors are 

stored in the disk and the processor first has to retrieve them and put hem into the RAM 

before it can start performing the computation. Since both vectors are very large, the 

processor brings them into the RAM one part at a time. Each part is referred to as a page. 

This is basically to mimic the working of a complete operating system with the Virtual 

memory translation enabled. The pages are brought into the RAM on-demand. This 

demand driven process allows the processor to work in the foreground while the DMA 

can transfer the page in the background.  

 

We first run this program without the DMA and count the total number of cycles the 

program takes to execute. We then repeat the experiment with the DMA. In this version 

the processor instructs the DMA to load the subsequent pages of the vectors while it 

works on the current page. The processor keeps track of which pages have been moved 

into memory using a scoreboarding technique to ensure that it only computes valid data. 

That is, it makes sure the page has been transferred before it tries to use its’ values. Each 

time the DMA interrupts the processor signaling that a transfer has been complete; the 

processor requests it to fetch the following page. This way the processor works on the 



data that has already been transferred into the memory while the DMA fetches the rest of 

the data. 

 

We performed this experiment several times while varying the disk latency. We wanted 

to see how the disk latency affects the performance boost of the DMA. Finally, we 

measured the number of cycles the processor sits in an idle state waiting for the data. This 

analysis was done for a latency of zero cycles. 

 

7.0 RESULTS 

 

The result from our experiments with varying Disk Latencies is presented in Table 1. 

Disk Access Latency 
(cycles) 

Total Number of Cycles 
without DMA 

Total Number of Cycles 
with DMA 

Percentage 
Improvement 

0 1,755,109 656,865 62.57% 

10 1,919,025 823,095 57.11% 

100 3,393,585 2,297,655 32.29% 

1,000 18,139,185 17,043,255 6.04% 

10,000 165,595,185 164,499,255 0.66% 
        

 Table 1. Results of varying Disk Latency  
 

 

 

 

The total number of cycles for the disk latencies 0 to 1000 is presented in the Chart 1. the 

Latency value of 10000 has been left out due to scaling issues. 
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As we can see from this chart, the number of cycles with the DMA is always less than the 

number of cycles without the DMA. Chart 2 presents a closer look at the difference in 

number of cycles. 

 



Chart2 Percentage Improvement with varying Disk Latencies
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As we can note from this chart, the percentage improvement shrinks as the latency gets 

bigger. This was to be expected because the disk latency become so large that the 

computation time become negligible and the total number of cycles completely depends 

on the disk latency. As a result, the gains from the DMA are minimal. 

 

Finally, Table 2 presents the percentage of processor idle cycles for a latency of zero 

cycles. As you can see, the processor spends the majority of its cycles in the idle state 

without the DMA. While with the DMA, it is utilized much more efficiently 

 

 Total Number of Cycles Number of Cycles 
Processor is Idle 

Percentage of 
Cycles Idle 

Without DMA 1,755,109 1,148,240 65.42% 

With DMA 656,865 32,528 4.95% 

 Table 2. Percentage of Processor Idle Cycles for Zero Latency 
 

  



8.0 CONCLUSION 

 

In conclusion we successfully implemented a DMA module in SystemC. We successfully 

demonstrated the gains in both processor utilization and total number cycles with the use 

of a DMA controller. It is important to note that these gains can only be realized if the 

application is data intensive and has very high frequency of memory accesses. An 

important result that we found was that the DMA’s effectiveness diminishes as the Disk 

Latency increases.  

 

9.0 FUTURE WORKS 

 

If we had more time we would have liked to do an analysis of the bus utilization with and 

without a DMA. It will be interesting to see how much of a bottleneck the DMA was and 

to measure the performance losses due to bus congestion. 

  

The next step after this project is to design and implement the system with a 2 port 

memory for an extremely high performance system. The results can then be used to see if 

the more expensive 2 port memory is worth the performance tradeoff.  
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