
Adding 2D-Profiling Support in ORC
Linda Bigelow

bigelow@ece.utexas.edu
Aater Suleman

suleman@ece.utexas.edu

1 Introduction
Profiling is commonly used by static compilers

to predict run-time program behavior, enabling more
compiler optimizations. These profile-guided opti-
mizations, however, are only beneficial if the profile-
time behavior of the program accurately reflects the
run-time behavior of the program. Capturing a wide
range of program behaviors often requires profiling
with multiple input sets, which is expensive in terms
of resources.

One example of an input-dependent program char-
acteristic is branch predictability. Prior research [3]
has shown that, although some branches behave sim-
ilarly across different input sets, others do not. It
has also been observed that branches that are very
easy to predict with one input set may behave very
differently with a different input set [8]. Since the
optimization decisions made by the compiler (for
example, whether to predicate a branch or not) can
significantly affect overall performance, it would be
beneficial for the compiler to be able to efficiently
identify input-dependent branches.

2D-Profiling [8] is an effective profiling mechanism
for identifying input-dependent branches without us-
ing multiple input sets. Unlike other branch profiling
techniques, 2D-Profiling uses the time-varying phase
behavior of a branch to predict whether the branch
is input-dependent or not. This is accomplished by
using a single input set and realizing that a branch
whose prediction accuracy varies over the profile-run
is more likely to be input-dependent.

The goal of our project was to add support for 2D-
Profiling to the Open Research Compiler (ORC). We
successfully completed this task, and we were able
to use the 2D-Profiling information to annotate the
Control Flow Graph of a program to make decisions
regarding predicated execution.

The rest of this report is organized as follows:
Section 2 describes in more detail the background
and motivation for this project; Section 3 provides
an overview of ORC, including support for profiling
and predication; Section 4 details the process of
implementing 2D-Profiling in ORC; Sections 5 and 6
explain our experimental methodology and results, re-
spectively; Section 7 discusses future work we would
like to perform related to this project; and, finally,
Section 8 concludes the report. We have also provided

Appendices containing a description of problems we
faced throughout the project (Appendix I), a sample
feedback file generated by ORC with 2D-Profiling
added (Appendix II), and the C code for the synthetic
benchmark we created for the project (Appendix III).

2 Background and Motivation
One of the classic problems in computer architec-

ture is how to handle branches in pipelined proces-
sors. Branch instructions have the ability to redirect
the instruction stream, which means the front end
must either stall and wait for the branch to resolve
or predict the direction of the branch and provide a
way of recovering to the correct path if the prediction
turns out to be wrong. A third option is to have
the compiler eliminate branch instructions from the
instruction stream by using predicated execution [1].
In the following subsections, we briefly discuss the
trade-offs between branch prediction and predication,
as well as a technique for determining when to
predicate.

2.1 Predication vs. Prediction
As the processor pipeline depth increases, the

branch misprediction penalty also increases. This
means that the performance gained by branch predic-
tion is very dependent on how hard it is to predict the
direction of a branch. If a branch is easy to predict,
then performance can be increased significantly by
having a branch predictor; however, if a branch is
hard to predict, then the cost of mispredicting the
branch may outweigh the benefit of having the branch
predictor. One technique commonly used to eliminate
hard-to-predict branches is predicated execution [1],
which converts control dependencies into data depen-
dencies. Since predication adds additional instruction
overhead and data dependencies, it should only be
used for branches that are actually hard to predict.

Determining which branches to predicate is a non-
trivial problem, and several techniques have been
proposed. The IMPACT compiler [9] uses path ex-
ecution frequencies and generates predicated code to
create larger basic blocks, providing a larger scope
for compiler optimizations and eliminating branch
mispredictions. Other algorithms for generating predi-
cated code only convert highly mispredicted branches
[2] or short forward branches [14][18]. ORC, Intel’s

Open Research Compiler [13], uses edge-profiling
information and equations that approximate the ex-
ecution cost of normal branch code versus predicated
code to decide when to predicate.

Profile information can be used by compilers to
help decide whether to predicate a branch or not.
Such an approach assumes that the behavior of the
branch will not change when the program is run with
a different input set. This assumption is not always
true since the input set used for profiling may not
reflect all possible program behaviors. Kim et al.
proposed a technique to detect the input-dependence
behavior of the branch using only one input-set. [8].

2.2 2D-Profiling
2D-Profiling [8] is an efficient way of predicting

the set of input-dependent branches in a program at
compile time using only a single input set. The key
insight of this mechanism is that if the prediction
accuracy of a static branch changes significantly over
time during the profiling run (with a single input
set), then the prediction accuracy of that branch is
more likely to be input-dependent. To detect the time-
varying phase behavior of a branch, a 2D-profiler
records the prediction accuracy of all static branches
at fixed intervals during a profiling run. A function
executed at the end of each interval collects data
needed for input-dependence tests that are performed
at the end of the profiling run. The purpose of these
tests is to determine whether the branch has shown
phase behavior during the profiling run. If the branch
passes the tests, it is defined as input-dependent. The
details of the three tests are described in [8].

3 Overview of ORC
The Open Research Compiler (ORC) project is

a joint effort between Intel Corp. and the Chinese
Academy of Sciences to provide compiler and com-
puter architecture researchers with a leading-edge
open source compiler for the ItaniumTM Processor
Family (IA64). The basis for ORC is Pro64, which
is an open source compiler. Pro64 includes front-
ends for C/C++ and it also includes support for
several code optimizations. ORC has focused on a
redesign of the code generation module to exploit the
richness of the IA64 architectural features and to aid
researchers. Some of the IA64 optimizations include
predicate analysis, if-conversion, and control and data
speculation with recovery code generation [13]. ORC
includes profiling feedback and associated support
and region-based compilation. Most optimizations in
ORC are performed on each procedure, also called a
Program Unit (PU), independently.

