
A Parallel Approach to Faster VHDL Emulation 
Using Grid Processors 

 
Muhammad Suleman, Siddharth Balwani 

Department of Electrical and Computer Engineering  
The University of Texas at Austin 

Email: {suleman | balwani}@ece.utexas.edu 
 

Abstract 
This paper describes an architecture that is designed for the emulation of digital systems 
described in Very High Speed IC HDL (VHDL). We provide an alternate to the Field 
Programmable Gate Arrays (FPGA) widely used in industry for behavioral emulation of 
digital systems. The goal of the architecture is to reduce limitations imposed on 
emulation systems by FPGAs, e.g. restrictions on clock speed, and area. We use a grid 
processor approach to achieve this goal. This paper also includes an analysis of our 
design and how it compares with existing FPGA technology. 

Introduction 
The complexity of the designs that modern synthesis has to deal with follows Moore’s 
law. Designs with several hundred million transistors are becoming common place. This 
makes functional verification a very hard task. Traditionally, simulation was used as a 
technique to verify the correctness of a design. However, the simulation speed is often 
not high enough. One way to speed up verification is by the use of emulators. Even 
though emulation speeds the process of verification by orders of magnitude, it still has its 
drawbacks. Many emulation systems are based on field programmable gate arrays 
(FPGAs). These limit the number of bits on a data path to a number far smaller than that 
demanded by the applications of today. For instance, due to area constraints it is 
extremely challenging, if not impossible to implement a 32-bit word length data path in 
FPGA technology [1].  
 
The goal of our project is to efficiently solve the problem of fast and effective 
verification of circuits described in VHDL, while not being restricted by the same 
constraints that limit FPGAs. The system we propose is based on a Grid Processor 
Architecture (GPA). Some techniques from logic synthesis and technology mapping are 
proposed to make efficient use of hardware resources.  
 
The outline of this paper is as follows. First we will discuss the semantics of the VHDL 
descriptive language and argue that VHDL is inherently parallel and not sequential. Later 
we will describe our hardware architecture and its characteristics. Next we will discuss 
the software aspects of the system. Finally we will analyze our system and compare it 
with FPGA based emulation systems. 



VHDL Semantics and Identifying Parallelism 
As mentioned by [2], VHDL is not inherently a sequential language but in fact is 
designed to allow parallel execution with deterministic results. [2] proposes use of 
parallel computers in order to simulate designs written in VHDL. [4] also describes the 
presence of multiple threads, that can be executed in parallel, in VHDL code.  
 
VHDL code consists of entities and processes and a new thread can be instantiated by 
using a process statement. VHDL displays inter-process parallelism as well as intra-
process parallelism, which is the parallelism that is the parallelism that exists within each 
process. [2] 
 
These forms of parallelism displayed by VHDL are very similar to Thread level 
Parallelism (TLP) and Instruction Level Parallelism (ILP). If we use the abstraction of 
processes as being separate threads that can share data structures and the Register 
Transfer descriptions of processes as instructions, then the one-to-one mapping between 
the two concepts can be visualized. Figure 1 gives an example of a VHDL description 
and its corresponding matching to threads an assembly code.  
 
 
VHDL Code Assembly Code 
Process A;  
A=B;  
C=A+8; 
Signal C;  
end 
. 
Process B; 
F=E; 
B=C+D; 
End 

Thread 1:  
I1: MOV A, B; 
I2: ADD C, A, #8 
I3: STC memC, C (Atomic store and signal) 
 
Thread 2: 
I4: MOV F, E 
I5: LD C, memC (Atomic load and signal) 

 
 
 
 

Constraints and Design 
This study of the common VHDL work load led us to clearly define our goals. Our 
objective was to use a processor architecture that could most efficiently exploit ILP and 
TLP while keeping the other emulation constraints in mind. Ideally a real-time 
reconfigurable hardware emulator should have multi-million ASIC gate logic capacity, 
identical system operation frequency to the final target system, and be able to seamlessly 
integrate multiple heterogeneous components. [5].  
 
While keeping the above model in mind, we explored different parallel architectures that 
would allow us to satisfy our requirements.  
 

