

LAB 3 Report

Implementation of a Direct
Memory Access Controller

by

Aater Suleman

suleman@ece.utexas.edu
Tauseef Rab

tauseef@ece.utexas.edu
Saad Godil

godil@ece.utexas.edu

1.0 INTRODUCTION

In this project, we plan to implement a Direct Memory Access (DMA) module. DMA

permits the peripheral devices to transfer data directly to or from memory without having

each byte handled by the processor. Thus DMA enables more efficient use of interrupts,

increases data throughput, and potentially reduces hardware costs by eliminating the need

for peripheral-specific FIFO buffers [1]. This makes DMA an important module for any

System-on-a-Chip as it can increase performance by a large factor. In this project, we will

implement a DMA controller and interface it with the ARM processor and the AMBA

bus we used in Lab2. We will then evaluate the gain in performance of our complete

SOC system with the DMA. We will do this by running a very data intensive test

program which has a high frequency of memory accesses.

2.0 OVERVIEW

We programmed the DMA controller module in SystemC. The DMA controller has

specific ports to communicate with the processor, peripherals, and the bus. This DMA

controller has been tested by interfacing it with ARM processor and the AMBA bus used

Lab2. For our peripheral, we have developed a module i_DISK. In our setup, the DMA

facilitates the communication between the i_DISK and i_RAM (a block level picture of

the system is shown later).

The way we developed the disk, one of the input parameters to the disk is the disk

latency. We can adjust this parameter to change the nature of a program from compute

bound to disk bound and vice-versa. We evaluate the performance of our DMA controller

over various different disk latencies (shown later).

In this report, we will first provide a general description of a DMA in Section 3 followed

by details of our implementation in Section 4. Section 5 will discuss the performance

evaluation methodology. We will present the results from these methodologies in Section

6. We will end the report with the conclusion and future work with sections 7 and 8

respectively.

3.0 GENERAL DESCRIPTION OF A DMA

Direct Memory Access (DMA) is a well know technique, whereby an I/O device gets

access to memory directly without having the microprocessor in between. By this direct

path, a word input through a device, can be stored in memory, or a word from memory

can be output through a device, on the device’s request. It is possible for a word in

memory to be moved to another place in memory using direct memory access.

DMA is one of the fastest ways to input data to a buffer. This technique requires

considerably more hardware and is considerably faster than if it were done through

software. A DMA channel is the additional logic needed to move data to or from an I/O

device.

4.0 FUNCTIONAL SPECIFICATIONS

In our implementation, the DMA channel is the AMBA bus. The system level block

diagram is shown in Figure 1.

The following is a description of how our DMA controller works [2]:

1) The CPU initiates the transfer by supplying the following data to the DMA

controller: the memory address of the source and destination of the data to be

transferred, and the number of bytes to transfer. The CPU does so by writing this

data to the DMA internal registers (shown later).

2) The DMA controller starts the operation on the device and requests the bus.

Once the bus is granted to DMA, it then waits on the Source Device to provide

data. When the data is available, it transfers the data to the destination. The DMA

controller supplies the memory address for reads and writes. If the request

requires more than one transfer on the bus, the DMA unit generates the next

memory address and initiates the next transfer.

3) Once the transfer is complete, the DMA controller interrupts the processor and

notifies it if there were any failures during the transfer.

Note that the processor has to wait for the DMA to finish the transfer before it can supply

it with the next transfer. Therefore the processor has to keep track of transfer requests and

transfer acknowledgments. This is accomplished using a dedicated control port

connecting the DMA to the AMBA Bus and thus to the processor.

5.0 OUR IMPLEMENTATION

Hardware

In this project we used the tools we learned in this class to complete this project. First, we

used The Platform Creator from Coware to draw a system level diagram (Figure 2). We

developed the following two hardware modules in SystemC

1. A DMA controller (block level diagram shown later as Figure 3)

2. A disk

Figure 2. PCT diagram

Figure 3. Block level
diagram of DMA
Controller.

The Internal Register
File can be seen

ARM Core Software

Another important task in this project was to develop a program that can be used as a test

program. We wanted this program to be a realistic application of the DMA. We provide a

description of this program in the next section.

Interface

We used the AMBA API to interface the modules with the existing system. There were

two master ports and one slave port that we added to the AMBA bus as a part of the

DMA controller. Similarly a Slave port was also added to the AMBA bus for the disk.

The interfacing was done using memory-mapped I/O. The following table shows the

memory map table of the system. The DMA port shown here is a slave that is used by the

processor as the control port to program the DMA controller for transfers.

Module Memory Map

i_ROM 0x0

i_RAM 0x4000000

i_disk 0x40002000

i_dma 0x40001000

Another important portion of the interfacing involved the arbitration of the bus between

the 4 AHB initiators. (two from processor and two from the DMA). We used a fixed

priority arbiter from the AMBA library to handle this issue. The fixed priorities were

assigned by us as the program specifications. The following table shows the priorities

assigned to each AMBA initiator in the system.

