
An Evaluation of Snoop-Based Cache Coherence Protocols

Linda Bigelow Veynu Narasiman Aater Suleman

ECE Department
The University of Texas at Austin

{bigelow, narasima, suleman}@ece.utexas.edu

I. INTRODUCTION

A common design for multiprocessor systems is to have a
small or moderate number of processors each with symmetric
access to a global main memory. Such systems are known as
Symmetric Multiprocessors, or SMPs. All of the processors
are connected to each other as well as to main memory
through the same interconnect, usually a shared bus.

In such a system, when a certain memory location is read,
we expect that the value returned is the latest value written
to that location. This property is definitely maintained in
a uniprocessor system. However, in an SMP, where each
processor has its own cache, special steps have to be taken
to ensure that this is true. For example, consider the situation
where two different processors, A and B, are reading from
the same location in memory, and therefore, both processors
have a copy of that data in their respective cache. As long as
both processors are just reading the data, everything should
be fine. However, if processor A wishes to write to that
location, processor B needs to somehow be aware of that
write; otherwise, the next time processor B reads from that
location, it could read stale data. Therefore, in SMPs where
each processor has its own cache, there is a need to keep the
caches coherent. Mechanisms for keeping caches coherent
in a multiprocessor system are known as cache coherence
protocols.

One solution to the cache coherence problem is to allow
processors to be able to observe, or snoop, the reads and
writes of other processors when necessary. Solutions that
employ such a mechanism are known as snoop-based cache
coherence protocols. These protocols can only be used in
systems where multiple processors are connected via a shared
bus. Therefore, snoop-based cache coherence protocols are
ideal candidates for solutions to the cache coherence problem
in SMPs.

Despite solving the cache coherence problem, snoop-based
cache coherence protocols can adversely affect performance
in multiprocessor systems. For example, in uniprocessor
systems, when a store is issued to a location that is present
in the cache, in general, the write can proceed without any
delays. However, in multiprocessor systems, even though the
block may be present in the processor’s cache, it may need
to broadcast the write on the bus so that other processors
can snoop the write and take appropriate action, which can
significantly hurt performance. Therefore, the best snoop-

based cache coherence protocol is one that not only maintains
coherence, but does so with minimal performance degrada-
tion.

In the following sections, we will first describe some of
the existing snoop-based cache coherence protocols, explain
their deficiencies, and discuss solutions and optimizations
that have been proposed to improve the performance of
these protocols. Next, we will discuss the hardware imple-
mentation considerations associated with snoop-based cache
coherence protocols. We will highlight the differences among
implementations of the same coherence protocol, as well
as differences required across different coherence protocols.
Lastly, we will evaluate the performance of several different
cache coherence protocols using real parallel applications run
on a multiprocessor simulation model.

II. SURVEY OF EXISTING CACHE COHERENCE
PROTOCOLS

Over the years, several cache coherence protocols have
been proposed in the literature. In an early work by Archibald
et al. in [1], six different coherence protocols were described,
and their performance differences were compared using a
multiprocessor simulation model. These six coherence proto-
cols can be classified into two main categories: invalidation-
based protocols, and update-based protocols. Invalidation-
based protocols invalidate all other cached copies of the
data on a write, whereas update-based protocols broadcast
the write so that other cached copies can be updated. The
four invalidation-based protocols studied in this work were
Synapse, Goodman’s Write-Once, Berkeley-Ownership, and
Illinois. The two update-based protocols were Firefly and
Dragon.

A. Invalidation-Based Coherence Protocols

Before going into the details of each of the invalidation-
based protocols, a description of one of the simplest
invalidation-based protocols, the MSI protocol, is necessary.
The other protocols will then be discussed, and their differ-
ences with the MSI protocol will be highlighted.

Figure 1 on the next page graphically depicts the MSI pro-
tocol. There are three states in this protocol: M (Modified), S
(Shared), and I (Invalid). A processor having a cache block
in the Modified state implies that it is the only processor
that has this block in its cache and that the data is not
consistent with memory. The Shared state implies that the

Derek
Note
should be fine? When is it not fine?

Derek
Note
Grade:

Presentation: 10
Overview/understanding of Current Work: 10
Novelty/evaluation: 8
Writing clarity: 10

Would have liked to have seen some update protocols as well. Would have been nice to have more than 2 processors (but I understand your constraints.)

Adjusted for 3 person group.

Derek
Note
Presentation was the smoothest of the class. Well presented, well organized, well paced.

Fig. 1. MSI state diagram.

data is in the cache, but may also be present in the caches
of other processors. The data is consistent with memory for
the Shared state. The Invalid state implies that the block is
not in the cache.

In this protocol, there are four possible bus transactions:
• Bus Read (BR): Occurs when a processor wishes to read

from a cache block that is not in its cache. The block
must be transferred into the cache from memory.

• Bus Write (BW): Occurs when a processor wishes to
write to a cache block that is not in its cache. The block
must be transferred into the cache from memory.

• Bus Invalidate (BI): Occurs when a processor wishes
to write to a cache block that is in its cache, but that
block may be present (shared) in the caches of other
processors. The block need not be transferred from
memory. This is also commonly called a Bus Upgrade.

• Write Back (WB): Occurs when a modified cache block
needs to be written back to memory.

There are five possible actions that may cause a state
transition:

• Processor Read (PR): A processor issues a load instruc-
tion.

• Processor Write (PW): A processor issues a store in-
struction.

• Snoop Bus Read (SBR): A processor observes a Bus
Read operation.

• Snoop Bus Write (SBW): A processor observes a Bus
Write operation.

• Snoop Bus Invalidate (SBI): A processor observes a Bus
Invalidate operation.