Figure 1. Correspondence in Assembly and VHDL 



We observed that the code within a VHDL process could be described in simple RT 
notation. This would imply that this code could be represented as a simple undirected 
graph G(V,E). We wanted to choose an architecture that would most closely replicate this 
structure. We decided on the abstraction of a graph H(V,E) that would connect processors 
using half-duplex interconnects. We wanted H(V,E) to be a super set of G(V,E). Ideally, 
any graph G(V,E) could be mapped on H(V,E) such that for every vertex v in G, there 
should be a node in H that has the same input and output characteristics.(We will also 
refer to G and H in later sections.)  
 
In order to exploit the TLP, we need architecture capable of executing multiple threads 
with low overhead in the case of thread communication. The following sections will 
describe our proposed system that meets this specification.  
 

Hardware Architecture 
This section will give a conceptual description of the proposed architecture. We will 
discuss the specific implementation of this architecture for this project in the analysis 
sections. 
 
The architecture we have chosen is the Grid Processor Architecture described in [7]. The 
grid processor has several characteristics that match our requirements. The processor grid 
can be easily visualized as the graph H(V,E) and any one process G can be mapped onto 
this grid. For simplicity let us assume that G can be always be mapped onto H. This 
implies that the ILP described in earlier sections can be exploited. The method we used to 
exploit TLP is discussed later in the paper. 

Interconnect Network Topology 
Our network is very similar to the one proposed in [6]. We have made some 
modifications keeping our constraints in mind to make the processor better fit our 
requirements. The processing elements (PEs) are connected to each other in the form of a 
2-D mesh.  Figure 2 (on next page) is a top level picture of the processor grid. Each arc 
between two nodes means a unidirectional 64-bit path between the nodes. Each node in 
the grid has an indegree of three and an outdegree of three. This does put some 
limitations on the fanout of gates in the graph G and a solution to this problem will be 
discussed in a later section.  



 

 

Figure 2: The 2-d mesh network 

 

Communication over the network 
The intra-process communication can be handled by the peer-to-peer network in the grid. 
The communication routes will be decided by the compiler and a Destination ID will be 
encoded in every instruction. Each node will do its function on the input as dictated by 
the instruction and will forward the result to the compiler specified destination. There are 
two types of communication over the network and we discuss them both in the following 
paragraphs.   
 
There will be communication within each thread as long as the graph G can be mapped 
on graph H, this routing will just include forwarding the data to a node with the 
destination ID. If there does not exist a direct connection between the sending PE and 
destination PE, a forward instruction could be used at the intermediate nodes 
 
The network also allows communication between two threads. There are two different 
ways of implementing this. The first is the case when there is a direct path to the 
destination node. In this case, the message can be sent over this path with a destination 
thread id padded to it. Otherwise if there does not exist a straight path to the destination 
node, the register file may be used to communicate the values. The compiler can find out 
data dependence at compile time and can create an arc between the two threads using the 
physical registers. In the rare circumstance that the system runs short of registers, the 



compiler may use global shared memory for this communication. This, however, leads to 
a degradation in performance. 
 
We will allow the processors on the perimeter of the grid to access memory, registers, 
inputs, and outputs from the chip. The bottom row will be expected to communicate with 
the Output devices while the top row gets the inputs from the Input pins. The I/O 
registers work exactly as PE and can send or accept data from to or the grid. The 
Instruction cache is directly connected to each element just as was proposed in [7]. These 
connections are shown in Figure 2.  
 
Deadlock 
The receive is non-blocking and data transfer is unidirectional and there is no request 
response protocol, hence there is no potential for deadlock in the system. 
 

Network Node  
Each network node consists of an ALU, a routing chip, an instruction scheduler, and on-
chip data and instruction cache memory. Figure 3 shows the picture of a node. The 
various components of this node are described below:  
 
Execution Core 
The processing core is based on a simplified RISC processor. The functional units 
include an ALU that is capable of doing operations on one, two, or three data operands 
depending on the instructions. The operations supported by an ALU are common 
operations supported by a standard cell library. These include ADD, SUB, AND, OR, 
XOR, AOI32, etc. The ALU takes in the values at its input terminals and take an 
instruction word to be performed on the inputs. The functional units then forward their 
results to the router.  
 
Instruction Scheduler 
The instruction scheduler schedules the instructions to be executed by the ALU. The 
scheduler is essentially a set of reservation stations and an instruction is triggered as soon 
as all its operands are available. If two or more instructions become ready to execute at 
the same cycle one of them is randomly issued. 
 