We chose to use ORC as our compiler infras-
tructure because IA64 supports predicated execution,

making it extremely suitable for the research in
which we are interested. ORC also provides profiling
support at the WHIRL level (ORC’s intermediate
representation) and in the Code Generation (CG)
phase. Profiling at the WHIRL level is an extension of
Pro64 edge profiling, and the types of profiling done
at CG are edge profiling, value profiling, and memory
profiling. The results from the edge profiling are used
for the if-conversion profitability analysis [6]. Hence,
we focus more on edge profiling performed during
CG.

3.1 Edge Profiling
An overview of edge profiling support in ORC

is shown in Figure 1 on the following page. First,
the source is compiled to an instrumented binary.
The instrumented binary is then run on an Itanium
machine to generate the feedback file. Finally, the
feedback file is used as an input to the compiler
together with the source to generate an optimized
binary.

3.1.1 Instrumentation
To generate the instrumented binary, the user in-

vokes the compiler with a specific command line op-
tion, fb create, and specifies the name of the feedback
file to be created [5]. The user can also specify the
type of profiling for which the binary should be in-
strumented and the phase at which the instrumentation
should be performed. Edge profiling at CG can thus
be specified from the command line as the desired
instrumentation mechanism. The instrument method
for edge profiling is invoked by the main driver of
ORC if that is what the user specifies on the command
line [15]. The input to the instrument method is the
Control Flow Graph (CFG) of a PU. The job of the
instrument method is to insert calls to the functions in
the instrumentation library into the control flow graph
of the PU. The functions in the instrumentation library
can be split into three categories:

1) Functions that set up the data structures re-
quired to collect all the profile information and
also create a header for the feedback file.

2) Functions that collect information during the
profile run. For example, the functions that
increment the counter when a particular edge
is traversed during the execution.

3) Functions that write the header and the col-
lected data into the feedback file at the end of
the profile run.

The instrument function iterates through the list of
all basic blocks in the PU and inserts calls to the
instrumentation functions as required. Each time a
call needs to be inserted, an instrumentation basic
block that calls the desired function is created and

2

IA64
machine

Feedback
File ORC

(annotate)

src

Optimized
Binary

cross compiler
ORC

(instrument)

src

Instrumented
Binary

ORC
native compiler

Instrumentation
Library src

Instrumentation
Library

Fig. 1. Overview of edge profiling support in ORC

inserted in the CFG at the appropriate place. The
arguments to the function are usually passed in as
immediate values, hence minimizing the interaction
of the instrumentation code with the actual code [4].
Figure 2(a) on the next page shows an example of
a portion of a CFG before calling the instrument
function, and Figure 2(b) shows the same CFG after
the call to instrument.

The arguments that are required by each instru-
mentation function are dependent on the job of the
function. For example, in the case of the function
that collects the edge profiling data, the argument is
a unique identifier for the edge to be profiled, which
is passed in as an immediate value (as shown in
Figure2(b)).

Once the instrumentation is done, the CFG is con-
verted into native code to generate the instrumented
binary. The instrumented binary, when run on an
Itanium machine, dumps out a feedback file.

3.1.2 Annotation
Once the feedback file has been created, the com-

piler can be invoked with fb opt feedbackfilename
to specify that the compiler can read feedback from
a certain file and perform optimizations. The main
driver reads the header from the feedback file and
decides which phase will need to use this information.
If the header specifies that the file contains edge
profile data, then the edge profile annotate method
is called. Similar to instrument, annotate is also
called once for each PU. The input to the annotate
method is a CFG and the name of the feedback file.
The annotate method reads the information from the
feedback file regarding each edge in the PU and
annotates the CFG with that information. For this
annotation to be correct, a necessary condition is that
this CFG is the exact same as the CFG that was input

to the instrument method (when the instrumentation
binary was created). The annotation involves reading
information from the feedback file and storing it with
each edge in the CFG. In the case of edge profiling,
this information is the number of times an edge was
traversed during the profile run.

At the end of the annotation, the relative probability
of executing each basic block is computed. For a
basic block Y that is dominated by basic block X,
the probability of executing Y is computed using
Equation 1.

Probability(Y) =
times execute Y

times execute X
(1)

3.2 Predication Support
The feedback information from the edge profiling

is used in making predication decisions in ORC. All
the inner-most regions of the PU are considered for
predication. Some of the regions are then selected on
the basis of their control flow structure. Only simple
control flow structures like if-then or if-then-else are
considered good candidates for predication. Once a
list of candidates has been selected, the list is passed
to a method for profitability analysis.

Profitability analysis applies a very simple scheme
to decide if performance is expected to improve by
converting the area to predicated code. The code is
converted to predicated code if the number of cycles
taken by the predicated code are expected to be less
than the number of cycles taken by the non-predicated
code. To compute the execution time of predicated
and non-predicated code, we first need to compute
the number of cycles required to execute each basic
block. The number of cycles required for each block
are estimated using a simple heuristic: the length of
the longest dependence chain in each basic block is

3

Basic Block
A

Basic Block
C

Basic Block
B

(a) CFG before adding instrumentation basic blocks

Instrumentation
Basic Block

Instrumentation
Basic Block

Basic Block
A

Basic Block
B

Basic Block
C

push Rx
call _profile_edge

mov 4, Rx

3 4

(b) CFG after adding instrumentation basic blocks

Fig. 2. Example CFG before and after calling the instrument function

used as an estimate for the number of cycles. The
number of cycles required for predicated code are
then computed as the sum of the execution times
of the successor basic blocks. Equation 2 shows this
computation for the CFG in Figure 2(a).