In Figure 1, there is an arrow from the Invalid state to the
Modified state labeled “PW/BW.” This means that if a cache
block is in the Invalid state and then the processor issues a
store (PW) to that block, the Bus Write (BW) bus transaction
will occur, and the local state of the cache block will be
changed to Modified. Likewise, other processors will snoop
the Bus Write bus transaction, and respond appropriately. If
another processor has that block in the Shared state, it would

simply change its state to Invalid. However, if a processor
had the block in the Modified state, in addition to changing
the state to Invalid, it would also have to write the block back
to main memory. These two transitions are also depicted in
the figure. Note that only events causing state transitions or
bus operations are depicted in Figure 1. For example, if a
cache block is in the Shared state and the processor snoops
a Bus Read transaction or issues a load instruction, neither
a bus transaction nor a state change is necessary. In order to
simplify the figure, these events are not shown.

Notice that if a processor issues a store instruction to a
cache block that is in the Shared state, a Bus Invalidate
transaction occurs. Other processors that also had that block
in the Shared state would snoop that Bus Invalidate, and
change the state to Invalid. The writing processor would then
change the state to Modified and perform the write. This
behavior is at the soul of all invalidation-based protocols.

Lastly, when a block is chosen as a victim and needs to be
evicted from the cache, a Write Back must be done only if
the cache block was in the Modified state. In the following
subsections, we give a description of the other invalidation-
based protocols in relation to the MSI protocol.

1) Synapse: The Synapse protocol is actually a simplifi-
cation of the MSI protocol described above. This protocol
also has three states: Invalid, Valid (analogous to Shared in
MSI), and Dirty (analogous to Modified in MSI). There are
two main differences between Synapse and MSI. One is the
transition that occurs when a Bus Read is snooped in the
Modified state. Both protocols call for a Write Back, but in
MSI, the state is changed to Shared, whereas in Synapse,
the state is changed to Invalid. The other difference is that
in Synapse, there is no Bus Invalidation transaction, there is
only a Bus Write. Therefore when a block is in the Valid
state and a store is issued to that block, a Bus Write, instead
of a Bus Invalidate occurs, and a transfer from memory is
initiated even though it is unnecessary. This difference will
definitely hurt performance since the writing processor will
have to wait for the entire cache block to be transferred
before it can proceed. In addition, unnecessary bus traffic
is created.

2) Goodman’s Write-Once: Goodman’s Write-Once pro-
tocol introduces a fourth state called the Reserved state.
It also replaces the Bus Invalidate transaction of the MSI
protocol with a Write Through transaction. In a Write
Through transaction, the bus is acquired, and a word is
written through to main memory. The only time a Write
Through is initiated is when a cache block is in the Valid
state and the processor issues a store to that block. The
writing processor transitions to the Reserved State. All other
processors that snoop the Write Through transit to the Invalid
state, just as they did in MSI when they snooped a Bus
Invalidate. Therefore, when a single processor has a block in
the Reserved state, all other processors must have that block
in the Invalid state, and the data is consistent with memory.
A cache block in the Reserved state transitions to the Dirty
state on a Processor Write without any bus transaction. In
addition, a cache block in the Reserved state does not have

2

Derek
Note
are there any advantages to such a protocol?

to be written back to main memory on a replacement. The
inclusion of the Reserved state and the Write Through bus
transaction improves performance in the case where after
reading from a cache block, a processor only writes to that
block once. If this block needs to be replaced, a Write Back
does not have to occur, whereas in the MSI protocol, a Write
Back would be needed.

3) Berkeley-Ownership: This is also a four-state protocol,
but the new state is a Shared-Dirty (Owner) state. In the MSI
protocol, if a processor had a cache block in the Modified
state and it then snooped a Bus Read (SBR) to that block,
a Write Back would occur, and the state would change to
Shared. However, in the Berkeley protocol, the processor
supplies the data directly to the requesting processor and
transitions into the Shared-Dirty state, thereby avoiding the
costly write back to memory. This is the main advantage of
the Berkeley protocol. Write Backs are only needed when
a block in either the Dirty or Shared-Dirty state is evicted.
Notice that this protocol allows for one processor to have a
cache block in the Shared-Dirty state while other processors
have the block in the Shared state. This implies that a block
in the Shared state may have data that is not consistent
with memory. This protocol is also known as the MOSI
protocol, referring to the four possible states of a cache
block: Modified (same as Dirty), Owner (same as Shared-
Dirty), Shared (same as Valid), and Invalid.

4) Illinois: This is another four state protocol that behaves
almost identically to the MSI protocol described earlier ex-
cept for the inclusion of a new state, known as the Exclusive
state. In the MSI protocol, if a read miss occurred, a Bus
Read transaction would be issued, and the cache block of the
requesting processor would always transition to the Shared
state. However, in the Illinois protocol, the cache block of the
requesting processor would transit to either the Shared state
or the new Exclusive state, depending on whether or not the
cache block is actually shared. If another cache had a copy
of the data in its cache, then a transition to the Shared state
would occur; otherwise, a transition to the Exclusive state
would occur. Therefore, a processor that has a cache block
in the Exclusive state implies that it is the only processor
that has the data in its cache, and the data is consistent
with memory (has not been modified). Once in the Exclusive
state, if the processor wants to write, it can do so without a
bus transaction; it just needs to transit to the Modified state.
This saves unnecessary Bus Invalidate transactions that the
MSI protocol suffers from. This protocol is also known as
the MESI protocol, referring to the four possible states of
a cache block: Modified (same as Dirty), Exclusive, Shared
(same as Valid), and Invalid.