Router 
The function of the router is to handle communication with the network. The router is 
capable of receiving up to three inputs in the same cycle. For each new input, it identifies 
the position where the data needs to be directed in the reservation station by looking at 
the Thread ID (TID) attached to the data.  
 



 
 

Figure 3: One network node 
 

 
The router also outputs the data written to its buffer by the ALU. The destination PE is 
determined by the instruction itself. The frame number is also appended to the packet for 
the receiving router to correctly route the data in the reservations station.  

Completion detection and latching 
A completion is said to have reached when all the combinational netlists have been 
evaluated for the current clock cycle. Completion is detected when all the output slots 
have been filled and is report by the output register controller. When completion is 
detected the mapping engine again comes into play and maps the new set of instructions 
for the next clock cycle based on the state graph of the machine.  

Instruction Fetch Mechanism  
Instructions come in the form of maps produced by the compiler. The total execution can 
be thought of as a switch case statement in C. Whenever a block finishes execution the 
next block is fetched based on the current block and the inputs.  
 
The next block is decided by doing a table look-up for the current state and the input 
states. An efficient method to implement this is to maintain a cache of next state 
calculations. The cache can be initialized to a specific value by the compiler and can be 
trained as we move along in time.  
 
 



Next State Prediction 
Next state prediction can be used as a technique to further optimize performance on the 
system. The next state can be predicted based on the recent history of the state and 
execution may be started. This will require the padding of stateID to the messages and 
use of stateIDs in the output processor. The prediction can simply be made void by 
resetting its entry in the output buffer and then assigning its frame ID to the correct block 
so the instructions get overwritten in the caches.  

Memory accesses 
The shared memory only needs to be accessed by the system if the number of global 
registers used for inter-thread communication does not suffice. Specific addresses in the 
memory network are then allocated for shared data by the compiler. In this case there are 
no likely conflicts except for RAW dependencies. These can be resolved by the compiler 
by allowing only one clock cycle to execute at any given time. During the clock cycle the 
threads are executed in a specific order determined by the mapper. 

Input System 
The system is basically an asynchronous state machine that communicates with the 
outside world and coveys the inputs to execution engine. In VHDL processes there is 
usually a sensitivity list where the output of a process is expected to be re-evaluated by 
the designer only if one of the sensitive inputs has been changed. This can be used to our 
advantage and the compiler can actually code the sensitivity information into a ROM in 
the input system. The input system will call the execution of the thread complete as soon 
as it is its turn to execute, if none of the sensitive inputs on the process have changed. 
Incase one of the sensitive inputs has changed, the input vector is fed into the grid and 
data is directed using the paths defined statically by the compiler. On receiving new 
inputs instructions are triggered in the execution grid and the frame is evaluated.  

Output System 
The Output system is also considered as a set of destinations PEs so data can be routed to 
them just like other PEs. An output state is considered ready when all the slots in the 
output register have been filled up. If all the output states are ready the output will be put 
in a buffer and will eventually become visible on the output pins. If the input system 
declares a block done, it communicates it to the output system and the system uses the 
same values as those in the previous entries in the buffer state for this entry as well.  

Instruction Mapping 
The process of mapping the RT description of a network onto our execution grid is called 
Instruction Mapping. This step is performed after compiling the behavioral VHDL code 
into RT notation and then performing High Level Synthesis. Once the HLS has been 
performed, the Instruction Mapping is very similar to technology mapping.  
 
Instruction Mapping may be performed by taking our RT description and forming pattern 
graphs with our Execution Core as the basic standard cell library elements. Every ALU is 
considered as unit delay except when an ALU has to have a fan-out or fan- in of greater 



than three. The cost the sub graph is then increased by a specific factor to reflect the 
penalty of using more than one ALU’s to forward the result. Similarly when a process 
cannot fit in one map (when G cannot be wholly covered by H), we split the sub graph 
into two processes. This also requires the addition of extra penalty int roduced due to 
overhead. Once all the sub graphs have been generated, we map each of our RT networks 
onto our processor grid. This is done using dynamic programming algorithm with the 
goal to minimize the delay and number of working functional units to minimize power 
and optimize frequency. The dynamic programming algorithm also performs 
combinational optimizations on the network to make it more suitable for use with our 
standard cell library. Each node is finally represented by an instruction that describes 
inputs and the pins the inputs will arrive on, the operation that needs to be performed on 
the inputs, and the destination node for the result of the instruction 
 