The probability of executing each block is com-
puted using the feedback information, as described
in Section 3.1, and Equation 1. An overhead of
non-predicated code is the pipeline flush penalty,
which occurs on a branch misprediction. In ORC,
the branch misprediction rate is estimated by taking
the minimum of the execution probabilities of the
two successor blocks. Again using Figure 2(a) as an
example, Equation 3 shows this computation. The
branch misprediction penalty is set to 8 cycles in
ORC. This number is set to 8 because the worst case
pipeline flush penalty is 9 cycles in Itanium 1 and 6
cycles in Itanium 2 processor [11][17]. The execution
time for the non-predicated code is then computed
using Equation 4.

pred exec time =

exec time(B) + exec time(C) (2)
branch mispredict rate =

min(Probability(B), P robability(C)) (3)
non pred exec time =

[exec time(B) ∗ Probability(B)] +

[exec time(C) ∗ Probability(C)] +

[branch mispredict rate ∗

branch mispredict penalty] (4)

The execution time for the predicated and non-
predicated code is then compared to decide the prof-
itability of the predicate transformation. If an area is
predicated, then the analysis is run on all the areas
in the PU once again to exploit any new predication
opportunities that may have been created due to the
transformation of the code. This continues until all

possible candidates have been converted to predicated
code.

4 Implementation
The goal of this project was to add support for

2D-Profiling in the ORC compiler. In addition to ac-
complishing this goal, we also added support for an-
notating the information provided by 2D-Profiling on
the CFG, and applied this information in making the
decisions for predication. Implementing 2D-Profiling
required changes in several modules of ORC. We used
the infrastructure already available in the compiler
for edge profiling as our base. The work we did in
developing the infrastructure can be split into three
main tasks as described below.

4.1 Adding a gshare Branch Predictor
4.1.1 Why is it necessary?

One of the requirements for 2D-Profiling, and also
ORC predication analysis, as described in Section 3.2,
is that we should be able to estimate the branch
misprediction rate of conditional branches with high
accuracy. The 2D-Profiling mechanism was proposed
assuming that an accurate estimate of branch mispre-
diction rate will be available at profile time. On the
other hand, ORC instrumentation does not incorporate
a branch predictor. They estimate branch mispredic-
tion rate using Equation 3. A similar estimate can also
be used for implementing 2D-Profiling provided that
the estimate is accurate. We did some studies using
the Pin Binary Instrumentation Tool [16] to evaluate
the error when the misprediction rate is estimated
using Equation 3. First, we implemented a Pin Instru-
mentation tool which simulated a 4-KB gshare [10]
branch predictor, and then, we collected the statistics
required to compute the execution probability of each
basic block. Later, we used the results from the tool to
compare the branch misprediction rate from the actual

4

TABLE I
ACTUAL BRANCH MISPREDICTION RATE FROM gshare VS. ESTIMATED MISPREDICTION RATE

Benchmark bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr
Gshare 1.90 12.40 12.21 5.66 7.33 7.49 7.84 9.13 5.09 16.42 0.78 11.20

Estimated 2.04 15.62 13.72 7.79 8.88 9.87 13.49 15.37 6.89 18.90 0.91 11.36
Weighted Mean Sq. Error 2.15 10.87 7.90 7.50 8.13 6.47 10.71 12.96 8.15 11.37 2.67 4.69

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

M
is

s
ra

te
 u

si
ng

 G
S

H
A

R
E

Miss Rate using Taken Ratio

Misprediction vs. Taken ration for mcf

Fig. 3. A comparison between estimated misprediction rate and
actual misprediction rate

branch predictor with the misprediction rate estimated
using Equation 3.

The results are shown in Table I. The Weighted
Root Mean Square Error (WRMSE) value was also
computed in addition to the overall branch mispre-
diction rates. WRMSE is a better measure of error
than the overall misprediction rate since negative
and positive errors can cancel each other when the
overall prediction accuracy is computed. The error
contribution from each branch was weighted accord-
ing to the execution frequency of the branch. We
discovered that the WRMSE is greater than 5% for 9
out of the 12 SPEC Integer benchmarks. The value is
greater than 10% for crafty (10.87%), mcf (10.71%),
parser (12.96%), and twolf (11.37%). An intuitive
explanation for this error is that Equation 3 does
not estimate the misprediction rate for branches that
may be always taken for the first half of the program
and always not-taken for the remaining half. In such
a case, Equation 3 will estimate the misprediction
rate to be 50%, but the actual misprediction rate
will almost be 0%. Intuitively, it is also unlikely
to be the case that the branch misprediction rate
estimated using Equation 3 is lower than the actual
misprediction rate.

Figure 3 shows a scatter plot to compare the
estimated misprediction rate with the actual mispre-
diction rate for the branches in mcf benchmark. Only
the branches that were executed more than 10,000
times during the execution of the train input set are
shown on this plot. It can be seen that there are some

branches (lower left corner) that have the same actual
and estimated misprediction rate, but these branches
have a very low misprediction rate and are unlikely
to be predicated. However, for the branches where
the misprediction rate is somewhat higher, it can be
seen that almost all of them are in the lower triangle
where the estimated misprediction rate is higher than
the actual misprediction rate. This means that using
Equation 3 to estimate the misprediction rate can lead
to a different decision than if the actual misprediction
rate, which is more accurate, was used. We quantify
this difference in Section 6.