5) MOESI: Although not described by Archibald et al. in
[1], the MOESI protocol is another common invalidation-
based protocol. The MOESI protocol, as the name may
suggest, is a five-state protocol that incorporates elements of
both the MESI (Illinois) and MOSI (Berkeley-Ownership)
protocols. It extends the basic MSI protocol with two new
states: an Exclusive state, which is identical to the Exclusive
state of the MESI protocol, and an Owner state, which is

identical to the Owner state of the MOSI protocol. Including
both an Exclusive and an Owner state enables the MOESI
protocol to enjoy the benefits that both the MESI and MOSI
protocols offer. However, this comes at the cost of increased
complexity and additional storage bits to keep track of the
state.

B. Update-Based Coherence Protocols

Update-based coherence protocols differ from
invalidation-based protocols in the sense that Bus
Invalidations are not needed when a processor wishes
to write to a shared block. Rather, the processor broadcasts
the write so other processors can pick up the new data
and update their cache accordingly. The two most common
update-based coherence protocols are Firefly, and Dragon.

1) Firefly: Firefly is an update protocol that uses Write
Through (like the Goodman Write-Once scheme) instead of
Bus Invalidates. It is a four-state protocol (Dirty, Exclusive,
Shared, and Invalid); however, in most descriptions the
Invalid state is left out since no bus transaction can ever
cause another processor’s cache block to be invalidated (this
is possible in invalidation-based protocols). In the Firefly
protocol, when a processor wishes to write to a block that is
in the Shared state, a Write Through occurs, and memory
is updated just as in the Goodman Write-Once scheme.
However, in the Goodman scheme, all other processors that
snooped the Write Through changed the state of their cache
blocks to Invalid, whereas in Firefly, these processors would
simply update their copy of the cache block and remain in
the Shared state. This is what makes the Firefly protocol an
update-based protocol and not an invalidation-based protocol.

2) Dragon: The Dragon protocol is similar to the Firefly
protocol described above, except for the fact that it gets rid
of the Write Through bus transaction and instead uses a Bus
Update transaction. A Bus Update transaction broadcasts the
write so that all other processors that have the data in their
cache can update the cache block, but it does not go through
to main memory as in the Firefly protocol. For this to work,
the Dragon protocol has two shared states, Shared-Clean, and
Shared-Dirty, in addition to the Dirty and Exclusive states.
If there are multiple processors that are writing to the same
block, the one that wrote to the block the latest would be
in the Shared-Dirty state, and all others would be in the
Shared-Clean state. However, every processor will have the
most up to date version of the cache block since they snoop
the Bus Updates of other processors and update their cache
accordingly. A cache block needs to be written back to main
memory on replacement only if it is in either the Dirty or
Shared-Dirty state.

C. Performance Comparison of the Protocols

Archibald et al. in [1] compared six cache coherence
protocols using a simulation model and found dramatic
differences in their performance. One of the main reasons for
the performance differences is the way in which the protocols
handle reads and writes to private (not shared) blocks. Only
three of the protocols used in this study (Illinois, Firefly, and

3

Derek
Note
neither is Shared-Dirty consistent with memory.

but things are consistent among caches.

How do you write to a Shared-Dirty cache-line?

Dragon) have the ability to detect whether or not a cache
block is truly shared when it is read from memory. In these
protocols, if no other processor has the data in their cache, a
transition to the Exclusive state is made, indicating that the
processor has the only copy of the block and that the block
has not been modified. Now, when the processor wishes to
write to this block, it can do so without any bus transaction
since it knows that no other processor has the data in its
cache. The other three protocols do not have an Exclusive
state and therefore would need to issue a bus transaction
before proceeding with the write. Since a significant portion
of all memory references are actually to private blocks, this
difference can have a major impact on performance. For this
reason, the Illinois, Firefly, and Dragon protocols usually
performed the best in this study.

Another interesting result of this study showed that, in
general, the update-based protocols (Firefly and Dragon)
outperformed the invalidation-based protocols in terms of
their handling of shared cache blocks. However, we feel
that this claim is not well-grounded and is a result of an
inaccurate simulation model. The model was probabilistic,
and whenever a memory reference was due, it was randomly
chosen to be either a reference to a shared block (with
probability shd) or a private block (with probability 1-shd).
The problem is that when using this model, it is very unlikely
for one processor to read and write to a shared block for some
time, then have another processor take over and exclusively
read and write to that block, etc. This is known as sequential
sharing and is quite common in many parallel applications.
Invalidation-based protocols are known to perform better in
these types of situations. On the other hand, when reads
and writes to a shared block are interleaved among many
processors, update-based protocols are known to perform
better. The model used in this study is biased towards the
interleaved scenario rather than the sequential sharing sce-
nario, and therefore, the update protocols appear to perform
better. Using real multiprocessor applications would lead
to different results. Despite this drawback, this study still
provides several good insights concerning the different cache
coherence protocols that exist and the potential impact on
performance that they may have.

D. Improvements to Invalidation-Based Coherence Protocols

Eggers et al. in [5] described the major limitations and
problems that invalidation-based protocols suffer from. Im-
provements to the coherence protocols are suggested and
their impact on performance is presented.

In invalidation-based protocols, consider the case where a
cache block is shared among many processors. Reads to this
cache block can occur locally without any bus transactions.
However, when one of the processors wishes to write to
that block, a Bus Invalidation signal is sent out, and all
other processors change the state of the cache block to
Invalid. If any one of these processors wishes to read a
value from this block in the future, it will incur a read miss
and have to request the data from memory. These types of
misses are called invalidation misses and considerably hurt

the performance of all invalidation-based protocols. Eggers et
al. in [5] also pointed out that this problem gets worse as the
cache block size increases. With a larger cache block size, the
probability that one processor writes to a part of a block that
is shared by many other processors (these processors may be
reading from a different part of the block) is increased.