Once every block has been mapped to the grid the next task is to assign order to the 
execution of these blocks. This is done using an algorithm proposed in [4]. The compiler 
tries to come up with a sorting of the processes such that non-blocking assignments 
which are clocked in parallel off the same clock must be sorted in order such that the 
effect of an earlier assignment does not influence the right hand side of any subsequent 
assignments. If the compiler is unable to come up with an efficient sequence for thread 
execution to eliminate coherency, it introduces intermediate variables. Once the ordering 
of the threads has been decided, threads are assigned thread IDs and are ready to be 
mapped onto the grid.  
 
The branch statements in processor description pose a problem to our system. The nature 
of the VHDL language allows us to get some good performance benefits as the ‘if and 
else’ predicates may be evaluated either on the basis of inputs or the state variables. The 
predicates can hence be evaluated up front and appropriate instructions can be changed at 
the PEs. This would be done with the help of a controller in the system that will be used 
by the instruction fetch mechanism..  
 
Another task of the compiler is to program the sensitivity list for the Input System ROM 
so that states that do not require evaluation can be ignored.  

Analysis 
In this section we will describe our implementation of the architecture. We will do an 
analysis of our design and derive the area, power, and delay characteristics of our 
implementation.  
 
Since the 90-nm has very leakage current we will assume only static power for our 
analysis. We are also making a few assumptions as Switching Factor is concerned. We 
will use the SF for an ALU that approximates to be 0.5.  
 
The equation  
Power = (1/2)*(Cswitch density)*(chip area)*(SF)*(V^2)*(freq) 



 
 

Figure 3: Floorplan of the Chip 
 
 

 
Cswitch = 120 * (1.35 ^ 2) pF/mm^2 
 
Area = 1 cm^2 
 
Vdd=1V 
 
Freq=10GHz 
 
So the power calculated turns out to be, 21.87 Watts which is within our specs.  
 
We estimate the area of the chip by using numbers from the Intel website for their 90-nm 
technology. A chip with 330 million transistors occupies an area of 109.08 mm^2 .By 
looking at table 1 , we obtained the following equation: 
 

 
Area = 2 (0.665*64+34.20)= 153.59mm^2 

 
 
 
 
A further optimization of the area would be to overlapping the area between the two 
chips. This would reduce the area and bring it to within our specifications. 
 
 



 
TABLE 1: Summary of Area Calculations 

 
 

Device  Number of 
Transistors  
 

Area / mm^2 Comments 

64 Entry Input 
Buffers 

8192*6= 50000  .0166 
 

100*64 

64 Entry Output 
Buffers 

8192*6=50000 .0166 100*64 

Input Sensitivity 
List 

32000*6= 
1.5 Million 

.499 32Kb 

Input Control Logic 
 

10000 3.3e-3 PLA 

L2 Cache 100 Million 33.27 2 Mb 
 

Output Control 
 

100,000 .0333  

Instruction fetch 1 Million 
 

.3327  

Next Block 
Prediction 

100,000 .0332  

 
Total Number: 

 
102.81 Million 

34.207  

 
 

   

L1 Cache 
 

384000 .12777  

Router inBuffer 
 

115200 .0383 8 Kb 

Router outBuffer 
 

115200 .0383  

Router Buffer 
 

50000 .0166  

ALU 
 

5000 1.6e-3  

Control 
 

1536000 .511  

Total 
 

2 Million .665  

 
 
 
 



 

Conclusion 
In this project we designed a Grid Processor Architecture to emulate the parallel 
execution of VHDL. The main features of our processor as follows: 

1. VHDL processes were mapped onto  arrays of ALUs, permitting parallel 
execution of the code 

2. The processor consists of 2 chips, each of which is a 64x64 array of simple 
processing elements, see figure 3. 

3. The processing elements are connected to each other in the form of a 2D mesh 
4. The processors use the register file for interthread communication. In the event 

the registers run out, shared memory is used. 
5. The design is scalable, and the performance scales well with the number of 

transistors. 
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