4.1.2 Implementation of the Branch Predictor

Based on all of the above data, we decided to
proceed with implementing a gshare simulator inside
the profiling library for ORC. To simulate a gshare
branch predictor, we need the address and outcome
of all the conditional branches. Since the support
provided by ORC for edge profiling already inserts an
instrumentation basic block at each edge, we decided
to take advantage of this existing support. The normal
edge profiling mechanism calls a function in the
instrumentation library with a unique identifier for
each edge. In addition to the edge identifier, we also
require some more information regarding the edges,
for example if two edges are of the same conditional
branch instruction. To accomplish this, we decided
to pass a unique branch identifier, together with an
edge identifier, to the instrumentation function. We
also handled the case when an edge was connected to
an unconditional branch by having a bit to represent
if the edge was actually connected to a conditional
branch. Finally, we need to know which direction
of the branch an edge corresponds to in order to
update the history register in gshare, compare our
prediction, and compute the misprediction rate. We
passed the direction information as another argument
to the instrumentation function.

One other piece of information that was required
was the address of the branch, which is not available
until the binary is generated. Since the instrumenta-
tion function call is created during the instrumentation
phase, we did not have access to the address of the
actual branch. We decided to use a simple approach
and use the branch identifier we passed to the profile
function as the address of the branch in the gshare
predictor. The idea was based on the assumption that

5

TABLE II
BRANCH MISPREDICTION RATE FROM gshare VS. GSHARE-ARBIT

Benchmark bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr
Gshare 1.90 12.40 12.21 5.66 7.33 7.49 7.84 9.13 5.09 16.42 0.78 11.20

GSHARE-arbit 1.85 12.24 12.14 6.29 7.70 7.54 7.76 9.41 5.48 17.39 0.88 11.72
Weighted Mean Sq. Error 1.77 3.89 0.46 7.90 4.99 0.78 0.53 1.08 4.27 3.70 4.08 3.58

the performance of gshare is not heavily dependent
on the actual address of the branch, but instead it just
uses the address to get a better hash function into a
2-bit counter prediction table. Hence, even using an
arbitrary branch identifier should give results similar
to the actual gshare branch predictor. We validated
this assumption by simulating another gshare branch
predictor that used an arbitrary branch identifier in
its hashing function. We called this branch predictor
GSHARE-arbit. Table II shows the results of compar-
ison between gshare and GSHARE-arbit. It can be
seen that GSHARE-arbit has a WRMSE of less then
5% for 11 out of 12 SPEC benchmarks. The only
benchmark where the WRMSE is greater than 5% is
gap. We did not get a chance to investigate the reason
for this difference in the gap benchmark, but we plan
to do this in the future.

Based on the above results, we implemented the
GSHARE-arbit predictor in the instrumentation li-
brary. The predictor is called every time an edge is
encountered that has the conditional branch bit set.
The branch identifier and the outcome of the branch
are passed in as arguments to the predictor. The
predictor makes a prediction for the branch, compares
the prediction with the outcome, and updates the
profile stats.

At the end of the profiling run, the stats collected
by the branch predictor are written in the feedback
file. The information is then read by the compiler
and annotated on the CFG. 2D-Profiling information
for each branch is stored in the basic block where the
branch operation actually exists. This information can
be accessed by any of the later phases in the compiler.

4.2 Adding 2D-Profiling

We implemented the 2D-Profiling algorithm as
described in [8]. The branches that are identified as
input-dependent by the 2D-Profiling mechanism are
marked during the profiling run. The input depen-
dence information is also written to the feedback
file together with the branch prediction information.
Similarly, the information is read from the feedback
file and annotated on the CFG along with the branch
prediction information. A sample feedback file is
attached as Appendix II

4.3 Predication and Wish Branches
One of the target uses of the 2D-Profiling informa-

tion and the branch prediction accuracy is to make
better predication decisions. We made a change in
ORC’s predication mechanism such that it could use
the misprediction rate of a conditional branch from
new feedback instead of using Equation 3 to estimate
the branch misprediction. We also added support to
count the number of input-dependent branches that
can be predicated. Finally, since the target application
of 2D-Profiling is Wish Branches [7], we did a
potential study for how many branches can be actually
converted into Wish Branches.

5 Methodology
5.1 Experimental Setup

We used the ORC cross compiler together with
natively compiled instrumentation libraries to gen-
erate our instrumented binaries. The instrumentation
binaries needed to run on actual IA-64 machines;
however, the IA-64 machines that we had available
for this project could not be used for this purpose.
The reason is described in Appendix I. Instead, we
had to run the instrumented binaries on NUE IA-64
emulator [12]. NUE is a tool that was developed by
HP for IA-64 emulation on IA-32 machines. NUE
allowed us to run the IA-64 instrumented binaries,
but at a significantly slower rate compared to a real
Itanium machine. We were, however, able to run the
non-instrumented binaries on a real machine; hence,
we could run both the baseline and optimized binaries
on the real machine and note differences in execution
time. The Itanium machine we used was one of
the HP TestDrive machines that are available for
public use. We used the machine td187, which has
16 Intel Itanium 2 processors running at 1500MHz.
The machine runs the Red Hat Enterprise Linux AS
4.0 operating system.