A possible solution to this problem was proposed and is
known as Read-Broadcasting. Consider the same situation
described earlier where many processors are sharing a cache
block and then one of them wishes to write to the block.
Just as before, all other cache blocks will be invalidated.
However, when one of these recently invalidated processors
wishes to read a value from this cache block, all of the
other processors will snoop that read, grab the data from
the bus, and transit into the Shared state. This will only
take place if the block that was invalidated is still invalid
and has not been replaced by another block. This implies
a new transition from the Invalid state to the Shared state
when the processor snoops a Bus Read. Now, when the other
processors also read a value from this cache block they will
get a cache hit instead of a miss, thereby reducing the number
of invalidation misses.

The results showed that adding the Read-Broadcast ex-
tension to an invalidation-based protocol (they used the
previously described Berkeley Ownership protocol for this
study) did indeed reduce the number of invalidation misses,
but did not improve overall performance. The reason for this
is that allowing snoop matches in the Invalid state can lead to
increased processor lockout (this will be explained in more
detail later) from the cache, thereby hurting performance. If
this offsets the gain from reducing the invalidation misses,
net performance remains the same. In fact, in many of the
applications used, a slight decrease in overall performance
was obtained, indicating that the disadvantage of increased
processor lockout more than offset the improvement obtained
from reducing the number of invalidation misses. This illus-
trates an important point when analyzing the performance
of coherence protocols: it is not enough to simply track bus
traffic or the number of cache misses since other factors, such
as processor lockout from the cache, can have an offsetting
impact on overall performance.

E. Improvements to Update-Based Protocols - Hybrid Cache
Coherence Protocols

We have noted that the performance of invalidation-based
and update-based protocols depends highly on the applica-
tion. As mentioned earlier, for applications where data is
sequentially shared, invalidation-based protocols outperform
update-based protocols. However, for applications where
reads and writes from different processors are interleaved, the
update protocols outperform the invalidation based protocols.
Given this, the next logical step is to come up with a
hybrid protocol. Hybrid protocols use an invalidation-based
protocol when it is best to do so, but can also use an
update based protocol when it is best to do so. Veenstra
et al. in [8] performed a study of the potential performance
improvement that could be obtained from using a hybrid

4

Derek
Note
citation?

Derek
Note
queue up updates?

protocol. Specifically, an application was run using only an
invalidation-based protocol and then also run using only
an update based protocol. During the runs, statistics for
each cache block were recorded, and a cost metric for
each cache block was computed. The cost metric took
into consideration the number of cache hits, invalidations
or updates, and the number of times the block had to be
loaded into the cache. Each of these factors was weighted
corresponding to the number of cycles they would take (for
example loading a block is much more costly than a cache
hit). The cost for a block when using an invalidation based
protocol was compared to the cost for the same block using
an update-based protocol. The protocol with the lower cost
was determined to be the better one for that cache block.
The application was run again, but this time the coherence
protocol for each block was whichever one was determined
to be better for that block. The results showed that hybrid
protocols can significantly improve performance over pure
invalidation-based or update-based protocols. Clearly a one
time static decision for the coherence protocol of a cache
block is not a realistic option since different applications will
have completely different results. Nevertheless, this study
effectively illustrated the potential improvements that can be
achieved using a hybrid protocol.

Two actual hybrid protocols are discussed by Dahlgren in
[4]. Competitive Snooping is an update-based protocol that
can dynamically switch to an invalidation-based protocol.
When a cache block is loaded into the cache for the first time,
an update counter associated with the block is initialized to
a certain threshold value. Whenever the processor snoops an
update to the block, the counter is decremented. However,
whenever the processor actually references the block (reads
from or writes to it), the counter is set back to the initial
threshold value. Upon snooping an update, if the counter
value is zero, the cache block is invalidated. A counter value
of zero implies that this processor was not actively using
the block and, therefore, will likely not reference the block
again. Invalidating such a block could improve performance
since the processor actually writing to the block could
detect when all other processors that are not actively using
the block have been invalidated. At that time, the writing
processor could transit to the Modified state, and all future
writes to that block would be local, thereby avoiding several
Bus Update transactions. This protocol involves considerably
more hardware support, and also the use of a shared bus
control line so that a processor can detect when no other
processor has a cache block in its cache.

The Archibald Protocol improves the Competitive Snoop-
ing technique described above by making additional use of
the shared control line. Consider the case where multiple
processors all have a particular cache block in their cache,
but only one of these processors is actively referencing the
block. All other processors will snoop the updates from the
writing processor and decrement their counters. In Compet-
itive Snooping, as soon as the counter for a cache block
becomes zero, the block is invalidated. The Archibald Pro-
tocol observed that it is not useful to immediately invalidate

the block. A block will be invalidated only when all of
the inactive blocks of other processors are also ready to
be invalidated (their counters have also reached zero). To
implement this, when a processor snoops a Bus Update, it
decrements the counter and asserts the shared control line
only if the counter value is non-zero. With this policy, after
a Bus Update that decrements the last inactive block to zero,
no processor will assert the shared control line (since all
of their counters are zero). All of the inactive blocks will
know that they should now be invalidated, and the writing
processor will transition to the Modified state so that future
writes can be local.

Hybrid protocols have shown improvement over pure
invalidation-based or update-based protocols in terms of the
number of bus transactions, the bus traffic, and the number
of coherence related misses. However, to our knowledge,
they have not been widely adopted in real multiprocessor
systems. Perhaps the reason for this is that although they
do reduce bus traffic and the number of coherence-caused
misses, they can also lead to increased processor lockout,
thereby mitigating the overall performance improvement.
Also, the inclusion of counters in the tag store leads to
added complexity, larger area, and more power consumption.
The mitigated performance improvements obtained may not
justify this increase in area and power.

