
Technical Report: Project II

Building an Atomic and a Multi-level Persistent Tree File System

Muhammad Aater Suleman and Youssef Hmamouche | 12/02/03

Abstract

This report details the testing, analysis, and discussion of Project 2: Building a Reliable
File System.

Table of Contents

1. Introduction

2. Documentation and File Listing

3. Testing of File System

4. Technical Discussion of Design

4.1 The Atomic Implementation

4.2 The Persistent Tree Implementation

5. Conclusion

1. Introduction

In this project we have written multiple File Systems using the low-level driver Disk
implementation provided to us by Dr. Harrick Vin. The File System implementations are
accompanied by testing procedures to guarantee the healthiness of the implementation in
question. We have provided a test suite for each implementation.

2. Documentation and File Listing

 2.1 File Listing

 2.1.1 Source Code Files

ADisk.cc: The Atomic Disk implementation
Disk.cc: The low-level disk implementation

PTree.cc: The persistent tree implementation
sthread.cc: The underlying tools needed to build an Atomic file system
testpart0.cc: Stress tests for Part0 of the project
testpart1.cc: Stress tests for Part1 of the project
testpart2.cc: Stress tests for Part2 of the project

 2.1.2 Header Code Files

 ADisk.h: header file containing subroutine prototypes
 Disk.h: header file containing function prototypes of the disk raw operations
 FS.h: prototype functions header file for the FlatFS
 FlatFS.h: prototype functions of the Flat FS
 PTree.h: prototype functions of the Persistent Tree FS
 common.h: defined constants
 dirent.h: dentry definition
 sthread.h: the thread library include file

3. Testing of File System

Our tests range for multiple reads and writes to crash tests and recovery mechanisms.
Depending on the file system, we have written specific procedures that target those
features that are more likely to cause a problem. However, we have written certain rules
that must be met as a minimum.

Sequential "writes" followed by "reads" are a good index of the healthiness of the simple
tasks of our file system. However, we have written more specific tests for the PTree, and

the Atomic file system. The former is delicate in a way that we have to make sure data
blocks can be dynamically allocated. We ensured that updates to the trees occur
atomically and also made sure to update the free list to signal that blocks have been used.
We tested the latter in a way that crashes occur frequently and ensuring the file system is
able to recover itself. We also ensured that writes do occur entirely as opposed to
partially as a feature of an Atomic file system.

We developed command line interfaces that would allow us to communicate with all
levels of the disk system hierarchy. Hence, we were able to compare the data actually
written on the disk with our expected results.

 4. Technical Discussion of Design

 4.1 The Atomic File System

The Atomic File System ensures the atomicity of the transactions to avoid any partial
reads or writes and therefore corruption in case of a crash. This atomicity is implemented
through transaction logs. A redo log consumes a number of sectors specified as a
constant. We have also optimized our implementation in a way that it combines multiples
writes to the same block. This especially optimizes the PTree to a large extent by
reducing the time taken to commit a transaction. The disk layout looks as the following:

ADISK REDO LOG 0 - ADISK_REDO_LOG_SECTORS
DATA NUM_OF_SECTORS

 4.2 The Persistent Tree File System

The PTree file system sits on top of the Atomic Disk abstraction to avoid inter-thread
data corruption. The PTree file system is characterized by its tree-like shape with the
leaves being the data blocks. Our file system is limited as far as disk space is concerned
for illustration purposes. The tree is statically limited to MAX_TREES trees. The internal
nodes can grow at will.

ADISK REDO LOG 0 - ADISK_REDO_LOG_SECTORS
PARAMETERS PARAM_USE
TNODEARRAY TNODEARRAY_USE
BITMAP BITMAP_USE
DATA NUM_OF_SECTORS

5. Conclusion

This project has taught us how to build a reliable file system that is immune to data
corruption after unexpected system crashes. Overall, we are quite happy with our
implementation since our tests passed successfully.