5.2 Benchmarks
We used a subset of the SPEC CPU2000 Integer

benchmark suite for our studies. All benchmarks were
run to completion, and we used the test or train input
sets for the profiling run of the benchmark (due to
extremely long execution times). The benchmarks and
input sets we used are reported in Table III.

6

TABLE III
BENCHMARKS AND INPUT SETS USED

eon train
gap test
gzip test
mcf test

parser test
vortex test

TABLE IV
NUMBER OF INPUT DEPENDENT BRANCHES IDENTIFIED

Benchmarks Static Branches Input Dep Branches
eon 2014 26
gap 2099 192
gzip 418 40
mcf 164 25

parser 1889 679
vortex 5853 285

In addition to the SPEC benchmarks, we also used
one synthetic benchmark that we created specifically
for this project. This benchmark enabled us to directly
measure the impact of our added enhancements to
the predication support in ORC on an actual Itanium
2 machine. The source code for our benchmark is
available in Appendix III. The benchmark contains
a while loop that executes a fixed number of times.
There is an if statement in the while loop for which
the taken rate can be adjusted by the using a command
line input. This enables us to study differences in
performance as the branch misprediction rate changes.

5.3 2D-Profiling Setup
We used different parameters for 2D-Profiling than

proposed by Kim et. al. in [8]. We had to adjust
two parameters since we used the test input set
for the majority of our benchmarks instead of the
train input set. We set the size of each slice to 300
million branches instead of 1500 million branches
since our experiments are shorter. Similarly, we used
an exec threshold of 500 instead of 1000 since the
size of each slice is shorter. The rest of the parameters
were used as proposed in [8].

6 Results
In this section we will discuss the results of our

experiments. In addition, we will also attempt to
provide explanations for the results.

6.1 2D-Profiling Results
We measured several different statistics for each

of the benchmarks during their profile run. Table IV
shows the number of static conditional branches that
were seen in the execution of each of the benchmarks.
The table also shows the number of branches that
were identified as input-dependent by 2D-Profiling.

TABLE V
PREDICATION OF INPUT DEPENDENT BRANCHES

Benchmark MAX est-predicated bp-predicated Disagree
eon 2200 895 888 7
gap 1620 1094 1083 23
gzip 78 39 37 2
mcf 37 21 20 5

parser 210 124 123 21
vortex 649 334 336 18

The number of input-dependent branches in each
benchmark differs significantly from [8]. There are
several reasons that can explain these changes. Some
of the most eminent reasons are the change in ISA
(IA64 vs. x86), change of compiler (ORC vs. gcc
3.3.3), input set (test vs. train), and the difference in
2D-Profiling parameters (stated in Section 5.3).

Figure 4 on page 10 displays the distribution of
all input-dependent branches, which are classified
into six different categories based on their predic-
tion accuracy. The data shows that the majority of
the input-dependent branches are easy to predict. In
Figure 5 on page 10, we present similar data by
plotting the fraction of input-dependent branches in
each branch prediction category. The figure shows
that a high percentage of branches with prediction
accuracy greater than 90% are input-dependent.

6.2 Predication
We also did some studies to find out how many

branches that can be predicated in ORC are actu-
ally input-dependent. Table V shows our results. Re-
member that, in ORC, only the inner-most branches
that have simple control flow structures are possible
candidates of predication. We call the set of these
branches MAX. Profitability analysis is performed in
ORC to select a subset of these branches that are
then actually predicated. Originally, ORC used an
estimated branch misprediction rate in the profitability
analysis. We call the set of branches that were chosen
for predication using estimated branch misprediction
rate est-predicated. The set of branches that were
chosen for predication when the actual branch mispre-
diction rate from our branch predictor was used are
called bp-predicated. The Disagree column shows
the number of times the decision to predicate or not
differed between the two misprediction rate schemes.
It can be seen that several predication decisions will
be different if the actual misprediction rate was used
in place of the estimated misprediction rate. This can
translate into noticeable performance improvement if
that particular branch is executed very frequently.

Figure 6 shows the the fraction of input-dependent
branches among all the branches that can be predi-
cated (MAX). These branches can thus be converted to
Wish Branches for future applications. Figure 7 shows

7

the fraction of input-dependent branches among est-
predicated branches. Since these branches are identi-
fied as input-dependent, it implies that they may result
in loss of performance when the program is run with
a different input set than the one that was used for
the profiling run.

6.3 Experiments with Synthetic Bench-
marks

We compiled the instrumented binary for the syn-
thetic benchmark. We then set the taken ratio of
the third if-statement such that it was taken for
the first half of the benchmark and not-taken for
the second half of the benchmark. As expected, the
branch misprediction rate from the actual predictor
was less than 1%, whereas the misprediction rate
estimated using the taken ratio was close to 50%.
Therefore, when the estimated branch misprediction
rate was used, the compiler predicated the third
branch. We also generated another binary where the
actual branch misprediction rate was used to decide
the worth of predication. In this case, the compiler did
not predicate the branch. We ran both the binaries,
predicated and unpredicated, on the real Itanium 2
machine. We observed a performance improvement of
5% in execution time when using the binary generated
using the actual branch misprediction rate.

7 Future Work
We plan to further analyze the results we obtained

from 2D-Profiling and evaluate these results using
the metrics used in [8]. This will also help us find
optimal values for 2D-Profiling parameters in an IA-
64 setting since the previous parameters are for a
different ISA on a different compiler. We will also
need to run the instrumented binaries with the train
input set for our results to be more correct. Doing so
will require access to Itanium machines that can run
the instrumented binaries.