F. Energy Efficiency of Cache Coherence Protocols

Power has become an increasingly important metric in
today’s processor design. Loghi et al. in [7] analyzed the
differences in power consumption of various cache coherence
protocols. However, the results of this paper are rather
disappointing. The major conclusion drawn from this study
was that the cache write policy (write through or write back)
was more important than the actual cache coherence protocol
in terms of affecting total energy consumption. The study
showed that coherence policies that used a write-through
policy consumed significantly more energy than those that
used a write-back policy. This result is not surprising at
all and is an obvious result of the fact that a write-back
policy leads to fewer accesses to main memory. In addition,
only two coherence protocols that use the write-back policy
were analyzed, the Berkeley-Ownership protocol and the
MESI protocol. The results showed that the energy numbers
produced by these two protocols were virtually identical
for all of the applications. It would have been instructive
to see some comparison between the energy consumption
of invalidation-based protocols, update-based protocols, and
hybrid protocols. However, no such comparison was made.
With the increasing importance of low-power design, future
studies comparing the energy and power consumption of
different cache coherence protocols would be very helpful.

III. IMPLEMENTATION CONSIDERATIONS

To better understand the relative efficiency and benefit of
each of the cache coherence protocols, it is important to
consider the underlying hardware that would implement each
of the protocols. Specifically, the design of the Bus Interface

5

Derek
Note
using a shared line I presume.

Unit (BIU) will have a significant impact on the performance
of the cache coherence protocol. In the following sections we
give a general overview of the BIU and then discuss both
coherence protocol independent and dependent design points.

A. Bus Interface Unit Overview

The BIU is responsible for providing communication
between a processor and the external world (i.e. memory
and other processors) via the system bus [6]. Although the
design of the BIU is dependent on the bus protocol and cache
protocol that are used, there are some general functions that
any BIU should perform. First, the BIU is responsible for
arbitrating for the bus when its associated processor needs
to use the bus. If the system uses separate address and data
buses, the BIU may need to arbitrate for just the address bus
(in the case of a read) or both the address and data buses (in
the case of a write). After the BIU requests the bus, it must
wait for the bus grant signal and then drive the address and
control lines for the particular request [3].

The BIU is also responsible for controlling the flow of
transactions and information to and from the bus. To handle
requests for bus transactions from the processor’s cache, the
BIU maintains a (usually) small request buffer, which may
issue requests onto the bus in a first-in, first-out (FIFO)
order or according to some predetermined priority. Once
the system has responded to the request, the BIU must
communicate the response information back to the cache.
In the case of a read request, the incoming data would be
taken off the bus and placed in a (usually) small response
buffer. As part of maintaining the buffers, the BIU is also
responsible for taking any necessary actions to handle a
request or response that is received when the associated
buffer is full.

Finally, the BIU is responsible for snooping the bus trans-
actions initiated by other processors. When the BIU snoops
a read or write to a particular address, it must first determine
if it is an address that is also present in its own processor’s
cache by looking up the tag in the tag store. Then, depending
on the type of transaction (read, write, etc.), whether or not
there was a tag match, and the cache coherence protocol
in use, the BIU must respond appropriately. This response
may be asserting a shared signal (in the case of snooping a
read request to a shared cache block for a MESI protocol),
updating a cache block (in the case of snooping an update
operation to a shared cache block in the Dragon protocol),
writing back a dirty cache block (in the case of snooping a
Bus Read operation to a modified cache block in the MESI
protocol), etc.

B. Coherence Protocol Independent Design Considerations

There are several design issues for the BIU that affect
overall system performance and efficiency regardless of the
particular cache coherence protocol that is used. Some of
these issues include access to the tag store, the presence of
a write-back buffer, and cache-to-cache transfers.

1) Tag Store Access: Since the BIU is responsible for
snooping bus operations and comparing the address on the
bus to addresses in its own cache, the BIU must have access
to the tag store. If the tag store is single-ported, then the
BIU will be competing with the processor for access to the
tag store [3] [1]. Whenever the BIU is accessing the tag
store, the processor will be locked out, and whenever the
processor is accessing the tag store, the BIU will be locked
out. If there is a lot of contention for access to the tag
store, then both the processor occupancy and the response
latency of the BIU will be negatively impacted. Although it
is possible to always give the processor priority over the BIU,
doing so may decrease the effective bus bandwidth due to
increased latency. Conversely, always giving the BIU priority
may decrease processor performance due to increased pro-
cessor lockout. Since there is no obvious performance win,
determining which device should be given priority must be
decided within the context of the overall system design goals.

To reduce the contention for the tag store, the tag store
can either be dual-ported or duplicated. If the tag store is
duplicated, one copy will be used by the BIU for looking
up snooped addresses, and the other copy is used by the
processor. Since the BIU only needs information about a
cache block’s tag and its state in the cache coherence
protocol, it is not necessary to duplicate all of the information
in the tag store for the BIU’s copy; providing only the
tag and state should be sufficient. Duplicating the tag store
allows the BIU and the processor to read and lookup tags
simultaneously. However, when the tag or state for a block
needs to be updated (due to a bus invalidation, a cache
eviction, etc.), both copies of the tag store must be modified.
This means that the BIU or the processor may still need to
be locked out temporarily. Duplicating the tag store can also
be quite costly in terms of the area required to hold the
duplicate copy.

Providing a dual-ported tag store would require less area
than duplicating the tag store and would still allow the pro-
cessor and BIU to lookup tags simultaneously. Additionally,
maintaining a consistent view of the tag store between the
processor and the BIU would not be a problem as it was in
duplicating the tag store. However, even with a dual-ported
tag store, the processor or the BIU will still need to be locked
out when the tag store must be updated. Adding another port
may also not be desirable from a hardware design complexity
or power consumption standpoint.