Module Priority

IAHB 2

DAHB 3

read_dma master 1

write_dma master 0

6.0 PERFORMANCE EVALUATION

To evaluate the performance gains of the DMA module we developed a data intensive

test program with a high frequency of memory accesses. The test program is basically a

small Kernel that computes the dot product of two vectors A and B. Both vectors are

stored in the disk and the processor first has to retrieve them and put hem into the RAM

before it can start performing the computation. Since both vectors are very large, the

processor brings them into the RAM one part at a time. Each part is referred to as a page.

This is basically to mimic the working of a complete operating system with the Virtual

memory translation enabled. The pages are brought into the RAM on-demand. This

demand driven process allows the processor to work in the foreground while the DMA

can transfer the page in the background.

We first run this program without the DMA and count the total number of cycles the

program takes to execute. We then repeat the experiment with the DMA. In this version

the processor instructs the DMA to load the subsequent pages of the vectors while it

works on the current page. The processor keeps track of which pages have been moved

into memory using a scoreboarding technique to ensure that it only computes valid data.

That is, it makes sure the page has been transferred before it tries to use its’ values. Each

time the DMA interrupts the processor signaling that a transfer has been complete; the

processor requests it to fetch the following page. This way the processor works on the

data that has already been transferred into the memory while the DMA fetches the rest of

the data.

We performed this experiment several times while varying the disk latency. We wanted

to see how the disk latency affects the performance boost of the DMA. Finally, we

measured the number of cycles the processor sits in an idle state waiting for the data. This

analysis was done for a latency of zero cycles.

7.0 RESULTS

The result from our experiments with varying Disk Latencies is presented in Table 1.

Disk Access Latency
(cycles)

Total Number of Cycles
without DMA

Total Number of Cycles
with DMA

Percentage
Improvement

0 1,755,109 656,865 62.57%

10 1,919,025 823,095 57.11%

100 3,393,585 2,297,655 32.29%

1,000 18,139,185 17,043,255 6.04%

10,000 165,595,185 164,499,255 0.66%

 Table 1. Results of varying Disk Latency

The total number of cycles for the disk latencies 0 to 1000 is presented in the Chart 1. the

Latency value of 10000 has been left out due to scaling issues.

0
10

100
1,000

Without DMA

With DMA0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

18,000,000

20,000,000

Disk Latency (cycles)

Total Number of Cycles

Chart1 Total Number of Cycles with Varying Latencies

Without DMA
With DMA

As we can see from this chart, the number of cycles with the DMA is always less than the

number of cycles without the DMA. Chart 2 presents a closer look at the difference in

number of cycles.

Chart2 Percentage Improvement with varying Disk Latencies

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

0 10 100 1,000 10,000

Disk Latency

Pe
rc

en
ta

ge
 Im

pr
ov

em
en

t

Percentage Improvement

As we can note from this chart, the percentage improvement shrinks as the latency gets

bigger. This was to be expected because the disk latency become so large that the

computation time become negligible and the total number of cycles completely depends

on the disk latency. As a result, the gains from the DMA are minimal.

Finally, Table 2 presents the percentage of processor idle cycles for a latency of zero

cycles. As you can see, the processor spends the majority of its cycles in the idle state

without the DMA. While with the DMA, it is utilized much more efficiently

 Total Number of Cycles Number of Cycles
Processor is Idle

Percentage of
Cycles Idle

Without DMA 1,755,109 1,148,240 65.42%

With DMA 656,865 32,528 4.95%

 Table 2. Percentage of Processor Idle Cycles for Zero Latency

8.0 CONCLUSION

In conclusion we successfully implemented a DMA module in SystemC. We successfully

demonstrated the gains in both processor utilization and total number cycles with the use

of a DMA controller. It is important to note that these gains can only be realized if the

application is data intensive and has very high frequency of memory accesses. An

important result that we found was that the DMA’s effectiveness diminishes as the Disk

Latency increases.

9.0 FUTURE WORKS

If we had more time we would have liked to do an analysis of the bus utilization with and

without a DMA. It will be interesting to see how much of a bottleneck the DMA was and

to measure the performance losses due to bus congestion.

The next step after this project is to design and implement the system with a 2 port

memory for an extremely high performance system. The results can then be used to see if

the more expensive 2 port memory is worth the performance tradeoff.

10.0 REFERANCES

[1] http://www.embedded.com/showarticle.jhtml?articleid=15300200, April 2005.

[2] John L. Hennessy and David A. Patterson. Computer organization and design (2nd ed.): the

hardware/software interface. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.

[3] G. Jack Lipovski, Embedded Microcontroller Interfacing for M.CORE Systems. Academic Press,

2000

[4] AMBA Bus manual provided at

coware1.ece.utexas.edu:/usr/local/packages/coware/convergencesc/documentation/AMBA_BL

[5] ARM926EJS manual provided with the coware documentation at:

coware1.ece.utexas.edu:/usr/local/packages/coware/convergencesc/documentation/ARM926EJS_
AHB_PSP.pdf

[6] ARM DMA specifications provided in the ARM Coware library documentation