Even though it may not impact our results, we
still intend to research different techniques to enhance
GSHARE-arbit. We would like the accuracy of this
predictor to be as close to an actual hardware predic-
tor as possible.

A separate but interesting study is to analyze the
difference in 2D-Profiling results between the x86 set-
ting and IA-64 setting. Understanding the differences
between the two architectures and the two compilers
can lead to several interesting research topics.

Another important study is to compare the perfor-
mance overhead of 2D-Profiling instrumentation to
edge profiling instrumentation. This will require run-
ning the instrumented binaries on an actual Itanium
2 machines. We do not have access to machines that
can run instrumented binaries at this point, but we
plan to get this data once we have the resources.

8 Conclusion
We have added the support for 2D-Profiling in

ORC as a part of this project. 2D-Profiling is a
mechanism that identifies input-dependent branches.
This input-dependence information can help make
better predication decisions in ORC. We implemented
the mechanism to generate instrumented binaries in
ORC that could gather 2D-Profiling data and write
it in a file. We also developed the mechanism in
ORC to read the feedback file and annotate the
data on the Control Flow Graph of the program.
Finally, we present our results for identifying input-
dependent branches. Using our synthetic benchmark,
we show the potential benefit of having 2D-Profiling
information for making predication decisions.

References
[1] J. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren.

Conversion of control dependence to data dependence. In
POPL ’83: Proceedings of the 10th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages
177–189, New York, NY, USA, 1983. ACM Press.

[2] Po-Yung Chang, Eric Hao, Yale N. Patt, and Pohua P. Chang.
Using predicated execution to improve the performance of a
dynamically scheduled machine with speculative execution.
In PACT ’95: Proceedings of the IFIP WG10.3 working con-
ference on Parallel architectures and compilation techniques,
pages 99–108, Manchester, UK, UK, 1995. IFIP Working
Group on Algol.

[3] Joseph A. Fisher and Stefan M. Freudenberger. Predicting
conditional branch directions from previous runs of a pro-
gram. In ASPLOS-V, 1992.

[4] Intel Research Corp. and Institute of Computing Technology,
CAS. ORC Source Code. orc-2.1-src.tar.gz.

[5] Intel Research Corp. and Institute of Computing Technology,
CAS. ORC FAQs, July 2003.

[6] R. Ju, S. Chan, T.-F. Ngai, C. Wu, Y. Lu, and J. Zhang.
Open research compiler (orc) 2.0 and tuning performance on
itanium. Tutorial presented at Micro 35, November 2002.

[7] Hyesoon Kim, Onur Mutlu, Yale N. Patt, and Jared Stark.
Wish branches: Enabling adaptive and aggressive predicated
execution. IEEE Micro, 26(1):48–58, 2006.

[8] Hyesoon Kim, M. Aater Suleman, Onur Mutlu, and Yale N.
Patt. 2d-profiling: Detecting input-dependent branches with
a single input data set. In CGO ’06: Proceedings of the
International Symposium on Code Generation and Optimiza-
tion, pages 159–172, Washington, DC, USA, 2006. IEEE
Computer Society.

[9] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E.
Hank, and Roger A. Bringmann. Effective compiler support
for predicated execution using the hyperblock. In MICRO
25: Proceedings of the 25th annual international symposium
on Microarchitecture, pages 45–54, Los Alamitos, CA, USA,
1992. IEEE Computer Society Press.

[10] Scott McFarling. Combining branch predictors. Technical
Report TN-36, Digital Western Research Laboratory, 1993.

[11] Cameron McNairy and Don Soltis. Itanium 2 processor
microarchitecture. IEEE Micro, 23(2):44–55, 2003.

[12] NUE. Nue and ski product information.
http://www.hpl.hp.com/research/linux/ski/nue-info.phpes.

[13] ORC. Open research compiler for itanium processor family.
http://ipf-orc.sourceforge.net, May 2006.

[14] Karl Pettis and Robert C. Hansen. Profile guided code
positioning. In PLDI ’90: Proceedings of the ACM SIGPLAN
1990 conference on Programming language design and im-
plementation, pages 16–27, New York, NY, USA, 1990. ACM
Press.

8

[15] S. Pop. Interface and extension of the open research compiler.
Technical report, INRIA, 2002.

[16] Vijay Janapa Reddi, Alex Settle, Daniel A. Connors, and
Robert S. Cohn. Pin: A binary instrumentation tool for
computer architecture research and education. In Proceedings
of the Workshop on Computer Architecture Education, June
2004.

[17] Harsh Sharangpani and Ken Arora. Itanium processor mi-
croarchitecture. IEEE Micro, 20(5):24–43, 2000.

[18] Gary Scott Tyson. The effects of predicated execution on
branch prediction. In MICRO 27: Proceedings of the 27th
annual international symposium on Microarchitecture, pages
196–206, New York, NY, USA, 1994. ACM Press.