Another consideration in the decision to duplicate (or dual-
port) the tag store is the design of the cache hierarchy. If
the system supports a multilevel cache hierarchy, as most
do, at which point in the hierarchy should the tags be
duplicated? As noted in [3], dual tags are actually less critical
in a multilevel cache hierarchy. Consider a two-level cache
hierarchy in which the L2 maintains inclusion of the L1. It is
then possible for the BIU to lookup tags in the L2 tag store
in response to bus snoops, whereas the processor should be
doing most of its lookups in the L1 tag store. Care must
be taken to ensure that any necessary updates due to bus
snoops are passed from the L2 up to the L1 and that any

6

Derek
Note
it would?

modifications to data made by the processor in the L1 are
passed down to the L2.

There are some cases where the snooped bus operations
may apply to data that is in the L2 but not in the L1; however,
if the data is also in the L1, then the action in response to
the snoop (eg. an invalidation signal or a flush) needs to
be propagated up to the L1. One way to do this is to pass
every snooped transaction up to the L1 and let the L1 decide,
based on the address, if it needs to do anything about it.
The downside to this approach is that there may be a lot of
unnecessary traffic in the L1, which can hurt performance.
Another approach is to keep a single bit associated with every
block in the L2 that indicates if this block is also in the L1.
If the block is in the L1, then the L2 must pass up the bus
transaction; however, if the block is not in the L1, then there
is no need to bother the L1. In this sense, the L2 acts as a
filter for the L1 for bus transactions, which leaves the L1 tags
available for the processor to use, thereby reducing processor
lockout.

The only time that the L1 must pass information down
to the L2 is when the processor issues a write to a cache
block that hits in the L1. In this case, the L1 must send the
data to the L2 so that the L2 has the most recent copy of
the data for any bus transactions associated with that cache
block. One way to do this is to make the L1 write-through
to the L2. Another option is to make the L1 a write-back
cache, but have it communicate a bit of information to the
L2 indicating that a block was just written to in the L1, and
therefore, should be marked modified-but-stale in the L2 [3].
Then, if there are any bus transactions that involve this data,
the L2 will see that it has a stale copy of the data and forward
the request to the L1. Ideally, the L1 will be able to satisfy
most of the processor’s requests and leave the L2 for the
BIU to use, thereby reducing BIU lockout.

2) Write-Back Buffer: Another important consideration
for the efficiency of the BIU and system performance is how
write-backs are handled. Since write-backs due to snooping
bus writes result in both the dirty data being written to
memory and the data being supplied to the requestor, two
bus transactions may be required. Suppose, for example, that
processor A has a cache block in the Modifed state, and
processor B has the same cache block in the Invalid state.
When processor B issues a write to that cache block, it will
miss in processor B’s cache and generate a request for the
block. In the meantime, processor A will snoop the write to
the cache block. Processor A should then issue a write-back
to memory, and memory should supply the cache block to
processor B. Ideally, we would like processor B to be able
to continue with its work as soon as possible. This means
that we would like to service the write miss first and delay
the write-back [3]. To do this, processor A’s BIU needs to
maintain a write-back buffer to hold the delayed data value.
After the write miss is satisfied (processor A supplies the
data to processor B), then processor A’s BIU may arbitrate
for the bus and send the value in the write-back buffer to
memory.

When incorporating a write-back buffer, it is important to

consider what should happen if a bus transaction occurs for
an address that has not yet been written back to memory from
the buffer. Now, in addition to looking up the address in the
tag store, the BIU must also check the write-back buffer for
an address match [3][6]. If the address in question is found in
the write-back buffer, then the BIU should supply the value
from the write-back buffer in response to the bus transaction
and cancel the pending write-back (i.e. invalidate the entry in
the write-back buffer). This type of implementation assumes
that whoever receives the modified data from the write-back
buffer will take the responsibility of eventually writing back
the value.

3) Cache-to-Cache Transfers: To improve the timeliness
of requests for data that is cached somewhere, it may be
useful to allow another cache to supply the data rather
than always going to memory. To support cache-to-cache
transfers, each BIU must have a way of indicating whether
or not its cache has the data and is able to supply it. This can
be accomplished by means of a single wired-OR bus control
line, which is asserted by each BIU if its cache is able to
supply the data. The memory controller will also know that
it should not supply the data if this control line is asserted.
If several caches are able to supply a copy of the data, there
must either be a way of selecting one of those caches (by
using a priority or ownership scheme, for example) or it must
be guaranteed that all caches will put the same value on the
bus. In [1], it is noted that this additional complexity and
the potential for slowing down the processors that have to
provide the data from their cache has resulted in a limited
use of cache-to-cache transfers.

Another issue with cache-to-cache transfers is whether or
not one of the caches has the cache block in question in a
Modified state, which can be indicated by another wired-OR
bus control signal asserted by the BIU. If one of the caches
has a modified copy of the block, it should not only be the
cache that is chosen to supply the data, but it should also
inhibit memory from supplying the data since memory has a
stale copy [1][3]. As the cache is supplying the modified data
to the requestor on the system bus, it is possible to write the
modified value back to memory at the same time (as opposed
to writing it back in a separate bus transaction). While this
saves a bus transfer and improves bus performance, it has the
additional complexity of having three cooperating members
on the bus [1].

C. Coherence Protocol Dependent Design Considerations

Depending on which cache coherence protocol is used,
there are additional modifications to the basic BIU design
that may be necessary. In the case of the MESI protocol (or
any other protocol that has an exclusive state), when there is a
read miss in the cache, the coherence protocol may transition
to one of two states: shared or exclusive. Since this transition
is based on whether or not another cache has a copy of the
same block, there must be a mechanism for indicating that a
block is shared. Typically this is done by providing a shared
bus control line that is a wired-OR of the shared signals
coming from each of the BIUs. In protocols that include

7

an owner state, such as MOSI and MOESI, the BIU must
be able to support the cache-to-cache transfers mentioned in
the previous section and inhibit memory from responding to
read requests when appropriate. Finally, there is a difference
in the BIUs behavior for invalidation-based versus update-
based protocols. In invalidation-based protocols, the BIU
only needs to grab data off of the data bus when its processor
has a read miss; however, in update-based protocols, the BIU
also needs to be aware of updates that are broadcast on the
bus and grab the data off the bus if its cache has a copy of
that particular cache block.

IV. EXPERIMENTAL METHODOLOGY
We used the SPLASH-2 benchmark suite [9] to evaluate

the performance of four cache coherence protocols by sim-
ulating their execution on the M5 simulator [2].

A. The M5 simulator
The M5 simulator can be operated in full system mode

or in system emulation mode. In system emulation mode,
system calls are not actually simulated, but instead are
emulated on the host machine. We are currently operating the
simulator in system emulation mode to reduce the simulation
time. However, if time allows, we intend to run some of the
experiments in full system mode. The M5 simulator uses
an interface that heavily relies on the python programming
language. Most of the parameters are specified in python
configuration files, which are used to trigger the simulations.
We modifed the sample configuration files that were included
in M5 to customize the simulator to our needs. In system
emulation mode, M5 can be configured to use cycle accurate
and detailed processors or simple functional models. These
processor models are called Detailed and Simple, respec-
tively. We experimented with both the Detailed Model and
the Simple Model. The Detailed model provides more data
regarding the simulation and also allows us to specify more
parameters in the system. The downside of using the Detailed
model is that it is close to 20 times slower than using the
Simple model. To maintain accuracy and at the same time
save simulation time, we chose some benchmarks at random
and compared the results of both the Detailed and Simple
models. We noticed that the statistics concerning the coher-
ence protocol (such as number of Bus Invalidate Signals,
etc.) collected using the Simple model were identical to the
statistics collected using the Detailed model. Therefore, we
decided to use the Simple model to collect the data related
to the coherence protocols by running the benchmarks to
completion. However, we could not extract certain important
metrics from the Simple model, such as the IPC. Therefore,
we also used the Detailed model to get an estimate of IPC
numbers for each benchmark by simulating only the first
10 million instructions of each benchmark. We have not
yet simulated all the benchmarks to completion using the
Detailed model, but we plan to do so in the near future.

B. Coherence Protocols
We have simulated four cache coherence protocols, namely

the MSI, MESI, MOSI, and MOESI protocols. M5 gives

Cache block size 64 bytes
L1 size 64 Kb

L1 latency 3 cycles for data, 1 cycle for instruction
L2 size 2MB

L2 latency 10 cycles
Memory Latency 100 cycles

Memory bus width 16 bytes

TABLE I
SYSTEM CONFIGURATION PARAMETERS

Benchmark Description Input Parameters
ocean-noncontig Ocean current simulation 258x258 grid

ocean-contig Ocean current simulation 258x258 grid
raytrace 3-D scene ray tracing teapot.env
lu-contig Matrix factorization 256x256 matrix, B=16
cholesky Cholesky factorization kernel tk23.O
water-nsq Forces in water 512 molecules

fmm partical simulation 256 particles
radix Radix sort 262144 keys

fft six step FFT kernel 64K complex data points

TABLE II
SPLASH-2 APPLICATIONS AND INPUT PARAMETERS

us the option to treat Bus Invalidation transcations (also
known as Bus Upgrade, or Get Permission) as Bus Write
transactions. Unlike Bus Invalidations, Bus Writes involve
the transfer of an entire cache block from memory. In many
cases, all that is needed is an Invalidation transaction, so re-
placing them with Bus Writes, although functionally correct,
hurts performance. Even though some implementations (such
as in the Synapse protocol) do not distinguish between Bus
Invalidates and Bus Writes, we chose to distinguish these
two bus transactions in all of our simulations for all four
protocols.

C. Simulated System

We simulated a system with two procesors that were
connected together via a shared bus. The specifications of
each processor are shown in Table I. We plan to simulate
with more than two processors in the near future.

D. SPLASH-2 Benchmark Suite

We used the SPLASH-2 benchmarks from Stanford in our
simulations. The SPLASH suite was created specifically for
parallel processor benchmarking. These programs represent a
wide variety of computations in scientific, engineering, and
graphics computing. The suite includes 8 full applications
and 4 kernels. We were able to setup and run 9 out of the
12 benchmarks. The description of each benchmark and the
input parameters we used in our experiments are shown in
Table II.

V. RESULTS

The total number of Bus Invalidate transactions of all pro-
cessors in the system is an important metric when comparing
different invalidation-based protocols. Each Bus Invalidate
transaction requires the processor to arbitrate for the bus and
carry out the bus operation before it can proceed with the
store instruction. Therefore, it is desirable to minimize the

8

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

fft

 ra
di

x

fm

m

w

at
er

-n
sq

 c

ho
le

sk
y

lu

-c
on

tig

oc
ea

n-
co

nt
ig

ra
yt

ra
ce

no
nc

on
tig

oc
ea

n-

N
um

be
r o

f B
us

 In
va

lid
at

es

22
35

63
3

22
35

63
3

22
70

19
3

22
70

19
3

12
70

16
2

12
70

16
2

MSI
MESI
MOSI

MOESI

Fig. 2. Number of Bus Invalidates

 1

 2

 3

 4

 5

 6

 7

 8

 9

ra
di

x

fm
m

lu
-c

on
tig

oc
ea

n-
co

nt
ig

no
nc

on
tig

oc
ea

n-

Th
ro

ug
hp

ut
 IP

C

MSI
MESI
MOSI

MOESI

Fig. 3. Throughput IPC

number of times the processor has to send Bus Invalidations
out on the bus.