9

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0
95.0

100.0

D
is

tr
ib

ut
io

n
of

 In
pu

t-
D

ep
en

de
nt

 B
ra

nc
he

s

99-100%
95-99%
90-95%
80-90%
70-80%
0-70%

eo
n

ga
p

gz
ip

mcf
pa

rse
r

vo
rte

x

Fig. 4. The distribution of input-dependent branches based on their branch prediction accuracy

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

Fr
ac

tio
n

of
 in

pu
t-

de
pe

nd
en

t b
ra

nc
he

s

0-70%
70-80%
80-90%
90-95%
95-99%
99-100%

eo
n

ga
p

gz
ip

mcf
pa

rse
r

vo
rte

x

Fig. 5. The fraction of input-dependent branches in different prediction accuracy categories

10

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0
95.0

100.0

Fr
ac

tio
n

of
 in

pu
t-

de
pe

nd
en

t b
ra

nc
he

s

Input-indep
Input-dep

eo
n

ga
p

gz
ip

mcf
pa

rse
r

vo
rte

x

Fig. 6. The fraction of input-dependent branches in MAX

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
60.0
65.0
70.0
75.0
80.0
85.0
90.0
95.0

100.0

Fr
ac

tio
n

of
 in

pu
t-

de
pe

nd
en

t b
ra

nc
he

s

input-indep
input-dep

eo
n

ga
p

gz
ip

mcf
pa

rse
r

vo
rte

x

Fig. 7. The fraction of input-dependent branches in est-predicated

11

Appendix I
Problems faced

Overall this project has been a great learning experience. Dealing with a real compiler has taught us several new
lessons. There were several problems that we faced while dealing with ORC during the course of this project that
caused delays and hindered our progress. We want to list some of them here so others working with ORC do not
have to suffer from them.

1) We were unable to run the instrumented binaries that were compiled using the ORC cross compiler on a real
Itanium machine. We were able to run the non-instrumented binaries correctly. After much investigation we
realized that it was an issue with the glibc version. Only the instrumentation libraries were compiled using
pre-built ORC binaries inside NUE. However, the glibc version inside NUE was not compatible with the glibc
version on the Itanium machines we had access to. Therefore, the instrumented binaries crashed during the
execution of instrumentation code.

2) To find a solution for the first problem, we even tried to compile the native ORC compiler on the Itanium
machine. However, the native ORC did not compile successfully since ORC requires gcc 2.96 for its
compilation, which is not available on the native machine.

3) Another problem we faced was related to writing and reading the feedback file. The size of the data structure
that was written to the file and that was read from the file was different. This resulted in garbage data
being read and annotated from the feedback file. On further investigation, we found that the structure we
were writing out to the file had a variable of type UINT32. This variable was interpreted as a 64-bit unsigned
integer when the instrumentation libraries were compiled using the pre-built ORC native binaries inside NUE.
Whereas, UINT32 was considered a 32-bit unsigned integer in the cross compiler build on the native x86
machine. Changing the type of the variable to UINT64 solved the problem since now it was 64-bit at both
ends.

4) This problem was more related to the interaction between ORC and the Linux utility mktemp. ORC uses
the Linux utility “mktemp” to generate unique filenames for the feedback file. This ensures that ORC never
overwrites an older feedback file. We noticed that the Linux operating system actually marks all these files as
temporary files. These files are deleted automatically after some time. We had to repeat several experiments
since we unexpectedly lost feedback files.

12

Appendix II
Sample feedback file
Start to dump data from feedback file: back_up

********** FILE HEADER **************
fb_ident = 0123456789abcde
fb_version = 2
fb_profile_offset = 0
fb_pu_hdr_offset = 48
fb_pu_hdr_ent_size = 128
fb_pu_hdr_num = 1
fb_str_table_offset = 176
fb_str_table_size = 12
phase_num = 4

********** PU Header No 0 **************
pu_checksum = 25
pu_size = 54321
runtime_fun_address= 65542
pu_name_index = 0
pu_file_offset = 0
pu_inv_offset = 188
pu_num_inv_entries = 0
pu_br_offset = 188
pu_num_br_entries = 0
pu_switch_offset = 188
pu_switch_target_offset = 188
pu_num_switch_entries = 0
pu_cgoto_offset = 188
pu_cgoto_target_offset = 188
pu_num_cgoto_entries = 0
pu_loop_offset = 188
pu_num_loop_entries = 0
pu_scircuit_offset = 188
pu_num_scircuit_entries = 0
pu_call_offset = 188
pu_num_call_entries = 0
pu_icall_offset = 333
pu_num_icall_entries = 0
pu_handle = 11111
pu_edge_offset = 188
pu_num_edge_entries = 25
pu_instr_count = 0
pu_instr_exec_count = 0
pu_value_offset = 1788
pu_ld_count = 0
pu_stride_offset = 1788

************ Str table **************
No 0 : main.c/main

*********** PU Data No 0 ************
0: _type = 1 | _value = 1 | v=0 |N= 0 |STD= 0.000000 |MEAN= 0.000000 |PAM= 0.000000 |exec = 0 |miss= 0
1: _type = 1 | _value = 1 | v=0 |N= 0 |STD= 0.000000 |MEAN= 0.000000 |PAM= 0.000000 |exec = 0 |miss= 0
2: _type = 1 | _value = 1 | v=0 |N= 0 |STD= 0.000000 |MEAN= 0.000000 |PAM= 0.000000 |exec = 0 |miss= 0