We would expect those invalidation-based protocols that
include an Exclusive state to have the least number of total
Bus Invalidate transactions. Only those protocols with the
Exclusive state can detect whether or not a cache block is
actually present in another cache (shared). For example, on
a read miss, in the MSI and MOSI coherence protocols, the
requesting processor would always enter the Shared state
even if the block was private. If this processor were to then
write to that block, a Bus Invalidate transaction would have
to be issued. On the other hand, in the MESI and MOESI

coherence protocols, the requesting processor would enter
the Exclusive state for the case of a private block. Now,
when the processor wishes to write to that block, it can
do so without any bus transaction. Since there are many
references to private blocks, we would expect the MESI
and MOESI coherence protocols to have significantly fewer
total Bus Invalidate transactions when compared to the MSI
and MOSI coherence protocols. In addition, we can expect
there to be the exact same number of total Bus Invalidates
between MESI and MOESI and also between MOSI and
MSI. The reason for this is that both pairs of protocols handle
references to private cache blocks the same way.

9

In Figure 2, we plot the total number of Bus Invalidate
transactions of all processors in the system for each protocol
across all benchmarks in the SPLASH suite. As expected, the
total number of Bus Invalidates for the MESI and MOESI
coherence protocols is significantly less than the number for
the MSI and MOSI coherence protocols. In addition, the
exact same number of invalidations occur for MESI as they
do for MOESI. The same holds true between MSI and MOSI.

It is not appropriate to use only metrics directly related
to cache coherence (such as the number of invalidations,
write backs, etc.) to determine the performance of a cache
coherence protocol. Other factors, such as processor lock-
out, can have an offsetting impact on overall performance.
Therefore, IPC is still one of the best metrics for comparing
the performance of multiprocessor systems.

In Figure 3 we plot the IPC results we obtained by simu-
lating each benchmark for the first ten million instructions.
The y-axis shows the IPC throughput, which is the sum of
the IPCs of all the processors in the system. As you can
see, in the ocean noncontiguous benchmark, the MOESI
protocol performs best, followed by the MESI protocol,
which performs slightly better than both MOSI and MSI.
However, for other benchmarks, such as LU contiguous and
radix, not much difference in performance can be seen.
Since we were not able to simulate the benchmarks in their
entirety, the cold start effect could be severely affecting the
performance numbers that we obtained. In addition, many of
the SPLASH benchmarks first initialize their data structures
in uniprocessor mode before spawning off multiple threads
to parallelize the computation. This may also be affecting
our results. We plan to run all benchmarks in their entirety
in the near future.

VI. CONCLUSION

In multiprocessor systems where each processor has its
own cache but memory is shared among all processors, there
is a need to keep the caches coherent. In multiprocessor
systems, such as an SMPs, where multiple processors and
memory are all connected to the same bus, snoop-based
cache coherence protocols are used to solve the cache
coherence problem.

In this paper, we described several existing snoop-based
coherence protocols. We also examined their deficiences, and
discussed possible solutions to improve their performance.
One such solution intended to improve invalidation-based
protocols was Read Broadcasting, which allowed processors
to snoop Bus Reads in the Invalid state with the hope
of reducing the number of invalidation misses. We also
discussed hybrid protocols, such as Competitive Snooping
and the Archibald protocol, and the potential impact they
can have on overall performance.

In the next section, we examined the hardware needed to
implement snoop-based cache coherence protocols. Specifi-
cally, we outlined the major functions of the Bus Interface
Unit (BIU). We also examined the various design issues
associated with the BIUs of snoop-based multiprocessor
systems.

In the final section, we presented our experimental
methodology and the results we obtained from our simu-
lations. We compared four cache coherence protocols (MSI,
MESI, MOSI, and MOESI), using particular coherence re-
lated metrics (total number of Bus Invalidate transactions).
The results we obtained matched our expectations, thereby
validating our experimental methodology. We also presented
the IPC results since it is one of the most important metrics
in determining overall system performance.

REFERENCES

[1] J. Archibald and J.-L. Baer, “Cache Coherence Protocols: Evaluation
Using a Multiprocessor Simulation Model”, ACM Transactions on
Computer Systems, 4(4):273-298, Nov. 1986.

[2] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt, “Network-
Oriented Full-System Simulation using M5”, in Proceedings of the
6th Workshop on Computer Architecture Evaluation using Commercial
Workloads (CAECW), Feb 2003.

[3] D. Culler and J. P. Singh, Parallel Computer Architecture: A Hard-
ware/Software Approach, San Francisco: Morgan Kaufmann Publish-
ers, Inc., 1999.

[4] F. Dahlgren, “Boosting the Performance of Hybrid Snooping Cache
Protocols”, in Proceedings of the 22nd Annual International Sympo-
sium on Computer Architecture, pp. 60-69, June 1995.

[5] S. J. Eggers and R. H. Katz, “Evaluating the Performance for Four
Snooping Cache Coherency Protocols”, in Proceedings of the 16th
Annual International Symposium on Computer Architecture, May
1989.

[6] D. Geist, A. Landver and B. Singer, “Formal Verification of a Pro-
cessor’s Bus Interface Unit”, IBM Case Study, August 8, 1996. URL:
http://www.haifa.il.ibm.com/projects/verification/RB Homepage/ps/
biu.ps

[7] M. Loghi, M. Letis, L. Benini, and M. Poncino, “Exploring the
Energy Efficiency of Cache Coherence Protocols in Single-Chip Multi-
Processors”, in Proceedings of the 15th ACM Great Lakes Symposium
on VLSI, pp. 276-281, April 2005.

[8] J. E. Veenstra and R. J. Fowler, “A Performance Evaluation of Op-
timal Hybrid Cache Coherency Protocols”, in Proceedings of the 5th
International Conference on Architectural Support for Programming
Languages and Operating Systems, Boston, MA, October 1992.

[9] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, A. Gupta, “The SPLASH-
2 programs: Characterization and methodological considerations”, in
Proceedings of the 22nd Annual International Symposium on Com-
puter Architecture, pp. 24-36, 1995.

10