13

3: _type = 1 | _value = 1 | v=0 |N= 0 |STD= 0.000000 |MEAN= 0.000000 |PAM= 0.000000 |exec = 0 |miss= 0
4: _type = 1 | _value = 0 | v=0 |N= 0 |STD= 0.000000 |MEAN= 0.000000 |PAM= 0.000000 |exec = 0 |miss= 0
5: _type = 1 | _value = 1 | v=0 |N= 0 |STD= 0.000000 |MEAN= 0.000000 |PAM= 0.000000 |exec = 0 |miss= 0
6: _type = 1 | _value = 1 | v=1 |N= 20 |STD= 0.000000 |MEAN= 1.000000 |PAM= 0.000000 |exec = 100000 |miss= 1
7: _type = 1 | _value = 99999 | v=1 |N= 20 |STD= 0.000000 |MEAN= 1.000000 |PAM= 0.000000 |exec = 100000 |miss= 1
8: _type = 1 | _value = 50001 | v=0 |N= 0 |STD= 0.000000 |MEAN= 0.000000 |PAM= 0.000000 |exec = 0 |miss= 0
9: _type = 1 | _value = 49999 | v=0 |N= 0 |STD= 0.000000 |MEAN= 0.000000 |PAM= 0.000000 |exec = 0 |miss= 0
10: _type = 1 | _value = 49999 | v=1 |N= 20 |STD= 0.000000 |MEAN= 0.999800 |PAM= 0.350000 |exec = 100000 |miss= 20
11: _type = 1 | _value = 50001 | v=1 |N= 20 |STD= 0.000000 |MEAN= 0.999800 |PAM= 0.350000 |exec = 100000 |miss= 20
12: _type = 1 | _value = 50038 | v=0 |N= 0 |STD= 0.000000 |MEAN= 0.000000 |PAM= 0.000000 |exec = 0 |miss= 0
13: _type = 1 | _value = 49962 | v=0 |N= 0 |STD= 0.000000 |MEAN= 0.000000 |PAM= 0.000000 |exec = 0 |miss= 0
14: _type = 1 | _value = 49962 | v=1 |N= 20 |STD= 0.000013 |MEAN= 0.499595 |PAM= 0.600000 |exec = 100000 |miss= 50014
15: _type = 1 | _value = 50038 | v=1 |N= 20 |STD= 0.000013 |MEAN= 0.499595 |PAM= 0.600000 |exec = 100000 |miss= 50014
16: _type = 1 | _value = 100000 | v=0 |N= 0 |STD= 0.000000 |MEAN= 0.000000 |PAM= 0.000000 |exec = 0 |miss= 0
17: _type = 1 | _value = 1 | v=0 |N= 0 |STD= 0.000000 |MEAN= 0.000000 |PAM= 0.000000 |exec = 0 |miss= 0
18: _type = 1 | _value = 0 | v=0 |N= 0 |STD= 0.000000 |MEAN= 0.000000 |PAM= 0.000000 |exec = 0 |miss= 0
19: _type = 1 | _value = 0 | v=0 |N= 0 |STD= 0.000000 |MEAN= 0.000000 |PAM= 0.000000 |exec = 0 |miss= 0
20: _type = 1 | _value = 0 | v=0 |N= 0 |STD= 0.000000 |MEAN= 0.000000 |PAM= 0.000000 |exec = 0 |miss= 0
21: _type = 1 | _value = 1 | v=0 |N= 0 |STD= 0.000000 |MEAN= 0.000000 |PAM= 0.000000 |exec = 0 |miss= 0
22: _type = 1 | _value = 1 | v=1 |N= 0 |STD= nan |MEAN= nan |PAM= nan |exec = 1 |miss= 1
23: _type = 1 | _value = 0 | v=1 |N= 0 |STD= nan |MEAN= nan |PAM= nan |exec = 1 |miss= 1
24: _type = 1 | _value = 1 | v=0 |N= 0 |STD= 0.000000 |MEAN= 0.000000 |PAM= 0.000000 |exec = 0 |miss= 0
************ End of dump **************

14

Appendix III
Synthetic Benchmark
#include<stdio.h>
#include<stdlib.h>

int array[20];

int init(){
array[0] = -10;
array[1] = -9;
array[2] = -8;
array[3] = -7;
array[4] = -6;
array[5] = -5;
array[6] = -4;
array[7] = -3;
array[8] = -2;
array[9] = -1;
array[10] = 0;
array[11] = 1;
array[12] = 2;
array[13] = 3;
array[14] = 4;
array[15] = 5;
array[16] = 6;
array[17] = 7;
array[18] = 8;
array[19] = 9;

}

int main(int argc, char** argv)
{

int k = 0;
int first_taken=0;
int first_ntaken = 0;
int second_taken=0;
int second_ntaken = 0;
long long max_k = 0;
int value = 0;
int period;

init();

if (argc == 1){
max_k = 100000;

}
else if (argc == 2){
max_k = atoi (argv[1]);

}
else if (argc == 3){
max_k = atoi (argv[1]);
period = atoi (argv[2]);

}
else{

15

exit(0);
}

while (k < max_k){
if (rand() > (RAND_MAX/2)){

first_taken++;

}
else{

first_ntaken++;
}

if (!(k % (period/2))){
value = (value == 0)?1:0;

}

if (value){
second_taken++;
array[0] = second_taken;
array[1]=array[0]+array[0];
array[3]=array[1]+array[0];
array[4]=array[2]+array[1];
array[5]=array[3]+array[2];
array[6]=array[4]+array[3];
array[7]=array[5]+array[4];
array[8]=array[6]+array[5];
array[9]=array[7]+array[6];

}
else{

second_ntaken++;
array[10] = second_ntaken;
array[11]=array[10]+array[10];
array[13]=array[11]+array[10];
array[14]=array[12]+array[11];
array[15]=array[13]+array[12];
array[16]=array[14]+array[13];
array[17]=array[15]+array[14];
array[18]=array[16]+array[15];
array[19]=array[17]+array[16];

}

k++;
}

printf("first_taken : %d \n", first_taken);
printf("first_ntaken : %d \n", first_ntaken);
printf("second_taken : %d \n", second_taken);
printf("second_ntaken : %d \n", second_ntaken);

}

16

